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ABSTRACT
A representative characterisation of inter-contact times be-
tween nodes is essential for the performance evaluation of
mobile networks. The most common characterization of
inter-contact times is based on the study of the aggregate
distribution of contacts between individual pairs of nodes.
The problem with this aggregate distribution is that it is not
always representative of the individual pair distributions, es-
pecially in the short term and when the number of nodes in
the network is high. Thus, deriving results from this char-
acterisation, can lead to inaccurate performance evaluations
results.

In this paper, we propose and evaluate two new methods
for characterising the inter-contact times distribution in mo-
bile networks. We prove that these characterizations have
a higher representativeness, thereby improving the accuracy
of the derived performance results. For evaluating the pre-
cision of the different characterizations we use the epidemic
routing protocol, which has an analytical performance ex-
pression that is based on a contact rate λ. We derive from
each of the characterizations the corresponding λ values.
Then, we compare the results obtained using the analyti-
cal expression with simulation results using both synthetic
and real contact traces. It is shown that the new character-
ization methods are very accurate, even for reduced contact
traces and high number of nodes.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication; I.6 [Simulation and modelling ]: Model val-
idation and Analysis

Keywords
Mobile Networking, Performance Evaluation, Inter-contact
times

1. INTRODUCTION
Mobile opportunistic networks collectively create dynamic

networks that are built from short unpredictable contact
times as nodes move in and out of connectivity. Appli-
cations of such networks include Mobile Ad-Hoc Networks
(MANETs), Vehicular Ad-Hoc Networks (VANETs) and Mo-
bile Social Networks.

Characterizing inter-contact times (or inter-meeting times)
between nodes is essential for analyzing the performance of
contact based protocols in cooperative or opportunistic net-
works. The established approach is to characterize the inter-
contact times distribution between pairs of nodes using an
aggregate distribution [2,7,9,13,15]. This distribution is ob-
tained by aggregating the individual pair distribution of all
combinations of pairs of nodes in the network. The indi-
vidual pair distribution is defined as the distribution of the
time elapsed between two consecutive contacts between the
same pair of nodes [12].

Another form of characterizing the inter-contact times is
to consider the time elapsed between contacts for any pairs
of nodes in a group (known as inter-any-contact times). This
characterization was briefly studied in [7] using human mo-
bility traces. The conclusions were that inter-any-contact
times are longer that individual pairs inter-contact times
(as expected), but with a similar distribution shape. This
paper also shows a time dependence in the contact distribu-
tion, with different pattern distributions for the diurnal and
night periods.

The goal of a correct characterization of the inter-contact
times distribution is to improve the precision of the perfor-
mance evaluations derived from these characterizations. For
example, there are many analytical performance models that
assume that the inter-contact times distribution between
pairs of nodes are exponentially distributed with a given
rate λ. For example, using a contact rate λ we can obtain
the transmission delay and cost of several mobile protocols,
such as epidemic routing protocols [4,14], and the impact of
node selfishness on mobile networks [5,6,10]. The precision
of the previous models clearly depends on how accurate is
the estimation of the contact rate λ, which depends directly
on the representativeness of the characterized distribution.

Previous works have studied the distribution of the inter-
contact times by collecting data from real mobile network
environments [2–4, 9, 15]. Some works have shown that the
aggregate inter-contact times distribution is exponential with
rate λ for both human and vehicle mobility scenarios [4,11,
15]. The work in [3] analyzed some popular mobility traces



and found that over 85% of the individual pair distribu-
tions fit an exponential distribution. Nevertheless, there is
some controversy about whether this exponential distribu-
tion relates to real mobility patterns. Some empirical results
have shown that the aggregate inter-contact times distribu-
tion follows a power-law distribution and has a long tail [2],
meaning that some pairs of nodes barely experience any con-
tact. In [1], it is shown that in a bounded domain, the inter-
contact distribution is exponential, but in an unbounded
domain the distribution is power-law. The dichotomy of
this distribution is described in [9], which shows a truncated
power law with exponential decay appearing in its tail after
some cutoff point. A recent paper [12], presents the de-
pendence between the individual pair distributions and the
aggregate distribution. It is stated that, starting from ex-
ponentially individual pair distributions, the aggregate dis-
tribution is distributed according to a Pareto law. It also
verifies the dichotomy property of the aggregate distribu-
tion analytically.

