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Abstract In this paper we characterize the dual
(
Bc

p(·)(Ω)
)′ of the variable exponent Hör-

mander space Bc
p(·)(Ω) when the exponent p(·) satisfies the conditions 0 < p− ≤ p+ ≤ 1,

the Hardy-Littlewood maximal operator M is bounded on Lp(·)/p0 for some 0 < p0 < p− and
Ω is an open set in Rn. It is shown that the dual

(
Bc

p(·)(Ω)
)′ is isomorphic to the Hörmander

space Bloc
∞ (Ω) (this is the p+≤ 1 counterpart of the isomorphism

(
Bc

p(·)(Ω)
)′'Bloc

p̃′(·)
(Ω),

1 < p− ≤ p+ < ∞, recently proved by the authors) and hence the representation theorem(
Bc

p(·)(Ω)
)′ ' lN∞ is obtained. Our proof relies heavily on the properties of the Banach en-

velopes of the steps of Bc
p(·)(Ω) and on the extrapolation theorems in the variable Lebesgue

spaces of entire analytic functions obtained in a precedent paper. Other results for p(·)≡ p,
0 < p < 1, are also given (e.g. Bc

p(Ω) does not contain any infinite-dimensional q-Banach
subspace with p < q≤ 1 or the quasi-Banach space Bp∩E ′(Q) contains a copy of lp when
Q is a cube in Rn). Finally, a question on complex interpolation (in the sense of Kalton) of
variable exponent Hörmander spaces is proposed.
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1 Introduction

Interest has increased recently in the variable exponent Lebesgue, Sobolev, Bessel Potential,
Besov and Triebel-Lizorkin spaces (and in the harmonic analysis on the variable Lebesgue
spaces) because of their applications to PDE of non-standard growth, modelling electrorheo-
logical fluids and quasi-Newtonian fluids, magnetostatics and image restoration (see e.g. [1,
2] and the books of Diening et al. [8] and Cruz-Uribe and Fiorenza [6]). In [17] we studied
the properties of the (non-weighted) variable exponent Hörmander spaces Bp(·), Bc

p(·)(Ω)

and Bloc
p(·)(Ω) (recall that the classical Hörmander spaces Bp,k, Bc

p,k(Ω) and Bloc
p,k(Ω) play

a crucial role in the theory of linear partial differential operators (see e.g. [9])). In particular,
extending a Hörmander’s result [9, Chapter XV] to our context, we showed that if p− > 1
and the Hardy-Littlewood maximal operator M is bounded on Lp(·) then

(
Bc

p(·)(Ω)
)′ is

isomorphic to Bloc
p̃′(·)

(Ω). In the present paper we extend this duality to exponents p(·)
satisfying the conditions 0 < p− ≤ p+ ≤ 1 and such that the Hardy-Littlewood maximal
operator M is bounded on Lp(·)/p0 for some 0 < p0 < p−. The techniques used are differ-
ent from those used in [17] since if p+ < 1 then the dual of Lp(·) is trivial and the steps
Bp(·)∩E ′(K) are quasi-Banach spaces instead of Banach spaces. A number of applications
of this duality are also given. Firstly we prove that the steps of Bc

p(·)(Ω) are quasi-Banach
spaces whose duals separate points. Then we introduce and study an important locally con-
vex topology on Bc

p(·)(Ω) (considering the Banach envelopes of those steps) and we show

that the space Bloc
∞ (Ω) is isomorphic to

(
Bc

p(·)(Ω)
)′ (this is the main result of the paper).

The estimates obtained in [16, Theorem 3.5] play an essential role in the proof of this iso-
morphism. As a consequence of this result, we obtain a sequence space representation of
the dual

(
Bc

p(·)(Ω)
)′ improving a result of [17] (the corresponding results for p(·) ≡ p,

0 < p < 1, are also new). Other results for p(·) ≡ p, 0 < p < 1, are also obtained (for in-
stance, Bc

p(Ω) does not contain any infinite-dimensional q-Banach subspace with p< q≤ 1
and the quasi-Banach space Bp∩E ′(Q) contains a copy of lp when Q is a cube in Rn). Fi-
nally, two related questions on complex interpolation (in the sense of Kalton [13, Section
3]) of variable exponent Hörmander spaces are proposed.

1.1 Notation

1. Let E and F be topological linear spaces over C. If E and F are (topologically) iso-
morphic we put E ' F . The (topological) dual of E is denoted by E ′ and is given the
topology of uniform convergence on all the bounded subsets of E. We put E ↪→ F if
E is a linear subspace of F and the canonical injection is continuous. If E is a Banach
space, EN (resp. E(N)) is the topological product (resp. the locally convex direct sum) of
a countable number of copies of E. If {Ei}∞

i=1 is a sequence of topological linear spaces
such that Ei ↪→ Ei+1 for each i, then their inductive limit is denoted by indi Ei (see [15]).

2. If f ∈L1(Rn) the Fourier transform of f , f̂ or F f , is defined by f̂ (ξ )=
∫
Rn f (x)e−iξ x dx.

If f is a function on Rn, then f̃ (x) = f (−x) for x ∈ Rn. Br is the closed Euclidean ball
{x : |x| ≤ r} in Rn. C∞

0 (Rn), C∞
0 (Ω) and S(Rn) are the usual Schwartz spaces (in the last

space the norms max|α|≤m supx∈Rn(1+ |x|2)m|∂ α ϕ(x)|, m = 0,1,2, . . . , are denoted by
|ϕ|m). D ′(Rn), D ′(Ω) and S′(Rn) are their corresponding duals. E ′(K) (K compact in
Rn) is the set of distributions on Rn with support contained in K. The Fourier transform
in S′(Rn) is also denoted by ∧ (or F ). If u ∈ S′(Rn), ũ is defined by 〈ϕ, ũ〉= 〈ϕ̃,u〉 for



Duals of variable exponent Hörmander spaces (0 < p− ≤ p+ ≤ 1) and some applications 3

all ϕ ∈ S(Rn); thus ∼ coincides with the operator (2π)−nF 2. When we consider func-
tion spaces (or distribution spaces) defined on the whole Euclidean space Rn, we shall
omit the “Rn” of their notation. The letter C will always denote a positive constant, not
necessarily the same at each ocurrence.

