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Abstract

We revisit the computation of entourage sections of the constant unifor-
mity of the product of countably many copies the Alexandroff one-point
compactification called the Fort space. Furthermore, we define the con-
cept of a quasi-uniformity on a product of countably many copies of a
quasi-uniform space, where the symmetrised uniformity of our quasi-
uniformity coincides with the constant uniformity. We use the concept
of Cauchy filter pairs on a quasi-uniform space to discuss the complete-
ness of its quasi-uniform box product.
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1. Introduction

The theory of uniform box products was conveyed for the first time in 2001 by
Scott Williams during the ninth Prague International Topological Symposium
(Toposym). He proved, for instance, that the box product of equal factors has
a compatible complete uniformity whenever its factor does and he showed that
the box product of realcompact spaces is realcompact whenever the index set
has no subset of measurable cardinality.

Some progress has been made on the concept of uniform box products. For
instance in [1] and [3], Bell defined a uniformity on the product of countably
many copies of a uniform space which she called the constant uniformity base.
It turns out that the topology induced by this uniformity is coarser than the box
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product but finer than the Tychonov product. Her new product was motivated
by the idea of the supremum metric on countably many copies of (compact)
metric spaces. Moreover, she gave an answer to the question of Scott Williams
which asks whether the uniform box product of compact (uniform) spaces is
normal. Furthermore, Bell introduced some new ideas on the problem “is the
uniform box product of countably many compact spaces collectionwise nor-
mal?” that enabled her to prove that the uniform box product of countably
many copies of the one-point compactification of a discrete space of cardinality
ℵ1 is normal, countably paracompact, and collectionwise Hausdorff in the uni-
form box topology. In additional to Bell’s work, in [8] Hankins modified Bell’s
proof of the collectionwise Hausdorff property and thereafter, he answered the
question“is the uniform box product of denumerably many compact spaces
paracompact?”

In this note, we study the concept of a quasi-uniform box product of coun-
tably many copies of a quasi-uniform space. We show, for instance, that the
quasi-uniformity on a box product of countably many copies of a quasi-uniform
space (X,U) is included in the constant uniformity base on the box product
of countably many copies of the symmetrized uniform space (X,Us) of (X,U).
Moreover, we look at the quasi-uniform box product of countably many copies
of the one-point compactification of a countable discrete space. We revisit
the computation of entourage sections of the constant uniform box product
of countably many copies of the Fort space due to Bell [3]. Furthermore, we
study C-completeness and D-completeness in the quasi-uniform box product
and in particular, we show that if the factor space of the quasi-uniform box
product is quiet, then C-completeness implies D-completeness in quasi-uniform
box products.

2. Preliminaries

This section recalls and reviews some well-known results on computation
of entourage sections of the constant uniformity of the product of countably
many copies of the one-point compactifaction known as the Fort space. For
more information on uniform box products we refer the reader to [1, 3, 13].

Let V be an uncountable discrete space, and X = V ∪{∞} be its Fort space,
that is, its Alexandroff one-point compactification. Then (X, τ) is a topological
space where A ∈ τ if A ⊆ V or if X \ A is a finite set and ∞ ∈ A. Then the
Fort space X can be equipped with the uniformity base D = {DF : F ⊆
V, F is finite} on X compatible with the topology τ where DF = 4∪ (X \F )2.
If x ∈ F , then DF (x) = {x} and if x /∈ F , then DF (x) = X \ F ⊆ V .

Consider the uniform box product

(∏
α∈NX,D

)
of the above Fort space

where D = {DF : DF ∈ D} and

DF =

{
(x, y) ∈

∏
α∈N

X ×
∏
α∈N

X : for all α ∈ N (x(α), y(α)) ∈ DF

}
.
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It was stated in [1, Remark, p. 2164] that for each x = (x(α))α∈N ∈
∏
α∈NX,

then

(2.1) DF (x) =
∏

x(α)∈F

{x(α)} ×
∏

x(α)/∈F

(X \ F ).

