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Mobile sensing is becoming the best option to monitor our environment due to its ease of use, high flexibility, and low price. In this
paper, we present a mobile sensing architecture able to monitor different pollutants using low-end sensors. Although the proposed
solution can be deployed everywhere, it becomes especially meaningful in crowded cities where pollution values are often high,
being of great concern to both population and authorities. Our architecture is composed of three differentmodules: a mobile sensor
formonitoring environment pollutants, an Android-based device for transferring the gathered data to a central server, and a central
processing server for analyzing the pollution distribution. Moreover, we analyze different issues related to the monitoring process:
(i) filtering captured data to reduce the variability of consecutivemeasurements; (ii) converting the sensor output to actual pollution
levels; (iii) reducing the temporal variations produced by mobile sensing process; and (iv) applying interpolation techniques for
creating detailed pollution maps. In addition, we study the best strategy to use mobile sensors by first determining the influence of
sensor orientation on the captured values and then analyzing the influence of time and space sampling in the interpolation process.

1. Introduction

Air pollution basically consists in the emission of gases
or particles into the atmosphere, producing changes in its
composition. Air pollution levels are critical aspect to con-
sider nowadays since it is associated with several problems
affecting people’s life quality, such as health issues (mainly
in the respiratory tracts), climate changes, and reduced
agriculture production.

Throughout Europe, about one thousand five hundred
air monitoring stations have been deployed to control air
pollution on a large scale, providing coarse-granularity pol-
lution levels for most relevant cities. Despite the fact that this
number may seem large, when focusing on a specific city
we find that these stations are quite scarce, failing to provide
detailed pollution levels on a per-neighborhood basis [1]. For
instance, in Valencia, the third largest city in Spain, there are
only 5 monitoring stations, as shown Figure 1. These are able
to provide pollution levels on a large scale but for better data
granularity and to study spatial variability with more detail,
it would be necessary to have many of these stations, which
becomes unfeasible due to the high costs associated.

Monitoring stations rely on sophisticated sensors, which
are very accurate and introduce minimum uncertainty levels
in the data capture process (e.g., Dobson spectrophotometers
are used for monitoring ozone levels [2]). However, they are
very expensive and hard to manage. Due to their size, they
must be installed on a specific location, and the monitored
value is only representative in a small surrounding area.

An alternative for measuring environmental pollution
is relying on mobile sensing. Specifically, small low-cost
devices can be installed in various types of vehicles to
monitor different parts of the city at different times.Themain
problem of low-end mobile sensors is that they have less
accuracy than sophisticated sensors, and so they need to be
regularly calibrated; besides, measurements are also weather-
dependent.

Even a small and low-cost mobile station must be
endowed with several sensors able to measure different types
of air pollution. Pollutants can be of two types: (i) primary air
pollutants, which are gases or particles emitted directly into
the atmosphere: in this category we have carbon monoxide
(CO), carbon dioxide (CO

2
), particulate matter smaller than

10 microns (PM10), or particulate matter smaller than 2.5
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Figure 1: Example of an air monitoring station, and the location of
the 5 stations available in Valencia, Spain.

microns (PM2.5); and (ii) secondary air pollutants, which
are gases produced by a chemical reaction between primary
pollutants and some environment element: in this second
category we have ozone (O

3
), which is produced by the

combination of nitrogen oxides (NO
𝑥
), Oxygen (O

2
), Volatile

Organic Compounds (VOC), and sunlight [3].
In this paper we propose an architecture offering mobile

pollution sensing with high spatial resolution. Our architec-
ture includes three independent modules: a mobile sensor
for monitoring environment pollutants, an Android-based
device for transferring the gathered data to a central server,
and a central processing server for analyzing the pollution
distribution using the collected data through spatial inter-
polation techniques. Throughout the paper, we will focus
on ozone sensing since it is more complex to estimate that
other pollutants. In particular, wewill discuss how to properly
calibrate the sensor and reduce time variability. In addition,
we will assess the impact of sensor position and of mobility,
as well as the impact of temporal and spatial subsampling.