3. Throughout this paper all vector spaces are assumed complex. By definition, a quasi-
normed space is a vector space X with a quasi-norm x→‖x‖ satisfying: (i) ‖x‖> 0, x 6=
0, (ii) ‖αx‖= |α|‖x‖, (iii) ‖x+y‖ ≤C (‖x‖+‖y‖), x,y ∈ X , for some C independent of
x, y. If X is complete, we say it is a quasi-Banach space. The quasi-norm is p-subadditive
for some p > 0 if ‖x+y‖p ≤ ‖x‖p +‖y‖p, x,y ∈ X ; in this case, if X is complete, we say
it is a p-Banach space. Recall that if a quasi-normed space (X ,‖ · ‖) is locally convex
then it becomes a normed space: Let BX = {x : ‖x‖ < 1} be and let U be a balanced
convex open neighborhood of 0 such that U ⊂ BX . If ε > 0 is such that εBX ⊂U then
the Minkowski functional of U , ‖·‖U (‖·‖U = inf{λ > 0 : x∈ λU}), is a norm equivalent
to ‖ · ‖ since

ε ‖x‖U ≤ ‖x‖ ≤ ‖x‖U

holds for all x ∈ X . (See [11, Chapter 1] and [14, Chapter 25].)
4. P0 is the set of all measurable functions p(·) on Rn with range in (0,∞) such that p− =

ess infx∈Rn p(x)> 0 and p+ = ess supx∈Rn p(x)<∞. Lp(·) denotes the set of all complex-

valued measurable functions on Rn such that for some λ > 0,
∫
Rn
( | f (x)|

λ

)p(x)dx < ∞.

With the norm (quasi-norm if p−< 1) defined by ‖ f‖p(·) := inf
{

λ > 0 :
∫
Rn
( | f (x)|

λ

)p(x)dx≤

1
}

, Lp(·) becomes a Banach (quasi-Banach if p−< 1) space. If p−< 1 we can also define

Lp(·) as the set of all measurable functions f such that | f |p0 ∈ Lq(·), where 0 < p0 ≤ p−

and q(x) = p(x)
p0

. In this case we have ‖ f‖p(·) =
∥∥| f |p0

∥∥1/p0
q(·) . (See [7], [8] and [6].)

5. If K is a compact subset of Rn and 0 < p ≤ ∞, then LK
p := { f ∈ S′ : supp f̂ ⊂ K, f ∈

Lp}.
(
LK

p ,‖ · ‖p
)

is a quasi-Banach (Banach if p≥ 1) space (see [19, Chapters 1, 2]). If
p(·) ∈P0 then

LK
p(·) := { f ∈ S′ : supp f̂ ⊂ K, ‖ f‖p(·) < ∞} .(

LK
p(·),‖·‖p(·)

)
is a quasinormed space (normed if p− ≥ 1) linear space. From the Paley-

Wiener-Schwartz theorem it follows that the elements of LK
p(·) are entire analytic func-

tions of exponential type. When p(·) ≡ p, a constant, then LK
p(·) = LK

p with equality of
quasi-norms (resp. norms). We shall denote by SK the collection of all f ∈ S such that
supp f̂ ⊂ K; obviously SK ⊂ LK

p(·). The spaces LK
p(·) have been introduced and studied in

[16].
6. Let p(·)∈P0 be and let Ω be an open set in Rn. Then Bp(·) := {u∈ S′ : û∈Lp(·)}. If u∈

Bp(·) we put ‖u‖Bp(·) := ‖û‖p(·).
(
Bp(·),‖ · ‖Bp(·)

)
is a quasi-normed space isomorphic

to
(
Lp(·)∩S′,‖ ·‖p(·)

)
(a Banach space isomorphic to Lp(·) if p− ≥ 1). Now consider the

space

Bc
p(·)(Ω) :=

⋃{
Bp(·)∩E ′(K) : K compact in Ω

}
.

If every Bp(·) ∩E ′(K) is equipped with the topology induced by Bp(·), then Bc
p(·)(Ω)

(endowed with the corresponding inductive linear topology) becomes a strict inductive
limit

Bc
p(·)(Ω) := indK

[
Bp(·)∩E ′(K)

]
.



4 Joaquı́n Motos et al.

Finally,
Bloc

p(·)(Ω) :=
{

u ∈D ′(Ω) : ϕu ∈Bp(·) for all ϕ ∈C∞
0 (Ω)

}
.

The topology of this space is generated by the seminorms (semiquasi-norms when p− <
1) u→‖u‖p(·),ϕ := ‖ϕu‖Bp(·) , ϕ ∈C∞

0 (Ω).
The spaces Bp(·), Bc

p(·)(Ω) and Bloc
p(·)(Ω) are called variable exponent Hörmander

spaces and have been introduced in [17]. If p(·) ≡ p and p ≥ 1, these spaces coincide
with the Hörmander spaces Bp,1, Bloc

p,1(Ω) and Bloc
p,1(Ω) respectively (see [9, Chapter

X]). Throughout this paper, Bloc
∞ (Ω) will denote the Hörmander space Bloc

∞,1(Ω) (see
again [9, Chapter X]).

