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CONVERGENCE OF MONOMIAL EXPANSIONS IN BANACH

SPACES

ANDREAS DEFANT AND PABLO SEVILLA-PERIS

Abstract. If E is a Banach sequence space, then each holomorphic function
defines a formal power series

∑
α cα(f)zα. The problem of when such an expansion

converges absolutely and actually represents the function goes back to the very
beginning of the theory of holomorphic functions on infite dimensional spaces.
Several very deep results have been given for scalar valued functions by Ryan,
Lempert and Defant, Maestre and Prengel. We go on with this study, looking at
monomial expansions of vector valued holomorphic functions on Banach spaces.
Some situations are very different from the scalar valued case.

1. Introduction, main results and preliminaries

If (En, ‖ ‖) is a finite dimensional Banach space and Y is any Banach space it

is a well known fact that every holomorphic (i.e. complex Fréchet differentiable)

function f : U → Y (U ⊆ En open and containing 0) has a power series expansion

f(z) =
∑
α∈Nn0

cα(f)zα

where zα = zα1
1 · · · zαnn and the coefficients cα(f) ∈ Y can be calculated either via

the Cauchy integral formula or partial derivations (see e.g. [12, Section 3.1] or [8]).

Our aim in this paper is to study the situation in the infinite dimensional setting.

We consider Banach sequence spaces (often also called Köthe sequence spaces) i.e.

Banach spaces E ⊆ CN of sequences such that `1 ⊆ E ⊆ `∞ satisfying that if x ∈ CN

and y ∈ E are so that |xn| ≤ |yn| for every n then x ∈ E and ‖x‖ ≤ ‖y‖. We denote

by en the n-th canonical unit vector (en = (δnk)k) and by En the span of {e1, . . . , en}
in E. Examples of this are the Minkowski `p-spaces and c0.

Let f be a holomorphic function on some open 0 ∈ U ⊆ E with values in Y .

The restriction of f to each U ∩ En has a power series expansion
∑

α c
(n)
α (f)zα.

It is easily seen that c
(n)
α (f) = c

(n+1)
α (f) for all Nn0 ⊆ Nn+1

0 and there is a unique

family (cα)
α∈N(N)

0

of coefficients (N(N)
0 denotes the set of multi-indices that eventually
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2 A. Defant, P. Sevilla-Peris

become 0) so that

(1) f(z) =
∑

α∈N(N)
0

cα(f)zα

In the finite dimensional setting the expression (1) converges for every z; in the

infinite dimensional setting, however, this is far from being true. Hence, for a given

holomorphic function we consider the set on which the monomial expansion con-

verges absolutely (we denote |z| = (|zn|)n):

mon f = {z ∈ E :
∑
α

‖cα(f)‖|z|α <∞}.

Also, for a given family of holomorphic functions F (U, Y ) we define its set of mono-

mial convergence

mon F (U, Y ) = {z ∈ E : for all f ∈ F (U, Y ) ,
∑
α

‖cα(f)‖|z|α <∞}.

Sets of monomial convergence of families of scalar valued functions were studied in

[8], where the following result [8, Example 4.9] can be found as a particular case of

a more general theorem.

Theorem A.

(1) If 1 ≤ r ≤ 2 then `1 ∩B`r ⊆ monH(B`r) ⊆ `1+ε ∩B`r .
(2) If r ≤ 2 then `(1/r+1/2)−1 ∩B`r ⊆ monH(B`r) ⊆ `(1/r+1/2)−1+ε ∩B`r .

This result includes previous results from [3, 4, 2, 14, 13]. Our aim is to continue

this study, describing the sets of monomial convergence of families of vector valued

holomorphic functions in `p-spaces. In order to do that we have at our disposal

the following facts that hold for every Banach sequence space E and every Banach

space Y (notation: E0 = span{ek}∞k=1 in E, and for A ⊆ E and B ⊆ F , A · B =

{(xnyn)n : (xn)n ∈ A , (yn)n ∈ B}).

`1 ∩BE ⊆ monH∞(BE , Y )(2) (
monH∞(B`∞ , Y ) · E0

)
∩BE ⊆ monH∞(BE , Y )(3)

`p′−ε ∩B`∞ ⊆ monH∞(B`∞ , Y ) whenever Y has cotype p.(4)

The first one (2) follows from an analysis of the proof of [8, Theorem 4.6] for scalar

valued functions, whereas (3) is [6, Lemma 3] and (4) is in [6, page 544] (see below

for a definition of cotype). These facts will be some of the key points in proving our

main result.

Given r > 1 we write r′ for the conjugate of r, that is 1
r + 1

r′ = 1. If r = 1 then

we use the convention 1
∞ = 0 and r′ =∞.
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Theorem 1.1. Let F (B`r , `q) be a set of bounded, holomorphic functions that con-

tains the linear, bounded functions f : `r → `q (restricted to B`r), then

(1) For each 1 ≤ r ≤ 2 fixed the following holds.

(a) If 1 ≤ q ≤ 2 then

`1 ∩B`r ⊆ mon F (B`r , `q) ⊆ `1+ε ∩B`r for every ε > 0.

(b) If 2 ≤ q then `1 ∩B`r = mon F (B`r , `q).

(2) For each 2 ≤ r fixed the following holds.

(a) If 1 ≤ q ≤ 2 then

`(1/2+1/r)−1−ε ∩B`r ⊆ mon F (B`r , `q) ⊆ `(1/2+1/r)−1+ε ∩B`r

for every ε > 0.