The paper is organized as follows. In the next section we
present some related works on the topic. In Section 3, we
provide an overview of the proposed architecture. Then, in
Section 4, we detail the procedure followed in order to obtain
reliable measurements from low-cost sensing devices. Sec-
tion 5 discusses the optimal strategy for performing mobile
measurements. In Section 6, we validate the proposed archi-
tecture through comparison against infrastructure-based
results. Finally, in Section 7, we present our conclusions and
future work.

2. Related Work

In recent decades, air pollution monitoring has gained
worldwide relevance due to the influence of air quality on our
lives. There are many research works that study the effects
of pollution on our health. Among them we can find the
contributions of Chen et al. [4, 5], who analyzed the effects

of ozone and particles matter on human health. Brook et al.
[6] also contributed to this field by studying the relationship
between the exposure to air pollution (including ozone) and
cardiovascular events.

Determining the pollution distribution in a city based
on a few samples requires adopting spatial interpolation
techniques for estimating it. In this regard, studies such as [7,
8] have relied on kriging interpolation techniques to predict
pollution.These studiesweremade in the cities ofQuebec and
Toronto, respectively.

To have a detailed overview of pollution distribution,
fine-grain monitoring is required, and mobile sensing is
the best option to achieve it. In the literature we can find
several works adopting this approach. For instance, Brković
and Sretović [9] propose a system to monitor environment
pollution in the city of Belgrade using Waspmote sensors
installed in the public transport system. Deng and Zhang [10]
use a vehicular sensor network for air pollution monitoring.
In particular, they propose to use taxis for deploying the
system and mainly analyze the communication between
them.More recently, Calafate andDucourthial [11] combined
mobile sampling techniqueswith kriging-based interpolation
to determine the achievable accuracy when estimating the
ozone distribution in a city, relying on the public transporta-
tion system for data gathering.

Cheng et al. [12] propose a system to monitor the
concentrations of PM2.5 using crowdsourcing, which is an
alternative to usingmobile sensors.They focus on the analysis
of themechanical sensor design to optimize the air reception,
as well as on data fusion techniques to analyze the data.
Sensor calibration is achieved by analyzing data produced in
the laboratory using neural networks.

Finally, Zheng et al. [13] show how to analyze the data
obtained from different sources, such as traffic levels, weather
conditions, and pollution, using different Big Data tech-
niques, and evidence how these techniques allow inferring
environmental pollution levels with better granularity.

Our proposal differs from the former ones since it aims at
providing a full mobile sensing architecture. In particular, we
combine low-end sensors, smartphones, and Cloud services
to efficiently monitor pollution levels. By relying on the
data readings provided by the existent infrastructure (high
reliability), we show how to calibrate and adjust data readings
and how it is possible to obtain detailed pollutionmaps using
spatial interpolation techniques. In addition, we study the
impact of mobility, sensor orientation, spatial subsampling,
and time subsampling on the prediction accuracy.

3. Mobile Sensing Architecture Overview

Our proposed architecture defines a set of elements that allow
monitoring air pollution in a cheap and easy way, being spe-
cially useful in very crowded cities. It combines information
from existing air quality monitoring stations with the data
collected by mobile sensors to generate fine-grained reports
about spatial pollution distribution throughout the city.These
mobile sensors can be installed in bicycles or the public
transportation system to monitor the whole city in a simple
and effective way. All collected information is stored on



Journal of Sensors 3

Sensorboard

Battery

X X XX

GPS

BT‐SensorML

Mainboard

Battery

HTTP‐SensorML

BT‐SensorML

Smartphone Android

Sensor

Server HTTP‐SensorML

Cloud

Communication

Figure 2: Overview of the proposed mobile sensing architecture including the main hardware components and the technologies used.

a central server for data processing, generating detailed
reports afterward.

The architecture integrates several hardware and software
components. These components are either mobile sensing
elements or the central processing server that analyzes col-
lected data and presents detailed information.Mobile sensing
elements are composed of two different components: (i)
a mobile sensor for measuring pollution data and (ii) an
Android-based device for showing real-time pollution status,
storing the data, and transferring it to the Cloud server
when network connectivity is available. Figure 2 provides an
overview of the proposed architecture.

The mobile sensor is based on an Arduino platform [14],
and it measures environment parameters through various
sensors (ozone, CO

2
, air pollution, or temperature). Once

data is ready, it can be made available to the Android device
via a Bluetooth connection.

