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1. Introduction

Since Banach’s fixed point theorem (or Banach’s contraction principle) proved
by Banach [4] in 1922, many authors have extended, improved and generalized
in several ways.

In 2015, Khojasteh et al. [15] introduced the notion of a simulation func-
tion to generalize Banach’s contraction principle. Recently, Roldán-López-de-
Hierroet et al. [18] modified the notion of a simulation function and showed
the existence and uniqueness of coincidence points of two nonlinear mappings
using the concept of a simulation function.

On the other hand, in 1989, Bakhtin [3] (see also Czerwik [8]) introduced
the concept of a b-metric space (or a space of metric type) and proved some
fixed point theorems for some contractive mappings in b-metric spaces which
are generalizations of Banach’s contraction principle in metric spaces.

In 1996, Kada et al. [14] introduced some generalized metric, which is called
the w-distance and gave some examples of w-distance and, using the w-distance,
they also improved Caristi’s fixed point theorem, Ekeland’s variational principle
and the nonconvex minimization theorem of Takahashi [20]. Later, Shioji et al.
[19] studied the relationship between weakly contractive mappings and weakly
Kannan mappings under the conditions, the w-distance and the symmetric w-
distance. In 2012, Imdad and Rouzkard [13] proved some fixed point theorems
in a complete metric space equipped with a partial ordering via the w-distance.

Recently, Hussain et al. [12] introduced the concept of the wt-distance in
generalized b-metric spaces, which is a generalization of the w-distance, and
also proved some fixed point theorems in a partially ordered b-metric space by
using the wt-distance. Also, Abdou et al. [1] proved some common fixed point
theorems in Menger probabilistic metric type spaces by using the wt-distance.

In this paper, we consider some simulation functions to show the existence
of fixed points of some nonlinear mappings in complete b-metric spaces via the
wt-distance. Furthermore, we also give some examples to illustrate the main
results. Our result improve, extend and generalize several results given by some
authors in literatures.

2. Preliminaries and generalized distances

Now, we give some definitions and their examples

Definition 2.1. Let (X,≤) be a partially ordered set.The elements x, y ∈ X
are said to be comparable with respect to the order ≤ if either x ≤ y or y ≤ x.

Let us denote X≤ by the subset of X ×X defined by

X≤ = {(x, y) ∈ X ×X : x ≤ y or y ≤ x}.

Definition 2.2. Let (X,≤) be a partially ordered set and f : X → X be a
self-mapping of X. We say that

(1) f is inverse increasing if, for all x, y ∈ X, f(x) ≤ f(y) implies x ≤ y;
(2) f is nondecreasing if, for all x, y ∈ X, x ≤ y implies f(x) ≤ f(y).
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Definition 2.3. Let (X,≤) be a partially ordered set and T : X → X be a
self-mapping of X. Then

(1) F (T ) = {x ∈ X : T (x) = x}, i.e., F (T ) denotes the set of all fixed
points of T ;

(2) T is called a Picard operator (briefly, PO) if there exists x∗ ∈ X such
that F (T ) = {x∗} and {Tn(x)} converges to x∗ for all x ∈ X;

(3) T is said to be orbitally U-continuous for any U ⊂ X × X if, for any
x ∈ X, Tni(x) → a ∈ X as i → ∞ and (Tni(x), a) ∈ U for any i ∈ N
imply that Tni+1(x)→ Ta ∈ X as i→∞;

(4) T is said to be orbitally continuous on X if x ∈ X and Tni(x)→ a ∈ X
as i→∞ imply that Tni+1(x)→ T (a) ∈ X as i→∞.

Definition 2.4. Let (X, d) be a metric space. A function p : X ×X → [0,∞)
is said to be the w-distance on X if the following are satisfied:

(1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X;
(2) for any x ∈ X, p(x, ·) : X → [0,∞) is lower semi-continuous (i.e., if

x ∈ X and yn → y ∈ X, then p(x, y) ≤ lim infn→∞ p(x, yn);
(3) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ

imply d(x, y) ≤ ε.

Let X be a metric space with a metric d. A w-distance p on X is said to be
symmetric if p(x, y) = p(y, x) for all x, y ∈ X. Obviously, every metric is the
w-distance, but not conversely.

Next, we recall some examples in [21] to show that the w-distance is a
generalized metric.

Example 2.5. Let (X, d) be a metric space. A function p : X ×X → [0,∞)
defined by p(x, y) = c for all x, y ∈ X is a w-distance on X, where c is a positive
real number. But p is not a metric since p(x, x) = c 6= 0 for any x ∈ X.

