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TENSOR PRODUCT REPRESENTATION OF KÖTHE-BOCHNER

SPACES AND THEIR DUAL SPACES

J.M. CALABUIG, E. JIMÉNEZ FERNÁNDEZ, M.A. JUAN AND E.A. SÁNCHEZ PÉREZ

Abstract. We provide a tensor product representation of Köthe-Bochner

function spaces of vector valued integrable functions. As an application, we

show that the dual space of a Köthe-Bochner function space can be understood

as a space of operators satisfying a certain extension property. We apply our

results in order to give an alternate representation of the dual of the Bochner

spaces of p-integrable functions and to analyze some properties of the natural

norms ∆p that are defined on the associated tensor products.

1. Introduction

Consider a Banach function space X(µ) over a finite measure space (Ω,Σ, µ)

and a Banach space Y . The first elements for the definition of the so called Köthe-

Bochner spaces X(µ, Y ) appeared for the first time in the mathematical literature

some 80 years ago, with the original work of Bochner [1]. From this moment

on, these spaces have been intensively studied, and some new presentation and

applications have been obtained in recent years (see [16] and the references therein).

On the other hand, vector valued functions that are integrable with respect to vector

measures have been studied since the 50’. The so called tensor valued integration

(vector valued functions that are integrable with respect to vector measures find

their integrals in a topological tensor product, that is usually considered to the

injective one), started with the work of Dobrakov (see [11] and the previous papers

of the same author), and together with the integration of scalar functions with

respect to vector measures that was developed by Lewis [15] and other authors (see

[18] and the references therein) lead to a well supported tensor integration theory,

whose main results and applications can be found in a series of recent papers (see

[6, 7, 12, 14, 19, 20] and the references therein).

Following the research in this direction —the study of the spaces of vector valued

functions that are integrable with respect to vector valued measures—, the aim of

this paper is to extend the well-known representation of spaces of Bochner integrable
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functions as projective tensor products. This will allow to identify dual spaces

of Köthe-Bochner spaces with spaces of operators with a particular factorization

property. Our technique uses the nowadays well-known representation procedure

for Banach function spaces by means of spaces of integrable functions with respect

to vector measure (see [18, Ch.3] and [9, 2] for more recent results). We show also

some concrete representations of dual spaces of Köthe-Bochner spaces X(µ, Y ) for

order continuous Banach function spaces X(µ) on a finite measure µ in terms of the

elements of the dual space X(µ)∗ and some applications related with the natural

tensor norms ∆p on tensor products Lp(µ)⊗ Y .

2. Basic definitions and notation

We will use standard Banach space definitions and notation. If X is a Banach

space, we write BX for its closed unit ball and X∗ for its dual space. If L is a Banach

lattice we will write as usual L+ for its positive cone. Let (Ω,Σ) be a measurable

space. Let ν : Σ→ X be a Banach space valued vector measure. Associated to the

measure ν there is a class of scalar measures defined as the variations |〈ν, x∗〉| of

all the scalarizations 〈ν, x∗〉(·) := x∗(ν(·)) of the measure ν, x∗ ∈ BX∗ . A Rybakov

measure for ν (see [10, Chapter IX]) is a scalar measure |〈ν, x∗〉| defined as the

variation of the composition of ν with an element x∗ ∈ X∗ in such a way that ν

and |〈ν, x∗〉| have the same null sets. A measurable function f : Ω→ R is said to be

integrable with respect to ν if it is integrable with respect to all the scalar measures

〈ν, x∗〉, x∗ ∈ X∗, and for each A ∈ Σ there is a (unique) vector
∫
A
f dν ∈ X such

that ∫
A

f d〈ν, x∗〉 = 〈
∫
A

f dν, x∗〉, x∗ ∈ X∗.

The set consisting of equivalence classes of (µ-almost everywhere equal) inte-

grable functions, where µ is a Rybakov measure for ν, will be denoted by L1(m)

and it is an order continuous Banach function space over µ, when we endow it with

the lattice norm

‖f‖L1(m) = sup{
∫

Ω

|f |d|〈m,x∗〉| : x∗ ∈ BX∗},

with a weak unit given by χΩ. We follow the definition of Banach function space

given in [17, p.26] (Köthe function space). The reader can find all the information

that is needed on integration of scalar functions with respect to vector measures

and the corresponding spaces of integrable functions in [18]. An important fact

regarding these spaces that will be used in the paper is the following representation

theorem: every order continuous Banach lattice with a weak order unit can be

written isometrically and in the order as a space L1(ν) of a suitable vector measure

ν (Proposition 3.9 in [18]).