Summing up, most of the literature is based on the aggre-
gate distribution, assuming that it is representative of the
individual pair distribution [12]. The practical reason of us-
ing the aggregate distribution is that is a more convenient
approach, since obtaining enough samples for each individ-
ual pair of contacts is not feasible. The practical approach
for obtaining the contact rate λ is to assume that all individ-
ual pair distributions are similar so the contact rate of the
aggregate distribution is similar to the individual pair distri-
butions contact rates. Nevertheless, as shown in [12], these
contact rates are only similar when the length of the contact
trace is large. Therefore, we need another method to esti-
mate this individual pair distribution (and the contact rate),
feasible to measure and more statistically representative.

In this paper, we evaluate better methods to characterize
the inter-contact times distribution presenting higher repre-
sentativeness and, thus, increasing the precision of the re-
sults obtained. Using different characterization methods,
three inter-contact time distributions are considered: Ag-
gregate Pairs distribution, that is the established character-
ization; the Aggregate Nodes distribution, that is obtained
as the aggregate of inter-contact distributions between one
node and the rest of nodes; and the Any Contact distri-
bution, that is the inter-contact distribution between any
nodes. First, we study its statistical representativeness show-
ing that, for the same trace length, the Aggregate Pairs dis-
tribution has a very low representativeness, especially when
the number of nodes is high, in contrast with the others
that have a good representativeness. Second, we study the
relation between these distributions. We prove that, if all
individual pair distributions are exponentially distributed,
the Aggregate Nodes distribution is simply a new exponen-
tial distribution. This is not true for the Aggregate Pairs
distribution, that depends on the distribution of each indi-
vidual λ [12]. This conclusion is very important, because it
allows to obtain in a more precise way the value of λ used
in the analytical models.

Finally, we evaluate the precision of the three distribu-
tions using both synthetic and real contact traces. The pre-
cision is evaluated using a well known analytical model, the
epidemic routing, that is based on a given exponential con-
tact rate λ obtained from the three previous characteriza-
tion methods. Experimental results confirm that the estab-
lished Aggregate Pairs distribution is under-representative

t n1,n2 d t n1,n2 d t n1,n2 d

1 (1,2) 2 7 (2,3) 4 14 (2,3) 2
2 (2,3) 3 7 (1,2) 6 17 (1,2) 3
2 (3,4) 2 7 (1,5) 3 20 (1,3) 6
5 (1,3) 5 8 (3,4) 5 20 (2,5) 2
5 (1,2) 1 11 (1,4) 4 - - -

Table 1: Contact trace sample. Note that a contact (n1,n2)
means that both nodes have visibility of each other.

and, consequently, the precision of the results obtained using
the epidemic routing model are imprecise. This precision is
very low when the number of nodes of the evaluated network
is high. Instead, the results using the Aggregate Nodes and
Any-Contact distributions are much more precise, requiring
significantly smaller contact traces.

The rest of the paper is organized as follows. We in-
troduce the three methods for characterizing inter-contact
times distributions evaluating its representativeness in Sec-
tion 2. Section 3 study the relation between these distribu-
tions. The evaluation of the representativeness and precision
of the different characterizations is described in Section 4.
Finally, Section 5 presents some concluding remarks.

2. CHARACTERIZING INTER-CONTACT
TIMES DISTRIBUTIONS

In this section we describe three possible methods for char-
acterizing the inter-contact times distribution from a contact
trace. Then, we study their representativeness by introduc-
ing some metrics and evaluating these metrics through some
real traces.

A contact trace is obtained measuring the times when con-
tacts between pairs of nodes occur for a given interval time
T . The result is a trace of length C(T ) (that is, the number
of contacts), where each record is a 4-tuple (ti, ai, bi, di),
reflecting, that at time ti ≤ T , there is a contact between
the pair of nodes (ai,bi) with a duration of di seconds. A
contact is defined as an opportunity of transmission between
a pair of nodes (that is, two nodes are able to communicate
between them directly for a given time). Based on this defi-
nition, for practical issues, there is only one record for each
contact between a pair of nodes (ai,bi), and this contact is
reciprocal (in other words, there is no another record with
the (bi,ai) contact).