(b) If 2 ≤ q ≤ r then

`(1/q′+1/r)−1−ε ∩B`r ⊆ mon F (B`r , `q) ⊆ `(1/q′+1/r)−1 ∩B`r .

for every ε > 0.

(c) If 2 ≤ r ≤ q then `1 ∩B`r = mon F (B`r , `q).

A mapping P : X → Y between Banach spaces is called an m-homogeneous

polynomial if there exists a continuous m-linear L : X × · · · × X → Y such that

P (x) = L(x, . . . , x) for every x ∈ X. The space of m-homogeneous polynomials

between X and Y is denoted by P(mX,Y ); as usual, if Y = C we simply write

P(mX). The 1-homogeneous polynomials are simply the continuous, linear map-

pings from X to Y ; in this case we will write L (X,Y ) for P(1X,Y ). A polynomial

(of degree n) is P =
∑n

k=0 Pk, where each Pk is a k-homogeneous polynomial. A

mapping f : X → Y is holomorphic if and only if for every x ∈ X there exists ρ > 0

and (Pk)
∞
k=0 (each Pk a k-homogeneous polynomial) so that f(x+h) =

∑∞
k=0 Pk(h)

for all ‖h‖ ≤ ρ.

An m-linear mapping L is called symmetric if L(x1, . . . , xm) = L(xπ(1), . . . , xπ(m))

for every permutation π of {1, . . . ,m}. It is a well known fact [12] that each m-

homogeneous polynomial has a unique associated symmetric m-linear mapping.

An m-homogeneous polynomial on a Banach sequence space has a monomial ex-

pansion and the set of convergence can be considered. In this respect we have the

following result [8, Example 4.6]

Theorem B.

(1) If 2 ≤ r then `( 1
r
+m−1

2m
)−1 ⊆ mon P(m`r) ⊆ `( 1

r
+m−1

2m
)−1+ε.
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(2) If 1 < r ≤ 2 then `sm ⊆ mon P(m`r) ⊆ ` mr
r(m−1)+1

+ε where sm = max{1, (1r +

m−1
2m )−1}.

(3) `1 ⊆ mon P(m`1) ⊆ `1+ε.

We see that in the scalar valued case, the set of monomial convergence of spaces

of polynomials depends heavily on the degree. The situation changes strongly in

the vector valued setting; [6, Theorem 2] gives that `(cotY )′ ⊆ mon P(m`∞, Y ) ⊆
`(cotY )′+ε for every ε > 0 (see below for a precise definition of cotY ). Also, the

proof of Theorem 1.1 will show that mon P(m`r, `q) does not depend on the degree

of the polynomials.

If we consider smaller families of polynomials, namely those taking values in some

smaller `p, then the sets of monomial convergence again depend on the degree of the

polynomials. This situation is parallel to that for Dirichlet series already observed

in [9]. This parallelism will be studied in detail. We consider Pp(
m`r, `q), the space

of m-homogeneous polynomials from `r to `q that take values in some `p with p ≤ q.
Then our second main result is

Theorem 1.2. Fix 2 ≤ r ≤ ∞. The following hold.

(a) If 1 ≤ p ≤ q ≤ 2 then

`
(
m−2(1/p−1/q)

2m
+ 1
r
)−1 ⊆ mon Pp(

m`r, `q) ⊆ `(m−2(1/p−1/q)
2m

+ 1
r
)−1+ε

for every ε > 0.

(b) If 1 ≤ p ≤ 2 ≤ q then

`
(
m−2(1/p−1/2)

2m
+ 1
r
)−1 ⊆ mon Pp(

m`r, `q) ⊆ `(m−2(1/p−1/2)
2m

+ 1
r
)−1+ε

for every ε > 0.

(c) If 2 ≤ p ≤ r then `(1/p′+1/r)−1 = mon Pp(
m`r, `q).

(d) If 2 ≤ r ≤ p ≤ q then `1 = mon Pp(
m`r, `q).

We recall that a Banach space X is said to have cotype p with 2 ≤ p < ∞ (see

[11, Chapter 11]) whenever there is some constant C > 0 such that for each choice

of finitely many vectors x1, . . . , xn ∈ X we have( n∑
i=1

‖xi‖p
)1/p

≤ C
(∫ 1

0

∥∥ n∑
i=1

εi(ω)xi
∥∥2dω)1/2 ,

where εi are independent random variables that take values 1 and −1 with proba-

bility 1/2; as usual, the smallest such C is denoted by Cp(X). It is well known that

`p has cotype max{p, 2} . We denote by cotX the infimum over all p’s such that X

has cotype p.
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Following the notation from [3, 6], given a holomorphic function f defined on U

and a family F we define the numbers (M stands for ‘monomial’ ):

M(f) = sup{r : `r ∩ U ⊆ mon f}.(5)

M(F (U, Y )) = sup{r : `r ∩ U ⊆ mon F (U, Y )}.(6)

It is clear from the definition that M(F (U, Y )) = inf{M(f) : f ∈ F (U, Y )}.

With this notation Theorem A implies that M(H∞(B`r)) = 1 if 1 ≤ r ≤ 2 and

M(H∞(B`r)) = (1/r + 1/2)−1 for r ≥ 2; on the other hand, from Theorem B,

M(P(m`r)) = (1/r + (m − 1)/(2m))−1 if r ≥ 2. We see that M(H∞(B`r)) and

M(P(m`r)) are different and in the case of the polynomials, M depends on the

degree.

