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Automatic classification-based generation of thermal infrared 
land surface emissivity maps using AATSR data over Europe 

ABSTRACT 

The remote sensing measurement of land surface temperature from satellites provides a 

monitoring of this magnitude on a continuous and regular basis, which is a critical factor 

in many research fields such as weather forecasting, detection of forest fires or climate 

change studies, for instance. The main problem of measuring temperature from space is 

the need to correct for the effects of the atmosphere and the surface emissivity. In this 

work an automatic procedure based on the Vegetation Cover Method, combined with the 

GLOBCOVER land surface type classification, is proposed. The algorithm combines this 

land cover classification with remote sensing information on the vegetation cover fraction 

to obtain land surface emissivity maps for AATSR split-window bands. The emissivity 

estimates have been compared with ground measurements in two validation cases in the 

area of rice fields of Valencia, Spain, and they have also been compared to the 

classification-based emissivity product provided by MODIS (MOD11_L2). The results 

show that the error in emissivity of the proposed methodology is of the order of ±0.01 for 
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most of the land surface classes considered, which will contribute to improve the 

operational land surface temperature measurements provided by the AATSR instrument. 

KEYWORDS: land surface temperature, land surface emissivity, vegetation cover, 

AATSR, Globcover. 
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1. INTRODUCTION 1 

The remote sensing measurement of land surface temperature (LST) using thermal 2 

infrared (TIR) data provided by instruments placed in satellites provides a monitoring of 3 

this magnitude on a synoptic, continuous and regular basis. The analysis of its evolution 4 

in time and space is a critical factor in many research fields such as weather forecasting, 5 

detection and monitoring of forest fires, natural hazards, climate change watch, energy 6 

fluxes estimation, etc. (Lentile et al. 2006, Zukhov et al. 2006, Tralli et al. 2005, Jin and 7 

Liang 2006, Anderson et al. 2008,  Liang et al. 2010). 8 

The main problem of measuring LST from remote sensing instruments is the need 9 

to correct the effects of the atmosphere in the measured signal and the knowledge of land 10 

surface emissivity (LSE). The atmospheric correction can be addressed with the use of 11 

radiative transfer models (RTM) with a description of the atmospheric temperature and 12 

humidity distributions (Cristóbal et al. 2009, Coll et al. 2010, Coll et al. 2012a, Zhou et 13 

al. 2012), or by means of multichannel (split-window) or multiangle (dual-angle) 14 

algorithms (Coll et al. 2006, Sòria and Sobrino 2007, Yu et al. 2008). In any of these 15 

cases, an independent estimation of LSE is needed, since these algorithms usually (but 16 

not always) show an explicit dependence on it.  17 

Different methodologies have been developed to produce emissivity maps of the 18 

surface: emissivity-temperature separation algorithms such as TES (Gillespie et al. 1998) 19 

or TISI (Li and Becker 1993), multitemporal methods (Watson 1992, Wan and Li 1997), 20 

or algorithms based on physical models of the surface and estimations of fractional 21 

vegetation cover through spectral indices (Valor and Caselles 1996). The algorithms 22 

based on vegetation indices provide a practical way to estimate LSE with an acceptable 23 
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accuracy (around 1% to 2% of error) at the typical split-window channels, as is the case 24 

of the Advanced Along-Track Scanning Radiometer (AATSR) instrument onboard the 25 

Envisat platform, and for those instruments that only have one TIR channel (e.g. Landsat-26 

Thematic Mapper). 27 

In this work, a procedure is presented to produce LSE maps based on the algorithm 28 

proposed by Valor and Caselles (1996), the so-called vegetation cover method (VCM), 29 

combined with the GLOBCOVER land surface classification (Arino et al. 2008), and a 30 

dynamic estimation of vegetation fraction from AATSR visible and near infrared bands. 31 

The proposed method is similar to some extent to the algorithm for LSE estimation used 32 

by the LST product of Terra-MODIS (Snyder et al. 1998), and for LSE estimations in 33 

Meteosat-SEVIRI (Peres and DaCamara 2005; Trigo et al. 2008). Although this 34 

methodology can be applied to any TIR sensor, in the present paper it is specifically 35 

applied to the AATSR instrument, since at present no LSE maps at 1-km spatial 36 

resolution are available for that sensor.  37 

Initially, the algorithm has been applied at European scale, although it will be used 38 

to produce global LSE maps in the near future. This procedure will contribute to the 39 

improvement of LST estimates from AATSR data, since the current operational 40 

algorithm (Noyes et al. 2007) has been recognized to fail in some cases (with errors in the 41 

range 2-5 K) due to the use of surface classification and vegetation cover static maps at 42 

an spatial resolution of 0.5º x 0.5º, which is insufficient to cope with real surface 43 

heterogeneity in most cases (Coll et al. 2006, Coll et al. 2009, Noyes et al. 2007). 44 

The paper proceeds as follows. First, the developed algorithm is presented in detail. 45 

In the results section a sensitivity analysis is performed for the LSE of all considered 46 
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classes, and monthly mean emissivity maps for AATSR over Europe on 2007 are 47 

presented and analyzed. Finally, the main conclusions arising from this work are given. 48 

2. METHODOLOGY 49 

The LSE is calculated using the vegetation cover method (Valor and Caselles 50 

1996), which is based on the geometric model proposed by Caselles and Sobrino (1989). 51 

The model defines the effective emissivity for a rough and heterogeneous surface from its 52 

component emissivities, and from an estimation of the fractional vegetation cover. In this 53 

method, the emissivity in band k is estimated through the relationship: 54 

εk = εkv f + εkg (1-f) + 4 <dεk> f (1-f) (1) 55 

where εkv and εkg are the vegetation and ground emissivity, respectively, <dεk> is the 56 

maximum cavity term, and f is the fractional vegetation cover. The cavity term (the third 57 

term in the right-hand side of equation (1)) takes into account the effect of radiance 58 

internal reflections between the different components of a structured and rough surface 59 