Using a contact trace, we can characterize the inter-contact
times distribution. This distribution is influenced by the
trace’s duration and resolution [2]. The resolution is de-
fined as the smallest interval between two successive mea-
surements. Inter-contact times that last more or are close
to the duration of the experiment, and inter-contact times
that last less than the time resolution, cannot be observed.

For clarity of exposition, we are going to use a simple con-
tact trace as exemplified in Table 1. This trace corresponds
to a network of five nodes (N = 5), which has a duration T
of 20 seconds, resulting in 14 contacts (C(T ) = 14).

From a contact trace we can characterize three possible
inter-contact distributions:

• Aggregate Pairs (AP) distribution: the aggregate of
inter-contact times distributions between the same pair
of nodes. This is the established characterization, usu-
ally known as simply inter-contact times distribution
[2–4, 9, 15]. This distribution is obtained by aggregat-



ing the individual pair inter-contact times of all node
pair combinations in the network. We need at least 2
contacts between the same pair of nodes in order to
obtain an inter-contact time. For example, using our
contact trace, for the pair (1,2) we have the following
contact times1: {1,5,7,17} and so the inter-contacts
time are {4,2,10}. We can also obtain the inter-contact
times for the following pair of nodes: (1,3), (2,3) and
(3,4); however, for the rest of pairs, this is not possible.
By aggregating all the inter-contact times calculated
for the previous pairs, we can obtain the aggregate
pairs distribution.

• Aggregate Nodes (AN) distribution: the aggregate of
inter-contact distributions between one node and the
rest of nodes. For example, using the sample trace, we
can obtain the contacts of node 1 with the other nodes:
(1,x)={1,5,5,7,7,11,17,20}, so the inter-contact times
are {4,0,2,0,4,6,3}. For this trace all nodes have con-
tacts with other nodes. By aggregating all the inter-
contact times we can obtain the aggregate nodes dis-
tribution.

• Any Contact (AC) distribution: inter-contact distri-
bution between all nodes. This is known as the inter-
any-contact times in [7]. In this case there is only one
distribution of inter-contact times, which corresponds
to the difference between two consecutive contacts. For
our sample trace we have 13 inter-contact time values:
{1,0,3,0,2,0,0,1,3,3,3,3,0}.

A key factor of a contact trace characterization is its repre-
sentativeness. This representativeness depends on the trace
length C(T ), the number of nodes N in the network, and
the method. Two metrics are defined to measure this repre-
sentativeness: the contact ratio RC and the average number
of measures per individual distribution MC . These metrics
are detailed below for each distribution.

For the aggregate pairs (AP) distribution, in a network
of N nodes, the number of possible combinations of pair of
nodes is V = N ·(N−1)/2. If we denote with P(t) the set of
pairs of nodes that has at least two contacts up to time t, the
contact ratio is RC = |P(T )|/V (where |P(t)| is the size of
P(t)). For our sample trace, this ratio is RC = 4/10 = 0.4.
The average number of measuresMC is computed as the sum
of all inter-contact times divided by the number of node pair
combinations, that is,

MC =
1

V

∑

p∈P(T )

(Cp(T )− 1) (1)

where Cp(T ) is the number of contacts between pairs of
nodes p ∈ P(T ). So, in our example, we have MC=(3 +
2 + 1 + 1)/10=0.7.

In the aggregate nodes (AN) distribution, the contact ra-
tio is: RC = |N (T )|/N , where N (t) is the set of nodes that
has at least two contacts up to time t. For our sample trace,
this ratio is RC = 5/5 = 1. The average number of measures

1In this paper, the inter-contact time is computed as the
difference between the starting times of two consecutive con-
tacts. Another way to compute this time (see [2]) is to obtain
the difference between the end of a contact and the start of
the next one. In this case, the duration of the contact is
used to obtain the inter-contact times.

