

MASTER’S DEGREE IN PARALLEL AND DISTRIBUTED

COMPUTING

Academic Course 2015 / 2016

Master’s Degree Thesis

Analysis of Horizontal Reactive Scaling

on Container Management Systems

September, 2016

Student:

César González Segura

Supervisor:

Germán Moltó Martínez

Elasticidad Horizontal Reactiva Basada en Contenedores

Acknowledgements

I want to thank the members of the GRyCAP research group, Germán Moltó, Ignacio

Blanquer and Damián Segrelles for giving me the opportunity to work in this project and

for their support. The effort done by my supervisor, German, has greatly helped me finish

this project thanks to his advice and guidance.

 I also want to thank all my colleagues at the master’s course for their support and

company through this very intense year. And finally, to my girlfriend and my family for

their unconditional support on all my projects.

César González Segura

cegonse@posgrado.upv.es

iii.

mailto:cegonse@posgrado.upv.es

Abstract

Container management systems have appeared recently as an alternative to virtual

machines, offering relative isolation without the overhead of running virtual machines (VMs).

Containers are attractive for its use in distributed systems thanks to its horizontal scaling

properties. In this project, the performance of virtual machines and the Kubernetes container

management system is evaluated, in order to compare the computing performance and

economic cost of both alternatives.

Resumen

Los sistemas de gestión de contenedores han surgido recientemente como una

alternativa a las máquinas virtuales, ofreciendo un aislamiento relativo sin el overhead de

las máquinas virtuales (VMs). Gracias a sus propiedades de escalabilidad horizontal, los

contenedores son una alternativa interesante para el uso en sistemas distribuidos. En este

proyecto se evalúa el rendimiento de las máquinas virtuales y del sistema de gestión de

contenedores Kubernetes, con el objetivo de establecer una comparativa de la capacidad de

cómputo y del coste económico de ambas alternativas.

Resum

Els sistemes de gestió de contenidors han sorgit recentment com una alternativa a

les màquines virtuals, oferint un aïllament relatiu sense el overhead de les màquines virtuals

(VMs). Gràcies a les seues propietats d’escalabilitat horitzontal, els contenidors són una

alternativa interesant per al seu us en sistemes distribuïts. En aquest projecte s’avalua el

rendiment de les màquines virtuals i del sistema de gestió de contenidors Kubernetes, amb

l’objectiu d’establir una comparativa de la capacitat de còmput i del cost econòmic

d’ambdues alternatives.

v.

Contents

1 Introduction

1.1 Motivation

1.2 Objectives

1.3 Structure

2 State of the art

2.1 Previous work

2.2 Technology review

2.3 Amazon Web Services

2.4 Kubernetes

3 Environment set-up

3.1 Toolchain

3.2 Test application

3.3 Client metrics measurement

3.4 Infrastructure metrics measurement

4 Tests

4.1 Test bench

4.2 Test results

4.2.1 Small profile test results

4.2.2 Medium profile test results

4.2.3 Large profile test results

4.3 Results discussion

4.4 Cost evaluation

5 Conclusions

5.1 Future work

vii.

10

11

12

12

16

16

17

19

20

23

23

23

25

27

30

30

31

31

33

35

37

38

40

40

Figure index

Figure 1.1: Gantt chart of the project.

Figure 2.1: Conceptual map of the selected technologies.

Figure 2.2: Architecture for the testing environment under AWS.

Figure 2.3: Conceptual diagram of a deployed Kubernetes service.

Figure 3.1: Set-up of the WordPress + MySQL service.

Figure 3.2: Flood access pattern.

Figure 3.3: Ramp access pattern.

Figure 3.4: Cycle access pattern.

Figure 3.5: Infrastructure metric measuring tool.

Figure 4.1: Flood results for the small test bench.

Figure 4.2: Ramp results for the small test bench.

Figure 4.3: Cycle results for the small test bench.

Figure 4.4: Flood results for the medium test bench.

Figure 4.5: Ramp results for the medium test bench.

Figure 4.6: Cycle results for the medium test bench.

Figure 4.7: Flood results for the large test bench.

Figure 4.8: Ramp results for the large test bench.

Figure 4.9: Cycle results for the large test bench.

Table index

Table 1.1: Project tasks and estimated length.

Table 4.1: Performance characteristics of the testing virtual machines.

Table 4.2: Approximate monthly fee of the test scenarios.

Listing index

Listing 3.1: YAML description for the WordPress service.

Listing 3.2: YAML description for the MySQL service.

Listing 3.3: Source code for the infrastructure metric tool.

viii.

14

18

19

20

24

26

26

27

28

31

32

32

33

34

34

35

36

36

13

30

38

44

45

45

Chapter 1

Introduction

Since the first network services started operating, there has been a great interest in delivering

the best performance to the users while minimizing the expenses needed to run the system.

However, said perceived performance can vary depending on the concurrent number of

clients connected to the system.

Ideally, all systems should be designed and deployed to concurrently handle as many

connections as requested by its clients. Failing to do so may frustrate many users, which

could stop using the platform altogether. Even though this issue is not new many modern

services suffer of the Slashdot effect
[Adler99]

, failing to correctly estimate the number of users

the service will have on its launch and losing potential users and customers.

Designing and deploying networked and concurrent systems has always supposed a

challenge. The first systems relied on cluster systems based on fixed hardware, which had to

be purchased or rented by the service provider and operated manually.

If the provisioned hardware could not satisfy the demand, the service had to be shut

down in order to add additional nodes to the cluster, and started again, generating a

disruption in service. Moreover, services designed to accommodate the maximum peak of

clients at a given time would be greatly underutilized at all other times, generating

unnecessary expenses.

To put said underutilized resources to use, the grid initiative was born as a way to

connect computing clusters over the network and use the available resources on remote

machines [Berman03]. Further advances thanks to the experience with the grid initiative plus

advances on machine virtualization led to what is currently known as cloud computing, which

is the focus of this work.

10

1.1 Motivation

Cloud computing is defined by the USA’s NIST as “(···) a model for enabling (···) on-demand

network access to a shared pool of (···) computing resources that can be rapidly provisioned

(···) with minimal effort”
[Mell11]

. From an infrastructure point of view, cloud systems are

usually composed of a collection of interconnected cluster systems, sharing computing and

storage resources over the network.

