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CONVERGENCE OF DIRICHLET POLYNOMIALS IN BANACH SPACES

ANDREAS DEFANT AND PABLO SEVILLA-PERIS

Abstract. Recent results on Dirichlet series
∑

n an
1

ns , s ∈ C with coefficients an in an infi-
nite dimensional Banach space X show that the maximal width of uniform but not absolute
convergence coincides for Dirichlet series and for m-homogeneous Dirichlet polynomials. But a
classical non trivial fact due to Bohnenblust and Hille shows that if X is one dimensional, this
maximal width heavily depends on the degree m of the Dirichlet polynomials. We carefully
analyze this phenomenon, in particular in the setting of `p-spaces.

1. Introduction

Based on our results from [13] we continue the recent study of ordinary Dirichlet series from
[11]. Let X be some Banach space and m ∈ N. We call a series∑

n

an
1

ns
, s ∈ C

a Dirichlet series in X if all its coefficients an belong to X. We call it an m-homogeneous
Dirichlet polynomial in X whenever an = 0 for all indices n which have not precisely m prime
divisors (counted according to their multiplicity). Here the Banach space `p of all absolutely
p-summable scalar sequences will be of special interest. As in the case of Dirichlet series with
complex coefficients each vector valued Dirichlet series has associated with it an abscissa of
uniform convergence and an abscissa of absolute convergence. More precisely, let

σa = σXa = σa(
∑

n an
1
ns

) := inf r and σu = σXu = σu(
∑

n an
1
ns

) := inf r

be the infimum taken over all r such that on the half plane [Re s ≥ r] the series converges
absolutely and uniformly, respectively. In other terms, [Re s ≥ σa] is the largest half plane such
that

∑
n an

1
ns

converges absolutely in [Re s ≥ σa + ε] for each ε > 0, and [Re s ≥ σa] the largest
half plane for which the series for every ε converges uniformly in [Re s ≥ σu + ε]. Define

Tm(p, q) = supσ`qa − σ`pu ,

where the supremum is taken over all possible m-homogeneous Dirichlet polynomials in `p.
Clearly, Tm(p, q) determines the width of the largest possible strip where an m-homogeneous
Dirichlet polynomials

∑
n an

1
ns

in `p converges uniformly, but does not converge absolutely
considered as a series in `q. The main result of this paper is the following:
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2 A. Defant, P. Sevilla-Peris

Theorem 1.1. For each m and 1 ≤ p ≤ q ≤ ∞

(1) Tm(p, q) =


m− 2(1/p−max{1/q, 1/2})

2m
if 1 ≤ p ≤ 2

1− 1

p
if 2 ≤ p

Moreover, for every 0 ≤ σ ≤ Tm(p, q) there exists an m-homogeneous Dirichlet polynomial in

`p for which σ
`q
a − σ`pu = σ.

The theory of Dirichlet series plays an important role in analytic number theory (see e.g.
Apostol’s books [1, 2]), and results of the preceding type have a long history. Bohr in [5, 6]
defined the number T , the supremum of all width σa− σu taken over all scalar Dirichlet series,
and proved that T ≤ 1/2 . Eighteen years later Bohnenblust and Hille [4] showed that in fact

(2) T =
1

2
,

(see the beautiful survey [3] of Boas, and also [17]). They implicitly defined the number Tm
replacing in the definition of T all scalar Dirichlet series by all scalar m-homogeneous Dirichlet
polynomials, and proved that

(3) Tm =
m− 1

2m
,

here Tm denotes the supremum of all width σa−σu with respect to all m-homogeneous Dirichlet
polynomials in C. Then letting m tend to ∞ leads to (2) since Tm ≤ T for all m. For another
deep study of the Bohr-Bohnenblust-Hille equalities from (2) and (3) see also [18] and [22].
Although our techniques are very different from those of Bohnenblust and Hille in the scalar
case, an easy analysis of our proof of Theorem 1.1 (see section 4.1) also shows that the Dirichlet
polynomial attaining the maximal width can even be chosen to have complex coefficients if and
only if p = 1 and 2 ≤ q ≤ ∞.

More recently, in [11] a similar question for Dirichlet series
∑

n an
1
ns
, s ∈ C with coefficients

an in a fixed Banach space X is addressed. Clearly, the definition of the maximal width T (X)
and Tm(X) then again follows the same lines but considerably different phenomena occur. It
turns out that still T (X) = 1/2 and Tm(X) = m−1

2m
whenever X is finite dimensional. However,

if X is infinite dimensional, then both numbers coincide and depend only on the geometry of
the underlying Banach space X. More precisely, the main result from [11] states that for an
infinite dimensional Banach space X and for each m we have T (X) = Tm(X) = 1− 1/ cot(X) ,
where cot(X) is the optimal cotype of X (see below for definitions). For special Banach spaces
this optimal cotype is computable which e.g. gives

(4) T (`p) = Tm(`p) =

{
1/2 if 1 ≤ p ≤ 2

1− 1/p if 2 ≤ p ≤ ∞ .

This means that in infinite dimensions Bohr’s strips do not distinguish between arbitrary Dirich-
let series and m-homogeneous Dirichlet polynomials. A careful study of this phenomenon for
`p-spaces lead to Theorem 1.1 which shows how to ‘find the polynomials back’ in our more
general setting. Moreover, this result still covers (3) (take p = 1 and q = 2, and consider scalar
series only) and (4) (take p = q) as special cases.