2 The dual of Bc
p(·)(Ω) (0 < p− ≤ p+ ≤ 1) and some applications

In [9], the isomorphism Bc
2,k(Ω)′ 'Bloc

2,1/k̃
(Ω) is shown (being Ω an open convex set in Rn

and k a weight satisfying the estimate k(x+ y) ≤ (1+C|x|)Nk(y), x,y ∈ Rn, C and N pos-
itive constants). In Theorem 4.3 of [17] this isomorphism is extended to variable exponent
Hörmander spaces with 1 < p− ≤ p+ < ∞:

(
Bc

p(·)(Ω)
)′ 'Bloc

p̃′(·)
(Ω). The technique used

in [17] depends crucially on the condition p− > 1. In this section we show that
(
Bc

p(·)(Ω)
)′

is isomorphic to Bloc
∞ (Ω) when the exponent p(·) satisfies 0 < p− ≤ p+ ≤ 1. Our proof is

based on the results of [16,17], in particular on the extrapolation theorem [17, Theorem 3.5],
and on the properties of the Banach envelopes of the steps

(
Bp(·) ∩ E ′(K),‖ · ‖Bp(·)

)
of

Bc
p(·)(Ω). Furthermore, we obtain a sequence space representation of the dual Bc

p(·)(Ω)′ for
0 < p− ≤ p+ ≤ 1. We also show that if Ω is an open cube with side length 1 and 0 < p < 1,
then Bc

p(·)(Ω) does not contain any infinite-dimensional q-Banach subspace with p< q≤ 1.
As a consequence of this result we prove that

(
Bp ∩ E ′(K),‖ · ‖Bp

)
(K = [−R,R]n with

R < 1/2) contains a copy of lp and that if 0 < p1, p2 ≤ 1 then Bc
p1
(Ω) 'Bc

p2
(Ω) if and

only if p1 = p2.
Throughout this section, p(·) is a variable exponent in P0 such that 0 < p− ≤ p+ ≤ 1

and the Hardy-Littlewood maximal operator M is bounded on Lp(·)/p0 for some 0< p0 < p−,
Ω denotes an open set in Rn, {θ j}∞

j=1 denotes a C∞
0 (Ω)-partition of unity on Ω and {K j}∞

j=1

is a fundamental sequence of compact subsets of Ω such that K j =
◦
K j,

◦
K j has the segment

property and suppθ j ⊂ K j for each j.
We start recalling some basic facts about the Banach envelope of a quasi-normed space.

Let (X ,‖·‖X ) be a quasi-normed space whose dual X ′ separates the points of X and let BX be
the unit ball of X . Then X ′ is a Banach space under the norm ‖x′‖= sup{|〈x,x′〉| : x ∈ BX}.
The Banach envelope Xc of (X ,‖ · ‖X ) is the completion of X in the norm ‖ · ‖c defined by

‖x‖c := sup
{
|〈x,x′〉| : ‖x′‖ ≤ 1

}
.

‖ · ‖c coincides with the Minkowski functional of the convex hull of BX , ‖ · ‖c ≤ ‖ · ‖X
and the inclusion X ↪→ Xc is continuous with dense range. Xc has the property that any
bounded linear operator L : X→Y into a Banach space extends with preservation of norm to
a bounded linear operator L : Xc→Y , thus (Xc)

′ (and (X ,‖·‖c)
′) becomes linearly isometric

to X ′ (see [11, pp. 27, 28], [12, Introduction]).
Next we prove two results on the space Bp(·)∩E ′(K).
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Proposition 2.1 Let K be a compact subset of Rn. If K = O and O is an open set with the
segment property, then Bp(·) ∩E ′(K) (equipped with the quasi-norm ‖ · ‖Bp(·) ) is a quasi-
Banach space whose dual separates points.

Proof Since Bp(·) ∩E ′(K) is isomorphic (via the Fourier transform) to L−K
p(·), it suffices to

apply Theorem 3.5 of [16]. ut

Proposition 2.2 Let 0 < p < 1 and let K = [−R,R]n with 0 < R < 1/2. Then Bp ∩E ′(K)
(equipped with ‖ · ‖Bp ) is non-locally convex.

Proof Since Bp ∩ E ′(K) and LK
p are isomorphic it suffices to see that LK

p is non-locally
convex. It is a well-known fact that the mapping

D : LK
p → lp(Zn) : f →

(
f (m)

)
m∈Zn

is an isomorphic embedding (see [4, pp. 101, 197] for n = 1 and [5, Lema 1.8, p. 17] for
n ≥ 1). If LK

p were locally convex (i.e. a Banach space, see Notation 3) then the operator
D would be a compact operator by virtue of a result of Stiles [18, Theorem 4] and thus
LK

p would be finite-dimensional. The proof is complete since that LK
p is infinite-dimensional

(e.g. SK ⊂ LK
p ). ut

Let Bc
p(·)(Ω)[T ] the topological inductive limit of the sequence of quasi-Banach spaces{(

Bp(·) ∩E ′(K j),‖ · ‖Bp(·)

)
: j ≥ 1

}
. Let Bc

p(·)(Ω)[Tc] be the topological inductive limit
of the sequence of normed spaces

{(
Bp(·) ∩ E ′(K j),‖ · ‖ j

)
: j ≥ 1

}
where ‖ · ‖ j is the

Minkowski functional of the convex hull of the unit ball of the quasi-Banach space
(
Bp(·)∩

E ′(K j),‖ · ‖Bp(·)

)
. Then we have

Proposition 2.3

1. Tc ⊂T and
(
Bc

p(·)(Ω)[T ]
)′
=
(
Bc

p(·)(Ω)[Tc]
)′.

2. Tc is generated by the system of norms
{

q(Ci)(·) := ∑
∞
i=1 Ci ‖θi · ‖i : (Ci)

∞
i=1 ∈ (R+)

N}.

