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Abstract

In this paper the study of frequency-dependent ultrasonic attenuation in strongly heterogeneous materials

was addressed. To determine the attenuation accurately over a wide frequency range, it is necessary to have

suitable excitation techniques. In this study, three kinds of transmitted signals have been analyzed, grouped

according to their bandwidth: narrowband and broadband signals. Its mathematical formulation has revealed the

relationship between the distribution of energy in their spectra and its immunity to noise. Sinusoidal and burst

signals present higher signal-to-noise ratio (SNR) but a large number of measurements to cover the frequency

range is needed. However, the linear swept-frequency signals (chirp) at the expense of lower SNR improve the

effective bandwidth covering a wide frequency range with a single measurement and equivalent accuracy. In the

case of highly attenuating materials, it is proposed the use of different configurations of the chirp signals which

enable to inject more energy, and therefore, to improve the sensitivity of the technique without involving a high

time cost. So that, if the attenuation of material and the sensitivity of measurements equipment allow the use of

broadband signals, the combination of this kind of signals and the suitable signal processing result in an optimal

estimate of frequency-dependent attenuation with a minimum measurement time.
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1. Introduction

Concrete is a non-homogeneous material prepared by mixing cement, aggregates and water used mainly in

the field of civil and building engineering [1]. Due to its non-homogeneous structure, this material in its hardened

state is composed by air voids, interfaces between aggregates and hydrated cement paste, micro-cracks and other

defects inside its microstructure. For that reason, concrete is a very dispersive material and hard to measure (in

order to know its physical and mechanical conditions) indirectly with non destructive techniques (NDT) [2].

Several authors tried to test cement-based materials using different NDT in order to characterize concrete

properties and detecting damage by means of monitoring diverse parameters [3–5].

Due to its robustness, one of the most widely used parameters for ultrasonic NDT is the ultrasonic pulse velocity.

However, the attenuation is considered a more sensitive parameter to structural properties of the material. Taking

into account that is a parameter related to the energy of the wave, is more affected than ultrasonic velocity to

experimental setup such as coupling problems between ultrasonic sensors and analysed material, energy loss due

to wires, connectors, devices, etc [6–9]. Despite of these problems, the determination of the frequency-dependent

ultrasonic attenuation, α( f ), [6, 8, 10–12], is a useful parameter due to its sensitivity to many defects on materials

(voids, cracks...) and properties, specifically on concrete where the water to cement ratio and cement to aggregate

ratio are important variables on concrete design and they determine its mechanical and physical properties.

Several authors have used different techniques to measure the attenuation on cementitious materials. The

typical setup is a through-transmission where the transmission transducer is excited with an electrical signal to

generate the ultrasonic signal. The transmitted signals can be narrowband ([8, 13–15]) and broadband signals

([6, 8, 16]). On one hand, narrowband signals provide good performance against high attenuating materials, due

to its high signal to noise ratio (SNR), but they require a large number of measurements to estimate the α( f )

curve (one measure per each point of the curve). On the other hand, the broadband signals require much less

measurements because they cover a wider frequency range, but are more affected by noise because its energy is

distributed over a wider frequency range.

Using broadband signals implies several advantages. Beyond practical ones (time cost), there exist real

applications which cannot be correctly monitorized due to the fact that the system under study fastly varies along
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the time. In that situations, it is needed the use of a configuration which allows to measure attenuation efficiently

without losing accuracy. The aims of this paper are to analyze each kind of transmitted signal, to provide an

optimal method to obtain the frequency-dependent attenuation, α( f ), and to compare the attenuation results

achieved by each configuration on a particular real application: measuring Portland cement mortar specimens.

The remainder of this work is structured as follows. Section 2 describes and mathematically formulates the

analysis of two narrowband signals (sinusoidal and burst signals) and a broadband signal (chirp signal), as well

as the theoretical and experimental expressions for α( f ) in each case. Different configurations for the chirp

signal are analysed in order to evaluate its noise immunity. In Section 3 the experiment which validates the

aforementioned expressions is explained: materials and test layout. Section 4 presents the achieved attenuation

results and, finally, conclusions are summarized.

