
 
 

 

 

 

 

Identification of Discriminant Factors after Exposure of Maize and 

Common Bean Plantlets to Abiotic Stresses 

Lázaro HERNÁNDEZ1, Octavio LOYOLA-GONZÁLEZ1, Bárbara VALLE1,                      

Julia MARTÍNEZ1, Leyanes DÍAZ-LÓPEZ1, Carlos ARAGÓN1, Oscar VICENTE2,         

Jutta PAPENBROCK3, Richard TRETHOWAN4, Lourdes YABOR1,                                       

José Carlos LORENZO1* 

1Universidad de Ciego de Ávila, Centro de Bioplantas, Ciego de Ávila 69450, Cuba; lazaro@bioplantas.cu; octavioloyola@bioplantas.cu; bvalle@bioplantas.cu; 
jmartinez@bioplantas.cu; leyanes@bioplantas.cu; cearagon79@gmail.com; lyabor@bioplantas.cu; jclorenzo@bioplantas.cu (*corresponding author) 

2Universitat Politècnica de València, Institute of Plant Molecular and Cellular Biology (IBMCP, UPV-CSIC), Camino de Vera s/n, 46022 Valencia, Spain; ovicente@ibmcp.upv.es 
3Leibniz University Hannover, Institute of Botany, Herrenhaeuser Str. 2, D-30419 Hannover, Germany; Jutta.Papenbrock@botanik.uni-hannover.de 

4The University of Sydney, Plant Breeding Institute, Faculty of Agriculture and Environment, Australia; richard.trethowan@sydney.edu.au 
 

 

Abstract 

Adverse environmental conditions limit crop yield and better understanding of plant response to stress will assist the 
development of more tolerant cultivars. Maize and common bean plantlets were evaluated under salinity, high temperature, 
drought and waterlogged conditions to identify biochemical markers which could be useful for rapid identification of putative 
stress tolerant plants. The levels of phenolics (free, cell wall-linked, total), aldehydes including malondialdehyde and 
chlorophylls (a, b, total) were measured on stressed plantlets. Only two indicators were statistically non-significant:  
chlorophyll b in maize plantlets stressed with sodium chloride and malondialdehyde content in drought stressed maize. The 
most remarkable effects of abiotic stresses can be summarized as follows: (i) salinity increased levels of free phenolics in maize 
plantlets and chlorophylls (a, b, total) in common bean; (ii) high temperature (40 °C) elevated levels of chlorophylls (a, b, 
total) in maize but decreased chlorophylls (a, b, total) and free phenolics in common bean; (iii) drought increased phenolics 
and decreased chlorophylls (a, b, total) in maize and increased chlorophyll pigments (a, b, total) in common bean; (iv) 
waterlogging increased free phenolics and decreased chlorophylls (a, b, total) in maize and increased chlorophyll (a, total) in 
common bean. Free phenolics and chlorophylls, especially a, were the most responsive indicators to stress and can, therefore, be 
considered putative biochemical markers for abiotic stress tolerance in maize and common bean. The use of Fisher’s linear 
discriminant analysis to differentiate non-stressed and stressed plants in breeding programs is also a novel aspect of this report. 
Fisher’s linear discriminant functions classified correctly 100% of non-stressed or stressed originally grouped plants. 
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Introduction 

Adverse environmental conditions, such as salinity, high 
temperature, drought and waterlogging, limit the 
geographical distribution of plant species and crop yield 
(Osmond et al., 1987). Predicted climatic change, population 
growth and the importance of sustainable food production 
makes the development of stress tolerant crop cultivars a 
high-priority globally (Zhu, 2001). Maize is the second most 
important agricultural crop globally. It is a human and 
livestock food and also used in the processing of industrial 
goods (Qing et al., 2009). Global maize production in 2011 
exceeded 700 million tons (FAOSTAT, 2013). However, 

legumes also play a critical role in human and animal diets and 
contribute to sustainability by maintaining soil fertility 
(Tilman et al., 2002). The protein content of grain legumes 
can be three times that of cereal grains, thus a significant 
proportion of human protein and nutritional requirements 
can be supplied by legumes (Gepts et al., 2005). Common 
bean (Phaseolus vulgaris L.), one of the world’s most 
important grain legumes, is consumed as a dietary staple 
worldwide, particularly in Latin America and Africa 
(FAOSTAT, 2013). 
Efficient and effective genetic improvement of stress 