 Virtualization is the key to manage all the aggregate resources that form cloud

networks. Over the bare metal hardware, instances of virtual machines and storage devices

can be created and destroyed, enabling developers to scale their services to the demand and

avoiding problems such as stated earlier.

 The popularization of public cloud providers and virtualization has opened new

possibilities for adjusting the expenses to the minimum. When the user load is low, services

can scale to the minimum number of computing resources needed, if the load increases, the

service can instantiate new virtual machines, scaling the capacity of the service to

accommodate the increased number of clients.

 Even though services backed by virtual machines do not take a lot of time to scale

(usually in several minutes), there are situations where the increase in load is fast enough to

not let the service process all the incoming requests before it scales to the new capacity.

 One of the solutions to this problem that is recently gaining momentum recently is

deploying services on container based systems
[Merkel14]

. Containers are a lightweight instance

of an operating environment, that can be run on physical and virtual machines and provide

good isolation in terms of performance but their isolation in terms of security is not as

complete as when using VM’s. One of its benefits over virtual machines is the capacity of

scaling in seconds instead of minutes, which should in theory let systems scale in time and

minimize the impact on the user level experience during a load increase.

 The main motivation of this project is assessing if there is a real benefit on the use

of these container based solutions instead of traditional virtual machines, from a performance

and economic perspective. If this was the case, many more developers may be tempted to

port their services to a container based deployment.

11

1.2 Objectives

Given the motivations stated previously, the main objective of this project is creating an

environment to test the computing performance and horizontal scaling capabilities of systems

backed by traditional virtual machines and by container management systems, using defined

metrics to make a comparison. The complete list of objectives is:

 Analyzing the available public and private cloud providers and container

management systems, to select the backend that suites best to conduct the tests.

 Setting-up the test environment to ensure that the tests can be repeated and that

the results are reproducible.

 Creating the declarative definitions to deploy the test application to the

infrastructure, for both virtual machine and container deployments.

 Set-up the necessary tooling to obtain the comparison metrics, and develop any

additional tooling that might be necessary.

 Obtain the computational and economic performance of the test scenario.

1.3 Structure

The project is divided in the following chapters. Chapter 2 consists of a small review of the

state of the art of research on service scaling under container based architectures. Chapter

3 does a review of some of the most common public and private cloud providers and container

management systems, and introduces the selected providers, Amazon Web Services and

Kubernetes. Chapter 4 explains the environment used to conduct the tests, and in chapter

5 the test bench and results are commented. Finally, chapter 6 is dedicated to the future

work.

12

 The project started the 8
th
 of June and finishes during the 3

rd
 week of September,

having an estimated duration of three months. Following is a table stating the different tasks

of the project with its estimated duration, along with a Gantt chart showing the schedule of

the project.

Id. Task Estimated duration

1 Analysis 41 days

1.1 Analysis of cloud provider platforms 3 days

1.2 Analysis of container management systems 3 days

1.3 Thorough documentation of Kubernetes 35 days

2 Environment set-up 15 days

2.1 Selection of the testing application 5 days

2.2 Creation of the local environment 2 days

2.3 Creation of the test application deployment scripts 5 days

2.4 Verification of the deployed service 3 days

3 Test metrics set-up 12 days

3.1 Set-up of the client metric logging tools 5 days

3.2 Analysis of the needed infrastructure metrics 1 day

3.3 Development of the infrastructure metric logging tooling 5 days

3.4 Verification of the infrastructure metric logger 1 day

4 Testing and results processing 6 days

4.1 Testing using Kubernetes 3 days

4.1.1 Testing under a low capacity cluster 1 day

4.1.2 Testing under a medium capacity cluster 1 day

4.1.3 Testing under a high capacity cluster 1 day

4.2 Testing using traditional virtual machines 3 days

4.2.1 Testing on small virtual machines 1 day

4.2.2 Testing on medium virtual machines 1 day

4.2.3 Testing on large virtual machines 1 day

5 Closure of the project 10 days

5.1 Redaction of this document 10 days

Total: 84 days

Table 1.1: Project tasks and estimated length.

13

Figure 1.1: Gantt chart of the project

14

Chapter 2

State of the Art

This chapter is divided in two sections. The first is a brief introduction to the previous

research efforts in work related to this project. The second part is dedicated to analyzing

the available virtual machine and container management system technologies, in order to

choose the technologies that suit better this project.

Even though in the existing literature there are numerous articles dedicated to

distributed systems, container based systems are relatively recent and research material on

the subject is relatively scarce. From the available literature, two articles have been chosen

to serve as a basis for this project. Both articles stablish a comparison between container

based services and traditional virtual machines, but taking different approaches.

2.1 Previous Work

The first article is “Performance Comparison Between Linux Containers and Virtual

Machines”, by Ann Mary Joy [Joy15]. Taking the results of previous work related to

performance of traditional virtual machines, in this article the author creates a test bench

on Amazon EC2 and Kubernetes, using Joomla and WordPress as the test applications.

The application was flooded with requests on 10 minute intervals, and from the

obtained results the author concluded that Kubernetes (and container management systems

in general) yield better response times and scaling properties when compared to virtual

machines, having a speed-up of 22x on scaling reaction times.

The second article is “An Updated Performance Comparison of Virtual Machines and

Linux Containers”, by Wes Felter and others. In this article, the authors create a test bench

using MySQL as the test application, KVM as the virtual machine hypervisor and Docker

as the container manager. Given their results, the authors conclude that containers yields

better scaling properties due to the minimum CPU overhead, while the IO throughput is

worse than on traditional virtual machines.

16

However, the authors explain that to obtain good performance on both virtual

machines and containers, the underlying management systems must be correctly configured,

which requires having a deep understanding of the platform. Results obtained by similar

tests could not be representative of the general behavior of virtual machines or containers

due to misconfigured managers.

Taking these two publications as a foundation, the next step involves evaluating the

existing technologies to create the performance tests for this project.