(Caselles and Sobrino 1989). 60 

The coefficients εkv, εkg and <dεk> depend on the surface type and spectral channel. 61 

To calculate them, it is first needed a classification of the surface to determine the 62 

vegetation and soil types and surface geometric structure found in a given area. Different 63 

operational classification schemes are available at present, among which we have 64 

considered the IGBP DISCover based on AVHRR data (Loveland et al. 2000), the 65 

MODIS Land Cover type product (Friedl et al. 2002; Friedl et al. 2010), the CORINE 66 

land cover based on Thematic Mapper data (Buttner et al. 2004), and the GLOBCOVER 67 

(GLC) dataset based on Medium Resolution Imaging Spectrometer (MERIS) data 68 
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(Bicheron et al., 2008; Arino et al. 2008). They have been compared in terms of 69 

classification accuracy in several areas and different contexts (Herold et al. 2008; See and 70 

Fritz 2006; Jung et al. 2006; Neumann et al. 2007; Heiskanen 2008; Wu et al. 2008), 71 

concluding that the key factor to assure classification accuracy is a good spatial 72 

resolution (Herold et al., 2008; Heiskanen, 2008). For this reason, the GLC dataset was 73 

selected since it shows the best combination of spatial (300 m) and spectral resolution 74 

presently. It is generated from Envisat-MERIS data, with reasonably good spectral 75 

resolution, using an unsupervised classification regional expert-tuned procedure similar 76 

to the predecessor GLC2000 classification (Bartholomé and Belward 2005), and is 77 

compatible with the standardized legend of the United Nations Food and Agriculture 78 

Organization Land Cover Classification System (LCCS, Di Gregorio and Jansen 2000). 79 

The GLC dataset was used to derive the surface type maps needed to set the emissivity 80 

coefficients of equation (1). 81 

The initial 22 classes provided by the regional Western Europe GLC dataset were 82 

grouped and reduced to only 10 classes taking into account the components (soil and 83 

vegetation; bare rock; water, snow or ice; manmade construction materials, etc.) included 84 

in each class and the similarity between surface geometric structures. For the case of 85 

vegetated surfaces, the classes were grouped attending to structure (low grasses/crops, 86 

shrubs/trees lower than 5 m, shrubs/trees higher than 5 m), background surface (soil or 87 

water depending on flooding conditions), and vegetation type (green grasses, evergreen 88 

or deciduous shrubs/trees). All the classes corresponding to bare surfaces were also 89 

grouped into a single one, and the classes for urban areas, water, and snow and ice were 90 

maintained separately. Table 1 shows the resulting emissivity classes and the original 91 
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GLC surface types. The two first emissivity classes include those areas that are flooded 92 

or heavily irrigated most of the year, having water as surface background, with low (class 93 

1) or high (class 2) vegetation, and with different fractional vegetation cover. Classes 3 94 

and 4 contain areas with vegetation of low and medium height and dry soil as 95 

background. Classes 5 and 6 refer to forested areas with mainly deciduous or evergreen 96 

vegetation, respectively. Class 7 is regarded to urban built areas, and class 8 to bare 97 

surfaces (deserts, rocks, gravels, etc.). These bare surfaces, dominant in arid and semi-98 

arid regions, may have the widest range of emissivity values, and thus may have a 99 

significant impact on emissivity estimation and on LST retrievals if one single value is 100 

used for them. Although these areas represent less than 1% of the pixels over Europe, 101 

additional efforts will be needed in future versions of the algorithm to distinguish 102 

between different bare surfaces, and thus to assign more adequate emissivity values in 103 

each case. Finally, classes 9 and 10 are related to water bodies, and areas permanently 104 

covered by snow and ice.  105 

A set of coefficients εkv, εkg and <dεk> were derived for each of the emissivity 106 

classes established in Table 1, using the spectra included in the Advanced Spaceborne 107 

Thermal Emission and Reflection Radiometer (ASTER) Spectral Library (Baldridge et al. 108 

2009), which is the most extensive published dataset of TIR reflectance spectra including 109 

both natural (soils, rocks, vegetation, minerals) and manmade (asphalt, tar, concrete, 110 

brick, tile) materials to date. Table 2 gives the values of these coefficients for equation 111 

(1) in the case of vegetated areas (classes 1 to 6), or alternatively average single-value 112 

emissivities in the case of non-vegetated surfaces (classes 7 to 10 corresponding to urban, 113 

bare rock, water, snow and ice). In all cases the used spectra were first convolved with 114 
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the AATSR spectral response curves for bands at 11 and 12 µm to get the channel 115 

emissivity values.  116 

For the case of vegetated surfaces (classes 1 to 6), the emissivity values for 117 

vegetation and ground (or water) were calculated using the samples given in the ASTER 118 

Spectral Library. These values were then averaged for the selected samples. In the case of 119 

soils, all available samples in the library (52) were used, which showed low variability in 120 

these bands (standard deviation smaller than ±0.005). There are only four vegetation 121 

samples. For classes 1 and 3, the green grass sample was used, for classes 2 and 4, the 122 

average between conifer and deciduous samples, for class 6 the conifer sample, and for 123 

class 5 the deciduous sample; the considered values for each class are in agreement, 124 

within the error, with measurements of complete plants for similar vegetation samples 125 

(Rubio et al. 2003). Rocks were excluded since they should not be usual in these surface 126 

types.  127 

The classes showing low vegetation (1 and 3) were assigned a maximum cavity 128 

term <dεk>=0, since they are almost flat and show no cavities. For vegetated surfaces 129 

with a significant structure (emissivity classes 2, 4, 5 and 6) the maximum cavity term 130 

was determined with a simulation procedure. According to Caselles and Sobrino (1989), 131 

the cavity term for near nadir observation is given by  132 

dεk=(1-εkg) εkv F (1-f) (2) 133 

where F is a shape factor that depends on the height (H) and separation (S) between the 134 

surface elements, and considers the energy transmission between them, 135 
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F =  
S
H + 1 ⎟
⎠