Let us recall now some notions on (scalar measure) integration of vector valued

functions. Let X(µ) be a Banach function space and Y a Banach space. The
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Köthe-Bochner space X(µ, Y ) is defined to be the space of (µ-a.e. classes of)

strongly measurable functions f —using µ as reference measure— such that the

function w  ‖f(w)‖Y belongs to X(µ), with the norm

‖f‖X(µ,Y ) :=
∥∥‖f‖Y (w)

∥∥
X(µ)

.

The so defined space (X(µ, Y ), ‖f‖X(µ,Y )) is a Banach space of classes of strongly

measurable functions that are equal µ-a.e. Some references in which the fundamen-

tal properties of these spaces can be found are [5, 13, 16].

3. Tensor product representation of Köthe-Bochner spaces

In this section we are interested in providing an extension of the well-known

representation theorem that allows to write spaces of Bochner integrable functions

as projective tensor products: if Y is a Banach space and µ a finite measure, it is

well-known that

L1(µ, Y ) = L1(µ)⊗̂πY,

the completion of the projective tensor product (see for example Proposition 1.8.6

in [16]). The definition of norm of the space L1(ν) of a vector measure ν provides a

natural candidate for representing the Köthe-Bochner spaces X(µ, Y ) —which by

the representation theorem [18, Prop.3.9] can be written as L1(ν, Y ) for a certain

vector measure ν—, as the completion of normed tensor products. For the case of

positive vector measures, this representation implies also a characterization of the

elements of the dual space involving factorizations of associated operators.

3.1. The representation theorem. Let (Ω,Σ) be a measurable space and ν :

Σ→ X a vector measure. Let ν : Σ→ X be a Banach space valued vector measure

and Y a Banach space. In what follows µ will be a scalar Rybakov measure for ν.

Consider the Köthe-Bochner space L1(ν, Y ). An important fact is that since L1(ν)

is order continuous, simple functions are dense in the corresponding Köthe-Bochner

space with the norm defined by the expression above (see for example [13, Lema

1.51]).

Consider the set of all the vector measures associated to ν. We can define the

following seminorm on the tensor product L1(ν)⊗Y . If u =
∑n
i=1 hi⊗yi ∈ L1(ν)⊗Y,

then we define αν as

αν(u) := sup
x∗∈BX∗

inf
rep(u)

( n∑
i=1

‖hi‖L1(|〈ν,x∗〉|) · ‖yi‖Y
)
,

where rep(u) denotes the set of all the representations of u as the one given above.

Theorem 1. Let ν be a Banach space valued vector measure and Y a Banach

space. Then

L1(ν, Y ) = L1(ν)⊗̂ανY.
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Proof. Take a simple function f ∈ L1(ν, Y ). By definition of the norm, we have

that

‖f‖L1(ν,Y ) := sup
x∗∈BX∗

∫
‖f‖(w) d|〈ν, x∗〉|.

Consider a representation of f :=
∑k
i=1 hi · yi, that is naturally associated to the

tensor u =
∑k
i=1 hi ⊗ yi, and take an element x∗0 ∈ BX∗ . Then

‖f‖L1(|〈ν,x∗0〉|) ≤
k∑
i=1

∫
|hi|d|〈ν, x∗0〉| · ‖yi‖.

Then it is clear that

‖f‖L1(|〈ν,x∗0〉|) ≤ inf
rep(u)

‖hi‖L1(|〈ν,x∗0〉|) · ‖yi‖Y .

Consequently, by computing suprema over x∗ ∈ BX∗ we obtain that ‖f‖L1(ν,Y ) ≤
αν(u).