For the user to manage the mobile sensing process,
an Android application was developed (see Figure 3). This

application allows starting or stopping a trace, view captured
data in real-time, uploading data to the server, and perform
other management tasks.

Internally, the application has two parts: (i) a service
that continually receives the data sent by the sensor and
that saves it in an internal database: the service opens a
Bluetooth serial communications channel with the sensor for
the data transfer; and (ii) a user interface that allows starting
or stopping a trace data capture from the sensor and that
also provides real-time feedback about pollution levels at the
current location according to the AQI index [15]. Moreover,
the full trace can be represented on a map showing pollution
variations through different color identifiers. Once the trace
is completed, the data can be sent to the server via an HTTP
connection.

Concerning the Central server, it is a web-enabled system
that handles the information received from the Android
device. The received data is saved in a MySQL database.
Next, the information is processed using different statistical
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Figure 3: Android-based application deployed monitoring screen
(back) and path of a monitoring session (front).

procedures. Finally, the detailed information is presented to
the system administrator through a web front-end.

The web interface of the Cloud server was built using
a Word-press CRM. The website, available at http://www
.ecosensor.net, allows the administrator to have full access
to the information in terms of trace handling, processing,
and visualization. Once logged in, the administrator views all
uploaded traces and can choose different statistical analyses
for the different datasets (e.g., CO

2
, ozone, air pollution, and

temperature). For statistical analysis and report generation it
relies on the R graph tool [16]. The generated graphics for
each dataset include heat map, boxplots, time series, and the
confidence associated with the spatial interpolation process,
as shown in Figure 4.

4. Monitoring Process

After defining the proposed architecture, we now focus on the
most relevant issues regarding the reliability of the pollution
monitoring process. Our target pollutant was ozone due to
its well-known negative impact on health and also because it
is more complex to measure accurately than other pollutants
due to its dependency on temperature and time of day.

The issues that should be taken into account to perform
accurate ozone measurements are the following:

(i) Sensor output data measurements are highly variable
in ranges close to the real values, and so such variabil-
ity should be reduced.

(ii) The sensor outputs should be transformed into the
respective units for each pollutant. In most cases, the
measured resistance value must be converted into
particles per billion (ppb).

(iii) In order to use mobile sensors, time-dependent vari-
ability must be removed since different samples are
obtained at different times.

Figure 4: Example of the Cloud applicationweb page showing some
monitoring sessions and the analysis output for two air pollutants.

(iv) Using the adjusted measurements, the next phase is
to apply spatial interpolation techniques for creating
detailed pollution maps.

Figure 5 shows the different steps taken when transform-
ing the raw sensor readings in detailed air pollution maps.
Also, we detail bellow how each of these issues has been
addressed.

4.1. Data Reading. Low-end sensors introduce significant
variability between consecutive measurements (absolute val-
ues for intersample differences have 𝑥 = 6.15, 𝜎 = 5.73),
so data retrieval processes should eliminate these oscillations
associatedwith noise in the sensor readings. For this purpose,
we performed the following steps: first, we calculated the
average value of 25 samples (𝑛 = 25), with an interval of 10ms
between each consecutive sample, as shown in

𝑂
𝑠
=

∑
𝑛

𝑖=1
𝑂
𝑖

𝑛

. (1)

In this equation 𝑂
𝑠
represents the estimated ozone level,

𝑂
𝑖
represents the ozone level sample 𝑖 obtained from the

sensor, and 𝑛 represents the number of measurements. In this
step, we slightly reduce the absolute variability (𝑥 = 5.39, 𝜎 =
5.01). Afterward, and taking into account that the variability
was still very high, we used a low-pass filter for the data
analysis process with 𝛼 equal to 0.95 to further reduce this
variability, as shown in

𝑂
𝑖
= 𝑂
𝑟
+ 𝛼 ⋅ (𝑂

𝑖−1
− 𝑂
𝑟
) . (2)
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Figure 5: Monitoring process overview showing the different tasks associated with each step in the process.

𝑂
𝑖
represents the current ozone level, 𝑂

𝑖−1
represents the

ozone level in the previous measurement, 𝑂
𝑟
represents the

filtered ozone value, and 𝛼 represents the filter coefficient. In
this step, we drastically reduce the absolute variability (𝑥 =
0.32, 𝜎 = 0.30).