tolerance of crops such as maize and common bean requires 
easy to measure markers that have a higher heritability than 
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selective synthesis of approximately 20 proteins. Among these 
anaerobic proteins were enzymes involved in glycolysis and 
related processes. However, inducible genes that have 
different functions were also found; these may function in 
other, perhaps more long‐term, processes of adaptations to 
flooding, such as aerenchyma formation and root‐tip death 
(Subbaiah and Sachs, 2002). 
In common bean, salinity had adverse effects not only on 

biomass yield and relative growth rate, but also on other 
morphological parameters such as plant height, number of 
leaves, root length and shoot/root weight ratio. 
Photosynthesis, transpiration rate and stomatal conductance 
were also adversely affected (Gama et al., 2007). In contrast, 
high temperature that exceeds optimal growth conditions  
tends to decrease both NO3− uptake and N2 fixation 
(Hungria and Kaschuk, 2014). Drought stress reduces leaf 
water potential and gas-exchange characteristics (CO2
assimilation, stomatal conductance) (Fenta et al., 2014). It 
has been suggested that nodule characteristics and symbiotic 
nitrogen fixation ability should be included with above- and 
below-ground traits as phenotypic markers in germplasm 
evaluation and breeding programs aimed at improving 
drought tolerance in common bean (Fenta et al., 2014). 
Flooding tends to reduce  root dry weight, leaf area and total
chlorophyll content in common bean (Celik and Turhan, 
2011). 
This work focuses on two of the most important grain 

crops in Cuba and many other countries: maize and common 
bean. Our aim was to identify previously unreported 
biochemical markers for tolerance to salinity, high 
temperature, drought and waterlogging, which could be used 
for the rapid identification of putative stress tolerant maize 
and common bean plants in crop breeding programs. Stress 
screening was conducted on young plantlets; a method that 
allows large numbers of plants to be inexpensively screened. 
These protocols will therefore be attractive to crop breeding 
programs. We measured phenolics, aldehydes and 
chlorophylls to examine their expression in maize and 
common bean under abiotic stress. Data collected were used 
to generate Fisher’s linear discriminant functions and 
differentiate non-stressed and stressed plants. 
 

Materials and Methods  

Survival response to different levels of stress 
After harvesting in Ciego de Avila, Cuba (2012), maize (cv. 

‘Tuzón’) and common bean (cv. ‘Milagro Villaclareño’) seeds were 
stored at 4 °C in the dark in hermetically closed containers. Seeds at 
12% moisture content based on fresh weight (ISTA, 2005) were 
stored. Seeds of maize and common bean were sown in plant 
containers (200 cm3 of ferralitic red soil collected in Ciego de Avila, 
Cuba, pH 6.8, conductivity: 0.88 S cm-1, 3 seeds per container) and 
allowed to germinate and grow in a growth chamber at 28 °C 
before the imposition of stress treatments. The photosynthetic
photon flux density was 800 µmol m-2 s-1. Chemical fertilizers were 
not used and each plant container was irrigated with 25 ml water 
daily for 10 d. After 10 d the plantlets were subjected to different 
stress treatments using five containers per treatment.  
Salt stress was imposed by irrigating each pot daily with 25 ml 

of NaCl solution at increasing concentrations (200, 400, 600 and 
800 mM) – or with water in the non-stressed controls – and 

the targeted abiotic stress trait (William et al., 2007).  A 
number of biochemical markers have been reported for 
abiotic stresses. For example, salinity is associated with 
increases in abscisic acid (Shafi et al., 2011), proline 
(Benhassaini et al., 2012), glycine-betaine (Quan et al., 2004), 
polylols, sugar alcohols and soluble sugar concentrations 
(Gurmani et al., 2007). Salinity stress also decreases plant 
growth (Munns, 2005), nutrient uptake (Abdelgadir et al., 
2005), K+: Na+ ratio (Díaz-López et al., 2012a), stomatal 
aperture and density (Huang et al., 2009), hexoses, sucrose 
and starch (Arbona et al., 2005) and chlorophyll contents 
(Rivelli et al., 2012).  
Moreover, high temperature stress is associated with 