2.2 Technology Review

The technology review for this project involves analyzing existing technologies and services

for deploying virtual machines and containers. Evaluating the pros and cons of each, the

technologies that are most fit for the project will be used. Then, the selected technologies

will be explained with more detail to have a better understanding of how the tests will be

conducted.

 Since the test application has to be executed on virtual machines, a suitable

hypervisor or management system is needed. To simplify the deployment process and make

testing easier, instead of focusing on using a hypervisor and creating the virtual machines

over it (such as VMware ESX), the study will focus on the available public and private

cloud providers.

 Cloud providers let users instantiate and destroy virtual machines (along with

storage devices, network devices and more) in a simple and fast way. Depending on how

access is granted to these cloud environments, these could be further divided into public and

private cloud providers.

 Private providers offer enterprises and institutions solutions to create a cloud

environment on their own premises, in order to make a better use of their available

computing resources. Two of the most used private cloud providers are OpenStack and

OpenNebula. Even though it would have been possible to conduct the tests in the GRyCAP’s

private cloud environment, using a public cloud provider was decided to facilitate

reproducibility of the experiments conducted on this work by other researchers.

 Public cloud providers rent their computing resources, where users can instantiate

virtual machines, storage elements, network devices and others for a fee. Following the NIST

definition of cloud computing [Mell11], this would be the case of a service following the IaaS

model (infrastructure as a service). This enables developers to create their services in a pay-

per-use fashion, only spending money for the needed computing power at any given time.

17

 Two of the most popular public cloud providers are Amazon Web Services and

Microsoft Azure. AWS offers a very extensive catalog of virtual machine images, has a great

number of support resources and is very well integrated in the Linux ecosystem, which will

be a plus to easily conduct the tests. Microsoft Azure offers a very similar service; however,

it is more centered towards their own ecosystem. For these reasons the selected public cloud

provider is Amazon Web Services.

On the other hand, the choice for container management systems is not as wide as

with hypervisors or cloud providers. Cloud providers offer container management solutions,

such as Amazon ECS, OpenStack’s Nova-Docker
[Nova]

 or the OneDock development to

introduce Docker support in OpenNebula
[Dock]

.

One of the most used container management systems, which is considered by many

as an industry standard, is Kubernetes, developed internally by Google to be used for their

internal workloads and now powering their public cloud container service, Google Compute

Engine. Since this container management system is one of the best maintained solutions and

it is considered an industry standard by many, it has been considered the best choice for the

project.

In conclusion, the technologies that will be used to conduct the tests needed for this

project are Amazon Web Services for the virtual machine tests and Kubernetes for the

container based tests. In the next section, both technologies are explained with greater detail

to understand how are the tests going to be conducted.

Figure 2.1: Conceptual map of the selected technologies.

18

2.3 Amazon Web Services

As stated in the previous section, Amazon Web Service (AWS for short) offers different

kinds of computing resources for a fee. In this project, AWS will be used to create the virtual

machines for the testing and to support Kubernetes. To achieve this, the following AWS

services will be used:

 EC2 (Elastic compute cloud): Offers the creation of virtual machines with different

performance ranges, from small machines featuring a single core and less than a

gigabyte of memory to machines with dozens of cores and tens of gigabytes of memory.

Amazon offers a virtual machine image repository with thousands of preconfigured

operating systems to be used on the EC2 instances.

 ELB (Elastic Load Balancers): A service inside EC2 which creates a networking

element able to balance the load coming from the outside to a distributed system

between its different instances.

 Auto Scaling Groups: Instead of launching individual EC2 instances, a group can be

created where the service scales the number of instances automatically depending on

a set of predefined metrics (CPU usage, memory usage, among others).

Using said services as the foundations, the Kubernetes cluster and the virtual

machines for testing the application will be deployed. To control the service and the created

instances, AWS offers both a web GUI interface and a console command line tool called

awscli. While the GUI interface is useful for creating instances easily, the command line

tool will be useful to act as a bridge with the AWS API to obtain testing metrics.

The following figure represents the testing environment using AWS. The different

elements of Kubernetes and the testing environment will be detailed subsequently.

Figure 2.2: Architecture for the testing environment under AWS.

19

2.4 Kubernetes

Kubernetes has to be deployed on a machine cluster, where the containers will be evenly

distributed to balance the workload between the available nodes. These nodes follow a

master-slave relationship, where the master acts as the controller for all the slave nodes and

routes the traffic in and out of the cluster. In the bibliography, slave nodes are known as

minions.

 Even though Kubernetes uses containers, the smallest computing resource available

to the user is the pod. A pod is a computing element that can contain one or more containers

along with its storage resources, enabling services to be tightly coupled together.

 Launching individual pods with a single container is considered a bad practice, since

one of the main advantages of using containers is being able to recover fast from a failure,

and pods are not fail tolerant by themselves.

To solve this, services enable users to create a group of pods which share the same

image, are failure-tolerant and can be scaled up to a set number of instances. A service can

have an external entry point assigned to a single port, or as a load balancer to distribute the

load through all the instanced pod replicas.

The third important feature of Kubernetes are horizontal pod autoscalers

(HPA). HPA’s monitor a set of defined metrics on the pods inside a service, and change

the number of instances accordingly (for example, depending on the CPU load or memory

consumption). With all this three features, the behavior of Amazon EC2, ELB and ASG can

be replicated using containers.

Figure 2.3: Conceptual diagram of a deployed Kubernetes service.

20

The Kubernetes cluster can be configured from both a web based GUI interface and

from a command line interface called kubectl, as with AWS. Since the GUI interface does

not have the full feature set of the command line interfaced, it will not be used.

A very powerful feature of Kubernetes is the ability to deploy complete services using

declarative descriptions, defined through JSON or YAML recipes. These recipes have all the

definitions for the pods, services and horizontal scalers that the service must use to work.

With this feature, tests are guaranteed to be reproducible on different scenarios, and easily

replicable.

Along with the bare Kubernetes software, the default Kubernetes distribution comes

with other useful plugins such as Grafana
[Graf]

, a web tool to visualize performance metrics

and debug services, and Heapster
[Heap]

, a service that collects different metrics from the

services and exposes them with a simple REST API. Both services will be useful to build

the tests and the metric measurement tools.