Figure 6(a) shows the difference between the values of
captured ozone levels and the values of ozone levels after
applying the low-pass filter, and Figure 6(b) shows the
variability after applying the mean and the low-pass filter.
It shows that data variability is significantly reduced while
maintaining the correct trend.

At the end of this process, we havemeasurements without
the variability associated with noisy sampling.

4.2. Unit Conversion. Sensors provide an electrical signal
output. It needs to be transformed to a pollution level
value. Specifically, the ozone sensor probe (MiC-2610) has
an internal resistance, which varies proportionally to ozone
concentrations. The sensor can measure ozone variations
between 10 ppb and 1000 ppb, where that resistance varies
between 11 kΩ and 2MΩ with a quasi-linear behavior.

Sensor specifications were made at a constant tempera-
ture of 25 degrees centigrade and vary depending on weather
conditions.

For calibrating the sensor we have done several mea-
surements at different days, and under different weather
conditions, to get a broad range of values. These data have
been compared against the data obtained from the official
monitoring station located at the Technical University of
Valencia (UPV), Spain. Data obtained are shown in Table 1.
Considering that the measurements have a dependency on
both ozone levels and temperature, we obtained through
regression a second-degree polynomial (see (3)) that takes the
temperature and the resistance obtained by the sensor into
account to determine the actual ozone values:

𝑂 = 𝛼 + 𝛽
1
𝑡 + 𝛽
2
𝑟 + 𝛽
3
𝑟
2
. (3)

Table 1: Relationship between sensor readings and monitoring
station readings.

Resistance
[Ohm]

Temperature
[
∘C]

Station ozone
[ppb]

Calculate ozone
[ppb]

25.0 19.0 80 63.55
31.0 16.0 65 73.10
28.0 15.5 52 55.22
35.0 13.0 83 79.72
28.0 28.0 120 117.46
23.3 23.0 70 77.58
23.5 22.0 70 73.35

In this equation 𝛼 is a regression coefficient, 𝛽
1
is a tem-

perature coefficient,𝛽
2
is a sensor reading coefficient,𝛽

3
is the

reading coefficient squared, 𝑡 is the measured temperature,
and 𝑟 is the sensor reading (measured as resistance). The
output 𝑂 is the ozone level measured. The final regression
obtained is shown in

𝑂 = −29.19 + 4.79𝑡 − 3.09𝑟 − 0.13𝑟
2
. (4)

The error obtained for the regression was 𝑅2 = 0.85.
Compared against a 1st-order regression (𝑅2 = 0.83) the
obtained result is better in terms of 𝑅2. Compared against a
3rd-order regression (𝑅2 = 0.86), the improvement in 𝑅2 is
minimum and differences are minor.

4.3. Time Variability Reduction. To cover large areas of land
with a fine spatial granularity we use mobile sensors, which
can capture data at various points although at different time
instants. So, the difference betweenmeasurements𝑂 has both
time Δ𝑂

𝑡
and spatial Δ𝑂

𝑒
dependencies. Since our main
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Figure 6: Relationship between captured data and filtered data (a) and relationship between captured data variation and the filtered data
variation (b).

goal is to determine differences between ozone levels in a
particular area, it is necessary to eliminate the time variation:

Δ𝑂 = Δ𝑂
𝑡
+ Δ𝑂
𝑒
,

Δ𝑂
𝑒
= Δ𝑂 − Δ𝑂

𝑡
.

(5)

For the calculation of the ozone time variations, we ana-
lyzed data from a monitoring station located at the Technical
University of Valencia, focusing on historical data between
2008 and 2014. In the historical data analysis, we analyzed the
ozone evolution focusing on average monthly measurements
between 2008 and 2014. It is noted that the values are higher
fromApril to September and lower for the remainingmonths.
Figure 7 shows the mean values and standard deviation in
the shaded area and maximum values with the top line. The
variation in ozone levels during a representative June day was
also analyzed. As shown in Figure 8, ozone levels reach their
lowest value at the end of the night, at about 6 am, and rise
to reach maximum values at 2 or 3 p.m., beginning to decline
gradually afterward.The behavior for the othermonths of the
year is analogous to the month shown.