increased lipid peroxidation (Silva et al., 2010b) and 
decreased photosynthesis (Ribeiro et al., 2009), CO2:O2 ratio 
in chloroplasts (Foyer and Noctor, 2000) and stomatal 
aperture (Ribeiro et al., 2004). Whereas drought stress is 
linked with increased abscisic acid (Gurmani et al., 2007), 
myo-inositol (Díaz-López et al., 2012b) and glycine-betaine 
levels (Quan et al., 2004); and decreased CO2 assimilation 
(Gindaba et al., 2004), relative water content (Galle et al., 
2007), leaf turgor pressure (Schachtman and Goodger, 2008), 
osmotic potential (Silva et al., 2010a), starch content (Chao
et al., 2006) and sugars and oligosaccharides (Anderson and 
Kohorn, 2001). Likewise, waterlogging is associated with 
increased free amino acids (Medina et al., 2009), abscisic acid 
(Xu et al., 2007), and Na+ and Cl− concentrations (Wetson 
and Flowers, 2010), and decreased total biomass (Colmer and 
Voesenek, 2009), relative growth rate (Mielke et al., 2003), 
stomatal conductance and photosynthesis (Lopez and 
Kursar, 2003), CO2 assimilation (Gimeno et al., 2012), 
soluble sugars and starch concentration (Gimeno et al., 
2012). 
In a study of maize under salinity stress, Omoto et al. 

(2012) found that the activities of pyruvate orthophosphate 
dikinase, phosphoenolpyruvate carboxylase, NADP-
dependent malate dehydrogenase and NAD-dependent 
malate dehydrogenase, which are derived mainly from 
mesophyll cells, increased, whereas those of NADP-malic
enzyme and ribulose-1,5-bisphosphate carboxylase / 
oxygenase, which are derived mainly from bundle sheath cells, 
decreased. In salt-treated plants, the photosynthetic 
metabolites malate, pyruvate and starch decreased by 40, 89 
and 81%, respectively. Gas-exchange analysis revealed that the 
net photosynthetic rate, the transpiration rate, stomatal 
conductance and the intercellular CO2 concentration 
decreased strongly in salt-treated plants. Moreover, maize net 
photosynthesis was inhibited at leaf temperatures above 
38°C, transpiration rate increased progressively while 
nonphotochemical fluorescence quenching increased (Crafts-
Brandner and Salvucci, 2002). However, under drought stress 
a substantial decrease in gas exchange attributes (net 
photosynthetic rate, transpiration rate, stomatal conductance, 
water use efficiency, instantaneous water use efficiency and 
intercellular CO2) was observed in maize (Anjum et al., 
2011). 
Anaerobic treatment dramatically altered the patterns of 

gene expression in maize seedlings (Subbaiah and Sachs, 
2002). During anaerobiosis pre‐existing protein synthesis is 
immediately repressed, with the concurrent initiation of 

590 
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Fig. 1. Effect of sodium chloride on maize and common bean plantlets.  Seeds were allowed to germinate and grow without salt stress during 
10 days, then plantlets were stressed during 72 hours.  Each plant container was irrigated every day with 25 ml water (without or with 
NaCl). In each photograph, black vertical bars represent 10 cm. Pot volume = 200 cm3. Substrate: Ferralitic red soil. In C, D and E, OCV 
means Overall Coefficient of Variation = (Standard deviation/Average)* 100.  To calculate this coefficient, average values of each treatment 
were considered. The higher difference between the treatments compared, the higher the OCV 
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Fig. 2. Effect of exposure to high temperature (40 °C) on maize and common bean plantlets.  Seeds were allowed to germinate and grow 
without high temperature stress (28 °C) during 10 days, then plantlets were exposed to 40 °C during 12 hours.  In each photograph, black 
vertical bars represent 10 cm. Pot volume = 200 cm3. Substrate: Ferralitic red soil. In C, D and E, OCV means Overall Coefficient of
Variation = (Standard deviation/Average)* 100.  To calculate this coefficient, average values of each treatment were considered. The higher 
difference between the treatments compared, the higher the OCV 
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percentage plantlet survival was recorded after 72 h. Heat stress was 
generated by exposing plantlets to 40 ºC for 12 h and survival was 
assessed every 3 h of treatment. Drought stress was imposed by 
suspending watering for 96 h; during this period, plantlet survival 
was registered every 24 h. Finally, to assess the effect of waterlogging, 
pots were immersed in 350 ml water for an additional 10 d and 
survival rates were determined every 24 h during this period.  
 