⎞
⎜
⎝

⎛ - 
2

S
H + 1  ⎟
⎠

⎞
⎜
⎝

⎛ .  (3) 136 

The dεk term was simplified and parameterized in terms of fractional vegetation 137 

cover only, and a maximum cavity term was calculated (<dεk> in equation (1)), which 138 

represents the maximum value that it can take for a given surface geometry with the 139 

fractional cover ranging from 0 to 1 (Valor and Caselles 1996); the resulting simplified 140 

expression is the third term in the right-hand side of equation (1). The maximum cavity 141 

term was calculated using equation (2) with the following procedure. First, for a given 142 

class reasonable values for the height (H) and size (L) of the vegetation elements were 143 

assigned taking into account the vegetation description given by the GLC dataset. In 144 

particular, for classes 2 and 4 (shrubs/trees lower than 5 m) values of H=(3±1) m and 145 

L=(3±1) m were taken; and for classes 5 and 6 (shrubs/trees higher than 5 m) values of 146 

H=(15±5) m and L=(5±2) m were considered, as mean values and standard deviations for 147 

each structure parameter. Secondly, for the vegetation fraction ranging from 0 to 1, the 148 

separation S and shape factor F were calculated for each f value, and then the cavity term 149 

given by equation (2) was calculated using the vegetation and ground/water emissivities 150 

described above. Finally, the maximum value of the cavity term was selected. The 151 

variability in the emissivity coefficients and in the structural parameters (height and size) 152 

were taken into account considering the vegetation and ground emissivities, and height 153 

and size of vegetation elements, as random variables following a Gaussian distribution 154 

with  mean values and  standard deviations given in table 2 ( for emissivities) and above 155 

(for structural parameters). In consequence, the maximum value of the cavity term was 156 

calculated with this random procedure in 80 different simulations, and the average value 157 
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and the standard deviation of the 80 results obtained were assigned to the value of the 158 

maximum cavity term given in table 2.  159 

For the non-vegetated surfaces, average values were calculated from the samples 160 

provided by the ASTER Spectral Library. In the case of bare rock, 389 rock samples 161 

were averaged; 2 samples for water (sea and tap water), and 4 for snow and ice (fine, 162 

medium and coarse granular snow, and ice), giving unique effective values for each 163 

AATSR band. Certainly, rock emissivities show high standard deviations, and probably it 164 

would be necessary to distinguish them using additional rock maps in the future. In any 165 

case, the percentage of rock-exposed surfaces is relatively small in the GLC database for 166 

the area considered in this work, only 0.85% of pixels. 167 

Finally, effective emissivity values were calculated for urban areas using the 168 

spectra for manmade materials: tiles and rubber were considered for roof emissivities, 169 

concrete for walls, and asphalt for paving. The effective emissivity was calculated 170 

adapting the model of Caselles and Sobrino (1989) to this kind of surfaces for near-nadir 171 

observation conditions: 172 

εk = εkr Pr + εkp (1-Pr) + (1-εkp) εkw F (1-Pr) (4) 173 

where εkr, εkp and εkw are roof, paving and wall emissivities, Pr is the percentage of 174 

observed roofs, and F is the shape factor described above that depends on height and 175 

separation of buildings. The percentage of observed roofs was ranged from 0.2 (areas 176 

with wide streets and dispersed buildings, in which roofs occupy 20% of the surface) to 177 

0.8 (areas with narrow streets and a high concentration of buildings close to each other, in 178 

which roofs occupy 80% of the observed surface). The shape factor in turn was changed 179 
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from 0.5 (low height buildings in wide avenue areas) to 10 (very high buildings in narrow 180 

street areas). 181 

Fractional vegetation cover (f) required in equation (1) was calculated from 182 

normalized difference vegetation index (NDVI) and reflectance values in AATSR red 183 

(0.659 µm) and near infrared (0.865 µm) bands using the relationship proposed by Valor 184 

and Caselles (1996). This relationship was derived using a linear mixture model with two 185 

components (soil and vegetation) that defines the channel reflectance of a mixed pixel as 186 

a combination of the soil and vegetation reflectance weighted by the fractional vegetation 187 

cover. Using this definition the fractional vegetation cover can be written in terms of 188 

NDVI as (Valor and Caselles 1996): 189 

⎟⎟
⎠

⎞
⎜⎜
⎝
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⎝
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−
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⎠

⎞
⎜⎜
⎝

⎛
−

=

vs

s

NDVI
NDVI1K

NDVI
NDVI1

NDVI
NDVI1

f  (5) 190 

where NDVI is the pixel vegetation index, NDVIs and NDVIv are the index values for 191 

bare soil and full vegetation, and factor K is 192 

RsNIRs

RvNIRvK
ρ−ρ

ρ−ρ
=  (6) 193 

where ρRv and ρNIRv are respectively the red and near infrared reflectance values over full 194 

vegetation, and ρRs and ρNIRs are the corresponding reflectances over bare soil. All these 195 

coefficients can be extracted from the AATSR scene itself, searching for the maximum 196 

and minimum NDVI values over the scene. 197 
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The described procedure was implemented in software that uses as inputs AATSR 198 

channels at 0.659 µm and 0.865 µm, the land cover classification GLC, and the 199 

emissivity coefficients by class given in table 2. The system obtains the coordinates of a 200 

given pixel and the measured values at each AATSR channel. The GLC map is used 201 

simultaneously to obtain the ground type of the pixel given by the coordinates of the 202 