Using results and techniques of Bohr [5, 6], Bohnenblust-Hille [4] and [11, 13], the proof will
be given in Sections 3, 4 and 5.
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2. Preliminaries

In all what follows, capital letters such as X, Y will denote Banach spaces over C, whose duals
will be denoted X∗, Y ∗, . . .. By a Banach sequence space we will mean a Banach space X ⊆ CN

of sequences in C satisfying `1 ⊆ X ⊆ `∞ and: if x ∈ CN and y ∈ X with |x| ≤ |y| , then x ∈ X
and ‖x‖ ≤ ‖y‖. For each n ∈ N we denote Xn = span{e1, . . . , en} in X. Examples of such
Banach sequence spaces are the `p-spaces, whose norm will be denoted ‖ · ‖p; c0 as usual stands
for the Banach space of all zero sequences. The conjugate of a real number γ > 1, is the number
γ′ such that 1

γ
+ 1

γ′
= 1; if γ = 1, then γ′ =∞ and we use the convention 1

∞ = 0. We will denote

by N(N)
0 the set of all sequences of natural numbers (multi indices) whose entries are all zero

except for a finite number; the length of such a multi index α is defined as the biggest k such
that αk 6= 0. Throughout the paper (pk)k denotes the sequence of prime numbers. If α = (αk)k
is a multi index in N(N)

0 of length k, then we write pα = pα1
1 p

α2
2 · · · p

αk
k and α! = α1! · · ·αk!.

For any natural number n with prime decomposition n = pα1
1 p

α2
2 · · · p

αk
k , following standard

notation we write Ω(n) = α1 + α2 + · · ·+ αk. As a consequence, the symbol p will have along
the paper two different meanings: either the sequence of primes or the index of an `p-space.

The Banach space of all (bounded and linear) operators between two Banach spaces X and
Y is denoted by L (X, Y ) , and the Banach space of all (bounded) m-linear mappings from
X × · · · ×X to Y by L (mX, Y ). With the norm

‖A‖ = sup{‖A(x1, . . . , xm)‖Y : ‖xi‖X ≤ 1 , i = 1, . . . ,m}

this is a Banach space. A continuous mapping between Banach spaces P : X → Y is called an
m-homogeneous polynomial if there exists a continuous m-linear mapping A from X to Y such
that P (x) = A(x, . . . , x) for every x ∈ X. The space of m-homogeneous polynomials between
X and Y is denoted by P(mX, Y ), and with the norm ‖P‖ = sup‖x‖≤1 ‖P (x)‖ it is a Banach
space. If Y = C then P(mX,C) is simply denoted by P(mX). We will make use of the fact
that if X is a finite dimensional Banach space then we have the following identifications

(5) P(mX, Y ) = P(mX)⊗ε Y =
⊗m,s

εs
X∗ ⊗ε Y ,

by identifying each element x∗ ⊗ · · · ⊗ x∗ ⊗ y with the polynomial x  x∗(x)my; as usual the
projective and injective tensor norms are denoted by π and ε, respectively, and the symmetric
projective and injective tensor norms by πs and εs. Detailed studies of the theory of polynomials,
tensor products and symmetric tensor products can be found in [9, 15, 16]. If X is a Banach
sequence space, then every P ∈P(mX, Y ) has a monomial series expansion

(6)
∑
α∈N(N)

0

cα(P )xα,

where as usual xα = xα1
1 x

α2
2 · · · ; if α is a multi index of length n then the coefficient cα(P ) = cα

is simply defined through the monomial expansion of the restriction of the polynomial to Xn =
span{e1, . . . , en} (which clearly can be identified with Cn). It is not in general true that (6)
converges pointwise to P . A deep and complete study of when this happens in the scalar-valued
case, can be found in [12].

Following [20, Def. 1.e.12]), a Banach space X is said to have cotype q (with 2 ≤ q < ∞)
whenever there is some constant C > 0 such that for each choice of finitely many vectors
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x1, . . . , xn ∈ X we have ( n∑
i=1

‖xi‖q
)1/q

≤ C
(∫ 1

0

∥∥ n∑
i=1

ri(t)xi
∥∥2
dt
)1/2

,

where ri stands for the i-th Rademacher function on [0, 1]; as usual, the best such C is denoted
by Cq(X). It is well known that `p has cotype max{p, 2}. By cot(X) we denote the infimum
over all possible q such that X has cotype q.

3. The proof: Part I. The upper bound

We begin the proof of Theorem 1.1 by obtaining the upper bound for Tm(p, q). In the
classical theory of Dirichlet series the corresponding abscissas of convergence of a given Dirichlet
series can be computed by means of the Hadamard Formulas (see e.g. [2, Chapter 8], [22,
(I.4)]). A straightforward modification of the proofs gives the following vector valued version
of the Hadamard Formulas for a Dirichlet series

∑
n an

1
ns

with coefficients in a Banach space
X provided

∑
n an is divergent:

σa = lim sup
N→∞

log
(∑N

n=1 ‖an‖X
)

logN
(7)

σu = lim sup
N→∞

log
(

supt∈R ‖
∑N

n=1 ann
it‖X

)
logN

.(8)

One of Bohr’s main contributions was to relate Dirichlet series with power series in infinitely
many variables. This relation can nowadays be treated from the point of view of holomorphic
functions on infinite dimensional Banach spaces, and carries to vector valued Dirichlet series,
in the so called ‘Bohr’s trick’ (see [11, Lemma 5]): If a1, . . . , aN ∈ X and we write cα = apα
then

(9) sup
t∈R
‖

N∑
n=1

ann
it‖X = sup

x∈B
`N∞

‖
∑
α∈ΛN

cαx
α‖X ,

where ΛN = {α ∈ N(N)
0 : 1 ≤ pα ≤ N}. Let us point out that if a1, . . . , aN are so that an = 0

whenever Ω(n) 6= m, what we have on the left-hand side of (9) is an m-homogeneous Dirichlet
polynomial. On the right-hand side we have an m-homogeneous polynomial, therefore

sup
x∈B

`N∞

‖
∑
α∈ΛN

cαx
α‖X = ‖

∑
α∈ΛN

cαx
α‖P(mc0,X).