In the vector valued setting [6, Theorem 2] gives thatM(H∞(B`∞ , Y )) = M(P(m`∞, Y )) =

(cotY )′ for every infinite dimensional Y and our Theorem 1.1 shows

M(H∞(B`r , `q)) = M(P(m`r, `q)) =


1 if 1 ≤ r ≤ 2

(1/2 + 1/r)−1 if 1 ≤ q ≤ 2 ≤ r
(1− 1/q + 1/r)−1 if 2 ≤ q ≤ r
1 if 2 ≤ r ≤ q

As we see, the dependence on the degree vanishes in the infinite-dimensional setting.

This fact is analyzed in Theorem 1.2. We have from Theorem 1.2 that if 2 ≤ r ≤ ∞
then

M(Pp(
m`r, `q)) =


(m−2(1/p−1/q)2m + 1

r )−1 if 1 ≤ p ≤ q ≤ 2

(m−2(1/p−1/2)2m + 1
r )−1 if 1 ≤ p ≤ 2 ≤ q

(1/p′ + 1/r)−1 if 2 ≤ p ≤ r
1 if 2 ≤ r ≤ p ≤ q

The following diagrams show how the different indices S are distributed. Grey

parts indicate that the corresponding S is constant and black parts indicate that

the corresponding S is not defined.
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1
r

0
1

1
q

1

M(H∞(B`r , `q))

1
p

0 1
r 1

1
q

1

M(Pp(
m`r, `q)) for m, r ≥ 2 fixed.

1
r

0
1

1
q

1
p

1

M(Pp(
m`r, `q)) for m, p ≤ 2 fixed.

1
r

0 1
p 1

1
q

1
p

1

M(Pp(
m`r, `q)) for m, p ≥ 2 fixed.

2. Sets of monomial convergence of families of holomorphic

functions. The proof of Theorem 1.1

Let us remark first that if F2(BE , Y ) ⊆ F1(BE , Y ) then mon F1(BE , Y ) ⊆
mon F2(BE , Y ). We have a set F (B`r , `q) that contains all linear functions and

that is contained in the space of bounded, holomorphic functions. Then

(7) monH∞(B`r , `q) ⊆ mon F (B`r , `q) ⊆ mon L (`r, `q) ∩B`r .

Therefore, lower inclusions for monH∞(B`r , `q) will give lower inclusions for mon F (B`r , `q)

and upper inclusions for the sets of monomial convergence of the space of linear func-

tions will provide us with the upper inclusions in Theorem 1.1.

We begin with the lower inclusions. Taking E = `r and Y = `q in (2) we have the

lower inclusions in the cases (1a), (1b) and (2c) of Theorem 1.1.

We consider now the case (2a). First of all, if 1 ≤ q ≤ 2 and r =∞ we have that `q

has cotype 2 and then (4) immediately gives the conclusion. On the other hand, if
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1 ≤ q ≤ 2 ≤ r <∞, we fix ε > 0 and define s = (1/2+1/r)−1−ε. Then there exists

some u < 2 such that 1/s = 1/u + 1/r and `s = `u · `r. If z ∈ `s then there exist

ξ ∈ `u and ζ ∈ `r so that z = ξζ. Let M = 1 + supn |ξn|, hence ξ/M ∈ `u ∩ B`∞
and Mζ ∈ `r. This implies `s ⊆ (`u ∩B`∞) · `r. Now, since `q has cotype 2, we have

from (4) `u ∩B`∞ ⊆ monH∞(B`∞ , `q). We apply all this and (3) to finally get

`s ∩B`r ⊆
(
(`u ∩B`∞) · `r

)
∩B`r

⊆
(
(monH∞(B`∞ , `q) ∩B`∞) · `r

)
∩B`r ⊆ monH∞(B`r , `q)

The remaining case (2b) (i.e 2 ≤ q ≤ r) follows in the same way taking into account

that `q has cotype q.

We look now for the upper inclusions. We consider first the case (2b) (i.e. 2 ≤ q ≤ r).
If r < ∞ let 1/s = 1/q′ + 1/r, then 1/s′ + 1/r = 1/q and `s′ · `r = `q. This shows

that, given λ ∈ `s′ , the diagonal operator Dλ : `r → `q defined by Dλ(ξ) = (λnξn)n is

well defined and Dλ ∈ L (`r, `q). Clearly ck(Dλ) = λkek; hence if z ∈ mon L (`r, `q)

then
∞∑
k=1

|λkzk| =
∞∑
k=1

‖ck(Dλ)‖ |zk| <∞.

Since this holds for every λ ∈ `s′ we get that z ∈ `s and mon L (`r, `q) ⊆ `(1/q′+1/r)−1 .

If r =∞ the result follows in the same way, since the diagonal operator Dλ : `∞ → `q

is always well defined and continuous.

We get (2c) and (1b) from this case. First, if 2 ≤ r ≤ q (this is (2c)) then by means

of the inclusion id : `r ↪→ `q we have that F (`r, `r) ⊆ F (`r, `q). Letting q = r in

case (2b) we get mon F (`r, `q) ⊆ mon F (`r, `r) = `1 ∩B`r .
On the other hand, for (1b) (i.e. 1 ≤ r ≤ 2 and 2 ≤ q), we have F (`2, `q) ⊆ F (`r, `q)

(using in this case the inclusion id : `r ↪→ `2). Then, by the case r = 2 in (2b) we

have mon F (`2, `q) = `1 ∩B`r .

The case (1a) (i.e. 1 ≤ r ≤ 2 and 1 ≤ q ≤ 2) will follow from (2a) since we have

F (`2, `q) ⊆ F (`r, `q). Then, as before, mon F (`r, `q) ⊆ mon F (`2, `q) and taking

r = 2 in (2a) we get mon F (`2, `q) ⊆ `1+ε ∩B`r for every ε > 0.