AATSR scene. Since GLC data have a spatial resolution of 300 m, while AATSR data 203 

have a 1 km resolution, the system uses an interpolation by proportion of occupied areas 204 

algorithm (see Figure 1), to be able to combine them accurately, based on the 205 

geographical coordinates of both data sets.  206 

This interpolation algorithm obtains the different types of vegetation and soil that 207 

form each AATSR pixel and estimates the proportion of the area that each vegetation and 208 

soil type represents. All 300m pixels within or partially overlapping the coarser 1km 209 

pixels are first identified, along with their respective land cover classes. Subsequently, 210 

the exact area of each GLC pixel overlapped by the AATSR pixel is calculated, based on 211 

their geographical coordinates and spatial resolutions. Therefore, the algorithm is able to 212 

estimate the values that need to be applied to the coefficients of equation (1). Each one is 213 

calculated as the weighted average of the values for that coefficient, related to all the 214 

emissivity classes involved. Thereby, the influence of each emissivity class is determined 215 

by the percentage that its area represents in the total area occupied by the AATSR pixel. 216 

The use of these weighted average coefficients for the vegetation and ground emissivities 217 

will minimize the error of estimate in emissivity, since this procedure accounts for the 218 

heterogeneity within each AATSR 1km pixel that is captured by the higher spatial 219 

resolution of GLC. The error of the interpolation method is lower than 1%, which is the 220 
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error of the VCM model used to obtain the emissivity (see subsection 3.1 below). 221 

Therefore, the error derived from interpolating the GLC pixels with the AATSR ones is 222 

not significant compared to the error of the model. 223 

The whole processing algorithm is summarized in the flowchart shown in Figure 2. 224 

First, the NDVI is calculated for all non-cloudy pixels on a daily basis, using the cloud 225 

mask provided by the AATSR product. Then, a procedure is started to search for the 226 

maximum and minimum NDVI values of the scene, and their respective reflectances, 227 

needed in equations (5) and (6) to calculate the fractional vegetation cover. In this 228 

procedure all pixels classified as bare rock, urban, water, snow or ice surfaces by GLC 229 

are excluded. For the surfaces classified as natural vegetation, the system checks that the 230 

surface is not accidentally covered by water, snow or ice, which can be the case mostly in 231 

winter scenes. In the case of water a threshold is used for the vegetation index values: if 232 

NDVI<−0.10 then the pixel is considered water, taking into account that usually the 233 

reflectance over water is smaller in the near infrared than in the red channels. 234 

To detect snow- or ice-covered surfaces, an algorithm based on the MODIS snow-235 

cover mapping procedure was used, which combines the reflectance in AATSR near 236 

infrared channel (0.865 µm) and the Normalized Difference Snow Index (NDSI) 237 

calculated as (Riggs et al. 2000; Hall et al. 2002): 238 

SWIRG

SWIRGNDSI
ρ+ρ

ρ−ρ
=  (7) 239 

where ρG and ρSWIR are the reflectances in AATSR green (0.555 µm) and short-wave 240 

infrared (1.6 µm) channels, respectively. If NDSI is higher than 0.4, and reflectance in 241 

the near infrared band is larger than 0.11, then the surface is ice- or snow-covered (Hall et 242 
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al. 2002). However, if the green band reflectance is lower than 0.10, then the pixel will 243 

not be ascribed as snow even if the other conditions are fulfilled, preventing pixels with 244 

very dark targets from being erroneously mapped as snow. All pixels identified as water 245 

or snow with these procedures, are later assigned the corresponding emissivity values 246 

given in table 2. 247 

Once cloudy, snow- or water-covered pixels have been identified, the system 248 

produces a histogram of NDVI with the remaining pixels over the scene. The minimum 249 

and maximum NDVI values (for bare soil and vegetation) needed in equation (5) are 250 

selected as the values located at the 5th and 95th percentiles of the distribution, 251 

respectively, to assure that the selected values are representative of the whole scene and 252 

are not spurious values. For these minimum and maximum NDVI thresholds, the 253 

corresponding reflectances in the red and near infrared bands are collected to calculate 254 

the K factor in equation (6). Once the thresholds are established, the software calculates 255 

the fractional vegetation cover for vegetated surfaces, selects the emissivity coefficients 256 

depending on the GLC class from Table 2, and calculates effective emissivity with 257 

equation (1), or alternatively assigns directly the effective emissivity for non-vegetated 258 

surfaces. In this step, it is checked for the two first classes (flooded areas) if they are 259 

actually flooded or not, in order to select the adequate εg value (water or soil). 260 

This procedure is followed for all available daily scenes within each month, 261 

allowing the processing of all respective orbits and dates, from which daily emissivity 262 

maps are produced. Then, a monthly composite is produced for each orbit by calculating 263 

the average, maximum and minimum valid emissivity values at each pixel over the 264 
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month. Finally, the different orbits are merged to produce the final monthly emissivity 265 

map for Europe.  266 

In order to minimize the impact of missing values of monthly emissivity on the 267 

retrieval of LST, a backup procedure is followed by the system to reduce the number of 268 

non-processed LST pixels. First, in order to estimate the minimum number of valid 269 

AATSR observations per month needed for the production of reliable emissivity 270 

estimates, the standard deviation of daily emissivities within a month were calculated to 271 

check what the variability in terms of emissivity is. The results showed that the monthly 272 

variability in emissivity is of the order of 0.004±0.002 in average on the whole scene, 273 

which is lower than the emissivity error of estimate given in the sensitivity analysis (see 274 

subsection 3.1). With this low variability, one single observation in a month can be a 275 

good approximation to an estimate of the monthly emissivity of a given pixel. If no 276 

observation is available in a given month, then the second approximation is to interpolate 277 

the emissivity value in that month by using the emissivity values corresponding to the 278 

previous month and the following month, respectively. Finally, for pixels that are covered 279 

by clouds most of the year, the third approach to the problem is the use of climatological 280 

averages to estimate a monthly value of NDVI, from which to calculate the monthly 281 

emissivity as described above. 282 

3. RESULTS AND DISCUSSION 283 

3.1. Sensitivity analysis 284 
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An error analysis of the emissivities calculated with the described methodology 285 

was conducted using error propagation theory. Following equation (1), the error in 286 

emissivity is given by: 287 

[ ] ffdffff gvgv δεεεεδδεδεδε  )21(4 )1( 4 )1( −><+−+><−+−+=  (8) 288 

where δεv, δεg and δ< dε> are the errors in the emissivity coefficients of equation (1), 289 