This suggests that there must be a close relation between the uniform convergence of Dirichlet
polynomials in X and polynomials on c0 with values in X. More precisely, for every m-
homogeneous Dirichlet polynomial

∑
Ω(n)=m an/n

s we have

(10) σu = inf{µ ∈ R : there exists P ∈P(mc0, X) , cα(P ) =
apα

pµα
};

this follows from an analogous formula [11, Corollary 2] for general Dirichlet series where the
polynomials P have to be replaced by holomorphic functions, and the fact that if all coefficients
of a holomorphic function with |α| 6= m vanish, then it is an m-homogeneous polynomial.
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We can now prove the upper bound in Theorem 1.1. Let us consider

r =


2m

m+ 2(1
p
−max{1

q
, 1

2
})

if p ≤ 2

p if p ≥ 2

By the main result in [13] (Theorem 4) there exists c > 0 such that

(11)

(∑
α

‖cα(P )‖rq
)1/r

≤ c‖P‖P(mc0,`p).

for every P ∈ P(mc0, `p). Then if a1, . . . , aN ∈ `p are all 0 whenever Ω(n) 6= m, and if we
denote ΛN,m = {α ∈ ΛN : |α| = m}, then we can apply (11), Hölder’s inequality and (9), to get

N∑
n=1

‖an‖q ≤ N1/r′
( N∑
n=1

‖an‖rq
)1/r

= N1/r′
( ∑
α∈ΛN,m

‖cα‖rq
)1/r

≤ cN1/r′
∥∥ ∑
α∈ΛN,m

cαz
α
∥∥

P(mc0,`p)
= cN1/r′ sup

t∈R
‖

N∑
n=1

ann
it‖p.

(12)

By (7) and (8) we have for every m-homogeneous Dirichlet polynomial such that
∑

n an is
divergent in `q

(13) σ`qa (
∑

n an
1
ns

) ≤ 1

r′
+ σ`pu (

∑
n an

1
ns

).

If
∑

n an is convergent in `q we consider two different cases. On one hand if
∑
an/n

s is conver-
gent in `q for every s, then it is easily proved that it also converges absolutely for every s; in

other words, σ
`q
a (
∑
an/n

s) = −∞. Then (13) trivially holds. On the other hand, if
∑
an/n

s0

diverges in `q for some s0 then it also diverges in `p. Let then bn = an/n
s0 and we have

σ`qa (
∑

n bn
1
ns

) ≤ 1

r′
+ σ`pu (

∑
n bn

1
ns

).

But by the definition, σ
`q
a (
∑

n bn/n
s) = σ

`q
a (
∑

n an/n
s) + s0 and similarly for σ

`p
u ; this finally

gives that (13) holds for every m-homogeneous Dirichlet polynomial and implies

Tm(p, q) ≤


m− 2(1/p−max{1/q, 1/2})

2m
if 1 ≤ p ≤ 2

1

p′
if 2 ≤ p

4. The proof: Part II. The lower bound

Since Tm(p, q) is defined as a supremum, it is clear that if in each case we produce an m-

homogeneous Dirichlet polynomial for which σ
`q
a −σ`pu is exactly the number in (1) we will have

the desired lower bound for Tm(p, q). To do that we need the following technical result. We
adopt now a general approach, using operators between Banach spaces. Later we will apply
Proposition 4.1 to the inclusion v = id : `p ↪→ `q; also by taking v = idC we recover the results
in Sections 4 and 5 of [4].
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Proposition 4.1. Let v : X → Y be a non-zero linear operator. Let us fix ρ ∈ N, ρ > 1 and
m ∈ N. If there exist γ, β with m ≥ γ − β > 0 and constants K,C > 0 so that for each n there
exists Pn ∈P(m`ρ

n

∞ , X) with ‖Pn‖ ≤ C(ρn)γ and inf |α|=m ‖cα(vPn)‖ ≥ K(ρn)β, then there exists
an m-homogeneous Dirichlet polynomial in X for which σYa (

∑
van/n

s)− σXu (
∑
an/n

s) ≥ 1/q′

where q = m/(γ − β).

Proof. Let us note first that if m = γ − β the statement is trivial since in this case 1/q′ = 0
and we are simply saying that there exists some Dirichlet polynomial for which σYa − σXu ≥ 0.
We can assume then m > γ − β; first of all we divide each x ∈ c0 into blocks x1, x2, . . . so that
the block xn has length ρn,

x = (x1(1), . . . , x1(ρ), x2(1), . . . , x2(ρ2), x3(1), . . . , x3(ρ3), . . . ),

and define the following polynomial blockwise

P (x) =
∞∑
n=1

1

n2
(ρn)−γPn(xn).

Clearly by our assumption on ‖Pn‖ we have P ∈ P(mc0, X). Let now
∑

Ω(n)=m an
1
ns

be the

Dirichlet polynomial in X associated to P (i.e. apα = cα). By (10) this satisfies σu ≤ 0;
let us show now that for every fixed 0 < δ < 1 we have σa(

∑
van/n

s) ≥ 1
q′

1−δ
1+δ

. This will

give σa(
∑
van/n

s) ≥ 1/q′ and complete the proof. Given 0 < δ < 1 we choose b < 1 so

that b1−δρδ > 1. We define x = (x(k))k blockwise by xn(k) =
(
b
ρ

)n(1−δ)/q′
. Let us check that

x ∈ `q′/(1−δ); indeed

∞∑
k=1

x(k)q
′/(1−δ) =

∞∑
n=1

ρn∑
k=1

xn(k)q
′/(1−δ)

=
∞∑
n=1

ρn∑
k=1

( b
ρ

)n 1−δ
q′

q′
1−δ =

∞∑
n=1

bn =
b

1− b
<∞.