In order to deploy the cluster into AWS, Kubernetes distribution comes with tools

to automatically create and destroy the required EC2 instances and other computing

resources on the cloud. Thanks to this, launching a new cluster becomes a simple and fast

task, taking mere minutes.

Now that the main technologies that are going to be used to conduct the tests have

been introduced, the next chapter will deal with the design and implementation of the

environment used to conduct the tests.

20

Chapter 3

Environment Set-up

This chapter is dedicated to describing how the environment for conducting the tests is

created. In order to do the performance analysis, a service is used under both virtual

machines and containers. Then, taking into account the relevant metrics for the test, a

framework to test the client perceived performance and the infrastructure performance is

designed and implemented.

3.1 Toolchain

To be able to obtain reliable and reproducible results, creating a good testing toolchain is a

necessity. This toolchain is the collection of tools to deal with the creation and destruction

of the Kubernetes cluster, creating the test application, obtaining metrics and processing

them.

 This toolchain will run on a Linux virtual machine, to ease working from different

environments. The selected Linux distribution is Debian Linux, using VirtualBox as its

hypervisor. This machine is then configured with an installation of the Kubernetes

distribution, of the AWS command line interface and with the required credentials to access

AWS from the console. Having a local installation of Kubernetes is necessary to use its

command line interface.

 The next step is selecting a test application, and designing the recipes required to

instantiate the service in both virtual machines and Kubernetes.

3.2 Test Application

A suitable test application should be one that can show the differences between working on

virtual machines and working on a container management system. It should require some

degree of processing and have a good enough scalability factor which ensures that the service

will react appropriately to the client requests and scale as needed.

23

 The services that have the best scaling behavior are stateless services. Stateless

services require neither synchronizing state between replicas nor storing their state

persistently. Thanks to these properties, these can have instances added or replaced and fail

gracefully, without any alteration on its behavior. On the other hand, stateful services

require some kind of persistent storage to keep track of its state.

 For this project, selecting a mixed stateless and stateful service seemed interesting

to analyze how do both scenarios behave under load. The test application that was finally

chosen is WordPress. WordPress is a web framework designed to easily create websites,

blogs and other web applications. The framework is coded in PHP and uses MySQL as its

database engine.

 PHP interpreters are known for not making the best use of the available computing

resources, and MySQL is a good candidate for testing CPU, memory and IO performance as

seen in previous work. WordPress can also scale horizontally easily, creating new replicas if

the user requests exceed the load a single node can handle. However, MySQL does not scale

easily due to its relational design, even though methods exist to create read-only replicas.

 For these reasons, WordPress can be a good candidate to assess whether the

statefulness of MySQL can be a burden to the scaling capabilities of the application, in case

it became IO or CPU bottlenecked, or not.

Figure 3.1: Set-up of the WordPress + MySQL service.

The WordPress application has been declared on a YAML recipe. This recipe consists

of a single service, with a load balancer exposing the default HTTP port to the outside,

letting incoming requests get to the service pods, and a horizontal pod auto scaler, which

will trigger the application to scale when the average CPU load across the service exceeds

50%.

24

The listing 3.1, available in the annexes at the end of this document, contains the

YAML description for the WordPress service.

On the other hand, MySQL consists of a service exposing its default port to the other

services in the Kubernetes cluster, and has a single pod. Even though it only has one pod,

being inside a service allows it to be launched again in case of a failure. The listing 3.2, at

the end of this document, contains the YAML description for the MySQL service.

 For testing under traditional virtual machines, thanks to the existence of premade

WordPress images at the AWS image catalog, creating the test environment from the web

interface is simple enough to not require creating recipes.

 The next section is focused on introducing the different metrics that will be measured

for both the perceived client performance and the infrastructure performance, along with the

tools needed to perform the measurement.

3.3 Client metrics measurement

The objective of achieving the best performance from the infrastructure side is to give users

the best possible experience, reducing response times to the minimum. To quantify how are

the users perceiving the quality of service, a set of metrics that show how clients react

depending on the infrastructure load must be defined.

 In this case, the set metrics were the mean response time and the percentage of

accepted requests. If the response time is too high, users will potentially get frustrated or

drop the service altogether. Also, if the user is denied access to the service too often due to

the server load, the same problems could arise.

 When testing client performance, the way in which users access the service must be

taken into account. These access patterns should be analyzed depending on the nature of

the service and its users, thus test patterns should properly reflect user behavior [Meier07]. In

this case, three access patterns have been designed.

 The first pattern is a flood like pattern. This would be the worst case scenario, where

all users connect simultaneously to the service. In real world scenarios, an access pattern like

this probably would behave like a denial of service attack to the infrastructure, therefore

this is the toughest test the infrastructure would have to take.

 The test has been designed to have a total length of 10 minutes, having a warmup

and a cooldown of 10 seconds at the start and end of the test. Requests are sent with a rate

of 50 request per second. The following figure shows the curve used as the access pattern.

25

Figure 3.2: Flood access pattern.

The next pattern design is similar to the previous test, but the warmup and cooldown

periods have been extended to 2 minutes. Clients will start making requests to the server,

increasing gradually until arriving to a maximum, and after 6 minutes will start decreasing

again until the test ends. Request rate is set at 50 requests per second.

This pattern will potentially prevent the server from collapsing due to a high increase

of load in a short period of time, and will still be a good metric for measuring a constant

load, as seen in the following figure.

Figure 3.3: Ramp access pattern.

The last access pattern represents a real word scenario, where access to the service

fluctuates between a high load and a low load, with a cooldown and warmup period between

each part of the cycle. Each cycle takes 3 minutes with a total of 5 cycles. The request rate

is set to 50 requests per second when load is high and to 20 requests per second when load

is low.

26

This kind of behavior could be used to represent user behavior during day and night

for a particular time zone. During the day the number of requests is set at a high value.

When the day is ending requests gradually decrease until a low load during the night,

repeating on the next day. The following figure shows the load curve.

Figure 3.4: Cycle access pattern.