which are given in table 2, and δf is the error in the vegetation fraction. Methods that 290 

retrieve fractional vegetation cover from NDVI using linear relationships provide f with 291 

errors ranging from ±0.04 to ±0.20 (Gutman and Ignatov 1998, Zeng et al. 2000, Xiao 292 

and Moody 2005, Jiang et al. 2006, Zhou et al. 2009, Verger et al. 2009). The algorithm 293 

proposed in the present paper (Eq. (5)) uses a linear relationship between vegetation 294 

cover and reflectance, which implies a non-linear relationship between f and NDVI, 295 

capturing the non-linearity actually observed, especially at high values of vegetation 296 

fraction (for which NDVI usually saturates). For this kind of non-linear algorithms errors 297 

of ±0.08 in the fractional vegetation cover retrieval have been reported (Purevdorj et al. 298 

1998). In particular, Jiang et al. (2006) analyzed the performance of a non-linear 299 

algorithm based on linear relationships between reflectance and fractional vegetation 300 

cover (the so-called Scaled Difference Vegetation Index, SDVI) equivalent to the 301 

methodology here proposed, and found that it was able to provide f with an uncertainty of 302 

±0.07 in a validation exercise. In consequence, a value of ±0.15 in δf has been used to 303 

address the sensitivity analysis, which is twice the error values reported for that type of 304 

algorithm, and is of the same order of magnitude than the higher errors observed in linear 305 

algorithms. 306 
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 Table 3 shows the average, maximum, minimum and standard deviation of the 307 

errors in emissivity for f values raging from 0 to 1 in each class corresponding to 308 

vegetated areas, and the average error calculated for non-vegetated zones. The lowest 309 

errors correspond to flooded areas (classes 1 and 2 with water at the background), 310 

croplands/grasslands (class 3), and urban, water and snow/ice areas (classes 7, 9 and 10) 311 

with values from ±0.001 to ±0.008, which would result in LST errors from ±0.1 to ±0.6 K 312 

(Galve et al. 2008). The largest error in emissivity is found in the bare rock case (class 8) 313 

with a value of ±0.05, due to the high variability of this kind of surfaces, which would 314 

produce an LST error around ±4 K. Although these areas occupy a small fraction of the 315 

total surface considered, it would be desirable to use rock maps in the future to refine the 316 

methodology in those areas. The remaining classes (4, 5 and 6) show errors in emissivity 317 

around ±0.014 that would correspond to LST errors of about ±1 K.  318 

3.2. Emissivity product for AATSR 319 

Monthly emissivity maps of Europe were produced with the proposed procedure 320 

for year 2007, using all available AATSR images for each month, processing a total of 321 

2,257 scenes in the whole year. Figure 3 shows the monthly fractional vegetation cover 322 

for each month calculated as the average value of each valid pixel within each month. It 323 

is observed a variation of vegetation cover in Europe during the year with peaks in spring 324 

and autumn, and lower vegetation fractions in summer and especially in winter. The low 325 

coverage in some mountainous areas such as the Scandinavian Peninsula, the Alps or the 326 

Pyrenean Mountains in winter months, is due to the presence of snow and water. Figure 4 327 

presents the monthly emissivity for band AATSR-11 µm; the emissivity variation in each 328 

month (difference between maximum and minimum emissivity value in a pixel basis, not 329 
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shown) was calculated resulting in negligible values for most pixels, giving confidence in 330 

the stability of the proposed method.  331 

To test the consistency of the methodology, the time evolution of fractional 332 

vegetation cover and emissivity was checked for the emissivity classes defined in Table 333 

1, selecting adequate locations for each case. Figure 5 shows the results. For class 1 the 334 

area of rice fields in the Albufera of Valencia, Spain (39º 15' N, 0º 18' W) was used. In 335 

this case the vegetation cover follows the typical phenology of rice plants, which are 336 

seeded in May and harvested in September, the fields being completely flooded during 337 

this period until January; then the fields are dried, showing scarce and low grasses 338 

(January to April), until a new annual period begins. Consequently, emissivity is low in 339 

April, increases from May to July (when the vegetation cover is highest), decreases to 340 

September (when it is harvested) and peaks again in October and November due to 341 

flooded fields without vegetation. For class 3 a cropland area placed near Fondouce, 342 

France (46° 4' N, 0° 53' W) was selected. In this case the vegetation cover starts from a 343 

relatively low value in January, increasing until reaching a maximum value in June and 344 

decreasing gradually until January; the emissivity follows the same tendency as 345 

vegetation cover does. In class 4 a shrubland area near Tilj, Croatia (43° 36' N 16° 46' E) 346 

was used, showing an irregular variation for vegetation cover during the year and an 347 

emissivity with relatively low variability (the values on December are due to the presence 348 

of snow). An area in Montebruno, Italy (44º 31' N, 9º 15' E) was selected as an example 349 

of broadleaved/needleleaved deciduous forest (class 5). The vegetation fractional cover 350 

typically increases during the year peaking in summer and decreasing in autumn; since 351 

emissivity for the soil (0.970) and the vegetation (0.973) are similar, the effective 352 
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emissivity is lower both for low and high vegetation cover fractions, and it is higher at 353 

intermediate fractions due to cavity effects, which explain the peak values in spring. In 354 

case of class 6, broadleaved/needleleaved evergreen forest, a site located in Moray, 355 

Scotland (57° 23' N, 3° 49' W) was analyzed showing low variation both in fractional 356 

vegetation cover and emissivities. There were no well-defined areas in the scene for class 357 

2 (flooded forest/shrubland), and the remaining classes (7 through 10) exhibit constant 358 

values with time as expected, since they do not depend on vegetation cover (urban area, 359 

bare rock, water, snow and ice). 360 

3.3. Validation 361 

A validation exercise was conducted comparing the emissivity values produced by 362 

the system with concurrent ground measurements carried out in the area of rice fields 363 

placed in the Albufera of Valencia, Spain  (Coll et al. 2007), during two different 364 

moments of the year (see Figure 5, class 1). First, it was compared the emissivity value 365 

when the surface is fully covered of rice with water as background (July). In channel 366 