Convergence of Dirichlet polynomials in Banach spaces 7

On the other hand, by our assumption on the lower bound for cα(vPn),∑
|α|=m

‖cα(vP )xα‖ =
∞∑
n=1

∑
|α|=m

1

n2
(ρn)−γ‖cα(vPn)xαn‖

=
∞∑
n=1

1

n2
(ρn)−γ

∑
|α|=m

‖cα(vPn)‖ |xn|α

≥ K

∞∑
n=1

1

n2
(ρn)−γ(ρn)β

∑
|α|=m

|xn|α

= K
∞∑
n=1

1

n2
(ρn)−(γ−β)

( ρn∑
k=1

(
b

ρ
)n(1−δ)/q′)m

= K

∞∑
n=1

1

n2
(ρn)−m/q

( b
ρ

)mn(1−δ)/q′
(ρn)m

= K
∞∑
n=1

1

n2

(
(b1−δρδ)m/q

′)n
.

The last term is ∞ since b1−δρδ > 1.
Since x ∈ ` q′

1−δ
and is decreasing, we have for every n

xn ≤
b

1− b
1

n
1−δ
q′
.

On the other hand, by the prime number theorem, pn ≤ D1n log n ≤ D2n
1+δ for some constants

D1, D2. Hence there is some D3 such that

xn ≤
b

1− b
1

n
1−δ
q′
≤ D3

b

1− b
1

p
1

1+δ
1−δ
q′

n

.

Then for the Dirichlet polynomial
∑

Ω(n)=m van
1
ns

the following holds∑
Ω(n)=m

‖van‖
1

n
1
q′

1−δ
1+δ

=
∑
|α|=m

‖vapα‖
1

(pα)
1
q′

1−δ
1+δ

≥ D−1
3

1− b
b

∑
|α|=m

‖cα(vP )‖|xα|.

We know that the last term does not converge; this implies σa(
∑
van/n

s) ≥ 1
q′

1−δ
1+δ

. �

Taking v = id : `p ↪→ `q we have that in order to prove the remaining inequality in (1) it is
enough to find in each case sequences of polynomials Pn ∈P(m`ρ

n

∞ , `p) satisfying the conditions
in Proposition 4.1. Let us point out that if P ∈ P(mc0, `p) then vP ∈ P(mc0, `q). Then the
conditions in Proposition 4.1 read as ‖Pn‖P(m`ρ

n
∞ ,`p)

≤ C(ρn)γ and inf |α|=m ‖cα(Pn)‖q ≥ K(ρn)β.

We consider three different cases and treat each one separately.

4.1. The case 1 ≤ p ≤ q ≤ 2. In this case we need the following version of Chevét’s
inequalities (see [23, (43.2)] for the bilinear version and [8, Lemma 6] for the m-linear version)
that can be viewed as some kind of vector-valued version of [10, Corollary 3.2].



8 A. Defant, P. Sevilla-Peris

Lemma 4.2. Let E = (Cn, ‖ ‖E) and F = (CN , ‖ ‖F ). Then there exists a constant K > 0
depending only on m such that for every choice of scalars (λα)|α|=m we have

∫ ∥∥ ∑
|α|=m

λα(
N∑
k=1

gα,k(ω)ek)x
α
∥∥

P(mE,F )
dω

≤ K sup
|α|=m

(
|λα|

√
α!

m!

)
[
‖ id : E → `n2‖m−1‖ id : `N2 → F‖

∫
‖

n∑
j=1

gj(ω)ej‖E′dω

+ ‖ id : E → `n2‖m
∫
‖

N∑
j=1

gj(ω)ej‖Fdω
]
,

where (gj)j and (gα,k)α,k are families of independent standard gaussian random variables.

Proof. Let us choose independent Gaussian random variables gα,k, gα and gj for |α| = m,
k = 1, . . . , N and j = 1, . . . , N ; by Chevét’s inequality [23, (46.3)] and (5) we have∫

‖
∑
α,k

λαgα,k(ω)xα ⊗ ek‖P(mE)⊗εFdω

≤ c (

∫
‖
∑
|α|=m

λαgα(ω)xα‖P(mE)dω ‖ id : `N2 −→ F‖

+ sup
γ∈BP(mE)′

( ∑
|α|=m

|〈λαxα, γ〉|2
)1/2 ∫

‖
N∑
j=1

gj(ω)ej‖Fdω).

By [10, Corollary 3.2] there exists some constant K > 0 such that

∫
‖
∑
|α|=m

λαgα(ω)xα‖P(mE)dω =

∫
sup
x∈BE

|
∑
|α|=m

λαgα(ω)xα| dω

≤ K sup
|α|=m

(
|λα|

√
α!

m!

)(
sup
x∈BE

(
n∑
k=1

|xk|2)1/2

)m−1 ∫
sup
x∈BE

|
n∑
i=1

gi(ω)xi|dω.

Here we have

(
sup
x∈BE

(
n∑
k=1

|xk|2)1/2

)m−1

= ‖ id : E −→ `n2‖m−1. For the factor still to be esti-

mated we do the usual identification P(mE) = ⊗m,sεs E
∗; for each m-homogeneous polynomial

we have three different possible representations

∑
i1,...,im

λi1,...,imei1 ⊗ . . .⊗ eim =
∑

i1,...,im

λi1,...,imxi1 · · ·xim =
∑
|α|=m

m!

α!
λαx

α.
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Then

sup
γ∈P(mE)∗
‖γ‖≤1

( ∑
|α|=m

|〈λαxα, γ〉|2
)1/2

= sup
γ∈P(mE)∗
‖γ‖≤1

( ∑
|α|=m

α!

m!

m!

α!
|〈λαxα, γ〉|2

)1/2

≤ sup
|α|=m

(
|λα|

√
α!

m!

)
sup

γ∈P(mE)∗
‖γ‖≤1

( ∑
|α|=m

m!