The above formula has the following explanations: For x, y ∈
∏
α∈NX, we

have that
y ∈ DF (x) ⊆

∏
α∈N

X if and only if (x, y) ∈ DF .

Furthermore,

(x, y) ∈ DF if and only if (x(α), y(α)) ∈ DF whenever α ∈ N
if and only if y(α) ∈ DF (x(α)) whenever α ∈ N.

If x(α) ∈ F whenever α ∈ N, then

(2.2) y = (y(α))α∈N ∈ DF (x) =
∏

x(α)∈F

{x(α)}

by Proposition [1, Proposition 3.1].
If x(α) /∈ F whenever α ∈ N, then

(2.3) y = (y(α))α∈N ∈ DF (x) =
∏

x(α)/∈F

(X \ F ).

Remark 2.1. We point out that the equality in equation (2.1) can be understood
to mean “homeomorphic to” under the natural homeomorphism which possibly
rearranges the order of factors.

Example 2.2. If we equip the Fort space X with the Pervin quasi-uniformity
P with the subbase S = {SA : A ⊆ V finite}, where SA = [A×A]∪[(X\A)×X].

Then S−1A = [A×A] ∪ [X × (X \A)] with A ∈ τ .

Indeed, (a, b) ∈ S−1A if and only if (b, a) ∈ SA = [A × A] ∪ [(X \ A) × X].
Furthermore,

SA ∩ S−1A =

(
[A×A] ∪ [(X \A)×X]) ∩ ([A×A] ∪ [X × (X \A)]

)
,

and thus
SA ∩ S−1A = [A×A] ∪ [(X \A)× (X \A)].

We observe that SA ∩ S−1A ⊇ DA = 4 ∪ (X \ A)2, and this latter set is an

element of the open subbase of the uniformity D on X if A is a finite subset of
V . For more details on the uniform subbase on X, we refer the reader to [1].

It turns out that if a ∈ A, then

SA(a) = {b ∈ X : (a, b) ∈ SA} = A.

If a /∈ A, then SA(a) = {b ∈ X : (a, b) ∈ SA} = {b ∈ X} = X.
Similarly if a ∈ A, then

S−1A (a) = {b ∈ X : (b, a) ∈ SA} = {b ∈ X : b ∈ A or b ∈ X \A} = X
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and if a ∈ A, then

S−1A (a) = {b ∈ X : (b, a) ∈ SA} = {b ∈ X : b ∈ X \A} = X \A.

Remark 2.3. It follows that if P is the Pervin quasi-uniformity of the Fort space,
then P−1 is the conjugate Pervin quasi-uniformity of P on X with base S−1
where S−1 = {S−1A : A ⊆ V finite}. Moreover, the uniformity Ps = P ∨ P−1
is finer than the uniformity subbase D = {DA : A ⊆ V finite} on X (see [1,
Proposition 4.2]) compatible with the topology on X, where, for any finite
subset A of V , DA = 4∪ (X \ F )× (X \ F ).

Example 2.4. If we equip the Fort space X = V ∪ {∞} with the quasi-
uniformity WF which has subbase {WF : F ⊆ V, F is finite }, where WF =
4∪ [X × (X \ F )],

we have that

(2.4) WF ∩W−1F = (4∪ [X× (X \F )])∩ (4∪ [(X \F )×X]) = 4∪ (X \F )2.

It follows that if x ∈ F , then

WF (x) = {y ∈ X : (x, y) ∈WF }

= {y ∈ X : x = y or (x ∈ X and y ∈ X \ F )} = {x} ∪ (X \ F )

and

W−1F (x) = {y ∈ X : (y, x) ∈WF }

= {y ∈ X : x = y or (y ∈ X and x /∈ F )} = {x}.

If x /∈ F , then we have

WF (x) = {y ∈ X : x = y or (x ∈ X and y ∈ X\F )} = {x}∪(X\F ) = X\F

and

W−1F (x) = X.

Moreover, it follows that

WF (x) ∩W−1F (x) = [{x} ∪ (X \ F )] ∩ {x} = {x}

whenever x ∈ F . Whenever x /∈ F , we have

WF (x) ∩W−1F (x) = X \ F ∩X = X \ F.