AATSR-11 µm the measured emissivity in the field was 0.985±0.002 and the system 367 

value was 0.982±0.001, with a difference of +0.003, whereas for AATSR-12 µm band 368 

the measured emissivity was 0.980±0.005 and the system value was 0.988±0.002, 369 

showing a difference of -0.008. Secondly, the comparison was conducted on April, when 370 

the rice fields are fallow and in dry conditions (Coll et al. 2012b); in this case the 371 

measured emissivity in the field was 0.957±0.005 (Mira et al. 2007) in channel AATSR-372 

11 µm and the system value was 0.970±0.001, with a difference of -0.013, whereas for 373 

AATSR-12 µm band the measured emissivity was 0.954±0.005 and the system value was 374 

0.977±0.001, showing a difference of -0.023. The validation results are within ±0.010, 375 
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except for the case of bare soil in channel AATSR-12 µm. This shows a reasonably good 376 

result, although the validation exercise is very limited in space and time. Nevertheless, 377 

the coefficients used for dry bare soils, calculated from all the soil sample spectra of the 378 

ASTER library (which showed a low dispersion, see Table 2), will be revised using 379 

additional datasets in order to reduce the larger difference observed in channel AATSR-380 

12 µm.  381 

3.4. Comparison with MODIS emissivity product 382 

A comparison of the AATSR emissivity maps with other similar land surface 383 

emissivity products (designed for use in typical split-window channels, and based on a 384 

land cover classification) was carried out in order to analyze spatial and temporal 385 

patterns. The MODIS classification-based emissivity product (Snyder et al. 1998) was 386 

considered taking into account its similarity to the methodology proposed in the present 387 

paper. Although the LST product provided by SEVIRI also uses a classification-based 388 

emissivity estimate (Peres and DaCamara 2005, Trigo et al. 2008), it is an internal 389 

product that was not available to perform the comparison. 390 

The selected product is the MODIS/Terra level-2 LST/E data (MOD11_L2), which 391 

provides LST measurements using the generalized split-window algorithm (Wan and 392 

Dozier, 1996). For this algorithm, emissivity estimates in MODIS split-window bands 31 393 

and 32 are needed, which are calculated using the classification-based emissivity method 394 

(Snyder et al. 1998) and included also as data in the MOD11_L2 product. This method 395 

uses as input the MODIS land cover product (MOD12Q1) provided yearly, and assigns to 396 

each class emissivity values that were estimated using kernel models and considering the 397 

spectral and structural characteristics of each surface type (Snyder and Wan 1998). The 398 
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algorithm also includes dynamical and seasonal factors, such as the use of the snow cover 399 

product (MOD10_L2) to check the presence of occasional water, snow or ice in an area, 400 

or the use of the vegetation index product (MOD13_VI) to determine the greenness of 401 

senescent vegetation. Presently, three different versions of this product (V4, V41 and V5) 402 

are available; for the comparison, the V41 was chosen because it addresses 403 

underestimation problems in the V5 Climate Modeling Grid (CMG) products, and the 404 

production date for this collection starts with MODIS/Terra data acquisition from January 405 

2007.  406 

In order to do the comparison, equivalent MOD11_L2 composite maps over 407 

Europe were produced monthly by averaging the data provided by the MOD11A2 408 

product on an eight-day basis using a sinusoidal projection. After the MOD11_L2 409 

monthly maps were generated, emissivity differences were calculated in a pixel-by-pixel 410 

basis (MODIS LSE minus AATSR LSE) for the two split-window channels. Figure 6 411 

shows the emissivity difference maps for January, April, July and October, Figure 7 412 

presents the histograms of the difference data for the same months, and Table 4 gives the 413 

summary statistics for the results. 414 

Most of the observed differences are within ±0.01 in emissivity, with average 415 

values for the whole scene around zero in all seasons, below the expected error of 416 

estimate described in the sensitivity analysis subsection. The temporal comparison shows 417 

that in January MODIS emissivities are +0.01 larger than AATSR emissivities in most 418 

places and for the two channels (this bias is larger for channel at 12 µm), except in 419 

northern Europe. For the other seasons this bias is significantly reduced. The spatial 420 

patterns of the difference maps show that the larger disparity between both products is 421 
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grouped geographically. The majority of the differences between +0.01 and +0.02 are 422 

located in southern Europe (Portugal, Spain, and Italy). Oppositely, the differences lower 423 

than -0.02 are located in Scandinavia, and other high-altitude places such as the Alps, 424 

where the presence of water and snow is more common. Thus, the proposed method is 425 

providing higher emissivity values for places where snow and water are present, and 426 

lower emissivity values in arid and semi-arid areas. These differences can be due to 427 

several reasons: (i) the different land cover classification used in each case, the yearly 428 

MOD12Q1 product in MODIS that can be more dynamic, and GLOBCOVER in AATSR 429 

that is a static classification; (ii) the different emissivity coefficients used for each surface 430 

type, especially for bare soil and rocky areas (these are higher in the MODIS case, which 431 

could explain higher emissivity values in arid areas); (iii) the calculation of the effective 432 

emissivity in case of AATSR is dynamic for vegetated surfaces since it is based on the 433 

calculation of fractional vegetation cover from NDVI, while it is semi-static in MODIS 434 

since this product does not estimate fractional vegetation covers, only estimates the 435 

phenological state from vegetation index data and time of the year. Despite these 436 

differences, the two products seem to be quite consistent, at least in relation to the 437 

expected error of estimate in emissivity. 438 

4. SUMMARY AND CONCLUSIONS 439 

In this work a methodology for automatic generation of LSE maps is proposed that 440 

was developed taking as starting point the Vegetation Cover Method (Valor and Caselles 441 