Example 2.6. Let (X, ‖·‖) be a normed linear space. A function p : X×X →
[0,∞) defined by p(x, y) = ‖x‖+ ‖y‖ for all x, y ∈ X is a w-distance on X.

Example 2.7. Let F be a bounded and closed subset of a metric spaces X.
Assume that F contain at least two points and c is a constant with c ≥ δ(F ),
where δ(F ) is the diameter of F . Then a function p : X ×X → [0,∞) defined
by

p(x, y) =

{
d(x, y), if x, y ∈ F,
c, if x /∈ F or y /∈ F,

is a w-distance on X.

Definition 2.8. Let X be a nonempty set and s ≥ 1 be a given real number.
A functional D : X ×X → [0,∞) is called a b-metric if, for all x, y, z ∈ X, the
following conditions are satisfied:

(1) D(x, y) = 0 if and only if x = y;
(2) D(x, y) = D(y, x);
(3) D(x, z) ≤ s[D(x, y) +D(y, z)].
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A pair (X,D) is called a b-metric space with coefficient s.

In Definition 2.8, every metric space is a b-metric space with s = 1 and hence
the class of b-metric spaces is larger than the class of metric spaces.

Some examples of b-metric spaces are given by Berinde [5], Czerwik [9],
Heinonen [11] and, further, some examples to show that every b-metric space
is a real generalization of metric spaces are as follows:

Example 2.9. The set R of real numbers together with the functional D :
R× R→ [0,∞) defined by

D(x, y) := |x− y|2

for all x, y ∈ R is a b-metric space with coefficient s = 2. However, we know that
D is not a metric on X since the ordinary triangle inequality is not satisfied.
Indeed,

D(3, 5) > D(3, 4) +D(4, 5).

In 2014, Hussain et al. [12] introduced the concept of the wt-distance as
follow:

Definition 2.10. Let (X,D) be a b-metric space with constant K ≥ 1. A
function P : X × X → [0,∞) is called the wt-distance on X if the following
are satisfied:

(1) P (x, z) ≤ K(P (x, y) + P (y, z)) for all x, y, z ∈ X;
(2) for any x ∈ X, P (x, ·) : X → [0,∞) is K-lower semi-continuous (i.e., if

x ∈ X and yn → y ∈ X, then P (x, y) ≤ lim infn→∞KP (x, yn);
(3) for any ε > 0, there exists δ > 0 such that P (z, x) ≤ δ and P (z, y) ≤ δ

imply D(x, y) ≤ ε.

Example 2.11 ([12]). Let (X,D) be a b-metric space. Then the metric D is
a wt-distance on X.

Example 2.12 ([12]). Let X = R and D1 = (x−y)2. A function P : X×X →
[0,∞) defined by P (x, y) = ‖x‖2 + ‖y‖2 for all x, y ∈ X is a wt-distance on X.

Example 2.13 ([12]). Let X = R and D1 = (x−y)2. A function P : X×X →
[0,∞) defined by P (x, y) = ‖y‖2 for all x, y ∈ X is a wt-distance on X.

The following two lemmas are crucial for our resuts.

Lemma 2.14 ([12]). Let (X,D) be a b-metric space with constant K ≥ 1 and
P be a wt-distance on X. Let {xn}, {yn} be two sequences in X and {αn},
{βn} two sequences in [0,∞) converging to zero. Then the following conditions
hold: for all x, y, z ∈ X,

(1) if P (xn, y) ≤ αn and P (xn, z) ≤ βn for all n ∈ N, then y = z. In
particular, if P (x, y) = 0 and P (x, z) = 0, then y = z;

(2) if P (xn, yn) ≤ αn and P (xn, z) ≤ βn for all n ∈ N, then {yn} converges
to z;
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(3) if P (xn, xm) ≤ αn for all n,m ∈ N with m > n, then {xn} is a Cauchy
sequence;

(4) P (y, xn) ≤ αn for all n ∈ N, then {xn} is a Cauchy sequence.

3. The classes of simulation functions

In 2015, Khojasteh et al. [15] introduced the notion of a simulation function
which generalizes the Banach contraction as follow:

Definition 3.1 ([15]). A simulation function is a mapping ζ : [0,∞)×[0,∞)→
R satisfying the following conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all s, t > 0;
(ζ3) if {tn} and {sn} are two sequences in (0,∞) such that limn→∞ tn =

limn→∞ sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0.