Proof Firstly let us recall that for any compact subset K of Ω , θu ∈Bp(·)∩E ′(K∩ suppθ)
for all θ ∈C∞

0 (Ω) and for all u ∈Bp(·) ∩E ′(K) and that, for every u ∈Bc
p(·)(Ω), θiu = 0

for all i large enough (see [17, Theorem 3.5/4, Remark 3.6/2]).
1. For all j we have ‖ · ‖ j ≤ ‖ ·‖Bp(·). This proves that the identity id : Bc

p(·)(Ω)[T ]→
Bc

p(·)(Ω)[Tc] is continuous, i.e. that Tc ⊂ T . On the other hand, the duals of the spaces
Bc

p(·)(Ω)[T ] and Bc
p(·)(Ω)[Tc] coincide since the corresponding steps have linearly iso-

metric duals (see Proposition 2.1 and previous remarks to this proposition).
2. Taking into account that for every u ∈Bc

p(·)(Ω) there exists a positive integer m such
that u = ∑

m
i=1 θiu and that every ‖ · ‖i is a norm, it is immediate to verify that the q(Ci) are

norms. Let T ′ be the topology generated by this system of norms. Let us see that the identity

id : Bc
p(·)(Ω)[T ′]→Bc

p(·)(Ω)[Tc]

is continuous. Let ‖ · ‖ be a seminorm on Bc
p(·)(Ω) such that its restriction to each step(

Bp(·) ∩ E ′(K j),‖ · ‖ j
)

is continuous (these seminorms generate the topology Tc). Then
there exist constants C j > 0 such that ‖u‖ ≤C j ‖u‖ j for all u ∈Bp(·)∩E ′(K j), j = 1,2, . . .
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Let u ∈Bc
p(·)(Ω). We know that there is a positive integer m such that θiu = 0 for all i > m

and that u = ∑
m
i=1 θiu. Then, since each θiu is in Bp(·)∩E ′(Ki), we get

‖u‖=
∥∥∥ m

∑
i=1

θiu
∥∥∥≤ m

∑
i=1
‖θiu‖ ≤

m

∑
i=1

Ci ‖θiu‖i =
∞

∑
i=1

Ci ‖θiu‖i = q(Ci)(u)

and this proves the required continuity. Thus Tc is coarser than T ′. Next we shall show that
T ′ ⊂T . It will be sufficient to see that every canonical injection(

Bp(·)∩E ′(K j),‖ · ‖Bp(·)

)
↪→Bc

p(·)(Ω)[T ′]

is continuous. Given q(Ci), the Theorem 3.5/2 of [16] and the continuity of the Fourier trans-
form show that there are a positive integer k and a positive constant C such that

q(Ci)(u) =
m

∑
i=1

Ci ‖θiu‖i ≤
m

∑
i=1

Ci ‖θiu‖Bp(·) =
m

∑
i=1

Ci ‖θ̂iu‖p(·)

= (2π)−n
m

∑
i=1

Ci ‖θ̂i ∗ û‖p(·) ≤C
m

∑
i=1

Ci |θi|k‖û‖p(·) =C
( m

∑
i=1

Ci |θi|k
)
‖u‖Bp(·)

holds for all u ∈Bp(·) ∩E ′(K j) (m is independent of u). Thus T ′ ⊂ T . Then, taking into
account 1. and the inclusions Tc ⊂ T ′ ⊂ T , we get

(
Bc

p(·)(Ω)[T ′]
)′
=
(
Bc

p(·)(Ω)[Tc]
)′.

But Bc
p(·)(Ω)[Tc] is an inductive limit of normed spaces which implies that Tc is the finest

locally convex topology on Bc
p(·)(Ω) which has

(
Bc

p(·)(Ω)[Tc]
)′ as dual space (see [15,

§ 21, p. 260 & § 28, p. 379]), therefore necessarily T ′ is coarser than Tc. Thus, Tc = T ′

and the proof of proposition is complete. ut

Remark

1. In general, the topology Tc is strictly coarser than the topology T : Let us assume Ω =
]− 1

2 ,
1
2 [

n and 0 < p < 1. Then, since
(
Bp∩E ′([−R,R]n),‖ ·‖Bp

)
with 0 < R < 1/2 is a

topological linear subspace of Bc
p(Ω)[T ] (see [17, Theorem 3.5/3]), the Proposition 2.2

shows that Bc
p(Ω)[T ] is non-locally convex. Since Tc is locally convex, we obtain the

required conclusion.
2. It is easy to prove that the inductive limit topology T is also generated by the system of

p0-norms {( ∞

∑
i=1

Ci ‖θi · ‖p0
Bp(·)

)1/p0
: (Ci)

∞
i=1 ∈ (R+)

N
}
.

Proposition 2.4
(
Bc

p(·)(Ω)[T ]
)′ is a Fréchet space.

Proof Since the topology of
(
Bc

p(·)(Ω)[T ]
)′ (i.e. the topology of the uniform convergence

on bounded subsets of Bc
p(·)(Ω)[T ]) is metrizable by [17, Theorem 3.5/3], the proof of the

proposition follows by standard arguments. ut

Now we can show the p+ ≤ 1 counterpart of Theorem 4.3 of [17] (
(
Bc

p(·)(Ω)
)′ '

Bloc
p̃′(·)

(Ω) for 1 < p− ≤ p+ < ∞). We will need the spaces l1(Ci,Xi) and l∞(Ci,Xi): If

(Ci) ∈ (R+)
N and (Xi) is a sequence of normed spaces then l1(Ci,Xi) (resp. l∞(Ci,Xi)) is



Duals of variable exponent Hörmander spaces (0 < p− ≤ p+ ≤ 1) and some applications 7

the set of all sequences (xi)∈∏
∞
i=1 Xi such that ‖(xi)‖1 =∑

∞
i=1 Ci ‖xi‖Xi <∞ (resp. ‖(xi)‖∞ =

supi Ci ‖xi‖Xi < ∞). It is well known that the Banach spaces
(
l∞
( 1

Ci
,X ′i
)
,‖ · ‖∞

)
and(

l1(Ci,Xi),‖ ·‖1
)′ are linearly isometric via the mapping A defined by (x′i)→ 〈(xi),A

(
(x′i)
)
〉

:= ∑
∞
i=1〈xi,x′i〉.