For the converse just use the standard representation of the simple function f

given by

f =

n∑
i=1

yiχAi ,

where the sets Ai are disjoint measurable sets. For each x∗ ∈ BX∗ we obtain that

n∑
i=1

|〈ν, x∗〉|(Ai) · ‖yi‖ = ‖f‖L1(|〈ν,x∗〉|,Y ),

and so

inf
rep(u)

( k∑
i=1

‖hi‖L1(|〈ν,x∗〉|) · ‖yi‖Y
)
≤ ‖f‖L1(ν,Y ),

which gives by computing the supremum over x∗ ∈ BX∗ of the left hand side

expression the inequality

αν(u) ≤ ‖f‖L1(ν,Y ).

This proves the result for simple functions, that can be extended to all the functions

of the space using the fact that simple functions are dense. �

Example 2. (1) Consider a finite measure (Ω,Σ, µ) space and take a disjoint infinite

partition {Ai}i∈N defined by non-null measurable sets. Let 1 < p < ∞ and define

the space Z :=
⊕∞

i=1,p L
1(µi), the p-direct sum of the Lebesgue spaces L1(µi),

where µi is the measure µ restricted to the sets Ai, i ∈ N. Take the vector measure

m : Σ→ `p given by m(A) :=
∑∞
i=1 µi(A ∩Ai)ei, where ei is the i-th vector of the

canonical basis of `p and A ∈ Σ. It can be easily proved that Z can be identified

with L1(m). Fix a norm one positive sequence (λi) ∈ `p
′
, λi > 0 for all i ∈ N, and

consider the (positive scalar) measure η(A) := 〈(λi),m〉(A) =
⊕∞

i=1 λiµ(A ∩ Ai),
A ∈ Σ. This is a Rybakov measure for m.
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Take now a Banach space Y and consider the Köthe-Bochner space Z(η, Y ).

In the following calculations we will write x∗ = (x∗i ) for the elements x∗ ∈ `p
′
.

Theorem 1 asserts that

L1(m,Y ) = L1(m)⊗̂αmY,

and in this case, for a tensor u ∈ L1(m)⊗ Y ,

αm(u) := sup
x∗∈B

`p
′

inf
rep(u)

( n∑
j=1

‖hj‖L1(|〈m,x∗〉|) · ‖yj‖Y
)

= sup
x∗∈B

`p
′∩(`p′ )+

inf
rep(u)

( n∑
j=1

∞∑
i=1

∫
Ai

|hj | d〈m,x∗〉 · ‖yj‖Y
)

= sup
x∗∈B

`p
′∩(`p′ )+

inf
rep(u)

( ∞∑
i=1

x∗i

∫
Ai

n∑
j=1

|hj |‖yj‖Y dµi
)
,

from which, using an approximation argument based on the small size of the in-

tegrals in Ai for i big enough, and taking into account that the projective tensor

product of an L1 space with a Banach space is isometric to the corresponding

Bochner space, we get that αm(u) is equal to

sup
x∗∈B

`p
′∩(`p′ )+

( ∞∑
i=1

x∗i inf
rep(uχAi )

∫
Ai

n∑
j=1

|hij |‖yj‖Y dµi
)

= sup
x∗∈B

`p
′∩(`p′ )+

( ∞∑
i=1

x∗i
∥∥ n∑
j=1

χAihj · yj
∥∥
L1(µi,Y )

)

=
( ∞∑
i=1

∥∥( n∑
j=1

hj · yj
)
χAi

∥∥p
L1(µi,Y )

)1/p

.

That is, the Köthe-Bochner space Z(η, Y ) coincides isometrically with the disjoint

p-sum of Bochner spaces
⊕∞

i=1,p L
1(µi, Y ), and the norm coincide with αm.

(2) The same computations gives the general case involving disjoint sums with

respect to Orlicz sequence norms. Let φ be an order continuous Orlicz norm,

and with the same construction that in (1), consider the Banach function space

Zφ :=
⊕∞

i=1,φ and the vector measure m : Σ→ `φ. The corresponding norm αφm is

given in this case by the expression

αφm(u) = sup
x∗∈B

(`φ)∗∩((`φ)∗)+
inf

rep(u)

( ∞∑
i=1

x∗i ‖
n∑
j=1

|hj |‖yj‖Y ‖`φ
)
, u ∈ L1(µ)⊗ Y.