Biochemical changes induced by stresses 
Phenolics, aldehydes and chlorophylls were assessed in stress-

treated maize and common bean plantlets ten days after sowing. 
Plantlets otherwise maintained under the conditions described 
above, were either treated with 567 mM NaCl for 72 h (salt stress), 
exposed to 40 °C for 9.3 h (heat stress), kept without irrigation for 
51.8 h (water stress), or immersed in water (350 ml per pot) for 51.8 
h. After treatment, middle-aged leaves were collected from the three 
plantlets of each container, pooled and ground in liquid nitrogen to a 
fine powder. Leaf material was similarly collected from the 
corresponding non-stressed controls. Three independent samples (1 
g powder each) per treatment were used for all biochemical assays. 
Chlorophylls (a, b, total) were quantified following Porra 

(2002), phenolics (free, cell wall-linked, total) by the method of Gurr 
et al. (1992), and malondialdehyde and other aldehydes as described 
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Fig. 3. Effect of lack of irrigation on maize and common bean plantlets.  Pots were irrigated every day with 25 ml water during 10 days, then 
watering was suspended. In each photograph, black vertical bars represent 10 cm. Pot volume = 200 cm3. Substrate: Ferralitic red soil. In C, 
D and E, OCV means Overall Coefficient of Variation = (Standard deviation/Average)* 100.  To calculate this coefficient, average values of 
each treatment were considered. The higher difference between the treatments compared, the higher the OCV 

AMaize BCommon bean 

Fig. 4. Effect of flooding on maize and common bean plantlets.  Pots 
were irrigated every day with 25 ml water during 10 days, then pots 
were immersed into 350 ml water during 10 days but plant survival 
was not affected as shown in these photographs. In each 
photograph, black vertical bars represent 10 cm. Plant pot volume = 
200 cm3. Substrate: Ferralitic red soil 
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Results 

Survival response to different levels of stress 
The effect of salt stress on maize and common bean is shown 

in Fig. 1. Both crop species are susceptible to dosages higher than 
400 mM NaCl (Fig. 1C, E). Although plant survival at 600 mM 
NaCl was lower in common bean than in maize this was not 
significant (Fig. 1D). In contrast, common bean plantlets showed 
higher tolerance to heat stress than maize (Fig. 2). In maize, plant 
survival decreased significantly with exposure to 40 °C for more 
than 3 h; whereas this reduction was very slight in common bean 
plantlets up to 9 h of treatment (Fig. 2C). When the time of 
exposure to heat stress is considered an independent factor; that is 
plantlets of both species are pooled, 50% survival was observed after 
9.3 h of treatment (Fig. 2E). Additionally, common bean plantlets 
tolerated longer periods without irrigation than maize (Fig. 3C). A 
significant reduction in plant survival was observed after 24 h in 
maize and 48 h in common bean (Fig. 3E). Finally, plantlet survival 
was not affected up to 10 d waterlogging conditions in either 
species (Fig. 4). 
 
Biochemical changes produced by stresses 
Phenolic compounds, aldehydes and chlorophylls were 

assessed in middle-aged leaves from plants surviving 72 hours of 
treatment with 567 mM NaCl conditions which caused 50% 

in Heath and Packer (1968). To determine the levels of chlorophyll 
pigments, extraction was carried out with 5.0 ml acetone (80%, v:v). 
The samples were centrifuged (12,000 rpm, 4 °C, 15 min) and 
supernatants collected and absorbances at 647 and 664 nm 
recorded.  
Phenolic compounds were extracted and quantified using a 

spectrophotometer by a colorimetric method based on reaction with 
Folin Ciocalteu reagent (mg gallic acid equivalents per g fresh mass). 
Malondialdehyde and other aldehydes were quantified by a 
colorimetric method based on reaction with thiobarbituric acid.  
 
Statistical analyses 
SPSS (Version 17.0 for Windows) was used to perform t-, 

ANOVA and Tukey test (p≤0.05). For the statistical analysis only, 
percentages of plant survival were transformed according to 
ý =2*arcsin(y/100)0.5 to reach normality (Kolmogorov-Smirnov) and 
variance homogeneity (Levene).  
Fisher’s linear discriminant functions were generated from the 

data matrix recorded in this research (48 cases = 4 types of stress 
(salinity, high temperature, drought and waterlogging) x 2 plants 
(maize and common bean) x 2 experimental conditions (control and 
stressing treatment) x 3 replications). Eight variables were considered: 
levels of phenolics (free, cell-wall linked and total), malondialdehyde, 
other aldehydes and chlorophylls (a, b and total).  SPSS was also used to 
obtain the Fisher’s linear discriminant functions. 