As a result of the analysis of these data, we observe
that ozone has a different behavior in summer (specifically
from April to September) compared to the rest of the year.
During day time, the behavior is very similar to the parabolic
logarithmic distribution, with an onset of rapid growth
followed by a less pronounced decline.

Based on the previous data regarding monthly average
values between 2008 and 2014, taken at themonitoring station
of the TechnicalUniversity ofValencia, ozone level prediction
relies on a parabolic logarithmic regression influenced by
temperature and season of the year, one for summer, and one

for winter. The expression used (in linear format) was the
following:

ln (𝑂
𝑡
) = 𝛼 + 𝛽

1
𝑠 + 𝛽
2
𝑡 + 𝛽
3
ln (ℎ) + 𝛽

4
ln (ℎ)2 , (6)

where ℎ is time of day, 𝑠 is the season, 𝑡 is the temperature, and
the remaining 𝛼 and 𝛽

𝑖
values are regression coefficients (𝛽

1
:

season coefficient, 𝛽
2
: temperature coefficient, 𝛽

3
: coefficient

for the logarithm of the time of day, and 𝛽
4
: coefficient for the

logarithm of the time of day squared):

ln (𝑂
𝑡
) = −7.70 + 0.03𝑠 − 0.01𝑡 + 9.23 ln (ℎ)

− 1.77 ln (ℎ)2 ,

ln (𝑂
𝑡
) = −15.43 + 0.12𝑠 + 0.03𝑡 + 14.42 ln (ℎ)

− 2.83 ln (ℎ)2 .

(7)

The values of ‖𝑅2‖ are 0.91 and 0.82 for summer and
winter, respectively, showing a behavior very similar to the
actual one.

The procedure followed to correct time-dependent vari-
ability was as follows: (i) ozone values are calculated at
two time instants using (6); (ii) the difference between the
values is obtained; and (iii) the actual readings are reduced
according to the calculated variation.

4.4. Interpolation Data. The adjusted data is the input for
creating detailed pollution maps. In the scope of this work
this is achieved by using the R graph tool. Specifically, we
rely on spatial interpolation techniques known as ordinary
kriging. First, a semivariogram is calculated for a specific
area, and kriging parameters are determined. Next, a detailed
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Figure 7: Ozone evolution in June (a) and throughout the year (b).
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Figure 8: Example of an ozone distribution heat map for the UPV
using the proposed architecture.

pollution distribution is created using the obtained param-
eters. To easily visualize the pollution levels distribution in
space, different maps are created, as shown Figure 8.

The semivariogram defines the variance of the differences
between two points. It determines the parameters required
for the kriging interpolation, which have an influence on the
distribution form.

(i) Sill determines the total variance of the values.

(ii) Nugget determines the variance at the origin.

(iii) Range determines the range of influence of themodel.

(iv) Model determines the distribution function. It can be
Gaussian, Spheric, Exponential, Circular, or Linear.

Figure 9 shows a sample semivariogram as an example.
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Figure 9: Example of a semivariogram showing a Gaussian distri-
bution. It shows the different parameters related to the interpolation
techniques (Nugget, Sill, and Range).

5. Finding the Optimal Measurement Strategy

After defining the architecture and the monitoring process,
we now proceed to determine the optimal strategy for air
pollution data collection using mobile sensors.

With this purpose, we first analyzed the impact of mobil-
ity on sensor readings by comparing static against mobile
measurements. Also, we determined the influence of sensor
orientation in the mobile sensing process. Our next step was
to analyze the impact of reducing the sampling frequency
on the kriging process accuracy under mobile scenarios.
Similarly, we analyzed the impact of reducing the number
of spatial samples on the kriging process accuracy. This was
achieved by skipping selected streets when capturing data,
progressively reducing the overall path.

5.1. Optimal Sensor Positioning. To analyze the impact of
mobility on the data capture process we performed different
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Table 2: Statistical summary of the sensor position analysis.

Period Mean Std. Dev. 𝑝 value
Static 27.39 0.85 —
Movement 27.34 1.03 0.25
Facing forward 27.41 1.04 0.77
Facing backwards 27.44 1.02 0.38
Facing upwards 26.85 0.95 0.06
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Figure 10: Analysis of the variability of mobile sensor readings:
static versus mobile sensor.

tests, collecting ozone levels in a specific area either statically
or using a bike moving at a speed of about 20 km/h. For
mobility tests, we collected measurements with different
sensor orientations: (i) facing forward, (ii) facing backwards,
and (iii) facing up. Statistics for the “mobile” case combine
measurements with different sensor orientations.