2. Mathematical background

In a through-transmission inspection, the energy spectral density (ESD)1 of the received signal (in frequency

domain), Sr x( f ) [dB], can be modeled as Eq. (1):

Sr x( f ) = St x( f )−αmat( f ) · dmat −αequip( f ) (1)

where St x( f ) [dB] is the ESD of the transmitted signal, αmat [dB/cm] is the attenuation produced by the specimen,

dmat [cm] is the distance between both transducers and αequip( f ) [dB] is the attenuation of the measurement

equipment (amplifier, wires and frequency response of the emitter and receiver transducers).

From Eq. 1, the attenuation of the material, αmat( f )[dB/cm], can be obtained in terms of the rest of variables

resulting Eq. 2:

αmat( f ) =
10log (St x( f ))− 10log (Sr x( f ))−αequip( f )[dB]

dmat
(2)

The challenge of this work lies in the estimation of either S( f ), which relates the transmitted energy/power

and received energy/power as function of frequency. The following aspects must be taken into account.

The signal to noise ratio (SNR) is directly proportional to the sensitivity of the attenuation parameter. Therefore,

the kind of the transmitted signal and its energy distribution in the frequency domain will condition the accuracy

of the method. Working with sinusoidal or burst signals, the energy will be focused on a narrowband (higher

SNR), but the estimation of αmat( f ) will correspond only to that narrow bandwidth. Consequently, in order to

cover a wide spectrum it is required to employ a higher number of input signals varying its fundamental frequency

( f0). On the other hand, in the case of the chirp signal, the energy will be distributed along a wider band (lower

SNR) and the estimation of αmat( f ) covers a higher range of frequencies with a single input signal. It must be

1The energy spectral density, S( f ), of a finite time signal, x(t), is defined as S( f ) = |X ( f )|2, where X ( f ) =
∫ t1

t0
x(t)e− j2π f t d t is the Fourier

Transform of signal x(t).
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noticed that highly attenuation materials (αmat( f )) could required the use of signals with high density energy to

be well-characterized. In Fig. 1, the temporal and frequency domains of the three types of signals are shown. It

can be easily appreciated how the density of energy of sinusoidal and burst signals is higher than chirp signal one.
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Figure 1: Comparison between narrow band signals (sinusoidal and burst) and broadband signals (chirp) in the temporal domain (left
column) and frequency domain (right column). Red line corresponds to a sinusoidal signal at 200 kHz, blue line is a burst signal of 5 cycles
at 200 kHz, and green line represents a chirp signal sweeping a frequency range from 100 to 900 kHz in 100 µs.

The frequency response of the equipment and, mainly, of the transducers, αequip( f ), limits the bandwidth that

they are able to manage. Usually, the best performance is obtained at the fundamental frequency of transducer

but it is also possible to work on the pass-band taking into account the required calibration process. The choice

of the fundamental frequency depends on the material under inspection.

In this work, the aforementioned transmitted signals are analysed and proposed to evaluate the attenuation

of the material, αmat( f ), in order to compare the accuracy and time cost among them. To obtain αmat( f ) it will

be necessary to estimated the power/energy of the transmitted and received signals as well as the attenuation

introduced by the equipment. The power/energy of the transmitted signal will be computed from its well-known

theoretical expressions. However, the power/energy of the received signal will be estimated from the real acquired

signals digitalized by the oscilloscope. The attenuation of equipment will be obtained by a calibration process

described in Section 3.3.