Cambridge Shanghai

Type Human Vehicle
Device iMote GPS+GPRS

Network Type Bluetooth WiFi
Duration (hours) 274 24

Resolution (seconds) 120 60
Nodes 36 2288

Contacts (C) 21200 1262498

Repr. AP distribution
Contact ratio (RC ) 0.81 0.04

Aver. measures (MC) 16 0.08

Repr. AN distribution
Contact ratio (RC ) 1 0.99

Aver. measures (MC) 459 474

Repr. AC distribution
Contact ratio (RC ) 1 1

Aver. measures (MC) 21199 1262497
Table 2: Description of contact traces and representative-
ness.

MC is computed as:

MC =
1

N

∑

n∈N (T )

(Cn(T )− 1) (2)

where Cn(T ) is the number of contacts for each node n ∈
N (T ). So, in our example, we have MC=(7 + 6 + 6 + 2 +
1)/5=4.2.

Finally, in the any contact distribution (AC) the ratio is
1 (if C(T ) > 1) and the number of measures is C(T )− 1.

As expected, we can see that the representativeness of
the AP distribution is very low: a contact ratio of only 0.4
and less than one measure per pair of nodes. In the AN
distribution the representativeness is greater: full contact
ratio and a mean of 4.2 measures for each node. The greatest
representativeness corresponds to the AC distribution which
has a full ratio and the highest number of measures.

In general, for the same trace time T , the lower representa-
tiveness is for the AP distribution, and this representative-
ness (the values of RC and MC) is inversely proportional
to V , that exhibits quadratic growth with N . Therefore,
when the number of nodes is high, the representativeness is
very low. For the AN distribution it representativeness is in-
versely proportional to the number of nodes N . And finally
the best representativeness is for the AC distribution.

We study the representativeness of the previous distribu-
tions using some well known real contact traces (see Table
2). The Cambridge mobility set trace [8] was gathered from
a set of undergraduate students from the University of Cam-
bridge carrying small devices (iMotes) in 2005. This trace
has a duration of 274 hours and has 36 mobile nodes (stu-
dents)2. The Shanghai Taxis GPS Trace [15] was collected
from 2100 taxis in Shanghai city during February of 20073.
This trace does not contains the contacts (it contains GPS
locations), so a pre-process for obtaining the contact trace
is needed. Following the method used in [15] we assume
that a contact occurs if both vehicles are in WiFi range (100
meters).

2Although this trace has also static nodes we only evaluate
the mobile nodes.
3The trace used in [15] is for 4 weeks. In this paper we use
only the trace for one day, that it is the only available online.
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Figure 1: CCDF of the different characterizations for the Cambridge and Shanghai traces. a) AP distribution, b) AN
distribution, c) AC distribution

Table 2 shows that in the Cambridge trace, which has only
36 nodes, the contact ratio for the AP distribution is high
(although not 1) and the average number of measurements
is relatively high. We can say that it has a moderate rep-
resentativeness. Nevertheless, for the Shanghai trace, that
has a high number of nodes, the AP distribution has a very
low representativeness, so this characterization is not use-
ful for obtaining information about the contact pattern on
this network. For the AN distribution, both traces have a
good representativeness (in terms of contact ratio and av-
erage measures). And finally, for the AC distribution, both
traces have excellent representativeness (full ratio and the
highest number of measures).

3. RELATION BETWEEN DISTRIBUTIONS
In this section we study the relation between the differ-

ent distribution characterizations (AP, AN, AC). In order to
study the inter-contact times distribution, the CCDF (Com-
plementary Cumulative Distribution Function) is widely used
[2, 9, 12]. The CCDF (also known as the tail distribution)
is useful to study how often a random variable is above a
particular level, that is, F̄ (x) = P (X > x). So, first, we
are going to introduce the relation between the different
CCDFs. As we will show, if the individual pair distribu-
tions are not exponential we cannot obtain a simple relation
between these distributions. Thus, we also study the rela-
tion between the average contact rates (λ) that are valid for
any distribution.