To have further insight into how these results are dis-
tributed, Figure 10 shows that mobility, at least at the speed
used for testing, does not have a significant impact on sensor
measurements.

The results for the 𝑡-test analysis are shown in Table 2,
revealing that we cannot find a statistically relevant difference
between the static sensor (𝑥 = 27.39, 𝜎 = 0.85) and the
mobile sensor (𝑥 = 27.34, 𝜎 = 1.03), obtaining a 𝑝 value
= 0.25 with a 𝛼 = 0.05, neither for the facing forward
orientation (𝑥 = 24.41, 𝜎 = 1.04, 𝑝 value = 0.77) nor for the
facing backwards orientation (𝑥 = 27.44, 𝜎 = 1.02, 𝑝 value
= 0.38).

Figure 11 shows that the actual sensor orientation has little
impact on the data capture process, keeping the differences
between different orientations minimal. Anyway, the back-
wards orientation option shows greater resemblance with the
staticmeasurements andwas adopted for the tests that follow.

5.2. Impact of Time Sampling on Geostatistical Predictions.
In this section we analyze the impact of time sampling
on the predicted pollution map. In particular, we want to
determine if reducing the number of samples allows making
similar predictions or if, on the contrary, there is a significant
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Figure 11: Analysis of the variability of mobile sensing for different
sensor orientations.

Table 3: Statistical summary of the time sampling analysis.

Period Mean Std. Dev. Similarity (𝑠
𝑖
)

5 sec. 60.31251 1.140371 1
10 sec. 60.31928 1.158987 0.9734
20 sec. 60.37815 1.131514 0.9579
30 sec. 60.48890 1.118012 0.9411
40 sec. 60.36123 1.131782 0.9225
80 sec. 60.45629 1.126616 0.9181

prediction error when generating the pollution map. For this
purpose, we monitored the Technical University of Valencia
campus with a mobile ozone sensor installed on a bike.

To obtain an accurate distribution of ozone levels, we
monitored the entire campus by setting the sampling period
to the lowest value allowed by the sensor (5 seconds). Next,
we reduced the sampling frequency by setting the intersample
period to 10, 20, 30, 40, and 80 seconds.This was achieved by
filtering the full trace and retrieving datasets with 1/2, 1/4, 1/6,
1/8, and 1/16 of the data, respectively.

Next, we performed spatial interpolation through kriging
for each trace, obtaining a detailed pollution distribution.We
used the full trace (samples every 5 seconds) as reference
and compared it against the results obtained using the other
datasets.

Table 3 summarizes the statistical analysis for the different
datasets in terms of mean, standard deviation, and relative
prediction error, with the latter being calculated using the
initial trace (5 s sampling) as reference, as shown in

𝑠
𝑖
= 1 −

1

𝑚 ⋅ 𝑛

𝑚

∑

𝑥=0

𝑛

∑

𝑦=0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑘
𝑖
𝑥𝑦

− 𝑘
0
𝑥𝑦

Δ𝑘
0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

. (8)

In this equation, 𝑠
𝑖
represents the similarity index of

dataset 𝑖 with respect to the reference dataset, 𝑚 and 𝑛
represent the width and length of the target area under
analysis, 𝑘

𝑖
𝑥𝑦

represents the value calculated through kriging
interpolation for dataset 𝑖 at position 𝑥𝑦, 𝑘

0
𝑥𝑦

represents
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the value calculated through kriging interpolation for the
reference dataset at position 𝑥𝑦, and Δ𝑘

0
represents the total

variation of the predicted values for the reference dataset.
By analyzing Table 3 we can see that the mean and the

standard deviation values are nearly the same in all cases,
although the similarity index 𝑠

𝑖
varies more significantly.

This information is also shown in Figure 12 for the sake
of clarity. Notice that, although the distribution of values is
similar, the mean similarity shows an almost linear decrease.
Nevertheless, the similarity values are still relatively high
since the kriging interpolation process also acts as an error
filter, helping to approximate the mean value when lacking
enough reference values.