Given these tests, a testing framework is now needed to obtain the performance

metrics. In this project the JM eter testing tool is used, as it is considered an industry

standard for service load testing and can be configured to conduct all the previous tests. The

results obtained with JMeter will be exported to Excel through a CSV file and processed to

obtain the final results.

These client performance results will be combined with the infrastructure

performance results. The infrastructure tests are introduced in the next section.

3.4 Infrastructure metrics measurement

When clients are requesting access to the service, metrics from the infrastructure side

have to describe how users affect its performance. Since the system is bound to scale when

the CPU usage goes over 50%, measuring the CPU across the service and the number of

active instances, to detect when the auto scalers force the service to add or remove instances,

would be of interest.

The Kubernetes auto scaling system is still under development, meaning that there

are few tools to obtain infrastructure metrics. Because of this reason, it was decided to

develop a custom tool for obtaining the metrics. Since the tests also have to be conducted

using virtual machines, having a custom tool will be useful to ensure that metrics are

obtained in a similar fashion.

27

Both Kubernetes and AWS expose their metrics through APIs, however since the

command line interfaces for both infrastructures are able to format their output as JSON

files, the metric tool will call the command line interfaces instead of directly accessing the

APIs.

Since WordPress uses MySQL as its database backend, analyzing how does its

performance affect the performance of the whole service could be of interest. To achieve this,

the CPU usage and memory consumption of the MySQL pod has to be monitored. However,

the Kubernetes command line does not expose this functionality. Instead, the REST API of

Heapster has to be used. Its API can be accessed through HTTP using the Kubernetes proxy,

obtaining in a simple way the needed metrics. The following diagram illustrates how does

the infrastructure metric measuring tool work.

Figure 3.5: Infrastructure metric measuring tool.

 The source code for the infrastructure metric tool is available in the listing 3.3 at the

end of this document. The tool has been developed using Node.JS and JavaScript. With all

the environment and tests defined, and the metric measuring tools correctly set-up and

configured, the next chapter deals with the execution of the tests and shows the obtained

results.

28

Chapter 4

Tests

With the testing environment properly defined set-up, the performance evaluation can be

conducted. This chapter introduces the test bench used to execute the previously designed

tests, and the obtained results.

4.1 Test bench

The service was tested under three different virtual machine profiles with different

performance properties (under small virtual machines (t2.micro), medium (t2.small) and

large (t2.medium)). The Kubernetes cluster was formed by 5 instances, 5 minions and 1

master instance. The traditional virtual machine configuration started with 1 instance and

could scale up to 5 instances.

EC2 virtual machines use credits as the measurement unit for CPU performance.

One credit equals to a physical CPU being at 100% usage during one minute[Cred]. VM

instances get assigned a number of credits per hour (c / h), which roughly translate to the

equivalent time the CPU could be at 100% usage.

The following table shows the performance characteristics of each one of the testing

virtual machine profiles.

 Small Medium Large

CPU speed 1 vCore * 3 c/h 1 vCore * 6 c/h 1 vCore * 12 c/h

Memory capacity 1 GiB 2 GiB 4 GiB

Storage type EBS (slow) EBS (slow) EBS (slow)

Network throughput Slow Slow Moderate

Table 4.1: Performance characteristics of the testing virtual machines.

 The VM tests use the Bitnami WordPress AMI[Wp], which is a self-configuring image

of WordPress, and the Kubernetes tests use the default Kubernetes AMI, Debian 8[Deb].

30

4.2 Test results

After executing the tests in the three tiers, the following results were obtained. First

are the results on a small sized Kubernetes and small sized virtual machines, presenting first

the flood results, then the ramp results and finally the cycle results.

The horizontal axis represents the time stamp of each sample in minutes, while in

the vertical axis the mean response time is represented through the orange color and, in the

case of the container based test, the service average CPU usage is represented with the blue

color. Green horizontal bars are used to mark when the service scales horizontally, changing

the number of containers or virtual machines depending on the test. Samples are spaced

each 30 seconds approximately, taking 10 minutes the first two tests and 15 minutes the

third one.

After the results of the test for all three performance profiles have been introduced,

the economic cost of running each one of the alternatives is presented.

4.2.1 Small profile test results

 The following subsections introduce the test results for the three performance profiles.

The graphs on the left side represent the results obtained in the container based test, while

the graphs on the right side represent the results obtained in the virtual machine based test.

Figure 4.1: Results for the small test bench with the “flood” requests pattern.

The container test yielded an average response time of 1051,65 ms, with a standard

deviation of 5265,63 ms. 97% of the requests were successfully processed by the service. On

the other hand, the virtual machine test obtained an average response time of 417,76 ms

with a standard deviation of 615,25 ms. 100% of the requests were successfully processed.

31

The high round trip times, the occasional dropping of connections and the highly

variable response time in the virtual machine test could be symptoms of both tests failing

due to the small compute capacity of the machines.

The next figure shows the test results for the ramp test for both containers and

virtual machines.

Figure 4.2: Results for the small test bench with the “ramp” request pattern.

The mean response time for the container test was 834,23 ms, with a standard

deviation of 3796,17 ms. 96% of the requests completed successfully. The virtual machine

test obtained a mean response time of 220,43 ms with a standard deviation of 92,94 ms.

100% of the requests were handled correctly.

As with the previous case, the tests seem to be failing due to the machines being

underpowered to handle all the incoming requests. Finally, the following figure shows the

results of the cycle tests.

Figure 4.3: Results for the small test bench with the “cycle” requests pattern.

32

The container based test obtained a mean response time of 1505,70 ms with a

standard deviation of 5676,63 ms. 95% of the requests were processed. The virtual machine

test obtained a response time of 969,85 ms with a standard deviation of 1235,34 ms. 100%

of the requests were processed correctly.

 In this case, similarly to the previous two, the excessively high and varying response

times could be caused to the inability of the machines to accept the load due to their reduced

computing capacity. In the case of the container test, The CPU load increases during the

first cycle and the cluster manages to scale up correctly. However, on the second cycle the

CPU load stays high and the response time increases significantly.

4.2.2 Medium profile test results

Next are the results for the medium performance characteristics. As with the small

tests, first are the results for the flood test.

Figure 4.4: Results for the medium test bench with the “flood” requests pattern.