2.1. Sinusoidal signal

The theoretical model of a transmitted pure sinusoidal signal is shown in Eq. 3:

st x(t) = At x cos (2π f0 t +φt x) (3)

where At x is the amplitude of signal, f0 is the fundamental frequency, and φt x is the phase of the signal that will

be assumed null. An example of this signal is shown in Fig. 1 where the selected parameters for this example

were: At x = 10 and f0 = 200 kHz. It is accepted that this signal is periodic, and therefore, it has an infinite time

duration.
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The theoretical spectrum of this signal (Eq. 4) presents the power focused on a single frequency, shown in

Fig. 1. The power of this signal (Pt x) can be estimated directly from its amplitude, At x (Eq. 5). It has been

assumed that the propagation medium, equipment and transducers behaves linearly. This implies that any new

frequencies components will not be generated, and the received signal will be the same input signal but with

different amplitude and phase which will depend only on the behaviour of the material and equipment. So that,

the power of the received signal can be estimated from the amplitude of the received sinusoidal signal, A( f0)r x (Eq.

6).

St x( f ) =

�

�

�

�

At x

2
(δ( f − f0) +δ( f + f0))

�

�

�

�

2

(4)

Pt x =
A2

t x

2
=

max{s2
t x(t)}

2
(5)

sr x(t) = A( f0)r x cos
�

2π f0 t +φ( f0)r x

�

→ P( f0)r x =

�

A( f0)r x

�2

2
(6)

Hence, the attenuation of material for the input frequency, αmat( f0), can be calculated combining Eq. 5 and

Eq. 6, resulting in Eq. 7:

αmat( f0) =
Pt x[dB]− P( f0)r x [dB]−αequip( f0)[dB]

dmat

=
10log10

�

A2
t x
2

�

− 10log10

�
�

A( f0)r x

�2

2

�

−αequip( f0)[dB]

dmat

(7)

In order to obtain the values of the αmat( f0) curve, it is required to do a sweep of the input fundamental

frequency ( f0). The described calculations must be repeated as many times as the number of points which conform

αmat( f0) curve. The main advantage of sinusoidal signals is its high SNR, which allows working properly on highly

attenuating materials.

2.2. Burst signal

The burst signal is a common configuration used in NDT applications since it allows to estimate simultaneously

several ultrasonic parameters (attenuation, velocity, etc). Its theoretical expression is a time-limited sinusoidal

signal (Eq. 8):

st x(t) = At x · cos (2π f0 t) · rect

�

t − N T0
2

N T0

�

(8)

where At x is the amplitude of signal, f0 is the fundamental frequency, T0 =
1
f0

is the fundamental period of the

signal, N is the number of the cycles of the signal, and rect(·) is the rectangular function. An example of this

signal is shown in Fig. 1 where the selected parameters were: At x = 10, f0 = 200 kHz and N = 5.

5



The total energy of a burst signal (Eq. (9)) depends on its fundamental frequency, f0, the amplitude, At x and

the number of cycles, N , but its theoretical spectrum (Eq. 10) represented in Fig. 1 shows that this energy is

distributed in a bandwidth around the aforementioned fundamental frequency. For this reason, the energy of the

transmitted and received signals must be calculated from the spectrum over a bandwidth following Eq. 11 [17].

The selected bandwidth corresponds to the main lobe of the transmitted spectrum, f0 ±
f0
N , and the theoretical

expression for the transmitted energy over this bandwidth is Eq. 12. This energy, E( f0)t x ,BW , also depends on f0 and

represent a constant ratio of 90% of the total transmitted energy.

E( f0)t x =
A2

t x

2
N T0 =

A2
t x

2 f0
N (9)

St x( f ) =

�

�

�

�

At x N T0

2
sinc (( f − f0)N T0) e

− j2π( f − f0)N T0

�

�

�

�

2

(10)

E( f0)t x |r x ,BW = 2

∫

<BW>

St x |r x( f )d f = 2

∫ f0+
f0
N

f0−
f0
N

St x |r x( f )d f [J] (11)

E( f0)t x ,BW = A2
t x N

1
f0

Si(2π)
π

[J] (12)

where Si(·) is the sine integral function. Using the theoretical transmitted energy (Eq. 12), and the received

energy (Eq. 11), the expression of the attenuation for the corresponding input fundamental frequency, αmat( f0),

becomes into Eq. 13:

αmat( f0) =
E( f0)t x ,BW [dB]− E( f0)r x ,BW [dB]−αequip( f0)[dB]

dmat

=
10log

�

A2
t x N 1

f0
Si(2π)
π

�

− 10log
�

2
∫ f0+

f0
N

f0−
f0
N

Sr x( f )d f
�

−αequip( f0)[dB]

dmat

(13)

Each signal has associated a fundamental frequency, f0, so that, each measurement will evaluate just a point of

the curve, αmat( f ). This implies that a frequency sweep of the fundamental frequency, f0, has to be implemented

to obtain the curve αmat( f ) evaluated in the whole defined interval. It means to take, at least, one temporal

measurement for each frequency, thereby, restricting the number of analysed frequencies due to the increase of

the measurement time.