Theorem 2.1
(
Bc

p(·)(Ω)[T ]
)′ is isomorphic to Bloc

∞ (Ω) when 0 < p+ ≤ 1. In particular,(
Bc

p(Ω)[T ]
)′ 'Bloc

∞ (Ω) for 0 < p≤ 1.

Proof Let L be a continuous linear functional on Bc
p(·)(Ω)[T ]. By Proposition 2.3/1, L

is also a continuous linear functional on Bc
p(·)(Ω)[Tc] and so, by Proposition 2.3/2, there

exists an element (Ci) in (R+)
N such that

|〈u,L〉| ≤
∞

∑
i=1

Ci ‖θiu‖i , u ∈Bc
p(·)(Ω) .

Then the mapping Z : Bc
p(·)(Ω)[Tc]→ l1

(
Ci,(Bp(·) ∩ E ′(Ki),‖ · ‖i)

)
: u→ (θiu), is well

defined and is linear, injective and continuous (see the proof of Proposition 2.3). Since the
linear functional L ◦ Z−1 satisfies |〈(θiu),L ◦ Z−1〉| ≤ ‖(θiu)‖1, u ∈ Bc

p(·)(Ω), the Hahn-

Banach theorem shows the existence of a linear functional (L ◦ Z−1)− ∈
(

l1
(
Ci,(Bp(·) ∩

E ′(Ki),‖ · ‖i)
))′

of norm at most 1 which extends L ◦Z−1. Then, by the isometric isomor-
phism

A : l∞
( 1

Ci
,
(
Bp(·)∩E ′(Ki),‖ · ‖i

)′)→ (l1
(
Ci,(Bp(·)∩E ′(Ki),‖ · ‖i)

))′
defined by 〈(ui),A

(
(σi)

)
〉= ∑

∞
i=1〈ui,σi〉, we can find (ξi) ∈ l∞

( 1
Ci
,(Bp(·)∩E ′(Ki),‖ · ‖i)

′)
such that A

(
(ξi)
)
= (L◦Z−1)−, i.e. such that ∑

∞
i=1〈ui,ξi〉= 〈(ui),(L◦Z−1)−〉 for all (ui) ∈

l1
(
Ci,(Bp(·)∩E ′(Ki),‖ · ‖i)

)
. In particular, we get the following representation of L

〈u,L〉= 〈Z(u),(L◦Z−1)−〉=
∞

∑
i=1
〈θiu,ξi〉 , u ∈Bc

p(·)(Ω) .

Next, we shall prove that the mapping

Φ :
(
Bc

p(·)(Ω)[T ]
)′→Bloc

∞ (Ω)

defined by Φ(L) = ∑
∞
i=1[θiξi], where (ξi) is the sequence which represents to L and [θiξi] is

the distribution on Ω defined by 〈ϕ, [θiξi]〉 = 〈θiϕ,ξi〉 for ϕ ∈C∞
0 (Ω), is an isomorphism.

Firstly let us see that Φ is well defined:
(i) We claim that each [θiξi]∈Bloc

∞ (Ω). For every ϕ ∈C∞
0 (Ω), θiϕ ∈Bp(·)∩E ′(Ki) and

so 〈θiϕ,ξi〉 makes sense. Furthermore, if ϕν → 0 in C∞
0 (K) then also θiϕν → 0 in C∞

0 (K)

and this implies that θiϕν → 0 in S, i.e. θ̂iϕν → 0 in S. This shows that θiϕν → 0 in
(
Bp(·)∩

E ′(Ki),‖ ·‖Bp(·)

)
and thus in

(
Bp(·)∩E ′(Ki),‖ ·‖i

)
. Therefore, 〈ϕν , [θiξi]〉= 〈θiϕν ,ξi〉→ 0

and [θiξi] becomes a distribution on Ω . To establish the claim, it remains to prove that
ϕ[θiξi]∈B∞, i.e. (ϕ[θiξi])

∧ ∈ L∞, for each ϕ ∈C∞
0 (Ω). Given such a ϕ , it is easily seen that

ϕ[θiξi] is a distribution on Rn whose support is contained in Ki. Thus
(
ϕ[θiξi]

)∧ coincides
with the Fourier-Laplace transform of ϕ[θiξi] (see [10, Theorem 7.1.14]) defined by

(ϕ[θiξi])
∧(x) = 〈e−i(·)x

χ,ϕ[θiξi]〉 , x ∈ Rn ,
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where χ ∈C∞
0 (Ω) and χ = 1 in a neighborhood of Ki. Since θiχ = θi, we obtain(

ϕ[θiξi]〉)∧(x) = 〈θiϕe−i(·)x,ξi〉

and so

∣∣(ϕ[θiξi])
∧(x)

∣∣≤ ‖ξi‖
∥∥θiϕe−i(·)x∥∥

i ≤ ‖ξi‖
∥∥θiϕe−i(·)x∥∥

Bp(·)

= ‖ξi‖
∥∥(θiϕe−i(·)x)∧

∥∥
p(·) = ‖ξi‖

∥∥θ̂iϕ
(
(·)+ x

)∥∥
p(·)

where ‖ξi‖ is the norm of the functional ξi. Now we show that
∥∥θ̂iϕ

(
(·)+ x

)∥∥
p(·) ≤C with

C independent of x ∈ Rn. Indeed, if q(·) = p(·)/p0 we have, by using [8, Lemma 3.2.5],