1996). The new algorithm is based on the combination of VCM with a classification of 442 

the land surface (GLOBCOVER), which allows: (i) considering all surfaces, not only 443 

natural land surfaces related to vegetation cover, but also urban, water or snow areas, for 444 
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instance; and (ii) adjusting the emissivity coefficients of the algorithm depending on the 445 

different surface components and geometries, instead of using general coefficients 446 

globally, reducing thus the error of estimate in LSE. In addition, the algorithm uses a 447 

dynamic estimation of the fractional vegetation cover through the year that allows 448 

capturing LSE variations due to changes at surface level, including the occasional 449 

presence of water or snow.  450 

The sensitivity analysis of the methodology shows that in most cases LSE can be 451 

achieved with errors of the order of ±1% or lower, which implies errors in LST lower 452 

than ±1 K, except for the case of bare areas for which additional efforts will be needed 453 

(including geologic/rock maps if available, or using a complementary methodology). 454 

These results have been confirmed by a validation exercise comparing the LSE produced 455 

by the algorithm to ground reference emissivity measurements conducted in rice fields in 456 

the Albufera of Valencia, Spain, in two times of the year. However, the validation has 457 

indicated that the selected emissivity value for dry bare soil should be revised considering 458 

additional published datasets, especially for channel AATSR-12 µm. 459 

The proposed LSE maps for AATSR have been also compared to the equivalent 460 

MODIS product (MOD11_L2) in the year 2007. The comparison resulted in emissivity 461 

differences mostly within ±0.01 with average values for the whole scene around zero in 462 

all seasons, below the expected error of estimate given by the sensitivity analysis. The 463 

highest differences between products were observed temporally in January, and spatially 464 

in southern Europe and Scandinavia. 465 

The proposed methodology can be adapted to different present and future TIR 466 

remote sensors, but in this work it has been applied to AATSR data over Europe, since it 467 
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has been recognized the need of improvement in the LST operational product, in 468 

particular using classification schemes with better spatial resolution. In fact, the 469 

methodology here presented is part of an effort to improve AATSR LST estimations 470 

through the use of a split-window algorithm with explicit dependence on emissivity (Coll 471 

et al. 2012b). Further developments will include the improvement of LSE estimation over 472 

bare areas, the production of global LST maps based on AATSR data with the proposed 473 

LSE methodology, and also the adaptation to present and new TIR sensors. 474 
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Table 1. Emissivity classes by surface type, and their correspondence with the biomes defined by 659 
the GLOBCOVER (GLC) dataset (after Coll et al. 2012b). The percentage occurrence over 660 
Europe of each emissivity class is given in parentheses in the first column. 661 

Emissivity class GLC 
Class Description 

1. Flooded 
vegetation, crops and 
grasslands (0.75%) 

11 Post-flooding or irrigated croplands (or aquatic) 
13 Post-flooding or irrigated herbaceous crops 

180 Closed to open (>15%) grassland or woody vegetation on regularly flooded or 
waterlogged soil - Fresh, brackish or saline water 

185 Closed to open (>15%) grassland on regularly flooded or waterlogged soil - Fresh 
or brackish water 

2. Flooded forest and 
shrublands (<0.01%) 170 Closed (>40%) broadleaved forest or shrubland permanently flooded - Saline or 

brackish water 

3. Croplands and 
grasslands (19.69%) 

14 Rainfed croplands 
15 Rainfed herbaceous crops 
20 Mosaic cropland (50-70%) / vegetation (grassland/shrubland/forest) (20-50%) 
21 Mosaic cropland (50-70%) / grassland or shrubland (20-50%)  
120 Mosaic grassland (50-70%) / forest or shrubland (20-50%)  

140 Closed to open (>15%) herbaceous vegetation (grassland, savannas or 
lichens/mosses) 

141 Closed (>40%) grassland 
150 Sparse (<15%) vegetation 
151 Sparse (<15%) grassland 

4. Shrublands 
(3.24%) 

16 Rainfed shrub or tree crops (cash crops, vineyards, olive tree, orchards…) 
30 Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-50%)  

130 Closed to open (>15%) (broadleaved or needleleaved, evergreen or deciduous) 
shrubland (<5m) 

131 Closed to open (>15%) broadleaved or needleleaved evergreen shrubland (<5m) 
134 Closed to open (>15%) broadleaved deciduous shrubland (<5m) 
152 Sparse (<15%) shrubland 

5. Broadleaved/ 
needleleaved 
deciduous forest 
(10.37%) 

40 Closed to open (>15%) broadleaved evergreen or semi-deciduous forest (>5m) 
50 Closed (>40%) broadleaved deciduous forest (>5m) 
60 Open (15-40%) broadleaved deciduous forest/woodland (>5m) 
90 Open (15-40%) needleleaved deciduous or evergreen forest (>5m) 
91 Open (15-40%) needleleaved deciduous forest (>5m) 

6. Broadleaved/ 
needleleaved 
evergreen forest 
(6.46%) 

32 Mosaic forest (50-70%) / cropland (20-50%)  
70 Closed (>40%) needleleaved evergreen forest (>5m) 
92 Open (15-40%) needleleaved evergreen forest (>5m) 
100 Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m) 
101 Closed (>40%) mixed broadleaved and needleleaved forest (>5m) 
110 Mosaic forest or shrubland (50-70%) / grassland (20-50%) 

7. Urban area 
(0.45%) 190 Artificial surfaces and associated areas (Urban areas >50%) 

8. Bare rock (0.85%) 

200 Bare areas 
201 Consolidated bare areas (hardpans, gravels, bare rock, stones, boulders) 
202 Non-consolidated bare areas (sandy desert) 
203 Salt hardpans 

9. Water (57.2%) 210 Water bodies 
10. Snow and ice 
(0.99%) 220 Permanent snow and ice 
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 662 
Table 2. Emissivity classes with the values for the parameters of equation (1) in the AATSR-11 and AATSR-12 µm channels (after Coll et al. 663 
2012b). In classes 1 and 2, (d) stands for a dry (non-flooded) surface with a soil as background, and (w) stands for a wet (flooded) surface. 664 