We finally consider the case 1 ≤ q ≤ 2 ≤ r (this is (2a)). We choose z ∈
mon L (`r, `q)∩B`r and let us see that for every ε > 0, z ∈ `s+ε with 1/s = 1/2+1/r.

Since z ∈ mon L (`r, `q) we have
∑

k ‖Tek‖q |zk| <∞ for every linear and continuous

T : `r → `q or, equivalently, there exists C > 0 such that

(8)
∑
k

‖Tek‖q |zk| ≤ C sup
x∈B`r

‖Tx‖q.
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For every n and k1 < . . . < kn we can identify (span{ek1 , . . . , ekn}, ‖ ‖u) = `nu, then

by Chevét’s inequality (see [15, (43.2)]) there exists a continuous, linear mapping

Tn : `nr → `nq such that all the Tnekj are elements in `nq the entries of which consist

only on ±1 and such that supx∈B`nr
‖Tnx‖q ≤ Kn

1
2
− 1
r
+ 1
q for some constant K > 0

not depending on n. Clearly ‖Tnekj‖q = n1/q for all k = 1, . . . , n and we have from

(8)

(9)
1

n

n∑
j=1

|zkj | ≤ CKn
−(1/s).

Let us see now that z ∈ c0; if this were not the case, there would exist δ > 0 and an

increasing sequence (kj)
∞
n=1 of natural numbers so that |zkj | > δ for every j. Hence,

for each fixed n we have
∑n

j=1 |zkj | > nδ. But this contradicts the fact that the

right-hand side of (9) tends to 0. Thus there is some bijection σ : N→ N such that

z↓n = zσ(n). Let us take k1 < · · · < kn so that {σ(1), . . . , σ(n)} = {k1, . . . , kn}; then

0 ≤ z↓n ≤
1

n

n∑
j=1

|zσ(j)| =
1

n

n∑
j=1

|zkj | ≤
CK

n1/s
.

This implies
∑

n |zn|s+ε ≤ CK
∑

n n
−(1+ε/s) <∞ and z ∈ `s+ε for every ε > 0. This

completes the case (2a) and the proof of Theorem 1.1. �

Note that letting r = ∞ we again get the results for H∞(B`∞ , `q) we already

know from [6].

3. Sets of monomial convergence of spaces of homogeneous

polynomials. The proof of Theorem 1.2

Given a Banach sequence space E, Banach spaces X and Y and an operator

v : X → Y we consider the space of all m-homogeneous polynomials from E to Y

that factor through v, that is

(10) Pv(
mE, Y ) = {P ∈P(mE, Y ) : there exists Q ∈P(mE,X) , P = vQ}.

Each polynomial P has a monomial expansion
∑
|α|=m cα(P )zα and we consider

mon Pv(
mE, Y ), the set of monomial convergence. Let us note that by a simple

closed graph argument the space Pp(
m`r, `q) is simply Pv(

m`r, `q) from (10) when

we consider v = idp,q : `p ↪→ `q. We again begin with the lower inclusions. In the

same spirit as in [8, Theorem 3.7] and [6, Lemma 3] we have that for every Banach

sequence space E and every operator v from X to Y the following holds

(11) mon Pv(
m`∞, Y ) · E ⊆ mon Pv(

mE, Y ).

Indeed, let z = w0 · u ∈ mon Pv(
m`∞, Y ) · E. Given any P ∈ Pv(

mE, Y ), there

exists Q ∈ P(mE,X) such that P = vQ and we define Qu : `∞ → X by Qu(w) =
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Q(u·w) =
∑
|α|=m cα(Q)uαwα. Clearly this is well defined and is an m-homogeneous

polynomial on `∞ such that cα(Qu) = cα(Q)uα. Then∑
|α|=m

‖cα(P )‖ |z|α =
∑
|α|=m

‖cα(vQ)‖ |u|α|w0|α =
∑
|α|=m

‖v(cα(Q))uα‖ |w0|α.

This is finite since w0 ∈ mon Pv(
m`∞, Y ) and gives (11). Hence, taking Y = `q,

E = `r and v = id : `p ↪→ `q we have

mon Pp(
m`∞, `q) · `r ⊆ mon Pp(

m`r, `q).

We need then lower estimates for mon Pp(
m`∞, `q). Let us note that if `µ ⊆

mon Pp(
m`∞, `q) then we have

(12) `s = `µ · `r ⊆ mon Pp(
m`r, `q) with

1

s
=

1

µ
+

1

r
.

Following [10] we say that v : X → Y is a (r, 1)-summing operator of order m if

there exists a constant C > 0 such that( ∑
|α|=m

‖vcα(Q)‖r
)1/r

≤ C‖Q‖

for every Q ∈ P(m`∞, X). This concept is closely related to sets of monomial

convergence, as the following result shows

Proposition 3.1. If v : X → Y is (r, 1)-summing of order m then `r′ ⊆ mon Pv(
m`∞, Y ).

Proof. Let C > 0 be such that for everyQ ∈P(m`∞, X) we have (
∑

α ‖cα(vQ)‖r)1/r ≤
C‖Q‖. Now, if z ∈ B`r′ we can apply Hölder’s inequality to get∑

|α|=m

‖cα(vQ)‖|zα| ≤(
∑
|α|=m

‖cα(vQ)‖r)1/r(
∑
|α|=m

|zα|r′)1/r′

≤C‖Q‖(
∑
|α|=m

|zr′ |α)1/r
′
.