∥∥θ̂iϕ
(
(·)+ x

)∥∥
p(·) :=

∥∥|θ̂iϕ((·)+ x)|p0
∥∥1/p0

q(·)

≤max
{(∫

Rn
|θ̂iϕ(y+ x)|p(y)dy

)1/p−

,
(∫

Rn
|θ̂iϕ(y+ x)|p(y)dy

)1/p+}
≤ 21/p−−1 max

{
‖θ̂iϕ‖p− +‖θ̂iϕ‖p+/p−

p+ ,‖θ̂iϕ‖p+ +‖θ̂iϕ‖p−/p+

p−

}
and this bound is independent of x ∈ Rn. Therefore ϕ[θiξi] ∈B∞ and [θiξi] ∈Bloc

∞ (Ω).
(ii) The series ∑

∞
i=1[θiξi] converges in Bloc

∞ (Ω) since this space is a Fréchet space and
for all ϕ ∈C∞

0 (Ω) we have ∑
∞
i=1
∥∥[θiξi]

∥∥
∞,ϕ

= ∑
∞
i=1
∥∥ϕ[θiξi]

∥∥
B∞

< ∞ (take into account that
θiϕ = 0, and thus ϕ[θiξi] = 0, for all i large enough since suppϕ is a compact subset of Ω ).

(iii) If (L ◦ Z−1)= ∈
(

l1
(
Ci,(Bp(·) ∩ E ′(Ki),‖ · ‖i)

))′
is another extension of L ◦ Z−1

and (ηi) ∈ l∞
(

1
Ci
,
(
Bp(·) ∩ E ′(Ki),‖ · ‖i

)′) is such that 〈u,L〉 = ∑
∞
i=1〈θiu,ηi〉 for all u ∈

Bc
p(·)(Ω), then ∑

∞
i=1[θiξi] = ∑

∞
i=1[θiηi] (using the embedding Bloc

∞ (Ω) ↪→ D ′(Ω) [9, The-
orem 10.1.26] we have 〈ϕ,∑∞

i=1[θiξi]〉 = ∑
∞
i=1〈ϕ, [θiξi]〉 = ∑

∞
i=1〈θiϕ,ξi〉 = 〈ϕ,L〉 = · · · =

〈ϕ,∑∞
i=1[θiηi]〉 for any ϕ ∈C∞

0 (Ω)).
(iv) Let (C1

i ) ∈ (R+)
N be another sequence such that |〈u,L〉| ≤ ∑

∞
i=1 C1

i ‖θiu‖i for all
u ∈Bc

p(·)(Ω). Let Z1 be the corresponding operator, let
(
L ◦ (Z1)−1

)− be an extension of

L ◦ (Z1)−1 to l1
(
C1

i ,(Bp(·) ∩E ′(Ki),‖ · ‖i)
)

and let (ξ 1
i ) ∈ l∞

(
1

C1
i
,
(
Bp(·) ∩E ′(Ki),‖ · ‖i

)′)
be the sequence which represents this extension. Then 〈u,L〉 = ∑

∞
i=1〈θiu,ξ 1

i 〉 in Bc
p(·)(Ω)

and, reasoning as in (iii), we see that ∑
∞
i=1[θiξi] = ∑

∞
i=1[θiξ

1
i ].

All this shows that Φ is well defined. The simple proof of the linearity of Φ will be
omitted. If Φ(L) = 0 then 0 = 〈ϕ,Φ(L)〉 = ∑

∞
i=1〈θiϕ,ξi〉 = 〈ϕ,L〉 for any ϕ ∈ C∞

0 (Ω),
and since C∞

0 (Ω) is dense in Bc
p(·)(Ω) [17, Theorem 3.5] we obtain L = 0. Therefore, Φ

is injective. Let us see that Φ is surjective: Let (χi) be a sequence in C∞
0 (Ω) such that

χi = 1 in Ki and supp χi ⊂
◦
Ki+1. Let ν be an element of Bloc

∞ (Ω). For each ϕ ∈ C∞
0 (Ω),

∑
∞
i=1 ‖θiν‖∞,ϕ = ∑

∞
i=1 ‖(θiϕ)ν‖B∞

< ∞ (θiϕ = 0 for all i large enough) and so the se-
ries ∑

∞
i=1 θiν converges in Bloc

∞ (Ω). Then we have the decomposition (recall that (θi) is
a C∞

0 (Ω)-partition of unity on Ω )

ν =
∞

∑
i=1

θiν =
∞

∑
i=1

(θiχi)ν =
∞

∑
i=1

θi(χiν) =
∞

∑
i=1

θiνi (2.1)
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where νi = χiν . We now define the functional

〈u,L〉= (2π)−n
∞

∑
i=1

∫
Rn

θ̂iu(x) ˆ̃νi(x)dx , u ∈Bc
p(·)(Ω) ,

and we show that is T -continuous. Fix Bp(·)∩E ′(K j). Take u ∈Bp(·)∩E ′(K j). Every θiu

is in Bp(·) ∩E ′(K j) and every νi ∈B∞, thus θ̂iu ∈ L
−K j
p(·) and ν̂i ∈ L∞. Furthermore, since

L
−K j
p(·) ↪→ L

−K j
1 (see [16, Theorem 3.5/5]), there is a constant C > 0 such that

‖θ̂iu‖1 ≤C‖θ̂iu‖p(·) =C‖θiu‖Bp(·)

holds for all i. We also know that there is a positive integer m such that θiu = 0 for all i > m
(C and m only depend on j). Then we have

|〈u,L〉| ≤ (2π)−n
m

∑
i=1

∫
Rn

∣∣θ̂iu(x)
∣∣ | ˆ̃νi(x)|dx≤C

m

∑
i=1
‖θ̂iu‖1‖ν̂i‖∞

≤C
m

∑
i=1
‖θiu‖Bp(·)‖νi‖B∞

.