3.1 Relation between CCDF
We can see in Figure 1 the CCDF of the different dis-

tributions for the Cambridge and Shanghai traces. In the
CCDF for the AP characterization, we can clearly observe
the dichotomy of the distribution: the inter-contact time fol-
lows a power-law decay up to a characteristic time (about
105s ≈ 12 hours for the Cambridge set and 20000s ≈ 6 hours
for the Shanghai set) and beyond this time, the decay is ex-
ponential. This confirms earlier studies [9, 15]. For the AN
distribution, the previous dichotomy is not so evident, and
it is clearer that it follows an exponential decay. Finally, for
the AC distribution we can see an exponential decay. Note
also the resolution issues in the Shanghai traces, where the
inter-contact times are below the resolution time, and so its
values are very discretized.

The relation between the CCDF of individual pair p (F̄p(x))
and the aggregate pairs CCDF (F̄AP (x)) for the AP distri-
bution was established in [9] as:

F̄AP (x) =
∑

p∈P(T )

Cp(T )− 1

C(T )− |P(T )| F̄p(x) (3)

and when T tends to be large,

F̄AP (x) =
∑

p∈P

λp

Σλp
F̄p(x)) (4)

where 1/λp is the average of inter-contact times for the pair
p (in other words, λp is the average contact rate of the pair),
and Σλp =

∑
p∈P λp. Expression 4 shows that the aggregate

CCDF is equal to the weighted sum of individual CCDF with
weight proportional to the rate of contacts λp. Furthermore,
if all individual CCDF (F̄p(x) ) are identical and the ratio
of contacts (RC) is assumed to be 1 (note that if T → ∞
then RC → 1), then the aggregate CCDF and the individual
CCDF are the same. Based on equation 4, when the individ-
ual distributions are different and exponentially distributed,
we cannot obtain a simple relation between these distribu-
tions and the aggregate one. More information is needed
about the distribution of the individual rates λp and, de-
pending on this distribution, the aggregate distribution can
follow an Exponential, Pareto, or Power Law with Exponen-
tial Decay distribution (see paper [12] for a detailed study
about these relations).

In a similar way, we can establish a relation between the
individual node n CCDF (F̄n(x)) and the aggregate nodes
CCDF for the AN characterization:

F̄AN (x) =
∑

n∈N (T )

Cn(T )− 1

C(T )− |N (T )| F̄n(x) =
∑

n∈N

λn

Σλn
F̄n(x)

(5)
where 1/λn is the mean value for the inter-contact times
for node n, and Σλn =

∑
n∈N λn. If all individual CCDF

(F̄n(x) ) are identical and RC = 1, then the aggregate CCDF
is equal to the individual CCDF.

Now, we are going to study the relation between the three
different distributions. Expressions 4 and 5 establish the
relation between the aggregate distribution and the individ-
ual distributions. These expressions are derived on the basis
that the aggregate distribution is obtained using the aggre-
gation of the individual contact times.



First, we establish a relation between the AC distribution
and the AP distribution, through the individual pair CCDF
of the AP distribution (F̄p(x)). We can see that if a contact
occurs at time t, the next contact time will be the mini-
mum time of all possible contacts between pairs. That is,
the minimum of the random variables associated with the
individual distributions Fp(x). So, we have:

F̄AC(x) = min
p∈P(T )

{Fp(x)} (6)

where min{} is the CCDF of the minimum of the random
variables of the distributions. This minimum depends on the
type of distribution. Fortunately, for exponential distribu-
tions, this expression is very simple. For n independent ex-
ponentially distributed random variables with rate parame-
ters λ1, . . . λn, the minimum is also exponentially distributed
with parameter λ = λ1 + · · ·+ λn. Then, if all distributions
are exponentially distributed, the CCDF is also exponen-
tially distributed:

F̄AC(x;λAC) = F̄ (x;
∑

p∈P(T )

λp) (7)

were λAC is the contact rate of the AC distribution. We can
see that this relation is more simple than expressions 4 and
5. Furthermore, it allows to obtain the average contact rate
λ̄p from λAC , when T tends to be large:

λAC =
∑

p∈P
λp → λ̄p =

λAC

|P| =
λAC

1
2
N(N − 1)

(8)

This relation is of special interest, as many analytical models
based on Markov Chains use λp as the contact rate.

