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DIAGONAL EXTENDIBLE MULTILINEAR OPERATORS BETWEEN
`p-SPACES

DANIEL CARANDO, VERÓNICA DIMANT, PABLO SEVILLA-PERIS, AND ROMÁN VILLAFAÑE

Abstract. We study extendibility of diagonal multilinear operators from `p to `q spaces.
We determine the values of p and q for which every diagonal n-linear operator is ex-
tendible, and those for which the only extendible ones are integral. We address the same
question for multilinear forms on `p.

Introduction

There is no Hahn-Banach Theorem for linear/multilinear operators, nor for multilin-
ear forms. This makes extendibility of such mappings a subject of interest, which has
connections with different branches of functional analysis and Banach space theory (local
theory, tensor norms, geometry of Banach spaces, etc.). A multilinear operator (on some
Banach space) T ∈ L(nE,F ) is extendible (see [10, 16, 21, 22]) if for every Banach space X
containing E there exists T̃ ∈ L(nX,F ) extending T . For fixed Banach spaces E and F ,
one may wonder which multilinear operators from E to F are extendible. There are two
extreme cases which are particularly important: sometimes extendible n-linear operators
are “as few as possible” and sometimes they are “as many as possible”. More precisely,
since integral multilinear operators are always extendible, the “as few as possible”-case
occurs when only the integral mappings are extendible. On the other hand, the “as many
as possible”-situation is when all the multilinear operators are extendible. This problem,
for bilinear forms on Banach sequence spaces, has been recently addressed in [15].

In this article we focus on particular sequence spaces: `p-spaces. The study of diagonal
operators on `p-spaces started in the early 1970’s with the work of (among others) Carl
[17], König [23] and Pietsch [30] and by now they are a well established part of the
theory. On the other hand, in [10, 12] we have studied diagonal multilinear forms on
these spaces (see also [13] where multilinear forms on Lorentz sequence spaces were also
considered). In this paper we carry on with the study of diagonal multilinear forms, and
also extend it to diagonal multilinear operators. In this context, we want to characterize
the extendible elements, and the extreme cases mentioned above must be rephrased for
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diagonal mappings. Thus, we want to determine which values of p, q and n make the set of
diagonal extendible n-linear operators from `p to `q equal to the set of integral mappings,
which make it equal to the whole space of continuous diagonal n-linear operators from
`p to `q, and which make it something in between. For this, we relate properties of the
multilinear mapping to summability properties of its coefficients. The conclusions of the
main result of the article (Theorem 3.1) are illustrated in Tables 1 and 2 in Section 1.

Section 2 is devoted to diagonal multilinear forms. Several steps in the scalar valued
settings were given in [10, 12]. It is known that in `1 every continuous (and, in particular,
every extendible) diagonal form is integral. Also, every diagonal form on c0 or `∞ is
nuclear. For the non-trivial range of p, Proposition 3.1 in [12] shows that for p ≥ 2 a
diagonal n-linear form on `p is extendible if and only if it is nuclear. Corollary 3.1 in
[12] shows that there exists a diagonal n-linear form that is extendible but not nuclear in
every `p with 2(n−1)

2n−3
< p < 2, leaving unsolved the question for the remaining values of p.

We complete here these results. For example, a consequence of Theorem 2.1 is that there
are extendible diagonal n-linear forms that are not integral on `p for every 1 < p < 2 and
n ≥ 3. Another one is that there are non-extendible diagonal n-linear forms in every `p
for 1 < p <∞.

Our main theorem, regarding multilinear operators, and its proof is the content of
Section 3. This result gives a rather complete account of the summability conditions of
the coefficients of a multilinear operator T from `p to `q which are necessary and sufficient
for T being integral or extendible. As a consequence, the existence (or lack) of diagonal
multilinear operators which are not extendible, or which are extendible but not integral,
is established for every p and q (see Table 2).

As a byproduct of some of our results we show that spaces of diagonal multilinear
forms/operators behave very differently to spaces of all multilinear forms/operators. For
example, there are always non-extendible diagonal bilinear forms on `p × `1 if p > 1

but, surprisingly, every diagonal trilinear form on `p × `1 × `1 is extendible (see the com-
ments after Lemma 2.2). See Proposition 3.4 and the subsequent comments for another
unexpected behaviour.

For the theory of polynomials and multilinear mappings on Banach spaces we refer the
reader to the books of Dineen [20] and Mujica [27].

1. Preliminaries

We consider Banach spaces over K = R or C. For simplicity, we write some of our
proofs for complex spaces, but all the results hold for both the real and complex cases.
For Banach spaces E and F , we denote by L(nE,F ) the space of continuous n-linear
mappings from E × · · · × E into F . This is a Banach space if we consider the norm

‖T‖ = sup{‖T (x1, . . . , xn)‖ : xi ∈ BE, i = 1, . . . , n}.
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Here BE denotes the closed unit ball of E.