The medium container based test obtained an average response time of 224,37 ms

with a standard deviation of 166,25 ms. 100% of the requests were handled in time. On the

other hand, the virtual machine based test obtained an average response time of 545,17 ms

with a standard deviation of 177,14 ms. 100% of the requests were handled successfully.

In this case, both tests completed successfully, with an acceptable response rate and

handling all the incoming connections. The container tests scaled to accommodate the

incoming requests, however it failed to scale down after the CPU load was correctly handled.

This could be an issue on the service HPA, since this Kubernetes feature is still under

development. On the other hand, the virtual machine test did not scale during the process.

Next is the ramp test for the medium performance profile.

33

Figure 4.5: Results for the medium test bench with the “ramp” request pattern.

 The container ramp test obtained an average response time of 211,54 ms with a

standard deviation of 106,07 ms. 100% of the requests were accepted in time. On the other

hand, the virtual machine test obtained a mean response time of 227,16 ms with a standard

deviation of 73,64 ms and a 100% success rate.

 In this test, both scenarios managed to keep a low response time and correctly

processed all the incoming requests. As with the previous case, the container service failed

to scale down correctly when the CPU load decreased, and the virtual machine service did

not scale during the whole test. Next is the cycle test results for the medium profile test

bench.

Figure 4.6: Results for the medium test bench with the “cycle” request pattern.

34

 The medium cycle container test obtained an average response time of 232,42 ms

with a standard deviation of 82,75 ms and a 100% success rate, while the virtual machine

test obtained an average response time of 541,34 ms with a standard deviation of 205,73

ms and a 100% success rate.

 As with the previous tests, both scenarios completed successfully. Again, the

container cluster failed to scale down and the virtual machine service did not scale at all.

4.2.3 Large profile test results

Finally, the large profile tests results are introduced. As with the two previous

profiles, first are the flood test results.

Figure 4.7: Results for the large test bench with the “flood” request pattern.

The large container based test obtained an average response time of 208,17 ms with

a standard deviation of 87,90 ms. 100% of the requests were handled in time. On the other

hand, the virtual machine based test obtained an average response time of 303,11 ms with

a standard deviation of 79,48 ms. 100% of the requests were handled successfully.

In this case both scenarios completed successfully. Given the unusually high CPU

load of the container cluster, it might be due to the HPA not being able to retrieve the CPU

load of each pod correctly, producing a wrong result. Next is the ramp test for the large

performance profile.

35

Figure 4.8: Ramp results for the large test bench.

 The container ramp test obtained an average response time of 193,65 ms with a

standard deviation of 77,36 ms. 100% of the requests were accepted in time. On the other

hand, the virtual machine test obtained a mean response time of 188,77 ms with a standard

deviation of 57,82 ms and a 100% success rate. Next is the cycle test results for the large

profile test bench.

 Like the previous large profile test, both scenarios completed successfully. In this

case, the container cluster failed to scale up in time, with the CPU load being over the

maximum threshold during 3/4ths of the test.

Figure 4.9: Cycle results for the large test bench.

 The large cycle container test obtained an average response time of 232,42 ms with

a standard deviation of 82,75 ms and a 100% success rate, while the virtual machine test

obtained an average response time of 253,45 ms with a standard deviation of 78,71 ms and

a 100% success rate.

36

 Like the two previous tests, both scenarios completed successfully. Again, the

container cluster seems to have failed at gathering the correct CPU usage information, as

well as failing to scale up and down when required.

4.3 Results discussion

The main objective of this project is assessing if there is a benefit on using container

management systems instead of traditional virtual machines for distributed systems. Given

the performance results, it is clear that when used on small profile machines, the container

based service cannot keep up with the client load in none of the tests, while the virtual

machine based approach does keep up when tested against the ramp request pattern. This

could be explained by the overhead introduced by Kubernetes, which may require more

computing performance than the available in the small sized cluster.

However, in the medium and large clusters both container and virtual machine based

services handle the client requests in appropriate time, dropping no connections in the

process. The medium profile tests present several latency spikes, but in most cases the results

are inside the expected values.

From these two later test profiles, it can be seen how the container based approach

features a shorter response time in average, thus giving users a better experience. Then,

taking into account only the computing performance of each alternative, using containers

seems a better solution.

Even though the virtual machine based service was bound to scale up when the CPU

load exceeded 50%, this did not happen in any of the tests, completing with a single instance

in all cases.

The economic cost of running the needed virtual machines adds more considerations

to take into account in order to make a decision. Even though the container based solutions

offer better performance and could improve the overall user experience, running the smallest

sized cluster has a cost in par with running only one of the largest virtual machines.

For this reason, it could be necessary to verify whether the workloads used by the

service provider require the flexibility and fast scalability properties of container

management systems or if using bare virtual machines make up for their needs.

37

4.4 Cost evaluation

Another concern with the container based approach is the economic cost associated

with running a whole cluster instead of a single or several virtual machines. In cases when

the container management system cluster and the traditional virtual machine cluster share

the same number of instances, this would not be a problem, but in cases where one single

virtual machine performs similarly to a whole container cluster, it might suppose spending

unnecessary money.

Using the AWS pricing calculator and knowing the performance profiles used for the

tests, the approximate monthly cost of running the cluster or the virtual machines can be

calculated. In all three cases, only one virtual machine instance was needed for the virtual

machine tests, since the auto scaler did not force the service to scale up, while all container

based tests used its fixed five virtual machines (four for the minions and one for the master).

The following table shows the approximate monthly fee for the virtual machines and

container management system for all three profiles.

Container based Virtual machine based

Small Medium Large Small Medium Large

65.90 USD 113.50 USD 208.65 USD 27.82 USD 37.34 USD 56.37 USD

Table 4.2: Approximate monthly fee of the test scenarios.

38

Chapter 5

Conclusions

The results from the tests prove that container management systems can improve the

performance of distributed applications when compared to traditional virtual machines, if

the underlying system is able to support the overhead added by the management system.

 Even though from a purely technical standpoint using a container management

system could translate into a better user experience and thus better results for the service,

in practice the cost of running and operating the container management system must be

taken into account.