Detailed heat maps for some relevant traces (5 seconds,
20 seconds, and 80 seconds) are shown in Figure 13. By
taking a look at these heat maps, built through the kriging
interpolation process, we can clearly see that the level of
detail experiences a degradation. In particular we find that,
although the pollution maps for intersample times of 5 sec-
onds and 20 seconds are quite similar, significant differences
are observed when the sampling period grows to 80 seconds;
for the latter case, the ozone distribution achieved is quite
different from the one used as reference (5 seconds). Based
on these maps, it becomes quite clear that little differences
in terms of basic statistical analysis can represent huge
differences in terms of the spatial distribution of those values.

5.3. Impact of Spatial Sampling on Geostatistical Predictions.
In this section we analyze the impact of spatial sampling
on the predicted pollution map. In particular, we want to
determine to which degree taking a shorter, less exhaustive
path throughout the target area (reducing the trip time and
the number of samples accordingly) affects the accuracy of
the predictions made.

To find the optimal spatial sampling strategy we produce
different datasets by deleting path fragments from the initial
trace. In detail, starting from the full trace (100% of the data),
we deleted selected paths so as to produce shorter but yet
valid trips, maintaining start and end locations. As a result,
we obtained traces with 72%, 54%, 50%, 46%, and 42% of the
data.

Table 4: Statistical summary of the spatial sampling analysis.

Dataset size Mean Std. Dev. Similarity (𝑠
𝑖
)

100% 60.31251 1.140371 1
72% 60.49253 1.000335 0.9336
54% 60.62813 1.112316 0.9084
50% 60.66518 1.137273 0.8820
46% 60.66079 1.137295 0.8872
42% 60.51269 1.082692 0.8530

Similar to the previous section we perform, for each
dataset, a statistical analysis of the resulting data, also
obtaining the pollution heat map generated through kriging
interpolation and calculating the similarity index using (8).

Table 4 presents the statistical analysis results showing
the mean, the standard deviation, and the similarity, with the
latter being calculated using the initial dataset as reference.

Based on Table 4, we find that the mean value is close
to the reference one (60.31) in all cases, although being
in general slightly higher. This occurs because the first
eliminated path showed the lowest values.

Figure 14 shows the decreasing trend when spatial sam-
pling decreases. Compared to the time sampling results of
Figure 12, we find that now the similarity values degrade
much faster, meaning that reducing the route taken along the
target area is prone to eliminate relevant samples, resulting in
a less detailed pollution map.

Figure 15 shows detailed maps for datasets representing
100%, 72%, 50%, and 42% of the data. Based on these heat
maps, we can see clearly how spatial subsampling causes a
distortion on the spatial distribution of pollution throughout
the target area.

Overall, we can conclude that the spatial sampling gran-
ularity is the most relevant factor to take into account,
with time sampling granularity being less but yet somehow
important, and sensor orientation the factor having less
impact on results.

6. Validation of the Proposed Approach

As stated at the beginning of the paper, the current infras-
tructure elements allow measuring pollution levels in cities
with high accuracy, although with a low spatial resolution.
On the contrary, our proposed mobile sensing approach is
able to achieve a much higher spatial resolution using cheap
sensors. Thus, in this section, we validate our approach by
first comparing captured values with the range of values
typical of the time of year and then by comparing the ozone
maps generated when relying on either infrastructure-based
or mobile-based sensing.

We started by gathering data in different areas of Valencia
using the proposed mobile sensors. Different experiments
have been conducted at different times, allowing us to com-
pare the data captured with the data from the existing public
infrastructure. In particular, for each route taken, we first
reduced the data variability using the proposed low-pass filter
(see (2)). Next, the measurements were adjusted through (3).
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Figure 13: Heat maps for the ozone distribution using different sampling periods (5, 20, and 80 seconds).
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Figure 14: Analysis of the similarity with respect to the reference
trace (100% of the data used).

Finally, the temporal dependencies of data were reduced
according to (6).

Figure 16 shows data for a particular route and the
common values at the date of the capture (February 16, 2015).
We can see that the measured ozone levels are within the
range of historical values for the monitored time, being quite
close to the expected value (mean). This indicates that, using
our methodology, we are able to obtain reliable data despite
using low-cost sensors, allowing us to focus our analysis on
the spatial variations of pollutants.