The relation between the AC distribution and the AN
distribution is obtained in a similar way. If we use expression
minn∈N (T ){F̄n(x)}, we can see that for a given pair (a, b),
F̄n(x) is repeated twice, one for the first node on the pair
a ∈ p, and another one for the second node of the pair b ∈ p.
For the AC distribution the contacts are no longer repeated,
and so we have:

F̄AC(x) =
1

2
min

n∈N (T )
{Fn(x)} (9)

Then, if all distributions are exponentially distributed, the
CCDF is:

F̄AC(x;λAC) = F̄ (x;
1

2

∑

p∈N (T )

λn) (10)

Finally, we can obtain a similar relation between the in-
dividual distributions of the AP and AN distributions. For
a node n, when a contact occurs at time t, the next contact
time will be the minimum time of all contacts between pairs
p that have node n. So, we have:

F̄n(x) = min
p∈P(T )∧n∈p

{Fp(x)} (11)

If all distributions are exponential distributed, the CCDF
is:

F̄n(x;λn) = F̄ (x;
∑

p∈P(T )∧n∈p

λp) (12)

In conclusion, we have shown that the AN and AC dis-
tributions have a simpler relation with the individual pair
distribution than the previous AP distribution. Further-
more, if the individual pair distributions are exponentially

distributed, the AN and AC distributions are also exponen-
tially distributed. This fact confirms the exponential shapes
shown in Figure 1.

3.2 Relation between Contact Rates
In this section we study the relation between the contact

rates of the different characterizations, based on the indi-
vidual contact rates. The following relations are valid for all
types of distributions.

The relation between the average contact rate of the AC
distribution (λAC) and the average contact rates of individ-
ual pair of nodes (λp) is obtained as follows4 . For large
values of T , the number of contacts generated up to time T
in the AC distribution is T · λAC . This number of contacts
must be the same as the number of contacts for all pair of
nodes p in the AP distribution. These contacts are obtained
as the sum of the contacts of all pairs p. Thus, making equal
both expressions and removing T on both parts, we have:

λAC =
∑

p∈P(T )

λp (13)

The relation between λAC and the individual node contact
rate λn is obtained in a similar way.

λAC =
1

2

∑

n∈N (T )

λn (14)

Note that in the previous expression we take into account
repeated pair of nodes, as detailed for expression 9.

Now, we can obtain the relation between the average con-
tact rate of the AP distribution λAP and λp. The number
of contacts generated for each λp is T ·λp, so the total num-
ber of contacts is T · ∑p∈P(T ) λp. Note that this number
of contacts must be equal to the number of contacts for the
AP aggregate distribution, that depends on the number of
pairs and its rate: T |P(T )|λAP . Thus, making equal both
expressions and simplifying, we have:

λAP =

∑
p∈P(T ) λp

|P(T )| (15)

Finally, the relation between the average contact rate for the
AN distribution λAN and λn is obtained in a similar way:

λAN =

∑
n∈N (T ) λn

|N (T )| (16)

That is, the contact rate of the aggregate distribution is
equal to the mean of the individual contact rates.

Combining expressions 13 and 15 we can obtain the rela-
tion between λAP and λAC , for T large enough, as:

λAP =
λAC

|P(T )| =
λAC

1
2
N(N − 1)

(17)

and expressions 16 and 14:

λAN =
2λAC

|N (T )| =
2λAC

N
(18)

and from expressions 17 and 18 we have:

λAN = (N − 1)λAP (19)

4Abusing notation, we denote the average contact rate us-
ing λ. This does not imply that the distributions must be
exponential.
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As a corollary, we can see, that if all λp values are equal,
then λAP = λp, λn = (N − 1)λp, and λAN = λn.

From the previous relations two important conclusions can
be drawn. First, if the individual inter-contact times distri-
bution between pairs of nodes is exponentially distributed,
we can obtain the average λ in a simple way, using expres-
sions 8 and 10. Since AN and AC distributions are more
statistically representative than the AP distribution for the
same contact trace time T , the value of λ obtained using
these distributions will be more precise. Second, based on
the relation between contact rates, we can also obtain the
average contact rate between pairs of nodes, using the more
representative AN and AC distributions.