2.3. Chirp signal

Swept-frequency signals (chirp) are broadband signals which enable the estimation of the curve αmat( f ) with

a single measure. The mathematical expression of a linear chirp signal is showed in Eq. 14:

st x(t) = At x cos
�

2π f0 t +π∆ fmax
t2
�

rect

�

t − T
2

T

�

(14)
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∆ fmax
=

fmax − f0

T
(15)

where At x is the amplitude of the signal, f0 is the fundamental frequency, T is the active time of the signal and

∆ fmax
controls the maximum frequency ( fmax = f0+ T∆ fmax

) which is reached at T seconds (Eq. 15). An example

of this signal is shown in Fig. 1 where the selected parameters were: At x = 10, f0 = 10kHz, fmax = 1MHz and

T = 100µs.

The mathematical expression of the spectrum of a chirp signal is more complex than the aforementioned

analysed spectrums (Eq. 16)2, but it allows to estimate αmat( f ) applying Eq. 2 directly.

St x( f ) =

�

�

�

�

�

At x
Æ

2∆ fmax

e− jπ( f − f0)2
�

C

�

p
2

f − f0
Æ

∆ fmax

�

+ jS

�

p
2

f − f0
Æ

∆ fmax

�

−C

�

p
2
∆ fmax

T + f − f0
Æ

∆ fmax

�

− jS

�

p
2
∆ fmax

T + f − f0
Æ

∆ fmax

��

�

�

�

�

�

2 (16)

As shown in Fig. 1, the spectrum of the transmitted pulse is distributed along a frequency bandwidth. At the

expense of decreasing the SNR, broadband signals excite several frequencies simultaneously. A single acquisition

allows computing αmat( f ) curve from the theoretical transmitted and received spectra. Additionally, a pseudo

continuous attenuation curve is obtained instead of a discretization of αmat( f ).

Taking into account that the energy is distributed over the bandwidth of the chirp signal, the original chirp

signal which swepts from 10 KHz to 1MHz has been split up into smaller frequency intervals. The division can

be done in two different ways: keeping constant the energy in each interval (Mode 1) or keeping constant the

total energy (Mode 2). This analysis allows controlling the SNR of each interval and, therefore, comparing the

accuracy of each configuration versus the number of intervals.

Figure 2 compares the original chirp signal and both setups in time and frequency domains. The first column

corresponds to Mode 1: Constant Interval Energy. For this setup, the value T was fixed to 100 µs and the energy

to 5.2 mJ in each frequency interval. Therefore, the more intervals, the greater the total injected energy. In the

frequency domain, it can be noticed that the total energy is four times (four intervals) greater than in the original

chirp one.

The second column corresponds to Mode 2: "Constant Total Energy". In this configuration, the total energy

injected was fixed to 5.2 mJ by reducing parameter T depending on the number of intervals. Its spectrum shows

that the energy of each interval is reduced to keep constant the total energy (by keeping down the signal duration).

Table 1 summarizes the main parameters of these setups for different number of intervals.

2C(x) and S(x) are the Fresnel integrals defined as C(x) =
∫ x

0 cos(t2)d t and S(x) =
∫ x

0 sin(t2)d t.
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Figure 2: Comparison between a original chirp signal and its equivalent signals, Mode 1 (Constant Interval Energy) and Mode 2 (Constant
Total Energy)in the time domain (second row) and frequency domain (third row).

Table 1: Main parameters of each configuration: Constant Interval Energy and Constant Total Energy.