Remark 2.5. For the Fort space X = V ∪ {∞}, We observe from (1) that the
coarsest uniformity Ws

F finer than WF coincides with the uniformity subbase
D = {DF : F ⊆ V finite} on X where DF = 4∪ (X \F )2 = W s

F . Furthermore,

if F is a finite subset of V , we have DF (x) = WF (x)∩W−1F (x) = W s
F whenever

x ∈ F and whenever x /∈ F .
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3. The box product of a quasi-uniform space

In this section we define a quasi-uniformity whose symmetrized quasi-unifor-
mity (uniformity) generates the Tychonov product topology on the product set∏
α∈NX of countably many copies of a quasi-uniform space (X,U). We also

look at a quasi-uniformity whose uniformity generates the box topology on the
product set

∏
α∈NX.

In [12], Stoltenberg defined the product topology on the Cartesian product∏
i∈I Xi of a family (Xi,Ui)i∈I of quasi-uniform spaces as the topology induced

by
∏
i∈I Ui, the smallest quasi-uniformity on

∏
i∈I Xi such that each projec-

tion map πi :
∏
i∈I Xi → Xi is quasi-uniformly continuous. Furthermore, the

sets of the form {((xi)i∈I , (yi)i∈I) : (xi, yi) ∈ Ui} whenever Ui ∈ Ui and i ∈ I
are sub-base for the quasi-uniformity

∏
i∈I Ui. The quasi-uniformity

∏
i∈I Ui is

called the product quasi-uniformity on
∏
i∈I Xi.

We are going to omit proof of the following lemma since it is straightforward.

Lemma 3.1. Let (X,U) be a quasi-uniform space and
∏
α∈NX be the product

set of countably many copies of X. Then Ǔα = {Ǔα : U ∈ U and α ∈ N} is a
filter base generating a quasi-uniformity on

∏
α∈NX, where

Ǔα =

{
(x, y) ∈

∏
β∈N

X ×
∏
β∈N

X : (x(α), y(α)) ∈ U
}

whenever α ∈ N and U ∈ U .

The following has been observed by Bell [3] for uniform spaces.

Remark 3.2. Note that G ∈ τ(Ǔα) if and only if for any x = (xα)α∈N ∈ G there
exists Ǔα ∈ Ǔα such that Ǔα(x) ⊆ G whenever U ∈ U and α ∈ N. Thus for
any x, y ∈ G, we have (xα, yα) ∈ U whenever U ∈ U and α ∈ N. Hence G is an
open set with respect to the topology induced by the product quasi-uniformity
on
∏
α∈NX. Observe that the uniformity (Ǔα)s coincides with the uniformity

base on
∏
α∈NX and the topology τ((Ǔα)s) induced by the uniformity (Ǔα)s is

the Tychonov product topology on
∏
α∈NX.

Lemma 3.3. Let (X,U) be a quasi-uniform space and
∏
α∈NX be the product

set of countably many copies of X. Then Ûψ = {Ûψ : ψ : N→ U is a function}
is a fiter base generating a quasi-uniformity on

∏
α∈NX where

Ûψ =

{
(x, y) ∈

∏
α∈N

X ×
∏
α∈N

X : whenever α ∈ N, (x(α), y(α)) ∈ ψ(α)

}
whenever U ∈ U and ψ : N→ U is a function.

Remark 3.4. If (X,U) is a uniform space, then the quasi-uniformity Ûψ is

exactly the uniformity Ď in [3, Definition 4.2]. Therefore, for any quasi-uniform

space (X,U), the topology τ(Ûψ)
s

induced by the uniformity base Ûsψ is the

box topology on
∏
α∈NX.
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4. Quasi-uniform box products

In this section we present the quasi-uniform box product of countably many
copies of a quasi-uniform space. The theory of uniform box product of count-
ably many copies of a uniform space was developed by Bell [1]. She proved
that the uniform box product has a topology that sits between the Tychonov
product and the box product topology.