4. EXPERIMENTAL EVALUATION
In previous sections we have studied the representative-

ness of the different distributions and the relation between
them. We showed that the average node (AN) distribution,
and especially the any contact (AC) distribution has bet-
ter statistical representativeness that the widely established
aggregate pairs (AP) distribution.

Now, we are going to evaluate the precision of these dis-
tributions. There are many analytical performance models
that assume that the inter-contact times distribution be-
tween pairs of nodes is exponentially distributed [4, 10, 14,
15]. This fact allows using the contact rate λ in Marko-
vian models. We use the model for the Epidemic Routing
as a way to evaluate the precision of the different distri-
butions. Specifically, the model we use, based on Markov
chain models, was introduced in [4] for obtaining the aver-
age source-to-destination delivery delay (Td = E[T ]). This
model assumes a unique contact rate λ between all pair of
nodes and full probability of transmission when a contact
occurs. So, all individual pair distributions must be equal
and exponentially distributed with mean λp. As shown in
section 3, when assuming the previous condition we have
that:

λp = λAP =
λAN

N − 1
=

λAC

1
2
N(N − 1)

(20)

so λp can be estimated using any of the previous distribu-
tions.

The process for evaluating the distributions is the follow-
ing (see Figure 2). We synthetically generate a contact trace
for a given time T with inter-contact times between pairs of
nodes that are exponentially distributed with a contact rate
λp. This contact trace is used to estimate three different

contact rates λ̂p from the different contact rates of the dis-
tributions (λAP ,λAN ,λAC) using expression 20. Then, using

the different λ̂p generated for each distribution (AP,AN,AC)

we can obtain the delivery time using the Markov model
for epidemic routing. For validation purposes, we also im-
plemented a custom simulator. This simulator reads the
contact trace and simulates the transmission of a message
between a randomly selected pair of nodes in the network.
The simulation finishes when the message reaches the des-
tination node. This evaluation is repeated 1000 times (that
is, 1000 different traces are generated) in order to obtain
a mean value. We also obtain the ratio of contacts on the
simulator, that is similar to the ratio of contacts (RC) ob-
tained for evaluating the representativeness of the distribu-
tions. In case a simulation ends without the message being
delivered to the destination node, we count this as a miss,
and when the experiments end, we obtain the delivery ratio
as (1000 −misses)/1000.

In the real trace experiments the process is very similar,
except that in this case we used a real traffic trace as the
input of the model and simulator. In order to evaluate the
precision of the different distributions depending on the du-
ration of the traffic trace, the original traffic trace is trimmed
from T ranging from 0 to the maximum duration (that is,
only the contacts with time t ≤ T are used). Finally, al-
though the traffic trace is always the same, the simulation
is repeated 1000 times, varying the pair of selected sender
and destination nodes of the network.

4.1 Synthetic traces
The following experiments used synthetic traces as a way

to validate the conclusions derived about representativeness
and precision in sections 2 and 3. In Figure 3a we show the
delivery delay time for the different distributions calculated
using a synthetic trace with time T ranging from 1 to 200s
that was generated assuming that all inter-contact times dis-
tributions between pairs are exponentially distributed with
the same contact rate λp = 0.1 (that is, all distributions are
homogeneous).

We can see that AN and AC distributions obtains the
best results, converging very fast to the simulation results
(for example, for T = 200s, the delay obtained through
simulation is 0.918s and the delays obtained using the AN
and AC distributions are the same: 0.905s, a relative error of
1.42%). Instead, the AP converges to the simulation results
very slowly. As expected, these results clearly depend on the
representativeness of the different distributions as shown in
Figure 3b. The AP contact ratio is very low for a reduced
trace time (T ), reaching 1 for T = 100. Nevertheless, for
this trace time the average number of measures is still very
reduced (MC = 9.6 is for T = 100 in the AP distribution
compared to MC = 765.86 in the AN distribution), so the
precision is also low. Thus, as expected, the conclusions are
clear, the most precise characterizations are the Aggregate
Nodes (AN) and Any Contact (AC) distributions.