We are going to work mainly with Minkowski `p-spaces and nuclear, integral and ex-
tendible multilinear mappings between them. We recall their definitions. Given 1 < p <

∞, we denote its conjugate by p′, that is the number satisfying 1 = 1
p

+ 1
p′
. As usual, 1

and ∞ are conjugate to each other.

An n-linear mapping T ∈ L(n`p, `q) is said to be nuclear (see [1]) if it can be written
as

(1) T (x1, . . . , xn) =
∞∑
j=1

γ
(j)
1 (x1) · · · γ(j)

n (xn)yj for all x1, . . . , xn ∈ `p,

where γ(j)
i ∈ `p′ , yj ∈ `q, for every i, j, and

∑∞
j=1 ‖γ

(j)
1 ‖ · · · ‖γ

(j)
n ‖ · ‖yj‖ < ∞. We denote

by N (n`p, `q) the space of nuclear n-linear mappings from `p × · · · × `p to `q. This is a
Banach space if we endow it with the norm

‖T‖N = inf

{
∞∑
j=1

‖γ(j)
1 ‖ · · · ‖γ(j)

n ‖ · ‖yj‖

}
,

where the infimum is taken over all the nuclear representations of T as in (1).
An n-linear mapping T ∈ L(n`p, `q) is said to be integral if there exists a regular

`q-valued measure G of bounded variation on the product B`p′
× · · · ×B`p′

such that

T (x1, . . . , xn) =

∫
B`p′

×···×B`p′
γ1(x1) · · · γn(xn) dG(γ1, . . . , γn),

for all (x1, . . . , xn) ∈ `p × · · · × `p. The integral norm of T is defined as the infimum of
the total variation of G over all measures G representing T . With this norm I(n`p, `q),
the space of all integral n-linear mappings from `p × · · · × `p to `q is a Banach space.
There are two general definitions of integral n-linear operators in the literature (Grothendieck
and Pietsch integral) but it is known [33] that in our context both coincide.

We denote by E(n`p, `q) the space consisting of all extendible mappings in L(n`p, `q); it
is a Banach space if we endow it with the norm

‖T‖E = inf{C > 0 :

∀E ⊃ `p there exists an extension T̃ ∈ L(nE, `q) with ‖T̃‖ ≤ C}.

Every nuclear n-linear mapping is clearly integral. The reverse inclusion sometimes
holds: for 1 < p <∞, the space `p is Asplund and then integral multilinear operators on
`p are nuclear [1]. On the other hand, by [14], integral n-linear operators are extendible.
Thus, we have the following chain of embeddings:

(2) N (n`p, `q) ⊆ I(n`p, `q) ⊆ E(n`p, `q) ⊆ L(n`p, `q).
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Regarding the extendible operators we have two extreme cases: when only the integral
operators are extendible or when all operators are so. Our main aim in this paper is to
try to characterize these two cases for a class of distinguished multilinear operators, the
so called ‘diagonal mappings’. We will also determine when nuclear and integral diagonal
mappings coincide (this last question has interest only for p = 1 and p =∞, by the above
mentioned result in [1]).

An n-linear operator T ∈ L(n`p, `q) is said to be diagonal if there exists a sequence
α = (α(k))k such that for all x1, . . . , xn ∈ `p we can write

T (x1, . . . , xn) =
∑
k

α(k)x1(k) · · · xn(k) ek ,

where ek denotes the k-th canonical unit vector: ek(j) = δk,j for k, j ∈ N. We denote by
Tα the diagonal multilinear mapping given by the sequence α.

Recall that a Banach sequence space is a Banach space E ⊆ KN of sequences in K such
that `1 ⊆ E ⊆ `∞ satisfying that if x ∈ KN and y ∈ E are such that |x(k)| ≤ |y(k)| for
all k ∈ N then x ∈ E and ‖x‖ ≤ ‖y‖.

Definition 1.1. For a Banach ideal of n-linear mappings A = N , I, E ,L we define the
set

`n(A, p, q) = {α ∈ `∞ : Tα ∈ A(n`p, `q)},

which is a Banach sequence space with the norm ‖α‖
`n(A,p,q)

= ‖Tα‖A(n`p,`q).