Theorem 4.1. Let (X,U) be a quasi-uniform space and
∏
α∈NX be the product

set of countably many copies of X. Then U = {U : U ∈ U} is a filter base
generating a quasi-uniformity on

∏
α∈NX where

U =

{
(x, y) ∈

∏
α∈N

X ×
∏
α∈N

X : (x(α), y(α)) ∈ U wheneverα ∈ N
}

whenever U ∈ U .

Proof. For U ∈ U and x ∈
∏
α∈NX, we have (x, x) ∈ U since for any α ∈ N,

(x(α), x(α)) ∈ U .

Observe that for any U, V ∈ U with U ⊆ V , it follows that U ⊆ V . Thus
{U : U ∈ U} is a filter base on

∏
α∈NX ×

∏
α∈NX.

Let U, V ∈ U be such that V 2 ⊆ U . Suppose that (x, y) ∈ V 2
. Then there

exists z ∈
∏
α∈NX such that (x, z) ∈ V and (z, y) ∈ V . Hence (x(α), z(α)) ∈ V

and (z(α), y(α)) ∈ V whenever α ∈ N.

Moreover, (x(α), y(α)) ∈ V 2 ⊆ U whenever α ∈ N. Thus (x, y) ∈ U .
Therefore, U = {U : U ∈ U} is a quasi-uniformity on

∏
α∈NX. �

Note that if for any given U ∈ U , the function ψ in Lemma 3.3 is a constant

function ψ(α) = U whenever α ∈ N, then the quasi-uniformity Ûψ in Lemma

3.3 coincides with the quasi-uniformity U in Theorem 4.1. This is going to
motivate the following definition. We point out that this remark was observed
by Bell (see [3, p. 15]) for uniform box products.

Definition 4.2. Let (X,U) be a quasi-uniform space. Then the quasi-uniformity
U is called the constant quasi-uniformity on the product

∏
α∈NX and the pair(∏

α∈NX,U
)

is called the quasi-uniform box product.

Remark 4.3. If a quasi-uniform space (X,U) is such U = U−1, then U =

U−1 = Us. Therefore, the quasi-uniform box product

(∏
α∈NX,U

)
is exactly

the constant uniform box product (see [3, Theorem 4.3]).
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Remark 4.4. For any quasi-uniform box product

(∏
α∈NX,U

)
of a quasi-

uniform space (X,U). We have

U ∩ V = U ∩ V

whenever U, V ∈ U .
Indeed (x, y) ∈ U ∩ V if and only if (x(α), y(α)) ∈ U ∩V for all α ∈ N if and

only if (x(α), y(α)) ∈ U and (x(α), y(α)) ∈ V for all α ∈ N. This is equivalent
to (x, y) ∈ U and (x, y) ∈ V .

Lemma 4.5. For any quasi-uniform box product

(∏
α∈NX,U

)
of a quasi-

uniform space (X,U), the following are true.

(1) U
−1

= U−1 whenever U ∈ U .

(2) U−1 ∩ U = Us = U
s

whenever U ∈ U .

Proof. We prove (1). Then (2) will follow from (1) and Remark 4.4.

Let U ∈ U . Then (x, y) ∈ U
−1

if and only if (y, x) ∈ U if and only if
(y(α), x(α)) ∈ U whenever α ∈ N if and only if (x(α), y(α)) ∈ U−1 when-

ever α ∈ N if and only if (x, y) ∈ U−1 �

Remark 4.6. If (X,U) is a quasi-uniform space and

(∏
α∈NX,U

)
is its quasi-

uniform box product, then the quasi-uniform space

(∏
α∈NX,U−1

)
is again a

quasi-uniform box of (X,U), where U−1 = {U−1 : U ∈ U} is also a quasi-

uniform base on
∏
α∈NX. Moreover, U−1 ∨ U = Us is a uniformity base on∏

α∈NX and the pair

(∏
α∈NX,U

s
)

is a uniform box product of the uniform

space (X,Us) which corresponds to the uniform box product in the sense of
Bell (see [1, Definition 3.2]).