Number of Bandwidth/ Mode 1: Constant Interval Energy Mode 2: Constant Total Energy

intervals int [kHz] T/int [µs] E/int [mJ] ETot [mJ] T/int [µs] E/int [mJ] ETot [mJ]

1 990 100 5.2 5.2 100 5.2 5.2
2 495 100 5.2 10.4 50 2.6 5.2
4 247.5 100 5.2 20.8 25 1.3 5.2
6 165 100 5.2 31.2 16.6 0.9 5.2
8 123.75 100 5.2 41.6 12.5 0.6 5.2
10 99 100 5.2 52 10 0.5 5.2

3. Experimental

3.1. Materials and sample preparation

Mortar specimens according to Spanish standard UNE EN 196-1:2005 [18] were manufactured. In order to

improve the statistical analysis of the processed signals, three mixes were performed. Each mix is composed

of 450 grams of CEM I 52,5-R Portland cement, 1350 grams of silica sand and 225 grams of water. The result

of these mixes were nine specimens of 40x40x160 mm3 standardized mortar, with 0.5 water to cement ratio
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and 1:3 cement to aggregate ratio. After the iron moulds were filled with the fresh mortar, they were stored in

wet chamber (20 ◦C and 100% RH) for 24 hours. After that, specimens were released and cured under water

(saturated with calcium hydroxide) at 20 ◦C in the wet chamber for 90 days.

3.2. Test layout

An ultrasonic through-transmission setup was selected because it offers good penetration and good accuracy

for attenuation determination. The disposition of the equipment is shown in Fig. 3. The transducers (transmitter

and receiver) used were the K1SC (General Electric). Both are broadband transducers with a bandwidth centered

at 1 MHz.

SYNC.

OUTPUT

OUTPUTINPUT

OFF

ON TEST

1 2 3 4

Ext.

40 dB

Ch. 2

Ch. 1 USB

GPIB

SYNC.

Oscilloscope

Function generator

Tx Transducer Rx Transducer

Pre-amplifier

Computer

Specimen

Figure 3: Scheme of equipment used in a typical ultrasonic inspection.

The transmitter transducer was excited directly by a programmable signal generator (Agilent 33120A) while

the reception transducer was connected to a 40 dB preamplifier (Panametrics 5600B). The received and amplified

ultrasonic signal was captured using a digital oscilloscope (Tektronix DPO3014) with a sampling frequency of 25

MHz. Finally, a laptop was used to control the signal generator and to acquire and store the digitized signals. The

ultrasonic transducers were placed facing the longitudinal axis of the specimen. They were fixed by two plastic

clamps: a movable one to adjust to the specimen, and a fixed one. Ultrasonic gel at the transducer specimen

interface was used as an impedance coupling medium.

3.3. Calibration process

The calibration process was carried out with the emitter and receiver transducers face to face without any

material between them. In this situation, Eq. (2) simplifies into Eq. (17) (due to the absence of the tested

material):

αequip( f ) = St x( f )− Sr x( f ) [dB] (17)
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where St x( f ) [dB] is the energy spectral density (ESD) of the transmitted signal and Sr x( f ) [dB] is the ESD of

the received signal. Both variables must be computed according to the analyzed expressions seen in Section 2,

depending on the transmitted waveform. The testing process parameters were equal to the material analysis ones

except for the transmitted signal amplitude which was reduced up to 0.5 Vp, to avoid saturation.

Figure 4 shows the −αequip( f ) obtained from calibration process. Three curves correspond to the three

different transmitted signals: sinusoidal, burst and chirp signals. The fact that the curves are almost equivalent

(mean standard deviation is 2.67%) reveals that outlined expressions in the Section 2 are correct. This curves are

used to compensate the received signal during the material measurement process.
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Figure 4: Frequency response of measurement equipment (−αequip( f )).