As in the case (1), this allows to prove that

αφ(u) =
∥∥∥(‖uχAi‖L1(µi)

)∞
i=1

∥∥∥
`φ
.
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Example 3. Let us show now a different example regarding vector measures asso-

ciated to classical operators. Consider the Lebesgue measure space ([0, 1],B, dx)

Take the Volterra operator V having values in L1[0, 1], that is given by V (f)(x) :=∫ x
0
f(t)dt and consider the space of all the (µ-a.e. equal) measurable functions

that satisfy that the Volterra operator is well-defined, that is, all the functions f

satisfying that x  
∫ x

0
f(t)dt ∈ L1[0, 1]. This is a Banach function space that

can be represented as the space of integrable functions L1(mV ) with respect to the

Volterra measure mV : B → L1[0, 1] given by A 
∫ x

0
χA(t)dt (see Example 3.26 in

[18, Ch.3]). For an element h ∈ B(L1[0,1])∗ = BL∞[0,1], we have that

|〈mV , h〉|(A) =

∫ ( ∫ x

0

χA(t)dt
)
|h| dx, A ∈ B.

Note that all of them are order bounded by

µ0(A) := |〈mV , h〉|(A) ≤ |〈mV , χΩ〉|(A) =

∫ 1

0

( ∫
A∩[0,x]

dt
)
dx, A ∈ B, x ∈ [0, 1].

Let Y be a Banach space. Let us give an explicit description of the space of

vector valued Volterra functions L1(mV , Y ). By Theorem 1, we have that

L1(mV , Y ) = L1(mV )⊗̂αmV Y,

where the norm αmV is given for a simple tensor u =
∑n
i=1 fi ⊗ yi by

αmV (u) = sup
h∈BL∞[0,1]

inf
rep(u)

( n∑
i=1

‖fj‖L1(|〈mV ,h〉|) · ‖yi‖Y
)

= inf
rep(u)

( n∑
i=1

‖fj‖L1(µ0) · ‖yi‖Y
)

= π(u).

Therefore, we obtain a weighted L1-space, and so the space can be identified with

the projective tensor product of L1(µ0) and Y . That is, the Volterra space of vector

valued functions L1(mV , Y ) coincides with the Bochner space L1(µ0, Y ).

3.2. The dual space of L1(ν, Y ) of a positive vector measure ν. Assume

that ν is a positive vector measure with values in the Banach lattice L and let Y

be a Banach space. Then we can obtain a good representation of the dual space

of L1(ν, Y ) in terms of operators that factor through L1-spaces of scalar positive

finite measures. Consider the space G(L1(ν), Y ∗) of all operators that satisfy the

following property. If T ∈ G(L1(ν), Y ∗) there is a functional x∗ ∈ L∗ such that T

factors as

L1(ν)
T //

[i]x∗ %%

Y ∗,

L1(|〈ν, x∗〉|)
T0

99

where [i]x∗ is the inclusion/quotient map that sends each function in L1(ν) to the

equivalence class of f with respect to the measure |〈ν, x∗〉| (see [3]). Consider the
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norm given by the infimum of the norms of all suitable operators ‖T0‖ in this

factorization, that clearly depends on x∗. In this section we show that (L1(ν, Y ))∗

can be represented isometrically as the spaces of all such operators, i.e. we will

show that
(
L1(ν, Y )

)∗
= G(L1(ν), Y ∗).

Recall that given a continuous bilinear form ϕ : L1(ν) × Y the linear map Tϕ :

L1(ν) → Y ∗ given by 〈y, Tϕ(f)〉 := ϕ(f ⊗ y), y ∈ Y , f ∈ L1(ν), is defined and

continuous. Moreover, ‖ϕ‖ = ‖Tϕ‖. Conversely, if T : L1(ν) → Y ∗ is a continuous

operator, the expression ϕT (f, y) := 〈y, T (f)〉, defines a continuous bilinear form

as above with same norm than T , i.e. there is an isometric identification among

continuous maps and bilinear forms.

Theorem 4. Let ν be an L-valued positive vector measure and let ϕ be a continuous

bilinear map ϕ : L1(ν)× Y → R. The following statements are equivalent.

(i) ϕ ∈
(
L1(ν)⊗αν Y

)∗
.

(ii) For all finite sets f1, ...fn ∈ L1(ν) and y1, ..., yn ∈ Y ,

n∑
i=1

ϕ(fi, yi) ≤ ‖ϕ‖ ·
∥∥∥ ∫ n∑

i=1

‖yi‖|fi| dν
∥∥∥
L
.