(13)

Let us recall now that
∑

α∈N(N) |ωα| <∞ if and only if ω ∈ `1∩DN. This implies that

the right-hand side of (13) is finite since z ∈ B`r′ . Hence B`r′ ⊆ mon Pv(
m`∞, Y )

and then `r′ ⊆ mon Pv(
m`∞, Y ). �

From [10, Lemma 3] we know that every (p, 1)-summing operator (1 ≤ p ≤ 2)

taking values on a cotype 2 space is (ρ, 1)-summing of order m with ρ = 2m
m+2(1/p−1/2) .

As a consequence of this and Proposition 3.1 we have that if v is (p, 1)-summing

with 1 ≤ p ≤ 2 and takes values in a cotype 2 space then

(14) `m−2(1/p−1/2)
2m

⊆ mon Pv(
m`∞, Y ).

When 1 ≤ p ≤ q ≤ 2 (this is case (a)) we know from the Bennett-Carl inequalities

(see [1, 5]) that idp,q is (ρ, 1)-summing, where 1
ρ = 1

p −
1
q + 1

2 . Then (12) and (14)

give 1
s = m−2(1/p−1/q)

2m + 1
r ; note that, since r ≥ 2, we have 1

s ≤
1
2 −

1
m(1p −

1
q ) + 1

2 < 1
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and s > 1.

The lower inclusion in case (b) follows from (12) and Proposition 3.1 and the fact

that idp,q is ( 2m
m+2(1/p−1/2) , 1)-summing of order m if 1 ≤ p ≤ 2 ≤ q [10, Theorem 1].

For the case (c) (i.e. 2 ≤ p ≤ r) [10, Theorem 1] gives that idp,q is (p, 1)-summing

of order m and the lower inclusion follows again from (12) and Proposition 3.1. In

both cases we have that the corresponding spaces are strictly bigger than `1 (except

when 2 ≤ p = r; in this case, it equals `1).

The lower bound for case (d) follows from (2).

Getting the upper inclusion in case (a) will require some work; we will treat this

later. The upper inclusion for (b) (i.e. 1 ≤ p ≤ 2 ≤ q) will follow from (a), since

2 ≤ q implies that Pp(
m`r, `2) ⊆ Pp(

m`r, `q) and this yields mon Pp(
m`r, `q) ⊆

mon Pp(
m`r, `2).

In order to give an upper inclusion for (c) (this is the case 2 ≤ p ≤ r), let us define

for each λ ∈ `s′ the diagonal operator Dλ : `r → `p by ξ  (λnξn)n. Since 1/p =

1/s′ + 1/r we have `p = `s′`r and Dλ ∈ L (`r, `p). Now, if z ∈ mon Lp(`r, `p) then∑
n ‖cn(Dλ)‖q|zn| <∞. The fact that this holds for every λ and that cn(Dλ) = λn

give that z ∈ `s. Hence mon Pp(
m`r, `q) ⊆ mon Lp(`r, `p) ⊆ `s.

In the remaining case (d) (that is 2 ≤ r ≤ p ≤ q) we clearly have mon Pp(
m`r, `q) ⊆

mon P(m`r, `p) and the result follows from Theorem 1.1.

We focus now in case (a) (i.e. 1 ≤ p ≤ q ≤ 2). The general idea is the same as that

we used for the upper inclusion in case (2a) in Theorem 1.1: to show that the set

of monomial convergence is contained in certain Lorentz space by means of getting

proper upper bounds for 1
n

∑
j |zkj |. However, the tools and techniques are in this

case more sophisticated. We follow some of the ideas in [8], and adopt a general

point of view. The next result is modelled along [8, Lemma 4.1], [6, Lemma 1].

Lemma 3.2. Let E be a Banach sequence space and v 6= 0 an operator between

Banach spaces X and Y . Then for every z ∈ mon Pv(
mE, Y ) there exists a constant

Kv,z > 0 such that for every P ∈Pv(
mE, Y ),∑

|α|=m

‖cα(P )‖ |zα| ≤ Kv,z inf{‖Q‖ : Q ∈P(mE,X) , P = vQ}.

Proof. Let z ∈ mon Pv(
mE, Y ) and for each n we define

Fn = {Q ∈P(mE,X) :
∑
|α|=m

‖cα(vQ)‖ |zα| ≤ n}.
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Since both v and cα (seen as a linear mapping on P(mE, Y ) with values in Y )

are continuous, each Fn is closed in P(mE,X). On the other hand, the fact that

z ∈ mon Pv(
mE, Y ) gives that

⋃
n Fn = P(mE,X). Then, by Baire’s Theorem

there exist N ∈ N, Q0 ∈P(mE,X) and s > 0 so that

Q0 + sBP(mE,X) ⊆ FN .

Now, given P = vQ ∈ Pv(
mE, Y ) we have cα(Q) = ‖Q‖

s (cα(Q0 + sQ
‖Q‖) − cα(Q0)),

hence∑
|α|=m

‖cα(P )‖ |zα| =
∑
|α|=m

‖cα(vQ)‖ |zα|

≤ ‖Q‖
s

 ∑
|α|=m

‖cα
(
v(Q0 +

sQ

‖Q‖
)
)
‖ |zα|+

∑
|α|=m

‖cα(vQ0)‖ |zα|

 ≤ 2N

s
‖Q‖.

This completes the proof of the Lemma. �

Following [7, 8] we consider now the arithmetic Bohr radius

A(Pv(
mEn, Y ), λ) = sup{ 1

n

n∑
i=1

ti : t ∈ Rn≥0 such that for all Q ∈P(mEn, X),∑
|α|=m

‖cα(vQ)‖ tα ≤ λ‖Q‖}.