Table 1. Effect of sodium chloride on maize and common bean plantlets at 72 h of salt stress (567 mM NaCl) 

Indicators evaluated in middle-aged leaves* 
Maize Common bean 

0 mM NaCl 567 mM NaCl 0 mM NaCl 567 mM NaCl 
Free phenolics (mg gallic acid equivalents/g fresh mass) 1.80b 14.94a 9.69b 10.14a 
Cell wall-linked phenolics (mg gallic acid equivalents/g fresh mass) 86.03a 45.07b 43.82b 52.70a 
Total content of phenolics (mg gallic acid equivalents/g fresh mass) 87.82a 60.01b 53.52b 62.84a 
Malondialdehyde (µM/g fresh mass) 22.72b 34.66a 55.30a 43.65b 
Other aldehydes (µM/g fresh mass) 81.14b 192.97a 129.54b 157.94a 
Chlorophyll a (mg/g fresh mass) 2.96a 2.60b 0.23b 0.78a 
Chlorophyll b (mg/g fresh mass) 1.78a 1.82a 0.53b 2.08a 
Total content of chlorophyll (mg/g fresh mass) 4.67a 4.21b 0.79b 2.80a 
*In each crop, results with the same letter are not statistically different (t-test, p>0.05). 

Table 2. Effect of exposure to high temperature (40 °C) on maize and common bean plantlets at 9.3 h of stress 

 
Indicators evaluated in middle-aged leaves* 

Maize Common bean 
28 °C 40 °C 28 °C 40 °C 

Free phenolics (mg gallic acid equivalents/g fresh mass) 14.40a 9.04b 6.54a 1.12b 
Cell wall-linked phenolics (mg gallic acid equivalents/g fresh mass) 82.39a 47.96b 37.82a 19.10b 
Total content of phenolics (mg gallic acid equivalents/g fresh mass) 96.79a 57.00b 44.37a 20.22b 
Malondialdehyde (µM/g fresh mass) 27.58a 23.33b 80.37b 84.82a 
Other aldehydes (µM/g fresh mass) 164.62a 88.63b 154.95b 365.73a 
Chlorophyll a (mg/g fresh mass) 0.33b 3.05a 4.18a 0.25b 
Chlorophyll b (mg/g fresh mass) 0.38b 1.85a 3.08a 0.13b 
Total content of chlorophyll (mg/g fresh mass) 0.77b 4.81a 7.27a 0.35b 
*In each crop, results with the same letter are not statistically different (t-test, p>0.05). 

 Table 3. Effect of drought on maize and common bean plantlets at 51.8 h of stress 

 
Indicators evaluated in middle-aged leaves* 

Maize Common bean 
25 ml water/day Lack of irrigation 25 ml water/day Lack of irrigation 

Free phenolics (mg gallic acid equivalents/g fresh mass) 1.80b 11.96a 9.69b 12.15a 
Cell wall-linked phenolics (mg gallic acid equivalents/g fresh mass) 86.03a 56.02b 43.82b 46.21a 
Total content of phenolics (mg gallic acid equivalents/g fresh mass) 87.82a 67.97b 53.52b 58.36a 
Malondialdehyde (µM/g fresh mass) 22.72a 23.67a 55.30b 95.98a 
Other aldehydes (µM/g fresh mass) 81.14b 148.36a 129.54b 278.79a 
Chlorophyll a (mg/g fresh mass) 2.96a 0.55b 0.23b 3.83a 
Chlorophyll b (mg/g fresh mass) 1.78a 0.33b 0.53b 4.32a 
Total content of chlorophyll (mg/g fresh mass) 4.67a 0.85b 0.79b 8.17a 
*In each crop, results with the same letter are not statistically different (t-test, p>0.05). 
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Table 4. Effect of waterlogging on maize and common bean plantlets at 51.8 h of stress 