Now, we recall some examples of the simulation function given by Khojasteh
et al. [15].

Example 3.2. Let ζi : [0,∞)× [0,∞)→ R for i = 1, 2, 3 be defined by

(1) ζ1(t, s) = ψ(s)− φ(t) for all t, s ∈ [0,∞), where φ, ψ : [0,∞) → [0,∞)
are two continuous functions such that ψ(t) = φ(t) = 0 if and only if
t = 0 and ψ(t) < t ≤ φ(t) for all t > 0;

(2) ζ2(t, s) = s−
f(t, s)

g(t, s)
t for all t, s ∈ [0,∞), where f, g : [0,∞)× [0,∞)→

(0,∞) are two continuous functions with respect to each variable such
that f(t, s) > g(t, s) for all t, s > 0.

(3) ζ3(t, s) = s− ϕ(s)− t for all t, s ∈ [0,∞), where ϕ : [0,∞)→ [0,∞) is
a continuous function such that ϕ(t) = 0 if and only if t = 0

Then ζi for i = 1, 2, 3 are a simulation function.

Recently, Roldán-López-de-Hierro et al. [18] modified the notion of a simu-
lation function as follow:

Definition 3.3 ([18]). A simulation function is a mapping â ζ : [0,∞) ×
[0,∞)→ R satisfying the following conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all s, t > 0;
(ζ3) if {tn} and {sn} are two sequences in (0,∞) such that limn→∞ tn =

limn→∞ sn > 0 and tn < sn for all n ∈ N, then

lim sup
n→∞

ζ(tn, sn) < 0.

Note that the classes of all simulation functions ζ : [0,∞) × [0,∞) → R
denote by Z and every simulation function in the original sense of Khojasteh
et al. [15] is also a simulation function in the sense of Roldán-López-de-Hierroet
et al. [18], but the converse is not true as in the following example.
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Example 3.4 ([18]). Let k ∈ R be such that k < 1 and let ζ ∈ Z be the
function defined by

ζ(t, s) =

{
2s− 2t, if s < t,
ks− t, otherwise.

Then ζ is a simulation function in the sense of Definition 3.3, but ζ does not
satisfy the condition (ζ3) of Definition 3.1.

Definition 3.5. Let (X, d) is a complete metric space. A mapping T : X → X
is called Z-contraction if there exists ζ ∈ Z such that

(3.1) ζ(d(Tx, Ty), d(x, y)) ≥ 0

for all x, y ∈ X.

Remark 3.6. If we take ζ(t, s) = λs − t for all s, t ≥ 0, where λ ∈ [0, 1) in
Definition 3.5, then the Z-contraction become to the Banach contraction.

4. Fixed point theorems for simulation functions

In this section, we consider the concept of a simulation function and show
the existence of a fixed point for such mapping in complete b-metric spaces via
the wt-distance. First, we improve the notion of a simulation function for our
considerations as follow:

Definition 4.1. Let K be a given real number such that K ≥ 1. A simulation
function is a mapping ζ : [0,∞)×[0,∞)→ R satisfying the following conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(Kt, s) < s−Kt for all s, t > 0;
(ζ3) if {tn} and {sn} are two sequences in (0,∞) such that

lim supn→∞Ktn = lim supn→∞ sn > 0 and tn < sn for all n ∈ N, then

lim sup
n→∞

ζ(Ktn, sn) < 0.

Example 4.2. Let λ,K ∈ R be such that λ < 1 and K ≥ 1. Define the
mapping â ζ : [0,∞)× [0,∞)→ R by

ζ(Kt, s) =

 s−Kt, if s < t,
λs−Kt
Ks+ 1

, otherwise.

Clearly, ζ verifies (ζ1), and ζ satisfies (ζ2). Indeed,

s, t > 0,

 0 < s < t ⇒ ζ(Kt, s) = s−Kt,

0 < t < s, ⇒ ζ(Kt, s) =
λs−Kt
Ks+ 1

<
s−Kt
Ks+ 1

< s−Kt.

Next, we will show that ζ satisfies (ζ3). If {tn} and {sn} are sequences in (0,∞)
such that lim supn→∞Ktn = lim supn→∞ sn > 0 and tn < sn for all n ∈ N.
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then

lim sup
n→∞

ζ(Ktn, sn) = lim sup
n→∞

(
λsn −Ktn
Ksn + 1

)
< lim sup

n→∞

(
sn −Ktn
Ktn + 1

)
< lim sup

n→∞

(
sn −Ktn
Ktn

)
< lim sup

n→∞

(
sn

Ktn
−
Ktn

Ktn

)
≤ lim sup

n→∞

(
sn

Ktn

)
− lim inf

n→∞
(1)

≤ 1− 1
= 0.