Then, `n(A, p, q) describes the space of diagonal n-linear mappings from `p to `q that
belong to the ideal A. For example, for L the ideal of continuous multilinear operators,
it is easy to check using Hölder’s inequality that

`n(L, p, q) 1
=


`∞ if p ≤ nq

`r if p > nq

where r is defined by 1
r

= 1
q
−n

p
. The notation E 1

= F means that E and F are isometrically
isomorphic. Then the chain of embeddings (2) implies that

`n(N , p, q) ⊆ `n(I, p, q) ⊆ `n(E , p, q) ⊆ `n(L, p, q)

Our aim is to study when these inclusions are strict or not. A description of these sequence
spaces is given in our main result (Theorem 3.1). As an immediate consequence of it we
obtain the following tables.
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`n(N , p, q) 6= `n(I, p, q) p = 1 and q =∞
`n(N , p, q) = `n(I, p, q) otherwise

Table 1

`n(I, p, q) = `n(E , p, q) = `n(L, p, q) p = 1 and q =∞
p =∞ and q = 1

`n(I, p, q) = `n(E , p, q) 6= `n(L, p, q) 2 ≤ p <∞ and q = 1

`n(I, p, q) 6= `n(E , p, q) = `n(L, p, q) p = 1 and 1 ≤ q <∞
1 < p <∞ and q =∞
p =∞ and 1 < q ≤ ∞

`n(I, p, q) 6= `n(E , p, q) 6= `n(L, p, q) 1 < p < 2 and q = 1

1 < p <∞ and 1 < q <∞

Table 2

2. Diagonal multilinear forms in `p spaces

There is a natural isometric identification between L(n`p, `q) and the space of continuous
(n + 1)-linear applications from `p × · · · × `p × `q′ to K (for q = 1, we put c0 instead of
`∞ for the identification to be onto). The definitions of nuclear, integral and extendible
n-linear operator can be modified in an obvious way to consider mappings defined on
`p1 × · · · × `pn with values on K. It can be easily seen that this identification is also an
isometric isomorphism for the classes of nuclear and integral mappings. However, this is
not the case for the extendible operators. An extendible (n + 1)-linear form defined on
`p × · · · × `p × `q′ produces an extendible n-linear operator from `p × · · · × `p to `q (since
`1 is complemented in its bidual, for q = 1 we can use either `∞ or c0 instead of `q′).
However, the converse is not true, as we will see in Remark 3.6. Anyway, it will be helpful
for our general goal to look first at multilinear forms.

One of the aims in [10, 12] was precisely to determine when the diagonal extendible
multilinear forms are few (that is, they coincide with the integral multilinear forms) and
when they are as many as they can (all continuous multilinear forms are extendible). The
case 1 < p < 2 was left open and we fill this gap here.

For a sequence α, the diagonal n-linear form φα ∈ L(n`p) associated to α is given by

φα(x1, . . . , xn) =
∑
k

α(k)x1(k) · · ·xn(k)

for x1, . . . , xn ∈ `p (whenever this mappings is well defined). Also, like in Definition 1.1,
for A = N , I, E ,L we define `n(A, p) = {α ∈ `∞ : φα ∈ A(n`p)}, which again is a Banach
sequence space with the norm ‖α‖

`n(A,p)
= ‖φα‖A(n`p)

.
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The following theorem describes the sequence spaces `n(N , p), `n(I, p), `n(E , p) and
`n(L, p). One consequence is that the inclusion `n(I, p) ⊂ `n(E , p) is strict for all 1 < p < 2

and n ≥ 3, while the inclusion `n(E , p) ⊂ `n(L, p) is strict for 1 < p <∞ and n ≥ 2.

Theorem 2.1.

(1) `n(N , 1) = c0 ( `∞ = `n(I, 1) = `n(E , 1) = `n(L, 1).
(2) If 1 < p < 2 then

`2(N , p) = `2(I, p) = `2(E , p) = ` p′
2

( `∞ = `2(L, p),

For n ≥ 3, `n(N , p) = `n(I, p) = `
max( p

′
n
,1)
(` p′

2

= `n(E , p) ( `∞ = `n(L, p).

(3) If 2 ≤ p <∞ then

`n(N , p) = `n(I, p) = `n(E , p) = `1 ( `n(L, p) =

{
` p
p−n

for n < p .

`∞ for n ≥ p .

(4) `n(N ,∞) = `n(I,∞) = `n(E ,∞) = `n(L,∞) = `1.

The description of `n(L, p) follows easily from Hölder’s inequality. Also, the charac-
terizations of `n(N , p) and `n(I, p) and most of the relations with `n(E , p) where already
proved in [10, 12], but we have decided to bring them all here to have a more complete
picture. The only thing we need to prove is, in item (2), the equality `n(E , p) = ` p′

2

. This
will be showed in Proposition 2.3 below. We remark that the case 1 < p < 2 shows an
important difference between bilinear forms and n-linear forms with n ≥ 3. In fact, a
consequence of a deep result of Pisier [31] is that every extendible bilinear form defined
on a Banach space with cotype 2 is integral (see [10, 16], where Pisier’s result is “read”
in a fashion more akin to our framework). In particular, this holds for bilinear forms on
`p with 1 ≤ p ≤ 2. However, by the previous theorem, for n-linear forms with n ≥ 3 and
every 1 < p < 2 we have diagonal extendible n-linear forms which are not integral.

For the following result, we need to define some mappings that will be used again later.
We consider a Walsh matrix; i.e., a matrix (akr)

N
kr=1 such that |akr| = 1 and

N∑
r=1

arkārl = N δk,l .