 Not only the usage of a container management system could be potentially more

expensive than using virtual machines, but the additional training that developers and

system operators must do before being able to use these systems should also be taken into

account. To tackle this problem, major public cloud providers have created their own

container management systems, such as Amazon Elastic Container Service or Google’s

Compute Engine, offering the flexibility of containers without the complexities of

maintaining a dedicated container cluster.

 This project is a good example of the previous statement: using Kubernetes has

implied a long training time to properly understand its inner workings and its possibilities

before being able to conduct the tests.

 In conclusion, from a practical standpoint the usage of container management

systems should be a matter of how useful is it for the developer workloads, taking into

account economical cost and the required target performance.

5.1 Future work

Since the project had to be completed in a short time span, there is plenty of room for

improvement. Following are several objectives that could contribute to the project’s future

work:

40

 Testing the application on different virtual machine performance profiles, such as

AWS’s large or extra-large machines, and on VM’s specialized in high throughput

applications, such as distributed services.

 Conducting tests with different access patterns, on longer periods and with varying

user loads over time.

 Testing the performance of a container management system with more than a single

service running on it. In a typical real life scenario, service developers might want to

take profit of the container management system to deploy more than one service in

a single cluster.

 Using different cloud providers, such as Microsoft Azure, IBM SoftLayer or a private

cloud provider like OpenStack or OpenNebula, to see how can the performance of

the virtual machine hypervisors and network devices on each cloud service affect the

overall performance of the container cluster.

 Testing the container workloads on dedicated cloud container management systems,

such as Google Compute Engine or Amazon ECS, to check the difference between

running container workloads on a self-deployed and self-managed cluster and running

them on a highly tested and proven platform.

41

References

[Felter15] An updated performance comparison of virtual machines and Linux containers,

Wes Felter; IBM Research, Austin, TX ; Alexandre Ferreira ; Ram Rajamony; Juan

Rubio (2015), Performance Analysis of Systems and Software (ISPASS).

[Ann15] Performance comparison between Linux containers and virtual machines, Ann

Mary Joy (2015), Computer Engineering and Applications (ICACEA).

[Mell11] The NIST definition of cloud computing, P. Mell, T. Grance (2011), The National

Institute of Standards and Technology (NIST).

[Meier07] Performance Testing Guidance for Web Applications, D. Meier, Carlos Farre,

Prashant Bansode, Scott Barber, Dennis Rea (2007), Microsoft Corporation.

[Adler99] The Slashdot effect: an analysis of three Internet publications, S. Adler (1999),

Linux Gazette.

[Berman03] Grid computing: making the global infrastructure a reality, F. Berman, G.

Fox, AJG. Hey (2003).

[Merkel04] Docker: lightweight Linux containers for consistent development and

deployment, D. Merkel (2014), Linux Journal.

[Nova] Nova-Docker: Docker driver for OpenStack (https://github.com/openstack/nova-

docker, active September 15th 2016).

[Dock] OneDock: Docker suport for OpenNebula, by Indigo-DataCloud

(https://github.com/indigo-dc/onedock, active September 15
th
 2016).

[Graf] Grafana, by Torkel Ödegaard & Coding Instinct AB, 2015 (http://grafana.org/,

active September 15th 2016).

[Heap] Heapster: Container Cluster Monitoring and Performance Analysis for Kubernetes.

(https://github.com/kubernetes/heapster, active September 15th 2016).

[Deb] Debian 8 AWS AMI (https://aws.amazon.com/marketplace/pp/B00WUNJIEE,

active September 15th 2016).

[Wp] Wordpress by Bitnami AWS AMI

(https://aws.amazon.com/marketplace/pp/B007IP8BKQ?qid=1474047636447, active

September 15th 2016).

42

https://github.com/openstack/nova-docker
https://github.com/openstack/nova-docker
https://github.com/indigo-dc/onedock
http://grafana.org/
https://github.com/kubernetes/heapster
https://aws.amazon.com/marketplace/pp/B00WUNJIEE
https://aws.amazon.com/marketplace/pp/B007IP8BKQ?qid=1474047636447

Kubernetes Reference by Google Inc. (http://kubernetes.io/docs/reference/, active

September 15
th
 2016).

Kubernetes Cookbook, Ke-Jou Carol Hsu, Hui-Chuan Chloe Lee, Hideto Saito (2016),

Packt Publishing.

Getting Started with Kubernetes, Jonathan Baier (2016), Packt Publishing.

Heapster REST API by Google Inc.

(https://github.com/kubernetes/heapster/blob/master/docs/model.md, active September

15
th
 2016).

JMeter User Manual, by the Apache Foundation

(http://jmeter.apache.org/usermanual/index.html, active September 15
th
 2016).

43

http://kubernetes.io/docs/reference/
https://github.com/kubernetes/heapster/blob/master/docs/model.md
http://jmeter.apache.org/usermanual/index.html

Annexes

Listing 3.1: YAML description for the WordPress service.

apiVersion:
v1

kind: ReplicationController
metadata:
 name: wordpress
spec:
 replicas: 1
 selector:
 app: wordpress
 template:
 metadata:
 name: wordpress
 labels:
 app: wordpress
 spec:
 containers:
 - name: wordpress
 image: wordpress
 env:
 - name: WORDPRESS_DB_PASSWORD
 value: tfm2016
 - name: WORDPRESS_DB_HOST
 value: mysqlservice:3306
 ports:
 - containerPort: 80

apiVersion: v1
kind: Service
metadata:
 labels:
 name: wpservice
 name: wpservice
spec:
 ports:
 - port: 80
 selector:
 app: wordpress
 type: LoadBalancer

apiVersion: extensions/v1beta1
kind: HorizontalPodAutoscaler
metadata:
 name: wphpa
 namespace: default
spec:
 scaleRef:
 kind: ReplicationController
 name: wordpress
 subresource: scale
 minReplicas: 1
 maxReplicas: 50
 cpuUtilization:
 targetPercentage: 50

44

Listing 3.2: YAML description for the MySQL service.

apiVersion:
v1

kind: Pod
metadata:
 name: mysql
 labels:
 name: mysql
spec:
 containers:
 - image: mysql:5.6
 name: mysql
 env:
 - name: MYSQL_ROOT_PASSWORD
 value: tfm2016
 ports:
 - containerPort: 3306
 name: mysql

apiVersion: v1
kind: Service
metadata:
 labels:
 name: mysqlservice
 name: mysqlservice
spec:
 ports:
 - port: 3306
 selector:
 name: mysql

Listing 3.3: Source code for the infrastructure metric tool.