(iii) There is an element x∗0 ∈ BL∗ ∩ (L∗)+ such that the operator Tϕ factors as

L1(ν)
Tϕ //

[i]x∗0 %%

Y ∗.

L1(|〈ν, x∗0〉|)
Tϕ,0

99

Moreover, ‖ϕ‖(
L1(ν)⊗ανY

)∗ = inf ‖Tϕ,0‖, where the infimum is computed over all

suitable factorizations like the one above.

Proof. (i)⇒ (ii) Suppose that ϕ ∈
(
L1(ν, Y )

)∗
. For each pair of finite sets f1, ...fn ∈

L1(ν) and y1, ..., yn ∈ Y , consider the tensor
∑n
i=1 fi ⊗ yi. Then we have that

n∑
i=1

ϕ(fi, yi) = ϕ(

n∑
i=1

fi ⊗ yi)

≤ ‖ϕ‖αν(u) ≤ ‖ϕ‖ sup
x∗∈BL∗

( n∑
i=1

‖yi‖ · ‖fi‖L1(|〈ν,x∗〉|)
)
.

Since ν is a positive vector measure and using the fact that the functions fi are

ν-integrable, we have that the expression on the right hand side can also be written

as

sup
x∗∈BL∗∩(L∗)+

( n∑
i=1

‖yi‖
∫
|fi|d〈ν, x∗〉

)
= sup
x∗∈BL∗∩(L∗)+

〈 n∑
i=1

‖yi‖
∫
|fi|dν, x∗

〉
=
∥∥∥∫ n∑

i=1

‖yi‖|fi| dν
∥∥∥.
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The domination inequality at the beginning is then equivalent to

n∑
i=1

ϕ(fi, yi) ≤ ‖ϕ‖ ·
∥∥∥∫ ( n∑

i=1

‖yi‖|fi|
)
dν
∥∥∥

= ‖ϕ‖ · sup
x∗∈BL∗

∫ n∑
i=1

‖yi‖|fi|d〈ν, x∗〉 = ‖ϕ‖
∥∥∫ n∑

i=1

‖yi‖|fi|dν
∥∥

for all finite sets f1, ...fn ∈ L1(ν) and y1, ..., yn ∈ Y .

(ii)⇒ (iii) We apply a standard separation argument based on Ky Fan’s Lemma

—or on the Hahn-Banach Theorem, see for example the arguments in [18, Lemma

6.13] or [4, Theorem 6]— to obtain that there is an element x∗0 ∈ BL∗ ∩ (L∗)+ such

that
n∑
i=1

〈Tϕ(fi), yi〉 ≤ ‖ϕ‖
∫ n∑

i=1

‖yi‖|fi|d〈ν, x∗0〉.

Consequently, for each f ∈ L1(ν) and y ∈ Y , we have that

〈Tϕ(f), y〉 ≤ ‖ϕ‖ ‖y‖ ·
∫
|f |d〈ν, x∗0〉.

This clearly implies the factorization for Tϕ,0 := T in L1(ν), since [i]x∗0 (L1(ν)) is

dense in L1(〈ν, x∗0〉). The inequality ‖Tϕ,0‖ ≤ ‖ϕ‖ is also obtained, and so the proof

is done.

(iii) ⇒ (i) Assume that there is a factorization as the one given for Tϕ. Let us

show that it defines a continuous functional on L1(ν, L) = L1(ν)⊗̂ανY . For each

u =
∑n
i=1 fi ⊗ yi ∈ L1⊗ανY , we have that

|〈u, Tϕ〉| = |
n∑
i=1

〈yi, Tϕ(fi)〉| = |
n∑
i=1

〈yi, Tϕ,0([i]x∗0 (fi))〉|

≤ ‖Tϕ,0‖
n∑
i=1

‖yi‖ · ‖fi‖L1(|〈ν,x∗0〉|).

Note that these computations work for any representation of u, and so

|〈u, Tϕ〉| ≤ ‖Tϕ,0‖ inf
rep(u)

n∑
i=1

‖yi‖ · ‖fi‖L1(|〈ν,x∗0〉|),

which implies that

|〈u, Tϕ〉| ≤ ‖Tϕ,0‖ sup
x∗∈BL∗

inf
rep(u)

n∑
i=1

‖yi‖ · ‖fi‖L1(|〈ν,x∗〉|).