Assume also that the matrix is symmetric. Examples of such matrices in the complex
case are the Fourier matrices, given by akr = e

2πi
N
rk [18, Section 8.5]. For the real case

one can consider Hadamard matrices (see [26, Section 3]) defined for N that are powers
of 2 and that are generated by blocks as follows

A2 =

(
1 1

1 −1

)
, A2n+1 =

(
A2n A2n

A2n −A2n

)
.
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We define a Toeplitz-like operator ξN : `Np → `N∞ by

(3) ξN(x) =
N∑
k=1

(
N∑
r=1

ākrx(r)

)
ek.

This operator satisfies ‖ξN : `Np → `N∞‖ ≤ ‖ id : `Np → `N1 ‖ ‖ξN : `N1 → `N∞‖ ≤ N
1
p′ . Finally,

for n ≥ 3 we introduce the following modification of the n-linear form on `N∞ studied by
Bohnenblust and Hille in [4, Section 2]:

(4) LN(x1, . . . , xn) =
N∑

j,k,l=1

ajlalkx1(j)x2(k)x3(l) · · · xn(l).

Actually, this n-linear form is built taking the trilinear mapping defined by Bohnenblust
and Hille and giving an n-linear extension of this definition maintaining the norm of the
original trilinear form. Since on `N∞ the extendible and the usual norms coincide, we have
by [4, Section 2]

(5) ‖LN‖E(n`N∞)
= ‖LN‖L(n`N∞)

= N2 .

Thanks to the properties of the coefficients (akr)kr we have:

LN(ξN(x1), ξN(x2), x3, . . . , xn) =
N∑

j,k,l=1

ajlalk · ξN(x1)(j) · ξN(x2)(k) · x3(l) · · ·xn(l)

=
N∑

r,s,l=1

x1(r)x2(s)x3(l) · · ·xn(l)
N∑
j=1

ajlājr

N∑
k=1

alkāks

=
N∑

r,s,l=1

x1(r)x2(s)x3(l) · · ·xn(l)Nδl,rNδl,s

= N2

N∑
r=1

x1(r)x2(r)x3(r) · · ·xn(r) .(6)

Lemma 2.2. Every diagonal n-linear form on `1× `1× `p1 × · · · × `pn−2 with 1 ≤ pi ≤ ∞
and n ≥ 2, is extendible.

Proof. The case n = 2 is immediate: diagonal bilinear forms on `1 × `1 are integral, and
therefore extendible. For n ≥ 3, any diagonal n-linear form φα : `1×`1×`p1×· · ·×`pn−2 →
K has a factorization as

`1

Dα
��

× `1

i

��

× `p1

i
��

× · · · × `pn−2

i
��

φα
// K

`1 × `1 × `p1 × · · · × `pn−2

Φ

@@��������

,
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where Dα : `1 → `1 is the diagonal operator given by Dα((x(k))k) = (α(k)x(k))k and

(7) Φ(x1, . . . , xn) =
∞∑
k=1

x1(k) · · ·xn(k).

Then by the ideal property of extendible multilinear forms, it is enough to show that the
n-linear form Φ is extendible on `1 × `1 × `p1 × · · · × `pn−2 . We denote by ΦN the form
defined by summing the first N terms in (7).

We consider the operator ξN defined in (3) with domain `1 (thus ‖ξN‖ ≤ 1) and the
n-linear form LN as in (4). As a consequence of (6) and (5) we have

‖ΦN‖E(n`1×`1×`p1×···×`pn−2 )
≤ 1

N2
‖LN‖E(n`N∞)

‖ξN‖2

n−2∏
i=1

‖ id : `Npi → `N∞‖

≤ 1

N2
N2 = 1 .

Therefore, the extendible norms of the n-linear forms ΦN (N ∈ N) are uniformly bounded.
A multilinear version of the density lemma [18, Section 13.4], stated in [13, Lemma 5.4],
implies that Φ is extendible (and its extendible norm is one). �

The previous lemma is meant to be a tool which will be used in the next proposition and
also in the following section. However, as a byproduct of this lemma, a rather unexpected
behaviour of diagonal multilinear forms is illustrated. It is easy to see that, if every
n-linear form on E1 × · · · × En (Ej Banach spaces) is extendible, then every (n − 1)-
linear form on any (n − 1)-tuple of the previous spaces is extendible. This is a property
shared by most classes of multilinear forms, and is related to the notions of “Property B”,
“coherence” and ideals “closed under differentiation” developed in [5, 7, 11]. However, this
is no longer the case when we restrict ourselves to diagonal multilinear forms. Indeed,
Lemma 2.2 shows that every diagonal trilinear form on `1 × `1 × `2 is extendible, while
we know from [15] that there are non-extendible diagonal bilinear forms on `1 × `2.