// César González Segura, 2016
// Imports
const fs = require("fs");
const execSync = require("child_process").execSync;

// Global variables
var settings = null;
var data = null;
const settingsPath = "./config.json";

function main()
{
 // Read the logger settings
 settings = JSON.parse(fs.readFileSync(settingsPath));

 // Set the data update interval
 setInterval(onUpdateData, settings.updateInterval * 1000);

 // Set the saving update interval
 setInterval(onSaveData, settings.saveInterval * 1000);

 // Initialize the data
 data = {
 "updateRate": settings.updateInterval,
 "maxReplicas": 0,
 "minReplicas": 0,
 "targetCpu": 0,
 "timeStamp": new Array(),
 "currentInstances": new Array(),

45

 "desiredInstances" : new Array(),
 "cpuLoad": new Array(),
 "mysqlMemUsage": new Array(),
 "mysqlCpuUsage": new Array()
 };
}

function saveData(fn, fmt)
{
 if (fmt == "dlm")
 {
 // Save the const settings as a separate dlm file
 // if it doesn't exist
 var constFn = "hpa_const.dlm";

 try
 {
 fs.statSync(constFn);
 }
 catch (e)
 {
 var dt = data.updateRate + " " + data.maxReplicas + " " +
data.minReplicas +
 " " + data.targetCpu;
 fs.writeFileSync(constFn, dt);
 }

 // Save the logged data as a dlm matrix
 // Column format:
 // | Time | CurrentInstances | DesiredInstances | CPULoad |
 var dt = "";

 for (var i = 0; i < data.timeStamp.length; i++)
 {
 dt += data.timeStamp[i].getTime().toString() + " " +
data.currentInstances[i] + " " + data.desiredInstances[i] +
 " " + data.cpuLoad[i] + " " + data.mysqlMemUsage[i] + " " +
data.mysqlCpuUsage[i] + "\n";
 }

 fs.writeFileSync(fn, dt);
 }
 else if (fmt == "json")
 {
 fs.writeFileSync(fn, JSON.stringify(data));
 }
}

function onUpdateData()
{
 if (settings.verbose)
 {
 console.log("[UPDATE] Logging new data from Kubernetes cluster...");
 }

 // Attempt to run kubectl to retrieve the HPA status
 var result = execSync("kubectl get hpa " + settings.hpaName + " -o json");
 var jr = JSON.parse(result.toString());

 // Add timestamp
 data.timeStamp.push(new Date());

 // Add current instance count
 data.currentInstances.push(jr.status.currentReplicas);

 // Add desired instance count
 data.desiredInstances.push(jr.status.desiredReplicas);

46

 // Add current CPU load
 data.cpuLoad.push(jr.status.currentCPUUtilizationPercentage);

 // Update the const settings
 data.maxReplicas = jr.spec.maxReplicas;
 data.minReplicas = jr.spec.minReplicas;
 data.targetCpu = jr.spec.targetCPUUtilizationPercentage;

 // Request to Heapster the MySQL pod current memory usage
 var mem = requestMysqlMemoryUsage();
 data.mysqlMemUsage.push(mem);

 // Request the MySQL CPU usage
 var cpu = requestMysqlCpuUsage();
 data.mysqlCpuUsage.push(cpu);

 if (settings.verbose)
 {
 console.log("[UPDATE] HPA status (" + data.timeStamp[data.timeStamp.length -
1].toISOString() + "):");
 console.log("[UPDATE] Current replicas: " +
data.currentInstances[data.currentInstances.length - 1]);
 console.log("[UPDATE] Desired replicas: " +
data.desiredInstances[data.desiredInstances.length - 1]);
 console.log("[UPDATE] Current CPU load: " + data.cpuLoad[data.cpuLoad.length -
1]);
 console.log("[UPDATE] Current MySQL status: " + cpu + "% / " + mem / 1000000.0 +
" MB");
 }
}

function requestMysqlMemoryUsage()
{
 var url = "https://" + settings.kubeAddr + "/api/v1/proxy/namespaces/kube-
system/services/heapster/api/v1/model/namespaces/default/pods/" + settings.mysqlPodName +
"/metrics/memory/usage";
 var result = execSync("curl -k -u admin:" + settings.kubePass + " " + url);
 var jr = JSON.parse(result.toString());

 return jr.metrics[jr.metrics.length - 1].value;
}

function requestMysqlCpuUsage()
{
 var url = "https://" + settings.kubeAddr + "/api/v1/proxy/namespaces/kube-
system/services/heapster/api/v1/model/namespaces/default/pods/" + settings.mysqlPodName +
"/metrics/cpu/usage_rate";
 var result = execSync("curl -k -u admin:" + settings.kubePass + " " + url);
 var jr = JSON.parse(result.toString());

 return jr.metrics[jr.metrics.length - 1].value;
}

function onSaveData()
{
 var fileName = settings.output;

 // Check if there are any macros in the
 // filename
 if (fileName.indexOf("[date]") != -1)
 {
 fileName = fileName.replace("[date]", (new Date()).toISOString());
 }

 // Append the format extension

47

 fileName += "." + settings.format;

 // Use the appropriate method depending on the
 // output format
 saveData(fileName, settings.format);

 if (settings.verbose)
 {
 console.log("[SAVE] Saved result to " + fileName);
 }
}

main();

Configuration file for the testing program (config.json):

{
 "updateInterval": 30,
 "saveInterval": 300,
 "format": "dlm",
 "hpaName": "wphpa",
 "mysqlPodName": "mysql",
 "output": "hpa_[date]",
 "kubeAddr": "KubernetesMasterIPAddress",
 "kubePass": "KubernetesProxyHTTPSPassword",
 "verbose": true
}

48