Proposition 4.7. If (X,U) is a quasi-uniform space and

(∏
α∈NX,U

)
is its

quasi-uniform box product, then

U(x) =
∏
α∈N

(U(x(α)))

whenever U ∈ U and x ∈
∏
α∈NX.

Proof. Consider U ∈ U and let y ∈ U(x). Then (x, y) ∈ U if and only if
(x(α), y(α)) ∈ U whenever α ∈ N if and only if y(α) ∈ U(x(α)) whenever
α ∈ N if and only if y ∈

∏
α∈N(U(x(α))). �
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Corollary 4.8. If (X,U) is a quasi-uniform space and

(∏
α∈NX,U

)
is its

quasi-uniform box product, then

U
−1

(x) =
∏
α∈N

(U−1(x(α))) = U−1(x)

whenever U ∈ U and x ∈
∏
α∈NX. Furthermore,

U(x)∩U−1(x) =
∏
α∈N

(U(x(α)))∩
∏
α∈N

(U−1(x(α))) ⊇
∏
α∈N

(U(x(α))∩U−1(x(α)))

whenever U ∈ U and x ∈
∏
α∈NX.

Example 4.9. Let X be the Fort space in Example 2.2 that we equip with its

Pervin quasi-uniformity P. Consider the quasi-uniform box product

(∏
α∈NX,S

)
of X. For any finite subset A ⊆ V , if x ∈

∏
α∈NX, then

SA(x) =

{
y ∈

∏
α∈N

X : (x(α), y(α)) ∈ SA whenever α ∈ N
}

=

{
y ∈

∏
α∈N

X : y(α), x(α) ∈ A or x(α) /∈ A and y(α) ∈ X whenever α ∈ N
}
.

Hence

SA(x) =
∏

x(α)∈A

A×
∏

x(α)/∈A

X

Moreover, if x ∈
∏
α∈NX, then

SA
−1(x) =

{
y ∈

∏
α∈N

X : (y(α), x(α)) ∈ SA whenever α ∈ N
}

=

{
y ∈

∏
α∈N

X : y(α), x(α) ∈ A or y(α) ∈ X\A and x(α) ∈ X whenever α ∈ N
}
.

Hence

SA
−1(x) =

∏
x(α)∈A

A×
∏

x(α)/∈A

(X \A).

Therefore

SA(x) ∩ SA−1(x) =
∏

x(α)∈A

A×
∏

x(α)/∈A

(X \A).

Observe that

SA(x) ∩ SA−1(x) ⊇ DA(x) =
∏

x(α)∈A

{x(α)} ×
∏

x(α)/∈A

(X \A),

the basic closed and open set of Bell (see [1, p. 2164]).
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Example 4.10. Consider the quasi-uniformityWF on the Fort space, as given

in Example 2.4. Let

(∏
α∈NX,WF

)
be the quasi-uniform box product of X.

Then whenever x ∈
∏
α∈NX, we have

WF (x) =
∏

x(α)∈F

(
{x(α)} ∪X \ F

)
×

∏
x(α)/∈F

(X \ F )

and

W−1F (x) =
∏

x(α)∈F

{x(α)} ×
∏

x(α)/∈F

X.

5. Properties of filter pairs

In this section, we discuss some properties of filters on quasi-uniform box
products. In particular, we prove some properties of filters on a quasi-uniform
space that are preserved by filters on their quasi-uniform box products.

We begin by considering one way of defining a filter on a quasi-uniform box
product given any filter on its factor space.

Proposition 5.1. Let (X,U) be a quasi-uniform space and

(∏
α∈NX,U

)
be its quasi-uniform box product. If F is a filter on (X,U), then F defined
by F =

{∏
α∈N Fα : Fα ∈ F and Fα = X for all but finitely many α ∈ N

}
is a

filter base on

(∏
α∈NX,U

)
.

In a similar way, we can define a filter on the factor space from any filter on
the quasi-uniform box product in the following way:

Proposition 5.2. Let (X,U) be a quasi-uniform space and

(∏
α∈NX,U

)
be

its quasi-uniform box product. If F is a filter on

(∏
α∈NX,U

)
, then F , defined

by F =
{
F :

∏
α∈N F ∈ F

}
, is a filter on (X,U).