(15)

As it happens in [8], getting upper bounds for the arithmetic Bohr radius will help

us to get upper inclusions for sets of monomial convergence. We will do this in two

steps. As a first step we have that for every z ∈ mon Pv(
mE, Y ) there exists λ ≥ 1

such that for every n and every choice of natural numbers k1 < · · · < kn

(16)
1

n

n∑
j=1

|zkj | ≤ A(Pv(
mEn, Y ), λ).

This is proved following exactly the same steps as [8, Lemma 4.2] using Lemma 3.2.

For our second step we fix 1 ≤ q ≤ 2 ≤ r, m ∈ N and λ ≥ 1 and we take as operator

v the inclusion idp,q : `p ↪→ `q for some p ≤ q. We then have that there exists some

constant C > 0 (independent from λ, p, q and r) such that

(17) A(Pidp,q(
m`nr , `q), λ) ≤ Cλ1/mn−(

m−2(1/p−1/q)
2m

+ 1
r
).

In order to prove this inequality we choose t ∈ Rn≥0 such that for every P ∈
Pidp,q(

m`r, `q) ∑
|α|=m

‖cα(P )‖qtα ≤ λ‖P‖P(m`r,`p).

We take now independent gaussian random variables gj with j = 1, . . . , n. It is a

well known fact (see e.g. [15]) that there exists a universal constant M > 0 such
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that
∫
‖
∑n

j=1 gj(ω)ej‖udω ≤Mn1/u. We know from [9, Lemma 4.2] that there exists

a constant Km > 0 depending only on m such that for every choice of scalars (λα)α

there exist cα ∈ `np whose entries consist only of ±1 satisfying

∥∥ ∑
|α|=m

λαcαz
α
∥∥

P(m`nr ,`
n
p )
≤ Km

(
sup
|α|=m

|λα|
√
α!

m!

)
(
‖ id : `nr → `n2‖m−1‖ id : `n2 → `np‖

∫
‖

n∑
j=1

gj(ω)ej‖r′dω

+ ‖ id : `nr → `n2‖m
∫
‖

n∑
j=1

gj(ω)ej‖pdω
)

≤Km,2

(
sup
|α|=m

|λα|
√
α!

m!

)(
(n1/2−1/r)m−1n1/p−1/2n1/r

′
+ (n1/2−1/r)mn1/p

)
=2Km,2

(
sup
|α|=m

|λα|
√
α!

m!

)
(n1/2−1/r)mn1/p.

Taking now λα = m!/α! and choosing the corresponding cα ∈ `np we get( n∑
j=1

tj

)m
=
∑
|α|=m

m!

α!
tα =

1

n1/q

∑
|α|=m

‖cα‖`q
m!

α!
tα

≤ λ

n1/q
‖
∑
|α|=m

cα
m!

α!
zα‖P(m`nr ,`

n
p )
≤ 2Km,2λ sup

|α|=m

√
m!

α!

1

n1/q
(
n1/2−1/r

)m
n1/p.

Taking them-th root and dividing by n gives (17) with C =
(

2Km,2 sup|α|=m

√
m!
α!

) 1
m

.

We are now ready to prove the upper inclusion we aimed at. Let z ∈ mon Pp(
m`r, `q).

Using (16) and (17) we can find some λ ≥ 1 such that for any choice of natural num-

bers k1 < · · · < kn

1

n

n∑
j=1

|zkj | ≤ A(P(m`nr , `q), λ) ≤ Cλ1/mn−(
m−2(1/p−1/q)

2m
+ 1
r
).

Proceeding as in the case (2a) of Theorem 1.1 it is proved that the decreasing

rearrangement z↓ satisfies supn z
↓
nn

m−2(1/p−1/q)
2m

+ 1
r ≤ K. Therefore z is in the Lorentz

space `
(
m−2(1/p−1/q)

2m
)−1,∞ ⊆ `

(
m−2(1/p−1/q)

2m
)−1+ε

for every ε > 0. This completes the

proof of (a) and hence of Theorem 1.2. �

Remark 3.3. Let us note that letting p = q in the previous result improves slightly

some of the lower inclusions for spaces of m-homogeneous polynomials given in

Theorem 1.1. More precisely we have for 2 ≤ r that `(1/2+1/r)−1 ⊆ mon P(m`r, `q) ⊆
`(1/2+1/r)−1+ε for every ε > 0 if 1 ≤ q ≤ 2, and `(1/q′+1/r)−1 = mon P(m`r, `q) when

2 ≤ q ≤ r.
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Remark 3.4. Given v : X → Y , a non-zero operator between Banach spaces,

BHm(v) is defined in [10] as the infimum over all r so that v is (r, 1)-summing of

order m. Then Proposition 3.1 gives that M(Pv(
m`∞, Y )) ≥ BHm(v)′ for every m.

A natural question now is: Is it true that M(Pv(
m`∞, Y )) = BHm(v)′ for every m?

Comparing Proposition 1.2 with [10, Theorem 1] we have a positive answer to this

problem when v = idp,q. We can also give positive answers in two more situations.

First of all, in the general case for m = 1: S1(Pv(
m`∞, Y )) = BH1(v)′ holds

for every operator v 6= 0. Indeed, let r be such that `r ⊆ mon Lv(`∞, Y ). For any

operator A : `∞ → X with coefficients ck we have that
∑

k ‖vckzk‖ < ∞ for every

z ∈ `r. This implies that (‖vck‖)k ∈ `r′ . Hence the mapping L (`∞, X) → `r′(Y )

that maps A to (vck) is well defined. A simple closed-graph argument shows that it

is continuous; hence there is a constant c > 0 such that
∑

k ‖vck‖ ≤ c‖A‖ for every

A. This gives that r′ ≥ BH1(v) and the conclusion.

We have another positive answer when v is (p, 1)-summing for every p > 1 (or 1-

summing). Indeed, on one hand we have that for every non zero operator v : X → Y

and every m the following holds

mon Pv(
mE, Y ) ⊆ ` 2m

m−1
+ε for all ε > 0.