4. Results and discussion

In this section, the results for the three types of signals are presented. The common parameter for all the

signals is the amplitude of the transmitted signal that was fixed to At x = 10V . For burst signal, the number

of cycles was N = 5. For sinusoidal and burst signals, the signal generator was set to sweep the fundamental

frequency, f0, from 1 kHz up to 1 MHz with increments of 5kHz and a delay of 1 second between each analysed

frequency. Therefore, for each specimen, 200 measurements were acquired (one for each fundamental frequency)

and a frequency response of 200 points is obtained for αmat . For chirp signal, the analysed bandwidth was the

same to sinusoidal and burst signals, but with just one measurement. Next subsections describe and compare the

results of the three signals applied to prismatic mortar specimens.

4.1. Sinusoidal signal

The attenuation curve, αmat( f ), obtained with a transmitted sinusoidal signal using the expressions raised in

Section 2.1 is shown in Fig 5. It can be noticed the positive trend of the attenuation values as frequency increases,

as well as its low dispersion between measures (the shadowed area represents the 90 % confidence intervals).
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The evolution of the attenuation curve is proportional to the internal composition of the material under study

(as frequency increases the attenuation parameter is sensitive to smaller particles/inhomogeneities). However,

the results of attenuation obtained for frequencies below 450 kHz are likely to correspond to the propagation of

surface waves, proportional to the mechanical properties of the material and its geometry and not so much to the

internal composition.
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Figure 5: Frequency-dependent ultrasonic attenuation, αmat ( f ), obtained with sinusoidal signal.

Along this Section, the attenuation curve obtained for sinusoidal input signal is defined as the reference

attenuation curve. In order to compare the different obtained results, it will be computed the root-mean-square

error (er rorRMS) expressed as in Eq. 18, where the function er ror( f ) is defined as Eq. 19.

er rorRMS =

√

√

√ 1
f2 − f1

∫ f2

f1

|er ror( f )|2d f (18)

er ror( f ) = α( f )−αre f erence( f ) (19)

4.2. Burst signal

The attenuation obtained with the burst sinusoidal signal is shown in Fig. 6. The result has the same trend

as the case of the pure sinusoidal signal but it seems to have an smoother behavior. It is due to the fact that

the attenuation herein is computed as the integral of the power spectrum in the main lobe of the fundamental

frequency (Eq. 11), which implies a frequency filtering. Fig. 7 compares the attenuation curves obtained with

sinusoidal and burst signals. The er rorRMS between both curves is 0.15 dB (5.2%).
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Figure 6: Frequency-dependent ultrasonic attenuation,
αmat ( f ), obtained with burst signal.
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Figure 7: Comparison between the frequency-dependent ul-
trasonic attenuation, αmat ( f ), obtained with sinusoidal (red)
and burst (blue) signals. Error curve (black), er ror( f ) be-
tween both aforementioned results.

4.3. Chirp signal

In this section, the results obtained for chirp signal are presented. Firstly, both setups ("Constant Interval

Energy" and "Constant Total Energy") are analyzed in terms of the er rorRMS and compared in order to determine

the optimal setup. To join this aim, the total bandwidth has been divided in different number of frequency

intervals, as it has been explained in Section 2.3. With the optimal setup, the results are offered and compared

with sinusoidal and burst signals.

Table 2 shows the mean value of er rorRMS for the two setups and the different number of intervals. The error

between them are quite similar although "Constant Interval Energy" is slightly lower than "Constant Total Energy"

as the number of intervals increases. The error is smaller for Mode 1 and as the number of intervals increases

seems logical since it enhances the injected energy for the analysis of the material. However, the differences

between configurations are not very significant because the material do not attenuate too much and any setup

allows enough SNR for the required analysis.