Indicators evaluated in middle-aged leaves* 
Maize Common bean 

25 ml water/day Flooded 25 ml water/day Flooded 
Free phenolics (mg gallic acid equivalents/g fresh mass) 1.80b 12.14a 9.69b 10.33a 
Cell wall-linked phenolics (mg gallic acid equivalents/g fresh mass) 86.03a 43.54b 43.82b 57.47a 
Total content of phenolics (mg gallic acid equivalents/g fresh mass) 87.82a 55.68b 53.52b 67.80a 
Malondialdehyde (µM/g fresh mass) 22.72a 20.67b 55.30a 51.61b 
Other aldehydes (µM/g fresh mass) 81.14b 83.52a 129.54b 272.39a 
Chlorophyll a (mg/g fresh mass) 2.96a 0.34b 0.23b 1.84a 
Chlorophyll b (mg/g fresh mass) 1.78a 0.22b 0.53b 1.14a 
Total content of chlorophyll (mg/g fresh mass) 4.67a 0.52b 0.79b 2.95a 
* In each crop, results with the same letter are not statistically different (t-test, p>0.05). 

 
Table 5. Classification as non-stressed or stressed made by Fisher’s discriminant functions 

Type of stress 
evaluated 

Plant  
Results of discriminant functions 

Function for non-
stressed 

 
Function for  
stressed 

Classification according to  
discriminant functions 

Salinity 

Maize 

0 mM NaCl 
89.35 > 74.70 Non-stressed Correct 
97.74 > 80.02 Non-stressed Correct 
100.32 > 81.59 Non-stressed Correct 

567 mM NaCl 
5.71 < 34.58 Stressed Correct 
3.44 < 33.39 Stressed Correct 
9.04 < 36.93 Stressed Correct 

Common 
bean 

0 mM NaCl 
96.55 > 79.93 Non-stressed Correct 
92.18 > 77.22 Non-stressed Correct 
96.26 > 79.50 Non-stressed Correct 

567 mM NaCl 
12.91 < 32.76 Stressed Correct 
9.91 < 30.82 Stressed Correct 
6.45 < 28.77 Stressed Correct 

High 
temperature 

Maize 

28 °C 
98.78 > 88.65 Non-stressed Correct 
101.28 > 90.14 Non-stressed Correct 
101.31 > 90.22 Non-stressed Correct 

40 °C 
40.23 < 48.48 Stressed Correct 
39.85 < 48.40 Stressed Correct 
-8.25 < 18.61 Stressed Correct 

Common 
bean 

28 °C 
98.33 > 82.27 Non-stressed Correct 
96.65 > 81.33 Non-stressed Correct 
93.10 > 79.22 Non-stressed Correct 

40 °C 
51.01 < 62.14 Stressed Correct 
49.55 < 61.20 Stressed Correct 
51.42 < 62.22 Stressed Correct 

Drought 

Maize 

25 ml water/day 
89.35 > 74.70 Non-stressed Correct 
97.74 > 80.02 Non-stressed Correct 
100.32 > 81.59 Non-stressed Correct 

Lack of irrigation 
45.85 < 54.35 Stressed Correct 
36.74 < 48.78 Stressed Correct 
41.29 < 51.41 Stressed Correct 

Common 
bean 

25 ml water/day 
96.55 > 79.93 Non-stressed Correct 
92.18 > 77.22 Non-stressed Correct 
96.26 > 79.50 Non-stressed Correct 

Lack of irrigation 
51.01 < 62.14 Stressed Correct 
49.55 < 61.20 Stressed Correct 
51.42 < 62.22 Stressed Correct 

Waterlogging 

Maize 

25 ml water/day 
89.35 > 74.70 Non-stressed Correct 
97.74 > 80.02 Non-stressed Correct 
100.32 > 81.59 Non-stressed Correct 

Flooded 
40.09 < 47.17 Stressed Correct 
38.04 < 46.03 Stressed Correct 
32.66 < 42.45 Stressed Correct 

Common 
bean 

25 ml water/day 
96.55 > 79.93 Non-stressed Correct 
92.18 > 77.22 Non-stressed Correct 
96.26 > 79.50 Non-stressed Correct 