Suppose (X,U) is a quasi-uniform space and F and G are filters on X. Then
following [10], we say (F ,G) is Cauchy filter pair provided that for each U ∈ U
there is F ∈ F and G ∈ G such that F × G ⊆ U. A Cauchy filter pair on a
quasi-uniform space (X,U) is called constant provided that F = G.

Lemma 5.3. Let (X,U) be a quasi-uniform space. If (F ,G) is a Cauchy filter

pair on

(∏
α∈NX,U

)
, then the filter pair (F ,G), where F =

{
F :

∏
α∈N F ∈ F

}
and G =

{
G :

∏
α∈NG ∈ G

}
, is a Cauchy filter pair on (X,U).
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Proof. Consider the Cauchy filter pair (F ,G) on

(∏
α∈NX,U

)
. One sees that

F and G are filters on X from Proposition 5.2. We need to show that for any
U ∈ U , there are F ∈ F and G ∈ G such that F ×G ⊆ U .

Since (F ,G) is a Cauchy filter pair on

(∏
α∈NX,U

)
, it follows that for

any U ∈ U , there exists F ∈ F and G ∈ G such that F × G ⊆ U. We
choose F ∈ F and G ∈ G such that

∏
α∈N F ⊆ F and

∏
α∈NG ⊆ G. Let

(x(α), y(α)) ∈ F × G for all α ∈ N. Then (x(α))α∈N ∈ F and (y(α))α∈N ∈ G.
Thus ((x(α))α∈N, (y(α))α∈N) ∈ F ×G ⊆ U. This implies that
((x(α))α∈N, (y(α))α∈N) ∈ U. Hence for all α ∈ N, (x(α), y(α)) ∈ U . Therefore,
F ×G ⊆ U . �

A filter G on a quasi-uniform space (X,U) is said to be a D-Cauchy filter if
there is a filter F on X such that (F ,G) is a Cauchy filter pair. We call F a
cofilter of G.

Lemma 5.4. Let (X,U) be a quasi-uniform space and

(∏
α∈NX,U

)
be its

quasi-uniform box product. If G is a D-Cauchy filter on (X,U), then the filter

G, defined by G = {
∏
α∈NG : G ∈ G}, is a D-Cauchy filter on

(∏
α∈NX,U

)
.

Proof. Suppose G = {
∏
α∈NG : G ∈ G} where G is a D-Cauchy filter on (X,U).

Then there exists a filter F on X such that (F ,G) is a Cauchy filter pair on
(X,U). Define F by F = {

∏
α∈N F : F ∈ F}. Then we need to show that

(F ,G) is a Cauchy filter pair on

(∏
α∈NX,U

)
. Suppose F ∈ F and G ∈ G.

Let (x(α)α∈N, (y(α))α∈N) ∈ F ×G. Then for all α ∈ N, (x(α), y(α)) ∈ F ×G,
where F =

∏
α∈N F and G =

∏
α∈NG. Since (F ,G) is a Cauchy filter pair,

(x(α), y(α)) ∈ U for all α ∈ N. This implies that (x(α)α∈N, (y(α))α∈N) ∈ U
and so F ×G ⊆ U. �

6. C-Completeness and D-completness in quasi-uniform box
products

In this section, we present some notions of completeness in quasi-uniform
spaces that are preserved by their quasi-uniform box products. In particu-
lar, we present the notion of C-completeness in the quasi-uniform box product
of a quasi-uniform space and show the relationship between D-completeness
and C-completeness in the quasi-uniform box product of a quiet quasi-uniform
space. Also, since the notion of pair completeness coincides with bicomplete-
ness in quasi-uniform spaces, we show that the quasi-uniform box product of a
D-complete quiet quasi-uniform space is bicomplete by showing that it is pair
complete.
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We first consider the notion of quietness in the quasi-uniform box product
of a quasi-uniform space. Following [5], we say a quasi-uniform space (X,U) is
quiet provided that for each U ∈ U , there is an entourage V ∈ U such that if
F and G are filters on X and x and y are points of X such that V (x) ∈ G and
V −1(y) ∈ F and (F ,G) is a Cauchy filter pair on (X,U), then (x, y) ∈ U. If V
satisfies the above conditions, we say that V is quiet for U.