In order to prove the next proposition, recall that, for s ≤ rn, an n-linear form φ ∈
L(n`p) is said to be absolutely (r; s)-summing [2, 25] if there exists a constant K > 0

such that for every x(k)
j ∈ `p, j = 1, . . . , n, k = 1, . . . , N ,(

N∑
k=1

|φ(x
(k)
1 , . . . x(k)

n )|r
) 1

r

≤ K · ws
(

(x
(k)
1 )Nk=1

)
· · ·ws

(
(x(k)

n )Nk=1

)
,

where the weakly s-summing norm ws of the sequence (x
(k)
j )Nk=1 is given by

ws

(
(x

(k)
j )Nk=1

)
= sup

γ∈B`p′

(
N∑
k=1

|γ(x
(k)
j )|s

) 1
s

.

There are several possible extensions of the notion of absolutely summing operators to
the multilinear setting [9, 28]. Although the one given above is not considered, in some
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sense, a good generalization of the linear concept, it will prove useful for our purposes.
Extendible multilinear mappings are those that can be factored through an L∞ space (due
to the injectivity of these spaces). Thus, Grothendieck’s multilinear inequality allows us
to derive (see [3] or [29, Corollary 2.5]) that any extendible n-linear form is absolutely
(1; 2)-summing (for Grothendieck inequality and the notions of cotype and absolutely
summing linear operators we refer the reader to the classical book [19]). From this result
and an interpolation technique, a stronger statement is obtained in [6, Theorem 3.15]: all
extendible n-linear forms are absolutely (r; 2r)-summing, for any r ≥ 1.

Proposition 2.3. Let 1 < p < 2 and n ≥ 2. Then, `n(E , p) = ` p′
2

.

Proof. Let φα ∈ E(n`p) be a diagonal extendible n-linear form. Since φα is absolutely
(p
′

2
; p′)-summing, there is a constant K such that, for all N ,(

N∑
k=1

|αk|
p′
2

) 2
p′

=

(
N∑
k=1

|φα(ek, . . . , ek)|
p′
2

) 2
p′

≤ K · wp′
(
(ek)

N
k=1

)n
= K,

which means that α belongs to ` p′
2

.

For the reverse inclusion, let α ∈ ` p′
2

and define (σ(k))k = (α(k)
1
2 )k (with the suitable

modification in the real case). We consider the diagonal operator Dσ : `p → `1, given by
Dσ((x(k))k) = (σ(k)x(k))k and we have the following commutative diagram

`p

Dσ
��

× `p

Dσ
��

× `p

i
��

× · · · × `p

i
��

φα
// K

`1 × `1 × `p × · · · × `p

Φ

BB�������

.

Since Φ is extendible and has extendible norm one (by Lemma 2.2 and its proof) we
obtain that φα is extendible and

‖φα‖E(n`p) ≤ ‖Φ‖E(n`1×`1×`p×···×`p) · ‖Dσ‖2 = ‖α‖` p′
2

. �

3. Diagonal multilinear operators

In this section, we state and prove our main result. For p, q, n fixed we define the
following numbers, that will be used along the rest of the paper:

r =
(1

q
− n

p

)−1

t = max

{(
n

p′
+

1

q

)−1

, 1

}
.(8)

Theorem 3.1. For n ≥ 1, the following assertions hold.

(1) Let p = 1,
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(a) if 1 ≤ q <∞, then

`n(N , 1, q) = `n(I, 1, q) = `q ( `∞ = `n(E , 1, q) = `n(L, 1, q) ;

(b) if q =∞, then

`n(N , 1,∞) = c0 ( `∞ = `n(I, 1,∞) = `n(E , 1,∞) = `n(L, 1,∞) .

(2) Let 1 < p < 2,
(a) if q = 1, then

`n(N , p, 1) = `n(I, p, 1) = `1 ( ` p′
2

= `n(E , p, 1) ( `∞ = `n(L, p, 1) ;

(b) if p′ < q <∞, then

`n(N , p, q) = `n(I, p, q) = `t ( `q = `n(E , p, q) ( `∞ = `n(L, p, q) ;

(c) if 1 < q ≤ p′, then, for all ε > 0,

`n(N , p, q) = `n(I, p, q) = `t ( `q ⊆ `n(E , p, q) ⊆ `p′+ε ( `∞ = `n(L, p, q) ;

(d) if q =∞, then

`n(N , p,∞) = `n(I, p,∞) = `t ( `∞ = `n(E , p,∞) = `n(L, p,∞) .

(3) Let 2 ≤ p <∞,
(a) if q = 1, then

`n(N , p, 1) = `n(I, p, 1) = `n(E , p, 1) = `1 ( `n(L, p, 1) = `∞ or `r ;

(b) if 1 < q <∞, then

`n(N , p, q) = `n(I, p, q) = `1 ( `n(E , p, q) = `q ( `n(L, p, q) = `∞ or `r ;

(c) if q =∞, then

`n(N , p,∞) = `n(I, p,∞) = `1 ( `∞ = `n(E , p,∞) = `n(L, p,∞) .