In the following experiment we study the case of hetero-
geneous exponential distributions. We generate a synthetic
contact trace with the contact times between pair of nodes
exponentially distributed, where the contact rate λp is also
exponentially distributed with mean 0.1. The delay of a
message using epidemic transmission is shown in Figure 3c.
In this case we can see that the delay obtained using the AC
and AN distribution is very precise (a relative error of 2.34%
for T = 200s). Nevertheless, the delay obtained for the AP
distribution converges to the solution very low. The reason
is that, for an heterogeneous distribution the representative-
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Figure 3: Evaluation of the precision using synthetic traces. a) Delay of a message using an epidemic routing transmission
with an homogeneous trace, b) Contact ratio of the homogeneous trace (RC), c) Delay with an heterogeneous trace
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Figure 4: Evaluation of the precision using the Cambridge
traces. a) Delay of a message using an epidemic transmis-
sion, b) Contact ratio (RC).

ness of the AP distribution is lower than in the homogeneous
case (for example, for T = 200s, RC = 0.92 and MC = 23).
The rate of contact reaches 1 for approximately T = 2000s
with MC = 233, and a relative error of 7.24%.

4.2 Real traces
We now, evaluate the precision of the different distribu-

tions using real traffic traces.
Figure 4 shows the results for the Cambridge trace de-

pending on the duration T (that is, a trimmed traffic trace
with duration T ). Regarding the delay, the results obtained
using the AC and AN distributions are close to the simula-
tion results. There is a strong time dependence of this trace
(the sawtooth shape), due to the high difference between
contact rates in diurnal and night periods. Regarding the
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Figure 5: Evaluation of the precision using the Shanghai
traces. a) Delay of a message using an epidemic transmis-
sion, b) Contact ratio (RC).

AP distribution, the precision increases as the contact ratio
also increases (see Figure 4b), but it is very far of the results
obtained using the other distributions.

Figure 5 shows the results for the Shanghai traffic traces.
In this case, the delay obtained using the AN and AC dis-
tributions for traffic trace length T less than 20000 (about
5 hours) are close to the simulation ones, although the re-
sults for greater values of T show a higher error. The results
using the AP distribution are quite poor, due to the low rep-
resentativeness of this distribution (see Figure 5b). We can
also observe how the contact ratio of the simulation is low
for values less than 10000s, so the representativeness of the
simulation is also low.

The conclusions drawn from the previous experiments for
the AN and AC distributions are clear: the greater the con-



tact trace duration, the lesser the precision. This is mainly
due to the long-tail behaviour of the inter-contact times dis-
tribution between the same pair of nodes. If the duration of
the trace is high (days in the case of Cambridge, or hours
in the case of Shanghai), the probability of contact between
some reduced number of pair of nodes is very low, so its
inter-contact time is very high. In other words, the greater
the duration of the trace, the greater the tail of the distri-
bution5.

We repeated the previous experiments using other perfor-
mance models (such as the Two Hop multicopy protocol,
and a more sophisticated model for evaluating the selfish
detection introduced by the authors [6]), obtaining similar
results in terms of precision.

5. CONCLUSIONS
In this paper we introduced new approaches to character-

ize the inter-contact times distribution in order to increase
the representativeness, and thus the precision of the analyt-
ical performance models based on these distributions.

We have seen that the established characterization, the
Aggregate Pairs (AP) distribution, has a very low repre-
sentativeness especially when the number of nodes is high.
This leads to poor results when applied to analytical models
(such as the Epidemic routing). Therefore, we introduced
and evaluated two alternative methods for characterizing the
inter-contact times distribution: the Aggregate Nodes (AN)
and Any-Contact (AC). The resulting distributions have an
excellent representativeness for shorter trace durations. We
also obtained a simple relation between the individual con-
tact rate and the contact rate for the AP and AN distribu-
tions. Thus, we can use these distributions in order to obtain
the individual pair contact rate used in analytical models.

The experiments confirm, that the representativeness and
precision achieved using these new distributions is high. Us-
ing synthetic and real traces we showed that the Aggregate
Nodes (AN) and Any-Contact (AC) distributions are more
precise than the Aggregate Pairs (AP) distribution. Finally,
regarding which distribution (AP or AC) choose, we found
that the AC distribution is able to provide better results for
very low trace sizes. However, when the number of contacts
is moderately large, the results for both distributions are
very similar.
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