Indeed, given P ∈ P(mE) we can define P̂ ∈ Pv(
mE;Y ) by fixing x0 ∈ X such

that v(x0) 6= 0 and doing P̂ (x) = P (x)v(x0). By means of this identification we can

consider P(mE) ⊆Pv(
mE;Y ). Hence, by [8, Theorem 4.5(i)]

mon Pv(
mE, Y ) ⊆ mon P(mE) ⊆ ` 2m

m−1
+ε for all ε > 0.

On the other hand, if v is (p, 1)-summing for every p > 1 and takes values in a

cotype 2 space (or if it is 1-summing) then by [10, Lemma 3] it is
(

2m
m+1 , 1

)
-summing

of order m. Then by Proposition 3.1 we have

` 2m
m−1
⊆ mon Pv(

m`∞, Y ) ⊆ ` 2m
m−1

+ε for all ε > 0 and

M(Pv(
m`∞, Y )) =

2m

m− 1
= BHm(v)′.

4. Monomial convergence and Dirichlet series

As we have already mentioned, the study of sets of convergence of monomial

expansions in infinitely many variables was closely related to the problem of the

convergence of Dirichlet series. It all goes back to H.Bohr who, in [3, 4] considered

for a Dirichlet series
∑

n an/n
s the abscissas of absolute convergence (σa) and of

uniform convergence (σu) and defined the number S = supσa − σu, where the

supremum ranges over all Dirichlet series. This number S gives the maximal width

of the strip (S stands then for ‘strip’ ) on which a Dirichlet series can converge
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uniformly but not absolutely. Bohr proved that S = 1/M(H∞(B`∞)) and by giving

a lower bound to M(H∞(B`∞)) he showed that S ≤ 1/2. The job was finished by

Bohnenblust and Hille who in [2] computed the precise value of M(P(m`∞)); this

gave lower bounds for M(H∞(B`∞)) and finally S = 1/2.

The vector valued case was studied in [6]. There Dirichlet series
∑

n an/n
s are

considered with an ∈ X, where X is some Banach space. Again, each Dirichlet

series has abscissas of uniform and absolute convergence; then S(X) = supσa − σu
(the supremmum ranging over all the Dirichlet series on X) gives the width of the

maximal strip on which a series can converge uniformly but not absolutely. Also

in this case we have [6, Theorem 3] that S(X) = 1/M(H∞(B`∞ , X)). The precise

value of M(H∞(B`∞ , X)) is computed in [6, Theorem 2] and then the precise value

of S(X) = 1− 1
cotX is given [6, Theorem 1].

We see that in both cases the theory of Dirichlet series and of sets of monomial

convergence of holomorphic functions on B`∞ are very closely related. For any non-

zero operator v : X → Y between Banach spaces the number Sm(v) = supσYa − σXu
is defined in [9]. Now, the supremmum is considered over all the m-homogeneous

Dirichlet polynomials on X (i.e. Dirichlet series
∑
an/n

s for which an is different

from 0 only if n has a prime number decomposition with exactly m factors), σXu is

the abscissa of uniform convergence of such a Dirichlet polynomial in X and σYa is

the abscissa of absolute convergence of
∑
v(an)/ns in Y . Our aim now is to show

that also in this case there is the same kind of relationship between Dirichlet series

and sets of monomial convergence expressed in the following result.

Theorem 4.1. For any operator v 6= 0 we have

Sm(v) =
1

M(Pv(m`∞, Y ))
.

We follow the same trends as in [6]. We begin with an analogue to [6, Lemma 2];

due to our particular setting, the proof can be simplified.

Lemma 4.2. Let E be a Banach sequence space and v 6= 0 an operator between

Banach spaces X and Y . Let ω = (ωn)n ∈ mon Pv(
mE, Y ) and z = (zn)n ∈ E so

that |zn| ≤ |ωn| for all but finitely many n. Then z ∈ mon Pv(
mE, Y ).

Proof. Let us choose r so that |zn| ≤ |ωn| for all n ≥ r. We fix P ∈Pv(
mE, Y ) and

Q ∈ P(mE,X) such that P = vQ. Let T : E × · · · × E → X be the symmetric

m-linear mapping associated to Q. For each choice n1, . . . , nr ∈ N0 such that n1 +

· · ·+ nr = N ≤ m and x1, . . . , xm−N ∈ E,

Tn1,...,nr(x1, . . . , xm−N ) = T (e1, n1. . ., e1, . . . , en, nn. . ., en, x1, . . . , xm−N ).
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Clearly Tn1,...,nr is a symmetric (m−N)-linear mapping from E to X; let Qn1,...,nr

be the associated polynomial. We have

cα(Qn1,...,nr) =

{
c(n1,...,nr,αr+1,αr+2,... )(Q) if α = (0, . . . , 0, αr+1, αr+2, . . . )

0 otherwise
.

Also, c(n1,...,nr,β)(vQ) = vc(n1,...,nr,β)(Q) = vcβ(Qn1,...,nr) = cβ(vQn1,...,nr) for every

|β| = m−N .