Theorem 6.1. Let (X,U) be a quasi-uniform space and

(∏
α∈NX,U

)
be its

quasi-uniform box product. If (X,U) quiet, then

(∏
α∈NX,U

)
is quiet.

Proof. Let U ∈ U . Suppose there exists V ∈ U such that (F , G) is a Cauchy fil-
ter pair on (

∏
α∈NX,U) and (x(α))α∈N, (y(α))α∈N ∈

∏
α∈NX satisfy V ((x(α))α∈N) ∈

G and V −1((y(α))α∈N) ∈ F . Then (F ,G), where F = {F :
∏
α∈N F ∈ F} and

G = {G :
∏
α∈NG ∈ G}, is a Cauchy filter pair on (X,U) and V (x(α)) ∈ G and

V −1(y(α)) ∈ F whenever α ∈ N. Since (X,U) is quiet, then (x(α), y(α)) ∈ U
whenever α ∈ N. Therefore, ((x(α))α∈N, (y(α))α∈N) ∈ U . �

We now look at C-completeness and D-completeness in quasi-uniform box
products. A quasi-uniform space (X,U) is called C-complete provided that
each Cauchy filter pair (F ,G) converges. A quasi-uniform space (X,U) is D-
complete if each D-Cauchy filter converges, that is, each second filter of the
Cauchy filter pair (F ,G) converges with respect to τ(U).

Theorem 6.2. Let (X,U) be a quiet quasi-uniform space and

(∏
α∈NX,U

)
be its quasi-uniform box product. If (X,U) is C-complete, then

(∏
α∈NX,U

)
is C-complete.

Proof. Suppose (F ,G) is a Cauchy filter pair on

(∏
α∈NX,U

)
. This implies

that (F ,G), where F = {F :
∏
α∈N F ∈ F} and G = {G :

∏
α∈NG ∈ G}, is a

Cauchy filter pair on (X,U). Since (X,U) is C-complete, then F converges to
x0 ∈ X with respect to τ(U−1). Also, G converges to x0 (a constant sequence
(x0, x0, · · · )) with respect to τ(U). Then for each U ∈ U , there is F ∈ F , such
that F ⊆ U−1(x0). Therefore,∏

α∈N
F ⊆ U−1((x0)α∈N) =

∏
α∈N

U−1(x0)α∈N ∈ F .

This implies F converges to (x0)α∈N with respect to τ(U
−1

). Also, for each
U ∈ U , there is G ∈ G, such that G ⊆ U(x0). Therefore,∏

α∈N
G ⊆ U((x0)α∈N) =

∏
α∈N

U(x0)α∈N ∈ G.
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This implies G converges to (x0)α∈N (a constant sequence (x0, x0, · · · )) with

respect to τ(U
−1

). Therefore, (
∏
α∈NX,U) is C-complete. �

Theorem 6.3. Let (X,U) be a quiet quasi-uniform space and

(∏
α∈NX,U

)
be its quasi-uniform box product. If (X,U) is D-complete, then

(∏
α∈NX,U

)
is D-complete.

Proof. Suppose G is a D-Cauchy filter on

(∏
α∈NX,U

)
. Then there exists a

filter F such that (F ,G) is a Cauchy filter pair on

(∏
α∈NX,U

)
. Thus (F ,G),

where F = {F :
∏
α∈N F ∈ F} and G = {G :

∏
α∈NG ∈ G}, is a Cauchy filter

pair on (X,U). Since (X,U) is D-complete, then G converges to x0 with respect
to τ(U). Then for each U ∈ U , there is G ∈ G, such that G ⊆ U(x0). Therefore,∏

α∈N
G ⊆ U((x0)α∈N) =

∏
α∈N

U(x0) ∈ G.