Hence Tϕ ∈ (L1⊗̂ανY )∗ and ‖Tϕ‖(L1⊗̂ανY )∗ ≤ ‖Tϕ,0‖.
The relations between the norms that have been shown in (ii) ⇒ (iii) and (iii)

⇒ (i) prove also the coincidence of the norms. �

This result leads to the following one, just taking into account the one to one

relation among bilinear forms and continuous linear maps.
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Corollary 5. Let ν : Σ→ L be a positive vector measure. Then(
L1(ν, Y )

)∗
= G(L1(ν), Y ∗)

isometrically.

Remark 6. A relevant fact that is shown in the proof of Theorem 4 is that each

element of the dual space (L1(ν)⊗αν Y )∗ satisfy the inequality

|ϕ(f, y)| ≤ ‖ϕ‖ · ‖y‖ ·
∫
|f |d〈ν, x∗0〉,

for a certain positive norm one functional x∗0 depending only on ϕ, and in fact this

relation characterizes the elements of the dual space. This kind of inequalities are

closely related to the so called Radon-Nikodým Theorem for vector valued measures

that are studied in [4]: operators factoring through the L1-spaces of a scalar measure

associated to the vector measure has been intensively studied in this paper.

Example 7. Consider the space Z :=
⊕∞

i=1,p L
1(µi) given in Example 2, 1 < p <∞.

Let Y be a Banach space such that Y ∗ has the Radon-Nikodým property. We know

that the Köthe-Bochner space Z(η, Y ) —where η was defined in Example 2—, can

be identified with

L1(m,Y ) = L1(m)⊗̂αmY,

for the vector measure m defined in Example 2. On the other hand, using for

example Theorem 1 in [10, Ch.IV], we can easily prove that(
Z(µ, Y )

)∗
=

∞⊕
i=1,p′

(
L1(µi, Y )

)∗
=

∞⊕
i=1,p′

L∞(µi, Y
∗).

Theorem 4 provides an alternate description of the dual space; note that the

vector measure m used in this example is positive. If (βi) ∈ B`p′ , the measure

〈m, (βi)〉 is given by

〈m, (βi)〉(A) =

∞∑
i=1

βiµ(A ∩Ai), A ∈ Σ.

Consider the bilinear maps ϕ : L1(m) × Y → R and the operators Tϕ that are

defined as Tϕ(f)(y) = ϕ(f⊗y), f ∈ L1(m), y ∈ Y . The dual space can be described

as the space of all the bilinear maps ϕ with associated operators Tϕ : L1(m)→ Y ∗

for which there is an element 0 ≤ β0 = (βi)
∞
i=1 ∈ B`p′ ∩ (`p

′
)+ such that Tϕ factors

as ⊕∞
i=1,p L

1(µi)
Tϕ //

[i]β0 ((

Y ∗.

L1(
∑∞
i=1 βiµi)

Tϕ,0

99

The norm of such a ϕ as an element of the dual space of L1(m,Y ) is given by the

infimum of ‖[i]β0
‖ · ‖Tϕ,0‖ for all suitable factorizations like that.
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We have required to the space Y to have the Radon-Nikodým property in Ex-

ample 7 for having the standard representation of the dual space of Z(η, Y ), but

note that this fact does not affect the factorization property that characterizes the

representation of the dual given by Theorem 4. Let us write now a direct conse-

quence of our results when this requirement is added. It regards the classic topic of

representation of vector measures and operators on spaces whose dual spaces have

the Radon-Nikodým property (Asplund spaces).

Corollary 8. Assume that ν is an L-valued positive vector measure and Y ∗ has

the Radon-Nikodým property. Let ϕ ∈
(
L1(ν) ⊗αν Y

)∗
. Then there are a positive

element x∗0 ∈ (L∗)+ and a function gϕ ∈ L∞(〈ν, x∗0〉, Y ∗) such that

Tϕ(f) =

∫
f gϕ d〈ν, x∗0〉

for all f ∈ L1(ν).