Reasoning now as in Proposition 2.3/2 we can find a positive integer k and a constant C such
that ‖θiu‖Bp(·) ≤C |θi|k‖u‖Bp(·) for 1≤ i≤ m and so we obtain

|〈u,L〉| ≤C
( m

∑
i=1
|θi|k‖νi‖B∞

)
‖u‖Bp(·) . (2.2)

Thus L is continuous on Bp(·) ∩ E ′(K j) (actually for all j) and we conclude that L ∈(
Bc

p(·)(Ω)[T ]
)′. We shall show that Φ(L) = ν . By Proposition 2.3/1, the former dual co-

incides with
(
Bc

p(·)(Ω)[Tc]
)′. Then, by Proposition 2.3/2, there exists (Ci) ∈ (R+)

N such
that

|〈u,L〉| ≤
∞

∑
i=1

Ci ‖θiu‖i

holds for all u ∈ Bc
p(·)(Ω). Let (ξi) ∈ l∞

(
1
Ci
,
(
Bp(·) ∩ E ′(Ki),‖ · ‖i

)′) such that 〈u,L〉 =
∑

∞
i=1〈θiu,ξi〉 for all u ∈ Bc

p(·)(Ω). Then Φ(L) = ∑
∞
i=1[θiξi] and, for any ϕ ∈ C∞

0 (Ω), we
have

〈ϕ,Φ(L)〉= 〈ϕ,L〉= (2π)−n
∞

∑
i=1

∫
Rn

θ̂iϕ ˆ̃νi dx = (2π)−n
∞

∑
i=1
〈̂̃θiϕ, ν̂i〉

=
∞

∑
i=1
〈θiϕ,νi〉=

∞

∑
i=1
〈ϕ,θiνi〉= 〈ϕ,

∞

∑
i=1

θiνi〉= 〈ϕ,ν〉 ,

and so Φ(L) = ν and Φ is surjective. Summarizing, Φ is an algebraic isomorphism.
Finally, we prove that Φ is a (topological) isomorphism. We first show the continuity

of Φ−1: Let A a bounded subset of Bc
p(·)(Ω)[T ]. By [17, Theorem 3.5/3], there is a j such
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that A is a bounded subset of
(
Bp(·) ∩E ′(K j),‖ · ‖Bp(·)

)
. Then, taking into account the de-

composition (2.1), the estimate (2.2) and the inequalities ‖ν‖∞,χi ≤ (2π)−n‖χ̂i‖1‖ν‖∞,χi+1 ,
we get

pA(Φ
−1(ν)) = sup

{
|〈u,Φ−1(ν)〉| : u ∈ A

}
= sup

{
|〈u,L〉| : u ∈ A

}
≤ sup

{
C
( m

∑
i=1
|θi|k‖νi‖B∞

)
‖u‖Bp(·) : u ∈ A

}
≤C

( m

∑
i=1
|θi|k‖νi‖B∞

)
=C

( m

∑
i=1
|θi|k‖ν‖∞,χi

)
≤C‖ν‖∞,χm

for all ν ∈ Bloc
∞ (Ω) and thus Φ−1 is continuous. Then Φ becomes a (topological) iso-

morphism by the open mapping theorem (by Proposition 2.4
(
Bc

p(·)[T ]
)′ is also a Fréchet

space).
Lastly, if p(·) ≡ p and 0 < p ≤ 1 then the Hardy-Littlewood maximal operator M is

bounded on Lp/p0 for each p0 ∈]0, p[ and so we also have the isomorphism
(
Bc

p(Ω)[T ]
)′ '

Bloc
∞ (Ω). ut

Remark If p(·) is a variable exponent such that 1 < p− ≤ p+ < ∞, it is possible to prove
the isomorphism

(
Bc

p(·)(Ω)
)′ 'Bloc

p̃′(·)
(Ω) (obtained in [17, Theorem 4.3]) following step

by step the proof of the preceding theorem and using Remark 3.6/2 of [17] instead of the
Proposition 2.3 (the topologies T and Tc coincide in this case): In fact, using the notations
of Theorem 2.1 and sustituing in the proof Bloc

∞ (Ω) by Bloc
p̃′(·)

(Ω), it suffices to notice that

ϕ[θiξi] ∈B
p̃′(·), i.e.

(
ϕ[θiξi]

)∧ ∈ L
p̃′(·), for each ϕ ∈C∞

0 (Ω) (use Lemma 4.1 of [17]), and
that in the proof of the surjectivity of Φ , when one needs to show that the functional

〈u,L〉= (2π)−n
∞

∑
i=1

∫
Rn

θ̂iu(x) ̂̃vi(x)dx , u ∈Bc
p(·)(Ω) ,

is T continuous, one must use the generalized inequality of Hölder.

In [17, Remark 4.4] it is shown that if Ω is an open interval of R and 0 < p < 1 then
(Bc

p(Ω)[T ])′ ' proj j E j where the Banach spaces E j are isomorphic to l∞. The next corol-
lary is a sequence space representation of the dual (Bc

p(·)(Ω)[T ])′ which improves that
result.

Corollary 2.1
(
Bc

p(·)(Ω)[T ]
)′ is isomorphic to (l∞)N if 0 < p+ ≤ 1.