α!
|〈xα, γ〉|2

)1/2

= sup
|α|=m

(
|λα|

√
α!

m!

)
sup

γ∈P(mE)∗
‖γ‖≤1

( ∑
i1,...,im

|〈xi1 · · ·xim , γ〉|2
)1/2

≤ sup
|α|=m

(
|λα|

√
α!

m!

)
sup

γ∈(⊗mε E∗)∗
‖γ‖≤1

( ∑
i1,...,im

|〈ei1 ⊗ . . .⊗ eim , γ〉|2
)1/2

= sup
|α|=m

(
|λα|

√
α!

m!

)
sup

x∈⊗mπ E
‖x‖≤1

( ∑
i1,...,im

|xi1 · · ·xim|2
)1/2

= sup
|α|=m

(
|λα|

√
α!

m!

)
‖ id : ⊗mπ E −→ `n

m

2 ‖

= sup
|α|=m

(
|λα|

√
α!

m!

)
‖ id : E −→ `n2‖m.

�

Note that for N = 1 we again have [10, Corollary 3.2]. Letting E = `n∞ and F = `np for some
1 ≤ p ≤ 2 we have

‖ id : `n2 → `np‖ = n1/p−1/2 , ‖ id : `n∞ −→ `n2‖ = n1/2.

Also, for every 1 ≤ r <∞ there exists a constant C so that (see [23, Proposition 45.1])∫
‖

n∑
k=1

gk(ω)ek‖`nr dω ≤ Cn1/r.

Corollary 4.3. Let 1 ≤ p ≤ 2. For every choice of scalars (λα)|α|=m there exists (cα)|α|=m ⊆
`np , each cα with entries consisting only of ±1, such that for the m-homogeneous polynomial∑
|α|=m λαcαx

α we have

‖
∑
|α|=m

λαcαx
α‖P(m`n∞,`

n
p ) ≤ K sup

|α|=m

(
|λα|

√
α!

m!

)
nm/2n1/p,

where K > 0 is a constant depending only on m.

Proof. From what we just mentioned we have∫ ∥∥ ∑
|α|=m

λα(
n∑
k=1

gα,k(ω)ek)x
α
∥∥

P(m`n∞,`
n
p )
dω ≤ K sup

|α|=m

(
|λα|

√
α!

m!

)
nm/2n1/p.
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It is a well known fact that the Bernouilli averages are dominated by the Gaussian averages
(see e.g. [14, 12.11]); hence if εα,k are independent Bernouilli random variables, then∫ ∥∥ ∑

|α|=m

λα(
n∑
k=1

εα,k(ω)ek)x
α
∥∥

P(m`n∞,`
n
p )
dω

≤
∫ ∥∥ ∑

|α|=m

λα(
n∑
k=1

gα,k(ω)ek)x
α
∥∥

P(m`n∞,`
n
p )
dω

≤ K sup
|α|=m

(
|λα|

√
α!

m!

)
nm/2n1/p.

This means that there exist choices of signs εα,k = ±1 so that

‖
∑
|α|=m

λα(
n∑
k=1

εα,kek)x
α‖P(m`n∞,`

n
p ) ≤ K sup

|α|=m

(
|λα|

√
α!

m!

)
nm/2n1/p.

Letting cα =
∑n

k=1 εα,kek ∈ E the conclusion finally follows. �

We can now use the polynomials we just produced to obtain a Dirichlet polynomial whose
strip of uniform but not absolute convergence has maximal width. For a fixed ρ > 1 we have
from the preceding corollary polynomials Pn ∈P(m`ρ

n

∞ , `
ρn

p ) whose coefficients have entries all

equal to ±1 satisfying ‖Pn‖ ≤ K(ρn)m/2+1/p and clearly ‖cα(Pn)‖q = (ρn)1/q. By Proposition

4.1 there exists an m-homogeneous Dirichlet polynomial
∑

Ω(n)=m an/n
s such that σ

`q
a − σ`pu ≥

m−2(1/p−1/q)
2m

. On the other hand, we already know σ
`q
a − σ`pu ≤ Tm(p, q) ≤ m−2(1/p−1/q)

2m
and this

gives

σ`qa (
∑
an/n

s)− σ`pu (
∑
an/n

s) =
m− 2(1/p− 1/q)

2m
.

4.2. The case 1 ≤ p ≤ 2 ≤ q. In this second case we use a totally different technique
following [4, Section 3]. Let us first note that if P ∈ P(mc0, `p) is such that inf ‖cα(P )‖∞ ≥
K
(
ρn
)β

we automatically have the same inequality for inf ‖cα(P )‖q. It is therefore enough to
obtain polynomials that satisfy the desired inequality for ‖ · ‖∞.
Let us choose a prime number ρ > m and consider the ρ × ρ matrix M1 = (mrs)r,s with
mrs = e2πi(r−s)/ρ. Starting from this we define matrices

M2 =

m11M1 . . . m1ρM1
...

...
mρ1M1 . . . mρρM1

 , . . . ,Mn =

m11Mn−1 . . . m1ρMn−1
...

...
mρ1Mn−1 . . . mρρMn−1


Note that each Mj is a ρj × ρj matrix. It is easily seen that Mn = (ars)r,s=1,...,ρn satisfies first
that

∑
t artast = ρnδrs, second that |ars| = 1 and third aρrs = 1. We then consider the m-linear

mapping An ∈ L (m`ρ
n

∞ , `
ρn

p ) defined by An(ei1 , . . . , eim) = (ξk)k with ξk = ai1i2 · · · aim−1imδimk.

We know from [13, Section 3.2] that this mapping satisfies ‖An‖ ≤ (ρn)m/2(ρn)1/p−1/2. We

symmetrize it and consider the associated m-homogeneous polynomial Pn(z) =
∑
|α|=m c

(n)
α zα

whose coefficients are given by

c(n)
α =

1

α!