Flooded 
58.89 < 67.09 Stressed Correct 
56.57 < 65.83 Stressed Correct 
40.44 < 55.68 Stressed Correct 
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plantlet death as calculated from Fig. 1E and compared to levels 
in the corresponding non-stressed controls. In general, salt stress 
induced statistically significant changes in the levels of all 
indicators with the exception of chlorophyll b contents in maize, 
although in most cases these changes were relatively small. The 
most remarkable effects of abiotic stresses can be summarized as 
follows. The salinity stress treatment produced an 8-fold increase 
in free phenolics in maize and between 3 and 4-fold increases in 
chlorophyll content (a, b, and total) in common bean (Table 1). 
On the other hand, maize and common bean responded 
differently to heat stress in the levels of biochemical markers 
(Table 2). In common bean, when biochemical marker 
expression was assessed after 40ºC treatment for 9.3 h a 6-fold 
decrease in free phenolics and a 20-fold reduction of chlorophylls 
(a, b, and total) compared to the control was observed. In 
contrast, chlorophyll levels increased in maize between 5 and 10-
fold under the same conditions. Moreover, fifty percent of all 
plantlets died 51.8 h after irrigation was suspended (Fig. 3E). 
Under these conditions, the most relevant observed changes in 
biochemical marker levels were a 7-fold increase in free phenolic 
compounds and a 5-fold reduction in chlorophyll contents (a, b, 
and total) in maize, and an increased in chlorophyll levels in 
common bean (Table 3). In the waterlogging stress experiment, 
biochemical evaluations were made 51.8 h post water 
immersion; a time that coincided with 50% plant death under 
drought. Similar to drought stress, waterlogging induced an 
increase in free phenolics and a decrease in chlorophyll levels in 
maize, while chlorophylls increased in common bean (Table 4). 
In general, free phenolics tended to increase in maize under 

stress (salinity, drought and waterlogging) whereas chlorophylls 
decreased, particularly under drought and waterlogging. In 
contrast, chlorophyll levels in common bean increased under 
stress (salinity, drought and waterlogging). However, heat stress 
elicited a different response in both maize and common bean. 
Under high temperature, chlorophyll increased in maize while 
free phenolics decreased in common bean.  
The statistical package-generated discriminant functions are 

shown in Fig. 5. Total contents of phenolics and chlorophylls 
were disregarded by SPSS. Requirements of this kind of analysis 
were met. Groups of the dependent variable were mutually 
excluded: plants were submitted or not to stress. Therefore, the 
dependent variable was not metrical but categorical. 
Independent variables (biochemical compound levels) were all 
metrical. The number of cases (48) was higher than twice the 
number of variables (8). Equality of covariance matrixes was 
reached (Box test, p>0.05). Results from both functions were 
compared and they classified correctly 100% of non-stressed or 
stressed originally grouped plants (Table 5). 

 

Discussion  

One of the first and more general responses of plants to abiotic 
stress is the inhibition of growth, since plants redirect all their 
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resources (energy and metabolic precursors) to defense reactions 
against stress (Baker, 1993; Grattan and Grieve, 1999; Ullrich, 
2002; Xiong and Zhu, 2002). This phenomenon has been 
reported under salinity stress (Munns, 2005), waterlogging (Lopez 
and Kursar, 2003; Mielke et al., 2003), drought (Chao et al., 2006)
and high temperature (Ribeiro et al., 2004). Furthermore, 
biochemical and physiological responses to the above stresses have 
been observed.  
In our experiments, free phenolics and chlorophylls, especially 

a, were the most affected indicators and therefore can be regarded 
as potential abiotic stress biochemical markers.  Leaf chlorophyll 
content was affected by salinity in tetraploid wheat (Munns and 
James, 2003), rice (Sultana et al., 1999), Brassica oleracea
(Bhattacharya et al., 2004), Brassica juncea (Qasim, 1998) and 
Brassica napus (Pak et al., 2009). Salinity can affect chlorophyll 
content through inhibition of chlorophyll synthesis or an 
acceleration of its degradation (Zhao et al., 2007). Thioyapong et 
al. (2004) found that the chlorophyll losses due to salinity stress is 
consistent with possible differences in reactive oxygen species 
(ROS) production among the genotypes and suggested that in salt 
sensitive genotypes, ROS scavenging systems were unable to 
detoxify ROS generated. Our results do not support these findings 
as common bean chlorophyll levels increased under salinity (Table 
1). 
According to Baker (1993), changes in the photochemical 