Then ζ is a simulation function in the sense of Definition 4.1, but ζ does not
satisfy the condition (ζ3) of Definition 3.1. Indeed, if we take K = 1, tn = 2

√
2

and sn = 2
√

2− 1
n , for all n ∈ N. Then, sn < tn

lim sup
n→∞

ζ(tn, sn) = lim sup
n→∞

(
2
√

2− 1

n
− 2
√

2

)
= lim sup

n→∞

(
− 1

n

)
= 0.

Theorem 4.3. Let (X,≤) be a partially ordered set, (X,D) be a complete
b−metric space with constant K ≥ 1 and P be a wt-distance on X. Suppose
that T : X → X is a nondecreasing mapping satisfying the following conditions:

(i) there exists ζ ∈ Z such that

(4.1) ζ(KP (Tx, T 2x), P (x, Tx)) ≥ 0

for all (x, Tx) ∈ X≤;
(ii) for all x ∈ X with (x, Tx) ∈ X≤,

inf{P (x, y) + P (x, Tx)} > 0

for all y ∈ X with y 6= Ty;
(iii) there exists x0 ∈ X such that (x0, Tx0) ∈ X≤.

Then T has a fixed point in X. Moreover, if Tx = x, then P (x, x) = 0.

Proof. If Tx0 = x0, then we are done. Suppose that the conclusion is not true.
Then there exists x0 ∈ X such that (x0, Tx0) ∈ X≤. Since T is nondecreasing,
we have (Tx0, T

2x0) ∈ X≤. Continuing this process, we obtain (Tnx0, T
mx0) ∈

X≤ for all n,m ∈ N. Now, we claim that

(4.2) lim
n→∞

P (Tnx0, T
n+1x0) = 0.

By the assumption (i) and the property of ζ, we observe that

(4.3)
0 ≤ ζ(KP (Tnx0, T

n+1x0), P (Tn−1x0, T
nx0))

≤ P (Tn−1x0, T
nx0)−KP (Tnx0, T

n+1x0)

for all n ∈ N. Since K ≥ 1 and using (4.3), we get

(4.4) P (Tnx0, T
n+1x0) ≤ KP (Tnx0, T

n+1x0) ≤ P (Tn−1x0, T
nx0).
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This mean that the sequence {P (Tnx0, T
n+1x0)} is a decreasing sequence of

nonnegative real numbers and so it is convergent to some r ≥ 0. Suppose that
r > 0.
Case I. If K > 1, letting n → ∞ in (4.4), we get r ≤ Kr ≤ r which is a
contradiction.
Case II. IfK = 1, putting tn = P (Tn+1x0, T

n+2x0) and sn = P (Tnx0, T
n+1x0),

the sequences {Ktn} and {sn} have the same positive limit. Also, the sequences
{Ktn} and {sn} have the same positive limit superior and verify that tn < sn
for all n ∈ N. By the condition (ζ3) of definition 4.1 we have

lim sup
n→∞

ζ(KP (Tn+1x0, T
n+2x0), P (Tnx0, T

n+1x0)) = lim sup
n→∞

ζ(Ktn, sn) < 0,

which is a contradiction. Therefore r = 0, that is, the claim (4.3) holds. Next,
we show that

(4.5) lim
m,n→∞

P (Tnx0, T
mx0) = 0.

Suppose that this is not true. Then we can find ε0 > 0 with the sequences
{mk}, {nk} such that, for any mk > nk such that

(4.6) P (Tnkx0, T
mkx0) > ε0

for all k ∈ {1, 2, 3, · · · }. We can assume that mk is a minimum index such that
(4.6) holds. Then we also have

(4.7) P (Tnkx0, T
mk−1x0) ≤ ε0.

Hence we have

ε0 < P (Tnkx0, T
mkx0)

≤ K[P (Tnkx0, T
mk−1x0) + P (Tmk−1x0, T

mkx0)]
< Kε0 +KP (Tmk−1x0, T

mkx0).

Taking limit superior as k → ∞ in the above inequality and using (4.2), we
have

(4.8) ε0 < lim sup
k→∞

P (Tnkx0, T
mkx0) ≤ Kε0.