Proof. This is a straightforward consequence of Theorem 4, Corollary 5 and [10,

Theorem 5]. �

More concrete representations of the dual spaces are possible under some re-

quirements on the representation of the dual space of the space L1(ν). Since the

space is order continuous, (L1(m))∗ coincides with its Köthe dual (L1(m))′, that

is a Banach function space (see [17, p.28]). Suppose that B(L1(ν))′ = Γ · BL∞(ν),

where Γ := {ϕ ∈ (L1(ν))′ : ϕ = d|〈ν, x∗〉|/dη, x∗ ∈ BX∗} and η is a fixed Rybakov

measure for ν.

Remark 9. Other useful formulae can be obtained by applying this result. Suppose

that Y ∗ has the Radon-Nikodým property and ν is positive. Fix ϕ ∈ (L1(ν), X∗)

and consider the operator Tϕ. Then there are an element 0 ≤ x∗0 ∈ BX∗ , and an op-

erator Tϕ,0 such that Tϕ = Tϕ,0 ◦ [i]x∗0 . Write g for the function g ∈ L∞(〈ν, x∗0〉, Y ∗)
that is the Radon-Nikodým derivative of Tϕ,0 : L1(〈ν, x∗0〉) → Y ∗. If y ∈ Y and

f ∈ L1(ν), we have that

ϕ(f ⊗ y) = 〈y, Tϕ,0 ◦ [i]x∗0 (f)〉 =

∫
T ∗ϕ,0(y)fd〈ν, x∗0〉

=

∫
〈g, y〉fd〈ν, x∗0〉 =

〈∫
〈g, y〉fdν, x∗0

〉
.

Consequently, we obtain the following formula for the action of ϕ on a tensor

t =
∑n
i=1 fi ⊗ yi ∈ L1(m)⊗ Y :

ϕ(t) =

〈∫ ( n∑
i=1

〈g, yi〉fi
)
dν, x∗0

〉
.
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4. Applications

In this section we show two particular applications of the representation results

that have been shown before. The first one shows how may them improve the

knowledge on the description of the dual of abstract Köthe-Bochner spaces without

involving vector measures. The second one comes back to the original problem: the

tensor representation of spaces of Bochner p-integrable functions. We assume that

(Ω,Σ, µ) is a purely non-atomic finite measure space.

4.1. Concrete representations of the dual of Köthe-Bochner spaces. In

this section we provide some applications of the representation of the dual space

given in the previous one. Consider an order continuous Banach lattice L with

order continuous norm and a weak unit. Then it can be represented as an L1 of a

positive vector measure ν (see [18, Proposition 3.9] and the references therein), i.e.

there is an isometric and order identification L = L1(ν). In fact, in case we have

L represented already as a space of integrable functions X(µ) over a finite mea-

sure µ —using the Kakutani representation theorem, see for instance [17, Theorem

1.b.14]—, the vector measure ϑ that provides the isometric equality L1(ϑ) = X(µ)

is just given by ϑ(A) := χA ∈ X(µ) , and the measurable target space (Ω,Σ) is the

same for µ and ϑ.

The results previously obtained in this paper show more concrete representations

in this case. Clearly, each positive scalar measure 〈ϑ, x∗〉, x∗ ∈ X(µ)∗ = X(µ)′

associated to ν is given by an integral as

〈ϑ, x∗〉(A) =

∫
A

h dµ, A ∈ Σ

for a certain function h ∈ X(µ)′. Using this, we can give the following representation

of the dual of the Köthe-Bochner space X(µ, Y ) = L1(ϑ, Y ).

Corollary 10. Let X(µ) be an order continuous Banach function space over the

finite measure µ. Let ϕ be a continuous bilinear form on X(µ)× Y . The following

statements are equivalent.

(i) ϕ ∈ (X(µ, Y ))∗.

(ii) There is an integrable function h ∈ X(µ)′ such that the diagram

X(µ)
Tϕ //

[i]h $$

Y ∗

L1(h dµ)

Th

;;

commutes.

In this case, ‖ϕ‖(X(µ,Y ))∗ = inf ‖Th‖L(L1(hdµ),Y ∗), where the infimum is computed

over all h in the unit sphere of X(µ)′.
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Moreover, using Corollary 8 we obtain the following concrete representations of

the elements of the dual space of the Köthe-Bochner space X(µ, Y ).