Table 2: RMS Error for intervals and setup mode

Number of Bandwidth per Mode 1: Constant Interval Energy Mode 2: Constant Total Energy
intervals interval [kHz] er rorRMS [dB] er rorRMS [dB]

1 990 0.22 ± 0.05 0.23 ± 0.04
2 495 0.21 ± 0.04 0.25 ± 0.04
4 247.5 0.22 ± 0.05 0.25 ± 0.03
6 165 0.20 ± 0.05 0.24 ± 0.04
8 123.75 0.21 ± 0.04 0.25 ± 0.02
10 99 0.20 ± 0.04 0.23 ± 0.03

Fig. 8 and 9 represent three curves: sinusoidal attenuation (as reference attenuation), chirp attenuation and

er ror( f ) for "Constant Interval Energy" setup for one specimen. Fig. 8 corresponds to 1 interval (the bandwidth
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is not divided), meanwhile Fig. 9 corresponds to 4 intervals. As it can be appreciated, both graphs offer similar

trends and errors despite having been used four independent signals in the latter case.
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Figure 8: Comparison between the frequency-dependent
ultrasonic attenuation, αmat ( f ), obtained with sinusoidal
(red) and original chirp (green) signals. Error curve (black),
er ror( f ) between both aforementioned results.
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Figure 9: Comparison between the frequency-dependent ul-
trasonic attenuation, αmat ( f ), obtained with sinusoidal sig-
nal (red) and original chirp signal (green) divided in four
intervals (Mode 1). Error curve (black), er ror( f ) between
both aforementioned results.

Taking into account that using the configuration "Constant Interval Energy" no significant improvement is

achieved dividing the chirp signal in subintervals, only 1 interval is selected as optimal setup for attenuation

estimation by means of the chirp signal. The attenuation obtained with chirp signal is shown in Fig. 10. Mean

attenuation curves of the three analyzed signals are superimposed and showed in Fig. 11 to be compared. Similar

behaviors can be appreciated for the three methods with minimal deviations. The behavior of chirp attenuation

is more similar to sinusoidal attenuation because none of them perform a bandwidth integration for attenuation

estimation as burst signal does. The er rorRMS (assuming sinusoidal curve as reference one) is 0.15 dB for

burst signal and 0.08 dB for chirp signal, it means, the three signal offer similar estimations for α( f ). Table 3

summarizes all the quantified results: the mean value of the deviation between measures, the er rorRMS , as well

as the acquisition time needed by each transmitted signal assuming that 200 points of the curve of attenuation

are analyzed.

Table 3: Comparison of results between different transmitted signals. The acquisition time has been computed as the sum of the transmitted
time (approximately 0.5 seconds) and the delay between measurements (1 second, enough the signal to stabilize).

Deviation [dB] er rorRMS [dB] Acquisition time [s]

Sinusoidal signal 0.35 - 300
Burst signal 0.28 0.15 300
Chirp signal 0.34 0.08 0.5
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Figure 10: Frequency-dependent ultrasonic attenuation,
αmat ( f ), obtained with chirp signal.
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Figure 11: Comparison between the frequency-dependent ul-
trasonic attenuation, αmat ( f ), obtained with sinusoidal (red),
burst (blue) and chirp (green) signals.

5. Conclusions

In this paper the study of frequency-dependent ultrasonic attenuation in strongly heterogeneous materials

was addressed. To determine the attenuation accurately over a wide frequency range, it is necessary to have

suitable excitation techniques. In this study, three kinds of transmitted signals have been analyzed, grouped

according to their bandwidth: narrowband and broadband signals. Its mathematical formulation has revealed the

relationship between the distribution of energy in their spectra and its immunity to noise. Sinusoidal and burst

signals present higher SNR but a large number of measurements to cover the frequency range is needed. However,

the linear swept-frequency signals (chirp) at the expense of lower SNR improve the effective bandwidth covering

a wide frequency range with a single measurement and equivalent accuracy. In the case of highly attenuating

materials, it is proposed the use of different configurations of the chirp signals which enable to inject more energy,

and therefore, to improve the sensitivity of the technique without involving a high time cost. So that, if the

attenuation of material and the sensitivity of measurements equipment allow the use of broadband signals, the

combination of this kind of signals and the suitable signal processing result in an optimal estimate of α( f ) with a

minimum measurement time. In future applications, the use of the optimal configuration for proper monitoring

of processes with high temporal variation is proposed. Such processes do not allow the acquisition of a large

number of measurements at a fixed fundamental frequency, and therefore, require the use of swifter techniques.
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