(4) Let p =∞
(a) if q = 1, then

`n(N ,∞, 1) = `n(I,∞, 1) = `n(E ,∞, 1) = `n(L,∞, 1) = `1 ;

(b) if 1 < q ≤ ∞, then

`n(N ,∞, q) = `n(I,∞, q) = `1 ( `q = `n(E ,∞, q) = `n(L,∞, q) .

The proof of Theorem 3.1 will be splitted in several propositions. The first ones deal
with nuclear and integral diagonal mappings.

Proposition 3.2. Let Tα ∈ L(n`1, `∞). Then:

(i) Tα is integral and ‖Tα‖I = ‖α‖
`∞
.

(ii) Tα is nuclear if and only if α ∈ c0. In this case, ‖Tα‖N = ‖α‖
`∞
.
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Proof. The result follows from the isometric identifications

L(n`1, `∞) ∼= L(n+1`1),

I(n`1, `∞) ∼= I(n+1`1),

N (n`1, `∞) ∼= N (n+1`1),

which map diagonal n-linear operators into diagonal (n+ 1)-linear forms, along with the
corresponding scalar-valued result [12, Proposition 1.2]. �

We need to recall the definition of the injective tensor norm of order n. In the n-fold
tensor product of Banach spaces E1 ⊗ · · · ⊗ En the ε-tensor norm is given by∥∥∥∥∥

N∑
j=1

x
(j)
1 ⊗ · · · ⊗ x(j)

n

∥∥∥∥∥
ε

= sup
γi∈BE′

i

∣∣∣∣∣
N∑
j=1

γ1(x
(j)
1 ) · · · γn(x(j)

n )

∣∣∣∣∣ .
The space of integral n-linear forms on `p1×· · ·×`pn is the dual of the (complete) injective
tensor product of the spaces (see the monographs [18] and [32] where the 2-fold/bilinear
case is treated in detail).

Proposition 3.3. Let p > 1. Then Tα ∈ L(n`p, `q) is nuclear if and only if α ∈ `t, where
t is defined in (8). In this case, ‖Tα‖N = ‖α‖`t.

Proof. If Tα is nuclear, then it is integral and the associated (n+ 1)-linear diagonal form
φ
Tα

: `p × · · · × `p × `q′ → K is also integral with ||φ
Tα
||I = ||Tα||I (for the case q = 1 we

take `q′ as c0 instead of `∞). Equivalently, φTα is ε-continuous. Then, we have∣∣∣∣∣φTα
(

N∑
k=1

βkek ⊗ · · · ⊗ ek ⊗ e′k

)∣∣∣∣∣ ≤ ∥∥φTα∥∥I
∥∥∥∥∥

N∑
k=1

βkek ⊗ · · · ⊗ ek ⊗ e′k

∥∥∥∥∥
ε

,

which implies that∣∣∣∣∣
N∑
k=1

αkβk

∣∣∣∣∣ ≤ ‖Tα‖I ·

(
sup

ϕ1,...,ϕn∈B`p′ ,ψ∈B`q

∣∣∣∣∣
N∑
k=1

βkϕ1(ek) . . . ϕn(ek).ψ(e′k)

∣∣∣∣∣
)

= ‖Tα‖I ·

 sup
ϕ1,...,ϕn∈B`p′

∥∥∥∥∥
N∑
k=1

βkϕ1(k) . . . ϕn(k).e′k

∥∥∥∥∥
`q′


= ‖Tα‖I · ‖(Tβ)

N
‖L(n`p′ ,`q′ )

= ‖Tα‖I ·
∥∥(βk)

N
k=1

∥∥
`t′
.

Hence α ∈ `t and ‖α‖`t ≤ ‖Tα‖I .
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We see now that, if α ∈ `t, then Tα is nuclear and ‖Tα‖N ≤ ‖α‖`t . For t = 1 the
conclusion is immediate, so we assume t > 1. Let us consider the following factorization:

`p × · · · × `p
Tα−→ `q

Dη ↓ Dη ↓ ↑ Dν

`1 × · · · × `1 −→
Ψ

`∞

where Ψ = T(1,1,... ) and Dη and Dν are the diagonal linear operators associated with the
sequences η(k) = α(k)

t
p′ and ν(k) = α(k)

t
q .

By Proposition 3.2, the n-linear operator Ψ is integral with ‖Ψ‖I = 1. Thus, it follows
that Tα is also integral. Since t > 1, we have 1 < p < ∞ and `p is Asplund. So, Tα is
actually nuclear, and its nuclear norm coincides with its integral norm [1]. Therefore,

‖Tα‖N = ‖Tα‖I ≤ ‖Dν‖‖Ψ‖I‖Dη‖n = ‖α‖
`t
. �

We finally study the remaining case p = 1 and q <∞.