∑
σ∈Σm

An(eiσ(1)
, . . . , eiσ(m)

)
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where for each i = (i1, . . . , im) the corresponding α is defined by αr = |{k : ik = r}| (i.e. α1 is
the number of 1’s in i, α2 is the number of 2’s, . . . ) and Σm is the group of permutations of
{1, . . . ,m}. By the very definition of An each An(ej1 , . . . , ejm) is a vector in `ρ

n

p whose entries are
all 0 except for the jm-th one, in which there is the value aj1j2 · · · ajm−1jm ; hence the entries of

α!c
(n)
α ∈ `ρ

n

p are all sums of vectors of this kind. More precisely, if Σm,k = {σ ∈ Σm : iσ(m) = k},
for k = 1, . . . , ρn, then

α!c(n)
α (k) =

∑
σ∈Σm,k

aiσ(1)iσ(2)
· · · aiσ(m−1)iσ(m)

.

Each aiσ(1)iσ(2)
· · · aiσ(m−1)iσ(m)

is a ρ-th root of unity; hence if we put ξ = e2πi/ρ there is some j0

such that aiσ(1)iσ(2)
· · · aiσ(m−1)iσ(m)

= ξj0 . Then α!c
(n)
α (k) is a sum of elements of this form and

we can write α!c
(n)
α (k) =

∑ρ−1
j=0 λ

(k)
j ξj where each λ

(k)
j is just the number of times that the ξj is

repeated in the sum of α!c
(n)
α (k). Then the sum of all the λ

(k)
j ’s is the total number of terms in

the sum, i.e.
∑ρ−1

j=0 λ
(k)
j = |Σm,k| ≤ |Σm| = m!. Just as before we can write

α!
∑
k

c(n)
α (k) =

∑
k

∑
σ∈Σm,k

aiσ(1)iσ(2)
· · · aiσ(m−1)iσ(m)

=
∑
σ∈Σm

aiσ(1)iσ(2)
· · · aiσ(m−1)iσ(m)

=

ρ−1∑
j=0

λjξ
j.

Again, each λj ∈ N is the number of times that the term ξj appears in the sum. Let us show
now that the last term cannot equal 0. If this were the case we would have (recall that the sum
of all the ρ-th roots of unity equals 0)

0 = −λ0

ρ−1∑
j=1

ξj +

ρ−1∑
j=1

λjξ
j =

ρ−1∑
j=1

(λj − λ0)ξj.

Since {ξ, ξ2, . . . , ξρ−1} is linearly independent over Q this would imply λ0 = λ1 = . . . = λρ−1 =

λ. But then m! =
∑ρ−1

j=0 λj = ρλ and, because λ ∈ N, this contradicts the fact that ρ is prime
and > m. Hence

0 <
∣∣∑

k

c(n)
α (k)

∣∣ ≤∑
k

|c(n)
α (k)|.

From this we have ‖c(n)
α ‖∞ > 0 for all α and all n. On the other hand, the fact that

∑ρ−1
j=0 λ

(k)
j ≤

m! gives that there is only a finite number of possible values for c
(n)
α (k) (since there is only a

finite number of ρ-tuples of natural numbers that sum up to m! and then just a finite number

of possible sums
∑ρ−1

j=0 λ
(k)
j ξj); hence inf{‖c(n)

α ‖∞ : α ∈ Nn
0 , n ∈ N} > 0 and

‖Pn‖ ≤ ‖An‖ ≤ (ρn)m/2(ρn)1/p−1/2.

This gives γ = m/2 + 1/p − 1/2 and β = 0 in Proposition 4.1; hence there exists an m-
homogeneous Dirichlet polynomial

∑
Ω(n)=m an/n

s that satisfies

σ`qa − σ`pu =
m− 2(1/p− 1/2)

2m
.
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4.3. The case 2 ≤ p. Let us consider them-homogeneous Dirichlet polynomial
∑

Ω(n)=m en/n
s.

We know that σ
`q
a −σ`pu ≤ Tm(p, q) ≤ 1/p′. It is a well known fact that the scalar valued Dirichlet

series
∑

1/ns (the Riemann’s ζ-function) satisfies σu = σa = 1. Using this fact it is not difficult
to prove that this is also the case of the corresponding m-homogeneous Dirichlet polynomial∑

Ω(n)=m 1/ns. It is then clear that σa(
∑

Ω(n)=m en/n
s) = 1. On the other hand we have

sup
t∈R

∥∥ N∑
n=1

Ω(n)=m

enn
it
∥∥
p

= sup
t∈R

( N∑
n=1

Ω(n)=m

|nit|p
)1/p

≤ N1/p.

Using (8) we obtain σ
`p
u ≤ 1/p. This gives σ

`q
a − σ`pu ≥ 1− 1/p = 1/p′ and finishes the proof of

(1).

5. The proof: Part III. The intermediate widths

In order to complete the proof of Theorem 1.1 we still have to show that there are m-
homogeneous Dirichlet polynomials that attain any intermediate given width of uniform but
not absolute convergence. Adapting an idea of Bohr [4, page 622] we show now that, once we
have attained some width with a Dirichlet series, any smaller width can also be attained with
a perturbation of the original Dirichlet series.

If
∑
an/n

s and
∑
bn/n

s are two Dirichlet series in a Banach spaceX for which σa(
∑
an/n

s) 6=
σa(
∑
bn/n

s) then

(14) σa(
∑

(an + bn)/ns) = max
(
σa(
∑
an/n

s), σa(
∑
bn/n

s)
)
.