Corollary 11. Let X(µ) be an order continuous Banach function space over the

finite measure µ. Suppose that Y ∗ has the Radon-Nikodým property. Let ϕ ∈
(X(µ, Y ))∗. Then there are a positive element h ∈ X(µ)′ and a function gϕ ∈
L∞(hdµ, Y ∗) such that

Tϕ(f) =

∫
f gϕ h dµ

for all f ∈ X(µ).

4.2. The natural norm on the tensor product Lp(µ)⊗ Y revisited. Let 1 ≤
p <∞ and write p′ for the (extended) real number satisfying that 1/p+ 1/p′ = 1.

Recall that the norm ∆p for the tensor product Lp(µ)⊗Y that provides the isometry

Lp(µ)⊗̂∆p
Y = Lp(µ, Y ) (see [8, Chapter 7 and Section 15.10]) is not a truly tensor

norm since it does not satisfy the mapping property required for this to hold (see [8,

Section 7.3]). However, —as we said at the beginning of the paper and is actually

its original motivation— we have that L1(µ)⊗̂πY = L1(µ, Y ), i.e. ∆1 = π. This

is our norm αp for the extreme case p = 1 —and so p′ = ∞—. Let us show that

the rest of the norms of this family can be represented in a π-norm fashion, instead

of the usual representation of the norms ∆p as the Bochner p-norm of the vector

valued function defined by a tensor.

In this case, our results provide an alternate representation of the Köthe-Bochner

spaces Lp(µ, Y ) by means of tensor products. If (Ω,Σ, µ) is a finite measure space,

we can consider as in the previous section the representation of Lp(µ) as L1(ϑ) for

the vector measure ϑ given by ϑ(A) := χA ∈ Lp(µ). Let us write αp for the norm

αν in this case. It is defined as follows. If u =
∑n
i=1 hi ⊗ yi ∈ Lp(µ) ⊗ Y, we find

that

αp(u) := sup
g∈B

Lp
′
(µ)

inf
rep(u)

( n∑
i=1

( ∫
|hi||g| dµ

)
· ‖yi‖Y

)

= sup
g∈B

Lp
′
(µ)

inf
rep(u)

(∫ ( n∑
i=1

|hi|‖yi‖Y
)
|g| dµ

)

= sup
g∈B

Lp
′
(µ)

inf
rep(u)

∥∥∥ n∑
i=1

|hi|‖yi‖Y
∥∥∥
L1(|g|dµ)

,

where rep(u) denotes the set of all the representations of u as the one given.

Regarding the dual space, recall that under the assumption for Y ∗ to have the

Radon-Nikodým property, we obtain that (Lp(µ, Y ))∗ = Lp
′
(µ, Y ∗) (see for example

Theorem 1 in [10, Ch.IV]). Note that an application of Theorem 4 gives that a linear

functional φ : Lp(µ, Y )→ R belongs to (Lp(µ, Y ))∗ if and only if there is a constant
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K ≥ 0 such that for all finite sets f1, ...fn ∈ Lp(µ) and y1, ..., yn ∈ Y ,

φ(

n∑
i=1

fi · yi) ≤ K
(∫ ( n∑

i=1

‖yi‖|fi|
)p
dµ
)1/p

,

or, equivalently, a factorization scheme for the operator Tϕ as the following is given,

for ϕ(f, y) := φ(f · y), f ∈ Lp(µ), y ∈ Y , φ ∈ (Lp(µ, Y ))∗:

Lp(µ)
Tϕ //

[i]h $$

Y ∗

L1(h dµ)

Th

;;

for some h ∈ Lp′(µ). No Radon-Nikodým property for the spaces involved is needed

for these characterizations. However, if Y ∗ has the Radon-Nikodým property, we

obtain that the unique operators Tϕ that factor as above for a fixed bilinear map

ϕ associated to a linear functional φ are the ones for which there is a function

g ∈ Lp′(µ, Y ∗) such that

〈y, Tϕ(f)〉 =

∫
f(w)〈y, g(w)〉dµ(w) =

〈
y,

∫
f(w)g(w)dµ(w)

〉
, f ∈ Lp(µ), y ∈ Y,

that is,

Tϕ(f) =

∫
f(w)g(w)dµ(w), f ∈ Lp(µ).
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M. A. Juan, Universidad Católica de Valencia, Valencia, Spain

E-mail address: majuabl1@mat.upv.es
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