Proof By a result of Vogt [20] we know that Bc
1(Ω)[T ] ' (l1)(N). By using this isomor-

phism and Theorem 2.1, we have(
Bc

p(·)(Ω)[T ]
)′ 'Bloc

∞ (Ω)' (Bc
1(Ω)[T ])′ '

(
(l1)(N)

)′ ' (l∞)N

(for the last isomorphism see, e.g. [15, p. 287]). ut

We finish with a result which extends Proposition 2.2.

Theorem 2.2 Let Ω be a cube of Rn with side length 1.
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1. If 0 < p < 1, then Bc
p(Ω)[T ] does not contain any infinite-dimensional q-Banach sub-

space with p < q≤ 1.
2. If 0 < p1, p2 ≤ 1, then Bc

p1
(Ω)[T ]'Bc

p2
(Ω)[T ] if and only if p1 = p2.

Proof 1. Without loss of generality we can suppose Ω =
]
− 1

2 ,
1
2

[n. Then we have Bc
p(Ω)[T ]

= indi
[
Bp∩E ′(Qi)

]
where Qi = [−Ri,Ri]

n and Ri↗ 1/2. Assume that Bc
p(Ω)[T ] contains

an infinite-dimensional q-Banach subspace X . By [17, Theorem 3.5/3], X becomes a sub-
space of a step Bp∩E ′(Q j). Then we have the following diagram

X
j−→Bp∩E ′(Q j)

F−→ L
Q j
p

D−→ lp(Zn)

where j is the canonical injection, F is the Fourier transform operator and D is the sampling
operator (see the proof of Proposition 2.2). Since p < q, a result of Stiles ([18, p. 118], [11,
p. 25]) proves that the bounded operator A = D◦F ◦ j is compact. But F is a topological
isomorphism and D is an isomorphic embedding, thus ImA and, consequently, X are finite-
dimensional. This contradiction finishes the proof of 1.

2. Since the steps Bp1 ∩E ′(Qi) (resp. Bp2 ∩E ′(Qi)) are infinite-dimensional p1-Banach
(resp. p2-Banach) subspaces of Bc

p1
(Ω)[T ] (resp. Bc

p2
(Ω)[T ]) the result is a consequence

of 1. ut

Remark Observe that, applying a result of Bastero [3, Corollary 5], it is easily seen that
each step Bp ∩ E ′(Qi) contains a subspace isomorphic to lp. In fact, since LQi

p (' Bp ∩
E ′(Qi)) is a closed subspace of Lp, LQi

p contains a subspace isomorphic to lr for some p ≤
r ≤ 2 (use [3, Corollary 5]). Then, applying Theorem 2.2/1, we conclude that r = p.

Questions

1. In [17] we have posed a question on complex interpolation between the Banach spaces
Bpi(·)∩E ′(Q) when 1≤ p−i ≤ p+i < ∞, i = 0,1. In [13, Section 3] Kalton elaborated a
method of complex interpolation for compatible pairs (X0,X1) of quasi-Banach spaces
such that X0∩X1 is dense in Xi, i = 0,1, and the quasi-Banach space X0 +X1 is analyt-
ically convex (i.e. there is a constant C such that for every polynomial P : C→ X0 +X1
we have ‖P(0)‖X0+X1 ≤C max|z|=1 ‖P(z)‖X0+X1 ). In that context we pose the following
related questions:
(a) If 0 < p−i ≤ p+i ≤ 1, i = 0,1, and Q = [−R,R]n, is the quasi-Banach space

Bp0(·)∩E ′(Q)+Bp1(·)∩E ′(Q)

(equivalently, the quasi-Banach space LQ
p0(·)

+LQ
p1(·)

) analytically convex?
(b) If the answer to 1. is affirmative, is the complex interpolation formula[

Bp0(·)∩E ′(Q), Bp1(·)∩E ′(Q)
]

θ
= Bp(·)∩E ′(Q)

(equivalently,
[
LQ

p0(·)
, LQ

p1(·)
]

θ
= LQ

p(·)) valid?. The former formula is understood in

the sense of equivalence of quasi-norms and 0 < θ < 1, 1
p(x) =

1−θ

p0(x)
+ θ

p1(x)
and

[·, ·]θ is the interpolation functor in the sense of Kalton [13, Section 3].
2. Calculate the dual of the space Bc

p(·)(Ω) when the variable exponent p(·) ∈P0, p− ≤
1 < p+, and the Hardy-Littlewood maximal operator M is bounded in Lp(·)/p0 for some
0 < p0 < p−.



12 Joaquı́n Motos et al.

Acknowledgements J. Motos is partially supported by grant MTM2011-23164 from the Spanish Ministry
of Science and Innovation.

The authors wish to thank the referees for the careful reading of the manuscript and for many help-
ful suggestions and remarks that improved the exposition. In particular, the remark immediately following
Theorem 2.1 and the Question 2 were motivated by the comments of one of them.

References

1. R. Aboulaich, D. Meskine, A. Souissi: New diffussion models in image processing, Comp. Math. Appl.,
56(4) (2008), 874-882

2. E. Acerbi, G. Mingione: Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech.
Anal., 164(3) (2002), 213-259

3. J. Bastero: lq-subspaces of stable p-Banach spaces, 0 < p≤ 1, Arch. Math. (Basel) 40 (1983), 538-544
4. R. P. Boas: Entire Functions, Academic Press, 1954
5. S. Boza: Espacios de Hardy discretos y acotación de operadores, Dissertation, Universitat de Barcelona,

1998
6. D. Cruz-Uribe, A. Fiorenza: Variable Lebesgue Spaces, Foundations and Harmonic Analysis,
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Math. 10 (2013), 1419-1434
18. W. J. Stiles: Some properties of lp, 0 < p < 1, Studia Math. 42 (1972), 109-119
19. H. Triebel: Theory of Function Spaces, Birkhäuser, Basel, 1983
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