Indeed, this is implied by the fact that a sum of two series cannot be an absolutely convergent
series if one is absolutely convergent and the other is not. Also, if σu(

∑
an/n

s) 6= σu(
∑
bn/n

s)
then

(15) σu(
∑

(an + bn)/ns) = max
(
σu(
∑
an/n

s), σu(
∑
bn/n

s)
)
.

We take again a general approach, using operators.

Lemma 5.1. Let v : X → Y be a non-zero operator,
∑
an/n

s a Dirichlet series in a Banach
space X and x0 ∈ X such that vx0 6= 0. Let σYa be the abscissa of absolute convergence of∑
van/n

s and σXu be the abscissa of uniform convergence of
∑
an/n

s. Then for each 0 < σ <
σYa − σXu the Dirichlet series∑

n

bn
1

ns
=
∑
n

an
1

ns
+
∑
n

x0

n1−σYa +σ

1

ns

satisfies

σa(
∑

vbn/n
s)− σu(

∑
bn/n

s) = σ .

If moreover
∑
an/n

s is an m-homogeneous Dirichlet polynomial, then∑
Ω(n)=m

bn
1

ns
=

∑
Ω(n)=m

an
1

ns
+

∑
Ω(n)=m

x0

n1−σYa +σ

1

ns

defines an m-homogenous Dirichlet polynomial for which we have

σa(
∑

vbn/n
s)− σu(

∑
bn/n

s) = σ .
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Proof. It is easily seen, using the fact that the Riemann’s ζ-function and its corresponding
m-homogeneous polynomials have abscissas of absolute and of uniform convergence equal to 1,
that

σa(
∑ vx0

n1−σYa +σ

1

ns
) = σu(

∑ x0

n1−σYa +σ

1

ns
) = σYa − σ

(the same for the corresponding polynomials). This, together with (14), gives σa(
∑
vbn/n

s) =
σYa . On the other hand since σYa −σ > σYa −σYa +σXu = σXu , we have from (15) that σu(

∑
bn/n

s) =
σYa − σ. This clearly gives the conclusion. �

The preceding lemma applied to v = id : `p ↪→ `q and the examples obtained in Section 5
finally complete the proof of Theorem 1.1.

6. The operator point of view

Let us come back now to our original question about why for finite dimensional spaces the
maximal width of uniform but not absolute convergence for homogeneous Dirichlet polynomials
heavily depends on the degree of the polynomial, but for infinite dimensional spaces this depen-
dence disappears. Our aim was to analyze and, if possible, understand this phenomenon. We
have seen in Theorem 1.1 that if for

∑
an/n

s in `p we take the abscissa of absolute convergence
in a bigger `q, then again the dependence on the degree appears. Let us point out that if we
take p = q in 1.1 we again have (4) and that Tm(p, q) = m−1

2m
if and only if p = 1 and q ≥ 2. We

change now slightly our point of view adopting a new one hoping that this helps in bringing
more light to our original question of the ‘invisible polynomials’. We want to look now at the
problem from the point of view of operators, inserting Tm(p, q) in a more general framework.

Let v be a non zero operator between two Banach spaces X and Y . If
∑

n an
1
ns

is a Dirichlet

series inX with abscissa of uniform convergence σu then
∑

n an
1

nσu+T (X)+ε by definition converges

absolutely, but depending on the operator v the half plane on which the series
∑

n v(an) 1
ns

converges absolutely might be very different. Our main aim now is to look at the number

Tm(v) := supσYa − σXu ,

where the sup is taken with respect to all m-homogeneous Dirichlet polynomials
∑

n an
1
ns

in

X, the abscissa σXu of uniform convergence of
∑

n an
1
ns

is taken in X but the abscissa σYa
of absolute convergence is taken with respect to the Dirichlet series

∑
n v(an) 1

ns
in Y . Note

that Tm(v) can also be seen as the infimum over all r > 0 so that if
∑

Ω(n)=m an
1
ns

converges

uniformly in [Re s ≥ σ], then
∑

Ω(n)=m v(an) 1
ns

converges absolutely in [Re s ≥ σ + r + ε] for

every ε > 0. Somehow Tm(v) gives an idea of how much does the operator v improve (or at
least modify) the summability of m-homogeneous Dirichlet polynomials. With this notation
(3) and its counterpart for finite dimensional X can be rewritten using the notation Tm(idC)
and Tm(idX).
Clearly for each v the sequence (Tm(v))m is non-increasing and

(16) Tm(v) ≥ Tm(idC) =
m− 1

2m
.

The situation exposed in [11] (that gave rise to our problem) can be rewritten now as

(17) Tm(X) = Tm(idX) =

{
m−1
2m

if dimX <∞
1

cot(X)′
if dimX =∞ ,
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and the question was to try to analyze why there is this dramatic difference between the finite
and the infinite dimensional case.
It is also clear that Tm(p, q) = Tm(id : `p ↪→ `q). Following ideas similar to those used in Section
3 we can also give a general upper bound for Tm(v). Let us recall (see e.g. [14, Chapter 10])
that an operator v : X → Y between Banach spaces is called (r, 1)-summing if there exists a
constant C > 0 so that for every A ∈ L (c0, X)( ∞∑

i=1

‖vA(ei)‖r
)1/r

≤ C‖A‖.

Operators that are (1, 1)-summing are simply called summing. As a natural generalization of
this and inspired by [4, Theorem I], (r, 1)-summing operators of order m are defined in [13] as
those v : X → Y for which there exists C > 0 such that for every A ∈ L (mc0, X)( ∞∑

i1,...,im=1

‖vA(ei1 , . . . , eim)‖r
)1/r

≤ C‖A‖.

Then BHm(v), the m-th Bohnenblust-Hille index of v, is defined as the infimum over all r so
that v is (r, 1)-summing of order m. Clearly, BH1(v) is the infimum over the r’s so that v is
(r, 1)-summing.
With this notation [4, Theorem I] reads as BHm(idC) = 2m

m+1
and this is used to obtain upper

bounds for T (the original, scalar one). Just as in the classical case, so also in this setting the
Bohnenblust-Hille indices help in giving upper bounds for Tm(v). We even get equality in the
case m = 1; it remains an open problem if equality can be achieved in the general case.