efficiency of plants under drought may be assessed by the analysis of 
chlorophyll a fluorescence efficiency associated with photosystem 
II. Under stress, a decrease in the ratio of variable fluorescence / 
maximum fluorescence has been attributed to the inactivity of the 
photosystem II reaction centers due to the degradation of the D1 
and D2 proteins responsible for the transfer of water electrons to 
chlorophyll a associated with the photosystem II reaction center 
(Hao et al., 1999; Lazár, 1999). Chlorophyll content could 
therefore, be correlated to chlorophyll fluorescence thus indicating 
its suitability as a future biochemical marker. Abiotic stresses 
decrease photosynthesis, mainly by limiting CO2 entrance to leaves 
through stomatal closure. Moreover, membrane systems 
containing chlorophylls are destabilized affecting the luminous 
phase thus leading to increased synthesis of chlorophylls that are 
unable to fix more CO2 (Hörtensteiner, 2006; Hörtensteiner and 
Kräutler, 2011).  
A consequence of the abiotic stress-induced limitation of 

photosynthesis is the exposure of plants to excess energy, which, if 
not safely dissipated, may be harmful to photosystem II because of 
over reduction of the reaction centers (Demmig-Adams and 
Adams, 1992) and increased production of ROS in the 
chloroplasts (Smirnoff, 1993). On the other hand excess energy 
could be used to synthesize secondary metabolites as suggested by 
Selmar and Kleinwächter (2013). 
Phenolic compounds and flavonoids are among the most 

influential and widely distributed secondary products in the plant 
kingdom (Ali and Abbas, 2003). Many play important 
physiological and ecological roles and are involved in resistance to 
different types of stress (Ayaz et al., 2000). These metabolites have 
several defense functions and, therefore, their biosynthesis in plants 
is generally induced in response to biotic and abiotic stimuli such as 
UV-B radiation, drought, chilling, ozone, heavy metals, and attacks 
by pathogens, wounding, or nutrient deficiency (Bettaieb et al., 
2011; Dixon and Paiva, 1995; Grace, 2005) 
Our results indicated that free phenolics and chlorophylls, 

especially a, were the most responsive indicators. The differences 
recorded between maize and common bean is to some extent a 

Fig. 5. Fisher’s linear discriminant functions to differentiate 
non-stressed and stressed materials 
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function of their differences in photosynthetic efficiency, however 
there may also be a genotype within species effect. We have 
hypothesized that, in stressed plants, levels of free phenolics and 
chlorophylls first increase and subsequently decrease. However, 
such changes take place in different time frames depending on the 
plant species and genotype. In the experiments shown here, 
moderate and severe stress conditions were applied that did not 
necessarily represent any specific natural environment, but were 
used for selection purposes only. In follow-up experiments, mild to 
moderate stress conditions may enable plant metabolism to 
respond properly to the respective stress conditions.  Further 
studies are in progress to determine the practical use of free 
phenolics, chlorophylls and other biochemical markers for stress 
tolerance in breeding programs. 
The Fisher’s linear discriminant functions shown in this paper 

(Fig. 5) are important tools for those breeding programs focused 
on the production of abiotic stress-tolerant plants. Maize and 
common bean seeds of new genotypes can be grown for 10 days 
and then stressed or not as described here. Levels of phenolics (free 
and cell-wall linked), malondialdehyde, other aldehydes and 
chlorophylls (a, b) are determined. Such new data are evaluated in 
both discriminant functions. If the resulting value of the stressed 
discriminant function is similar to that of the non-stressed 
discriminant function, the new genotype can be regarded as 
putatively tolerant, as it shows similar physiology under either non-
stressing or stressing conditions. Although the new genotype 
tolerance still requires additional confirmation under a field 
environment, the results described here allow some research cost 
reductions because there is no inclusion of a large number of 
susceptible cultivars in expensive field trials. At present, this 
research group is carrying out further experiments to know if these 
discriminant functions can be used in other plant species.  
Discriminant analysis is useful for situations where the building 

of a predictive model of group membership based on observed 
characteristics of each case is desirable.  The procedure generates 
discriminant functions based on linear combinations of the 
predictor variables, which provide the best discrimination between 
groups. The functions are generated from a sample of cases for 
which group membership is known. The functions can then be 
applied to new cases with measurements for the predictor variables 
but unknown group membership (Bantte and Prasanna, 2003; 
Cardi, 1998; Daoyu and Lawes, 2000; Figlivolo et al., 2001; 
Somersalo, 1998; Teshome et al., 1997). The use of this kind of 
analysis for differentiation of non-stressed or stressed plants is a 
novel aspect of this report that can be applied for early selection of 
plant tolerance to abiotic factors. 
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