It is easily seen that mon Pv(
mE, Y ) ⊆ mon Pv(

m−1E, Y ); hence ω ∈ mon Pv(
mE, Y ) ⊆

mon Pv(
m−NE, Y ) for all 1 ≤ n ≤ N and∑

|α|=m

‖cα(P )‖ |zα|

≤
m∑
N=0

∑
n1+···+nr=N

∑
|β|=m−N

‖c(n1,...,nr,β)(P )‖|z1|n1 · · · |zr|nr |ωr+1|β1 |ωr+2|β2 · · ·

≤
m∑
N=0

∑
n1+···+nr=N

∑
|β|=m−N

‖c(n1,...,nr,β)(vQ)‖‖z‖N∞|ωr+1|β1 |ωr+2|β2 · · ·

=

m∑
N=0

∑
n1+···+nr=N

∑
|β|=m−N

‖c(0,...,0,β)(vQn1,...,nr)‖‖z‖N∞|ωr+1|β1 |ωr+2|β2 · · ·

=

m∑
N=0

‖z‖N∞
∑

n1+···+nr=N

( ∑
|α|=m−N

‖cα(vQn1,...,nr)‖|ω|α
)
<∞

The last expression is finite since each
∑
|α|=m−N ‖cα(vQn1,...,nr)‖|ω|α is finite be-

cause ω ∈ mon P(m−NE, Y ) and we then have finite sums of real numbers. This

completes the proof. �

Let (an)n ⊆ X be such that apα = 0 whenever |α| 6= m. We know from [6,

Corollary 2] that

σu = inf{µ ∈ R : there exists f ∈ H∞(B`∞ , X) , cα(f) =
apα

pµα
}

Now, if f is any such function, then we have that cα(f) = 0 if |α| 6= m. Then f is

an m-homogeneous polynomial and

(18) σu = inf{µ ∈ R : there exists Q ∈P(m`∞, X) , cα(Q) =
apα

pµα
}

With this we can give the Proof of Theorem 4.1. In order to keep the notation as

simple as possible we write S = M(Pv(
m`∞, Y )). Let us show first that Tm(v) ≤

1/S. Let us take an m-homogeneous Dirichlet polynomial
∑
|α|=m apα/(p

α)s and let

σu and σa be the corresponding abscissas of uniform and absolute convergence. Fix

δ > 0 and let us show that ∑
|α|=m

‖vapα‖
(pα)σu+

1
S
+δ

<∞.
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By (18) we can choose Q ∈P(m`∞, X) such that cα(Q) =
apα

(pα)σu+δ/3
. Then∑

|α|=m

vapα

(pα)σu+δ/3
zα ∈Pv(`∞, Y ).

Let now r = 1
S + 2δ

3 and q = ( 1
S + δ

3)−1. Then rq > 1 and
(

1
prn

)
n
∈ `q ∩B`∞ , where

(pn)n denotes the sequence of prime numbers.

On the other hand q < S; by the very definition of M(Pv(
m`∞, Y )) this implies

that `q ⊆ mon Pv(
m`∞, Y ). Then∑

|α|=m

‖vapα‖
(pα)σu+

1
S
+δ

=
∑
|α|=m

‖vapα‖
(pα)σu+

δ
3
+ 1
S
+ 2δ

3

=
∑
|α|=m

‖vapα‖
(pα)σu+

δ
3

( 1

pr
)α

=
∑
|α|=m

∥∥cα(vQ)(
1

pn
)α
∥∥ <∞;

and we have Tm(v) ≤ 1/S. In order to prove the converse inequality let us begin

by fixing 0 < δ < 1/S and defining q = ( 1
S + δ

2)−1 > S. Let ε = (εn)n ∈ `q ∩ B`∞
such that ε 6∈ mon Pv(

m`∞, Y ). Let us note that if z = (zn)n ∈ mon Pv(
m`∞, Y ),

then for every bijective σ : N→ N we have (zσ(n))n ∈ mon Pv(
m`∞, Y ) (see e.g. the

argument given in [6, page 550]). Hence we can assume that εn is non-increasing

and then that (n1/qεn)n is bounded. By the prime number theorem there exists

K > 0 such that pn ≤ Kn log n for every n ≥ 2. Then let us define ηn =

(
p

1
S
−δ

n

)−1
and we have

0 <
εn
ηn

= εnp
1
S
−δ

n = εnn
1/q p

1
S
−δ

n

n1/q
= εnn

1/q p
1
S
−δ

n

n
1
S
− δ

2

= εnn
1/q
(pn
n

) 1
S
−δ 1

n
δ
2

≤ εnn1/q
(
K log n)

1
S
−δ

n
δ
2

.

The last sequence tends to 0, hence there exists n0 so that εn ≤ ηn for every

n ≥ n0 and this implies by Lemma 4.2 that η 6∈ mon Pv(
m`∞, Y ). This means that

there exists P ∈ Pv(
m`∞, Y ) such that

∑
|α|=m ‖cα(P )‖ |η|α = ∞. Let us write

P = vQ and apα = cα(Q). Since
∑
|α|=m

cα(Q)
p0α

zα is the monomial series expansion

of Q ∈ P(m`∞, X) we have that the series
∑
|α|=m

apα

(pα)s has abscissa of uniform

convergence σu ≤ 0. Hence σa − σu ≥ σa. On the other hand∑
|α|=m

‖vapα‖
(pα)

1
S
−δ

=
∑
|α|=m

‖vcα(Q)‖ |η|α =∞.

Therefore σa − σu ≥ σa ≥ 1
S − δ; this gives that Tm(v) ≥ 1

S − δ for all δ and finally

Tm(v) ≥ 1
S . �
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