This implies G converges to (x0)α∈N (a constant sequence (x0, x0, · · · )) with

respect to τ(U). Therefore,

(∏
α∈NX,U

)
is D-complete. �

Remark 6.4. Let (X,U) be a quasi-uniform space. It is not difficult to prove

that

(∏
α∈NX,U

)
is bicomplete whenever (X,U) is bicomplete. We have seen

from our previous results that if (F ,G) is a Cauchy filter pair on(∏
α∈NX,U

)
, then F converges with respect to τ(U−1) and G converges with

respect to τ(U). Furthermore, one can use the argument that if (X,U) is

bicomplete, then (X,Us) is complete, therefore

(∏
α∈NX,U

s
)

is complete as

a uniform box product of (X,Us). Hence

(∏
α∈NX,U

)
is bicomplete.

We now show the relationship between C-completeness and D-completeness
in the quasi-uniform box product of a uniformly regular quasi-uniform space.
Following [10], we say quasi-uniform space (X,U) is uniformly regular if for
any U ∈ U , there is V ∈ U such that clτ(U)V (x) ⊆ U(x) whenever x ∈ X.

Lemma 6.5. Let (X,U) be a quasi-uniform space and

(∏
α∈NX,U

)
be its

quasi-uniform box product. If (X,U) is uniformly regular, then

(∏
α∈NX,U

)
is uniformly regular.
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Proof. Suppose that (X,U) is uniformly regular. Then for any U ∈ U , there
exists V ∈ U such that

(6.1) clτ(U)V (t) ⊆ U(t) whenever t ∈ X.

We need to prove clτ(U)V (x) ⊆ U(x) whenever x ∈
∏
α∈NX.

Let y ∈ clτ(U)V (x). Then there exists W ∈ U such that W ((y(α))α∈N) ∩
V ((x(α))α∈N) 6= ∅. This implies W (y(α)) ∩ U(x(α)) 6= ∅ whenever α ∈ N.
Hence y(α) ∈ clτ(U)V (x(α)) whenever α ∈ N.

Furthermore by (6.1), it follows that y(α) ∈ U(x(α)) whenever α ∈ N.
Therefore, (y(α))α∈N ∈ U((x(α))α∈N) and this implies that clτ(U)V (x) ⊆

U(x). �

Corollary 6.6. Let (X,U) be a D-complete uniformly regular quiet quasi-

uniform space and

(∏
α∈NX,U

)
be its quasi-uniform box product. Then(∏

α∈NX,U
−1
)

is D-complete.

Proof. Since (X,U) is D-complete and uniformly regular, then by Theorem 6.3

and Lemma 6.5,

(∏
α∈NX,U

)
is D-complete and uniformly regular. There-

fore, by [6, Lemma 2.1],

(∏
α∈NX,U

−1
)

is D-complete. �

We recall that a quasi-uniform space is said to be pair complete provided
that whenever (F ,G) is a Cauchy filter pair, there exists a point p ∈ X such
that the filter G −→

τ(U)
p and F −→

τ(U−1)
p (see [6]).

Corollary 6.7. Let (X,U) be a D-complete uniformly regular quasi-uniform

space and

(∏
α∈NX,U

)
be its quasi-uniform box product. Then

(∏
α∈NX,U

)
is pair complete.

Proof. From Corollary 6.6, we see that

(∏
α∈NX,U

)
is D-complete and uni-

formly regular. Then by [6, Proposition 2.2],

(∏
α∈NX,U

)
is pair com-

plete. �

Corollary 6.8. Let (X,U) be a D-complete quiet quasi-uniform space and(∏
α∈NX,U

)
be its quasi-uniform box product. Then

(∏
α∈NX,U

)
is C-

complete.
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Proof. Since (X,U) is quiet and D-complete, then by Theorems 6.1 and 6.3,(∏
α∈NX,U

)
is quiet and D-complete. Therefore, by Proposition [11, Propo-

sition 3.3.2],

(∏
α∈NX,U

)
is C-complete. �
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