Proposition 3.4. Let q <∞ and Tα ∈ L(n`1, `q). Then the following are equivalent:

(i) Tα is integral.
(ii) Tα is nuclear.
(iii) α ∈ `q.

When these equivalences hold, ‖Tα‖I = ‖Tα‖N = ‖α‖
`q
.

Proof. The equivalence between (i) and (iii) follows as in Proposition 3.3. So we only
have to prove that (iii) implies (ii). Given α ∈ `q, we estimate the nuclear norm of

T (s,l)
α :=

s+l∑
k=s

α(k) · e′k ⊗ · · · ⊗ e′k · ek. For this, we factor T (s,l)
α as

`1 × · · · × `1
T

(s,l)
α−→ `q

Π(s,l) ↓ Π(s,l) ↓ ↑ D(s,l)
α

`l+1
1 × · · · × `l+1

1 −→
Ψl+1

`∞

where Π(s,l) =
s+l∑
k=s

e′k · ek−s+1 is the (norm-one) projection on the coordinates (s, . . . , s+ l)

and D(s,l)
α :=

l+1∑
k=1

α(k + s − 1) · e′k · ek+s−1. From the equalities ‖Ψl+1‖N = ‖Ψl+1‖I = 1,

and ‖D(s,l)
α ‖ = ‖(αj)s+lj=s‖`q , we obtain

‖T (s,l)
α ‖N ≤ ‖D(s,l)

α ‖ ‖Ψl+1‖N ‖Π(s,l)‖n ≤ ‖(αj)s+lj=s‖`q .

Since α belongs to `q, this inequality shows that the series
∞∑
k=1

α(k) · e′k ⊗ · · · ⊗ e′k · ek

defining Tα is Cauchy in nuclear norm and thus Tα is nuclear. �
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As an immediate consequence of the previous propositions we have

`n(N , p, q) 1
= `n(I, p, q) 1

= `t for (p, q) 6= (1,∞);(9)

`n(N , 1,∞)
1
= c0 and `n(I, 1,∞)

1
= `∞ .

Before turning our attention to extendibility, we comment on another behaviour of
diagonal multilinear forms/operators. In general, if two classes of multilinear forms do
not coincide on some Banach space E, the corresponding classes of vector valued multi-
linear operators will not coincide (for any range space F ). More precisely, given ideals
of multilinear mappings A and B and a Banach space E, if A(nE) 6= B(nE), then
A(nE,F ) 6= B(nE,F ) for every Banach space F . Indeed, if we take a multilinear form
φ, say, in A(nE) \B(nE), then for any nonzero y ∈ F the multilinear operator φ · y will
belong to A(nE,F ) but not to B(nE,F ). It should be noted that, if φ is a diagonal
n-linear form (on some sequence space), the operator φ · y will fail to be diagonal. Let us
see that, when restricted to diagonal multilinear forms or operators, things are different.
For example, Proposition 3.4 or (9) show that diagonal integral n-linear mappings from
`1 to `q are nuclear for every 1 ≤ q < ∞. Note, however, that there are (scalar-valued)
diagonal n-linear forms on `1 which are integral but not nuclear, as Theorem 2.1 shows.

We focus now on the problem of describing the space of diagonal extendible mappings.
We take for a moment a more general point of view, considering Banach sequence spaces.
We recall that the Köthe dual of a Banach sequence space E is defined as

E× := {z ∈ KN :
∑
j∈N

|z(j)x(j)| <∞ for all x ∈ E}.

This is a Banach sequence space with the norm given by

‖z‖
E×

:= sup
‖x‖

E
≤1

∑
j∈N

|z(j)x(j)| .

(see [24, page 29] where the analogous notion in the more general context of Banach
lattices is developed). We say that a Banach sequence space E is Köthe reflexive if the
canonical inclusion of E into E×× is surjective.

Lemma 3.5. Let E and F be Banach sequence spaces. Then the diagonal operator Tα :

E × · · · ×E → F is extendible for every α ∈ F , and its extendible norm is at most ‖α‖
F
.

In other words,

F ⊆ `n(E , E, F )

with norm one inclusion.
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Proof. We take α ∈ F and factor Tα as

E

i
��

× . . . × E

i
��

Tα
// F

`∞ × . . . × `∞

Sα

>>||||||||

,

where i is the natural inclusion and Sα is just Tα acting on `∞×· · ·×`∞. Since `∞ has the
metric extension property, Sα is extendible and ‖Sα‖E(n`∞,F )

= ‖Sα‖ = ‖α‖
F
. Therefore

Tα ∈ E(nE,F ) and also ‖Tα‖E(nE,F )
≤ ‖Sα‖ · ‖i‖n = ‖α‖

F
. �

Remark 3.6. A consequence of this lemma was anticipated at the beginning of Section
2: the canonical identification between diagonal n-linear operators and (n + 1)-linear
forms does not preserve extendibility. If we take α in `2 \ `1, then the n-linear operator
Tα ∈ L(n`2, `2) is extendible by the previous lemma. But Theorem 2.1 tells us that its
associated (n+ 1)-linear form is not extendible.