We now proceed to compare the actual heat maps for a
specific date and time of day using only infrastructure data
and only data obtained by our sensor.We can see that, by rely-
ing on our proposed architecture (see Figure 18), it becomes
possible to observe in detail even small pollution variations,
while using only infrastructure-based data (see Figure 17) the
observed variations aremuch smoother, experiencing a linear
increase or decay from one air quality station to the other.

Overall, it becomes clear that, despite having up to 5
different stationary air quality stations in the city of Valencia,
they fail to capture significant details that are related to
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Figure 15: Heat maps for the ozone distribution using different fraction of the original trace (100%, 72%, and 42%).

areas with more traffic congestion (high pollution values) or
green/windy spaces (low pollution values), thereby leading to
some wrong conclusions. In contrast, our approach is able
to provide a greater richness since all small variations can
be perceived with great detail, thereby meeting the proposed
goal.

7. Conclusions and Future Work

Nowadays, environment pollution monitoring has become a
fundamental requirement for cities worldwide, and there are
many studies related to it. Nevertheless, only a few explore all
sides of this problem.

In this paper we proposed a complete architecture for
environmental monitoring that combines low-end sensors,
smartphones, and Cloud services to measure pollution levels
with a high spatial granularity. In detail, we used a mobile
sensor to provide pollution measurements, a smartphone

providing real-time feedback about air quality conditions and
also acting as a gateway by uploading gathered data to the
Cloud server, in addition to the Cloud server itself, required
for data processing and visualization.

Once the architecture was defined, we analyzed different
issues related to the monitoring process: (i) filtering captured
data to reduce the variability of consecutive measurements;
(ii) converting the sensor output to actual pollution levels;
(iii) reducing the temporal variations produced by themobile
sensing process; and (iv) applying interpolation techniques
for creating detailed pollution maps.

To address the challenges associated with taking mobile
measurements in a target area, we analyzed the influence
of the sensor orientation in the data capture process, as
well as the impact of time and spatial sampling. In partic-
ular, we varied the sampling period and the overall path
length to determine the most effective monitoring strategy.
Experimental results show that the sensor orientation and
the sampling period, within certain bounds, have very little
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Figure 16: Comparison between captured data and typical values for the day/time of the year.
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influence on the data captured, while the actual path taken
has a greater impact on results, especially when estimating
the distribution of pollutants throughout the target area.

Finally, we validated our proposal by comparing values
obtained by our mobile sensor with typical values frommon-
itoring stations at the same dates and location. Furthermore,
we compared the resulting heat maps generated using data
from monitoring stations against ours, showing that using
ourmobile sensing approach is able to provide amuch higher
data granularity.

The next steps in this research include improving the
spatial interpolation process and comparing different sensor
types.
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[9] M. Brković and V. Sretović, “Urban sensing-smart solutions for
monitoring environmental quality: case studies from Serbia,”
in Proceedings of the 48th ISOCARPWorld Congress (ISOCARP
’12), 2012, http://bit.ly/Z5AarU.

[10] H. B. Deng and L. Zhang, “Design on ZigBee wireless sensor
network node,” Key Engineering Materials, vol. 474–476, pp.
283–286, 2011.

[11] C. T. Calafate and B. Ducourthial, “On the use ofmobile sensors
for estimating city-wide pollution levels,” in Proceedings of the
International Wireless Communications and Mobile Computing
Conference (IWCMC ’15), pp. 262–267, IEEE, Dubrovnik, Croa-
tia, August 2015.

[12] Y. Cheng, X. Li, Z. Li et al., “AirCloud: a cloud-based air-quality
monitoring system for everyone,” inProceedings of the 12thACM
Conference on Embedded Network Sensor Systems (SenSys ’14),
pp. 251–265, Memphis, TN, USA, November 2014.

[13] Y. Zheng, F. Liu, and H.-P. Hsieh, “U-air: when urban air
quality inferencemeets big data,” in Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD ’13), pp. 1436–1444, August 2013.

[14] Arduino, 2015, https://www.arduino.cc/.
[15] United States Environmental Protection Agency, Air Quality

Index, United States Environmental Protection Agency, 2015,
http://cfpub.epa.gov/airnow/index.cfm?action=aqibasics.aqi.

[16] R-Foundation, R Project, 2015, https://www.r-project.org.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