Proposition 6.1. For any operator 0 6= v : X → Y we have

1

BH1(v)′
= T1(v) ≤ Tm(v) ≤ 1

BHm(v)′
.

Proof. The proof of the last inequality follows exactly the same steps as in Section 3, using (12).
To prove the first equality, let us choose r > T1(v) and show that r ≥ 1/BH1(v)′. If q = 1/r
this is equivalent to q′ ≥ BH1(v). We take then A ∈ L (c0, X) and cn := A(en). Let us show in
a first step that

∑
n ‖vcnxn‖ is finite for every x ∈ `q. We take x ∈ `q and σ a permutation so

that (|xσ(n)|)n is the decreasing rearrangement of x. Then supn |xσ(n)|n1/q = K < ∞. On the
other hand, by the prime number theorem there exists C > 0 such that pn ≤ Cn log n for all
n. Then for ε := r

T1(v)
− 1 > 0, there exists D > 0 so that 1

n
≤ D 1

p
1/(1+ε)
n

, and hence for every n,

|xσ(n)| ≤ K
1

n
1
q

≤ KDr 1

p
r

1+ε
n

.

We consider now the 1-homogeneous Dirichlet polynomial∑
n

cσ(n)
1

psn
.

Clearly, (cn)n is weakly 1-summable (i.e.,
(
x′(cn)

)
n

is summable for each x′ ∈ X), which implies

that Ã(en) := cσ(n) defines a bounded, linear operator from c0 to X (see e.g. [14, Theorem 1.9])
and, by (10), the Dirichlet polynomial has an abscissa of uniform convergence σXu ≤ 0. Since
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r
1+ε

> T1(v) ≥ σYa − σXu ≥ σYa , we see that∑
n

‖vcσ(n)xσ(n)‖ =
∑
n

‖vcσ(n)‖ |xσ(n)| ≤ KDr
∑
n

‖vcσ(n)‖
1

p
r

1+ε
n

<∞.

Altogether we have shown that
∑

n ‖vcnxn‖ =
∑

n ‖vcσ(n)xσ(n)‖ < ∞ for every x ∈ `q. By
Hölder’s inequality, (‖vcn‖)n ∈ `q′ and the mapping L (c0, X) → `q′(Y ) (the space of q′-
summable sequences in Y ) that maps A to (vcn)n is well defined, and a simple closed-graph
argument shows that it is continuous. This gives q′ ≥ BH1(v) and completes the proof. �

Theorem 6.2. Let v be an operator with values in a cotype 2 space and m ∈ N. Then

(a) max
{m− 1

2m
,T1(v)

}
≤ Tm(v) ≤ m− 1

2m
+
T1(v)

m
.

(b) v is (1 + ε, 1)-summing for every ε > 0 if and only if

Tm(v) =
m− 1

2m
holds for every m. In particular, this equality holds for any summing operator.

Proof. The lower bound in (a) follows from (16) and the fact that (Tm(v))m forms an increasing
sequence. For the upper bound it is known from [13, Lemma 3] that if v takes values in a
cotype 2 space, then

BHm(v) ≤ 2m

m+ 2( 1
BH1(v)

− 1
2
)
.

An easy computation now gives the estimation.
For part (b), if v is (1+ε, 1)-summing for every ε > 0 then BH1(v) = 1, hence by the preceding
result T1(v) = 0, and then Tm(v) = m−1

2m
by (a). For the converse, if the equality holds for every

m, in particular we have T1(v) = 0. By Proposition 6.1 this implies BH1(v) = 1 and gives the
conclusion. For the final remark recall that every summing operator factors through a Hilbert
space (see [14, Theorem 2.8, Theorem 2.13]). �

By [19, (1.1)] (see also [14, p.208]), every operator v : `1 → `p with 1 ≤ p <∞ is (r, 1)-summing
for 1/r = 1− |(1/p)− (1/2)|. Then using the preceding Theorem and Proposition 6.1 we get

Corollary 6.3. Let v : `1 → `p with 1 ≤ p ≤ 2. Then

Tm(v) ≤
m− 2 + 2

p

2m
.

Let us finally go back to our original problem (re)formulated in (17); we re-prove (17) in a
systematic way that we feel helps in clarifying the subject. At this stage it is clear that the
maximal width of the corresponding strip for a given operator is very much related with its
summability properties (see e.g. Proposition 6.1).

By the Dvoretzky-Rogers Theorem (see e.g. [14, Theorem 2.18]), the identity of a Banach
space is summing if and only if it is finite-dimensional. Then Theorem 6.2 explains why in (17)
only the finite dimensional spaces have precisely T (idX) = m−1

2m
.

Again by the Dvoretzky-Rogers Theorem (see e.g. [14, Theorem 10.5]) the identity on an
infinite dimensional Banach space is not (r, 1)-summing for any 1 ≤ r < 2. Hence it is now
no surprise that cot(X) appears, since by [21, Théorème 1.1] (see also [14, page 304]) this
is exactly the infimum over all r so that idX is (r, 1)-summing (then the ‘best summability’
we can expect from idX); in other words BH1(idX) = cot(X). From [7, Theorem 3.2] we
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have BHm(idX) ≤ cot(X) for every infinite dimensional Banach space X (even equality by
[13, Proposition 7]). With Proposition 6.1 this altogether yields that for infinite dimensional
Banach spaces,

1

cot(X)′
=

1

BH1(idX)′
= T1(idX) ≤ Tm(idX) ≤ 1

BHm(idX)′
=

1

cot(X)′
.
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