Proposition 3.7. Let F be a Köthe reflexive sequence space and 2 ≤ p ≤ ∞. Then
Tα : `p × · · · × `p → F is extendible if and only if α ∈ F . In other words,

`n(E , p, F ) = F .

Proof. One direction follows directly from the previous lemma. For the converse, suppose
Tα ∈ E(n`p, F ). For any β ∈ F× we denote by γβ : F → K the linear functional on F

defined by β:
γβ(x) =

∑
k∈N

β(k) · x(k).

Then, the scalar valued multilinear form φαβ = γβ ◦ Tα belongs to E(n`p), and has ex-
tendible norm not greater than ‖β‖

F×
· ‖α‖

`n(E;p,F )
. Since p ≥ 2, by [12, Proposition 3.1]

we know that αβ ∈ `1 and

‖αβ‖
`1
≤ Kn−1

G · ‖φαβ‖E(n`p) ,

where KG is the constant in Grothendieck’s inequality. This shows that α ∈ F and
‖α‖

F
≤ Kn−1

G · ‖α‖
`n(E,p,F )

. �

Note that if we consider an arbitrary Banach sequence space F (not necessarily Köthe
reflexive), the above argument gives the following inclusions:

F ↪→ `n(E , p, F ) ↪→ F××.

Moreover, the result in Proposition 3.1 of [12] cited in the proof remains true if we change
the space `p (with p ≥ 2) to any 2-convex Banach sequence space E. Hence, Proposi-
tion 3.7 is also valid for diagonal multilinear maps from E × · · · ×E to a Köthe reflexive
sequence space F . For instance, this applies when E is a Lorentz sequence space d(w, p)

with p ≥ 2.
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Taking F = `q in the previous proposition gives

`n(E , p, q) = `q ,

for 2 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. If p = 1, we can also precisely describe the set `n(E , p, q).
This follows from Lemma 2.2.

Corollary 3.8. Every diagonal multilinear mapping from `1× · · ·× `1 to `q (1 ≤ q ≤ ∞)
is extendible:

`n(E , 1, q) 1
= `∞ .

Proof. Given Tα ∈ L(n`1, `q) we consider its canonical associated diagonal (n + 1)-linear
mapping φα : `1 × · · · × `1 × `q′ → K. By Lemma 2.2, φα is extendible and its extendible
norm equals its usual norm. Then, it is clear that Tα is extendible with

‖Tα‖E(n`1,`q) ≤ ‖φα‖E(n+1`1×···×`1×`q′ )
= ‖φα‖L(n+1`1×···×`1×`q′ )

= ‖Tα‖L(n`1,`q) . �

We have already described `n(E , p, q) for p = 1 and p ≥ 2. For 1 < p < 2, we present
a characterization only for the cases q = 1 and q > p′. For the remaining situation
(1 < p < 2 and 1 < q ≤ p′) we just obtain an estimate of `n(E , p, q).

Proposition 3.9. Let 1 < p < 2.

(1) For q = 1, `n(E , p, 1) = ` p′
2

.
(2) For q > p′, `n(E , p, q) = `q.
(3) For 1 < q ≤ p′, `n(E , p, q) ⊆ `p′+ε, for every ε > 0.

Proof. (1) If α ∈ ` p′
2

, the same argument of the proof of Proposition 2.3 shows that
φα : `p × · · · × `p × `∞ → K is extendible with extendible norm not bigger than ‖α‖` p′

2

.

Then, Tα : `p × · · · × `p → `1 is extendible and ‖Tα‖E(n`p,`1) ≤ ‖α‖` p′
2

.

Suppose now that Tα ∈ E(n`p, `1). Then, for every β ∈ `∞, we have φβ ◦ Tα = φαβ ∈
E(n`p). By Proposition 2.3 we derive that αβ = (α(k)β(k))k belongs to ` p′

2

. Since this
happens for every β ∈ `∞, we conclude that α ∈ ` p′

2

.
(2) Since q > p′, `q has cotype q > 2. Then, we can apply [8, Proposition 3.4] to derive

that if Tα ∈ E(n`p, `q) then Tα is absolutely (q; p′)-summing. So, there exists K > 0, such
that, for every N we have(

N∑
k=1

|αk|q
) 1

q

=

(
N∑
k=1

‖φα(ek, . . . , ek)‖q
) 1

q

≤ K · wp′
(
(ek)

N
k=1

)n
= K.

Hence, α ∈ `q. The other inclusion was already shown in Lemma 3.5.
(3) Let Tα ∈ E(n`p, `q) then, by [6, Proposition 5.3], Tα is absolutely (p′+ε; p′)-summing,

for every ε > 0. Reasoning as in the previous item, we see that α ∈ `p′+ε. �
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