Emissivity Class	
AATSR-11 µm	 AATSR-12 µm 

εv εg	 <dε> εv εg	 <dε> 

1. Flooded vegetation/ 
crops/grasslands 

0.983±0.005 
0.970±0.005 (d) 

0.991±0.001 (w) 
0 0.989±0.005 

0.977±0.004 (d) 

0.985±0.001 (w) 
0 

2. Flooded forest/shrubland 0.981±0.008 
0.970±0.005 (d) 

0.991±0.001 (w) 

0.014±0.004 (d) 

0.004±0.001(w) 
0.982±0.009 

0.977±0.004 (d) 

0.985±0.001 (w) 

0.010±0.003 (d) 

0.007±0.002 (w) 

3. Croplands/grasslands 0.983±0.005 0.970±0.005 0 0.989±0.005 0.977±0.004 0 

4. Shrublands 0.981±0.008 0.970±0.005 0.014±0.004 0.982±0.009 0.977±0.004 0.010±0.003 

5. 

Broadleaved/needleleaved 

deciduous forest 

0.973±0.005 0.970±0.005 0.019±0.006 0.973±0.005 0.977±0.004 0.015±0.004 

6. 

Broadleaved/needleleaved 

evergreen forest 

0.989±0.005 0.970±0.005 0.019±0.005 0.991±0.005 0.977±0.004 0.015±0.004 

7. Urban area 0.980±0.005 0.986±0.005 

8. Bare rock 0.93±0.05 0.95±0.05 

9. Water 0.991±0.001 0.985±0.001 

10. Snow and ice 0.990±0.004 0.971±0.014 
 665 
  666 
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Table 3. Errors in emissivity in the AATSR-11 and AATSR-12 µm channels for the different vegetated and non-vegetated classes. The average, 667 
standard deviation, maximum and minimum values of the errors when vegetation fraction ranges from 0 to 1, are presented. In classes 1 and 2, (d) 668 
stands for a dry (non-flooded) surface with a soil as background, and (w) stands for a wet (flooded) surface. 669 

Emissivity Class	
AATSR-11 µm	 AATSR-12 µm 
avg std dev max min avg std dev max min 

1. Flooded vegetation/ 
crops/grasslands 

0.007 (d) 

0.004 (w) 

0.000 (d) 

0.001 (w) 

0.007( d) 

0.006(w) 

0.007 (d) 

0.002 (w) 

0.006 (d) 

0.004 (w) 

0.000 (d) 

0.001 (w) 

0.007 (d) 

0.006 (w) 

0.007 (d) 

0.002 (w) 

2. Flooded forest/shrubland 
0.014 (d) 

0.007 (w) 

0.001 (d) 

0.003 (w) 

0.015 (d) 

0.012 (w) 

0.011 (d) 

0.002 (w) 

0.012 (d) 

0.008 (w) 

0.001 (d) 

0.003 (w) 

0.014 (d) 

0.014 (w) 

0.010 (d) 

0.005 (w) 

3. Croplands/grasslands 0.007 0.000 0.007 0.007 0.006 0.000 0.007 0.006 

4. Shrublands 0.014 0.001 0.015 0.011 0.012 0.001 0.014 0.010 

5. Broadleaved/needleleaved 

deciduous forest 
0.015 0.002 0.017 0.011 0.012 0.002 0.015 0.009 

6. Broadleaved/needleleaved 

evergreen forest 
0.014 0.003 0.019 0.010 0.012 0.002 0.015 0.008 

7. Urban area 0.005 0.005 

8. Bare rock 0.05 0.05 

9. Water 0.001 0.001 

10. Snow and ice 0.004 0.014 
 670 
  671 
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 672 

Table 4.- Summary statistics of the emissivity difference images for the different seasons of the year 2007 in each channel (11 and 12 µm). 673 
 Channel 11µm Channel 12µm 

 January April July October January April July October 

Minimum -0.03 -0.03 -0.03 -0.03 -0.02 -0.02 -0.03 -0.02 

Maximum 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

Mean 0 0 0 0 0 0 0 0 

Standard deviation 0.01 0.01 0.01 0.01 0.01 0 0.01 0.01 

 674 
 675 
 676 
 677 
 678 
 679 
 680 
 681 
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 682 

Figure 1.- Example of an AATSR pixel (1 km, shown in red), interpolated with GLC pixels (300 m, shown 683 
in black), according to the interpolation by proportion of occupied areas algorithm. 684 
 685 
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 686 

Figure 2.- Main flowchart of the system designed to produce emissivity maps for AATSR TIR channels. 687 
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 688 
Figure 3.- Monthly fractional vegetation cover of Europe for year 2007. The monthly values have been 689 
calculated as the average of fractional vegetation covers over valid pixels in the considered month. White 690 
pixels correspond to water or cloudy areas. 691 
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 692 
Figure 4.- Monthly emissivity in AATSR channel at 11 µm over Europe for year 2007. The monthly values 693 
have been calculated as the average of emissivities over valid pixels in the considered month.  694 
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 695 
Figure 5.- Monthly evolution of fractional vegetation cover (graphs on the left) and emissivity (graphs on 696 
the right) for selected places corresponding to the different emissivity classes defined in Table 1 that are 697 
dependent on vegetation cover. 698 
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 699 
 700 

Figure 6.- Emissivity difference between the monthly emissivity estimates provided by the MODIS product 701 
MOD11-L2 and the AATSR product proposed in this paper (MODIS LSE – AATSR LSE) for the two split-702 
window channels, corresponding to the months of January, April, July and October.  703 
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 704 
Figure 7.- Histograms of the emissivity differences between the monthly emissivity estimates provided by 705 
the MODIS product MOD11-L2 and the AATSR product proposed in this paper (MODIS LSE – AATSR 706 
LSE) for the two split-window channels, corresponding to the months of January, April, July and October. 707 