Now, we claim that lim sup
n→∞

P (Tnk+1x0, T
mk+1x0) < ε0. If

lim sup
k→∞

P (Tnk+1x0, T
mk+1x0) ≥ ε0,

then there exists {kr} and δ > 0 such that

(4.9) lim sup
r→∞

P (Tnkr+1x0, T
mkr+1x0) = δ ≥ ε0.

By the assumption (i) and the property of ζ, we have

(4.10)
0 ≤ ζ(KP (Tnkr+1x0, T

mkr+1x0), P (Tnkrx0, T
mkrx0))

≤ P (Tnkrx0, T
mkrx0)−KP (Tnkr+1x0, T

mkr+1x0).

Hence,

(4.11) KP (Tnkr+1x0, T
mkr+1x0) ≤ P (Tnkrx0, T

mkrx0),
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it follows from (4.8), (4.9) and (4.11), we get that

Kδ = lim sup
r→∞

KP (Tnkr+1x0, T
mkr+1x0) ≤ lim sup

r→∞
P (Tnkrx0, T

mkrx0) ≤ Kε0 ≤ Kδ.

Therefore the sequence {Ktkr := KP (Tnkr+1x0, T
mkr+1x0)} and

{skr := P (Tnkrx0, T
mkrx0)} have the same positive limit superior and ver-

ify that tkr < skr for all r ∈ N. By the property (ζ3), we conclude that

0 ≤ lim sup
r→∞

ζ(KP (Tnkr+1x0, T
mkr+1x0), P (Tnkrx0, T

mkrx0))

= lim sup
r→∞

ζ(Ktkr , skr ) < 0,

which is a contradiction and hence (4.5) hold. It follows from Lemma 2.14 (iii)
that {Tnx0} is a Cauchy sequence. Since X is a complete b−metric space,
the sequence {Tnx0} converges to some element z ∈ X. From the fact that
limm,n→∞ P (Tnx0, T

mx0) = 0, for each ε > 0, there exists Nε ∈ N such that
n > Nε implies

P (TNεx0, T
nx0) < ε.

Since P (x, ·) is K-lower semi-continuous and the sequence {Tnx0} converges
to z, we have

(4.12) P (TNεx0, z) ≤ lim inf
n→∞

KP (TNεx0, T
nx0) ≤ Kε.

Setting ε = 1
k2 and Nε = nk, by (4.12), we have

(4.13) lim
k→∞

P (Tnkx0, z) = 0.

Now, we prove that z is a fixed point of T . Suppose that Tz 6= z. Since

(Tnkx0, T
nk+1x0) ∈ X≤

for each n ∈ N, using the assumption (ii), (4.2) and (4.13), we have

0 < inf{P (Tnkx0, z) + P (Tnkx0, T
nk+1x0)} → 0

as n→∞, which is a contradiction. Therefore, Tz = z.
If Tx = x, we distinguish two cases.
case I If K = 1, then

0 ≤ ζ(P (Tx, T 2x), P (x, Tx)) = ζ(P (x, x), P (x, x)) ≤ P (x, x)− P (x, x) = 0.

Hence ζ(P (Tx, T 2x), P (x, Tx)) = 0 and so, by (ζ1), we obtain P (x, x) = 0.
case II If K > 1, then

0 ≤ ζ(KP (Tx, T 2x), P (x, Tx))

= ζ(KP (x, x), P (x, x))

≤ P (x, x)−KP (x, x)

= (1−K)P (x, x),

it follow that P (x, x) ≤ 0 and thus we must have P (x, x) = 0. This completes
the proof. �

Now, we give an example to illustrate Theorem 4.3.
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Example 4.4. Let X = [0, 1] and D(x, y) = (x − y)2 with the wt-distance P
on X defined by P (x, y) = |y|2. We consider the following set:

X≤ =
{

(x, y) ∈ X ×X : x = y or x, y ∈ {0} ∪ { 1

2n
: n ≥ 1}

}
with the usual ordering. Let T : X → X be a mapping defined by

T (x) =

 1
2n+1 , if x =

1

2n
, n ≥ 1,

0, otherwise.

for all x ∈ X. Obviously, T is nondecreasing. Also, T satisfies the condition
(ii). Indeed, for any n ∈ N, we have 1

2n 6= T ( 1
2n ). Moreover, for each n ∈ N,

we have

inf
{
P
( 1

2m
,

1

2n

)
+ P

( 1

2m
,

1

2m
− 1

22m+1

)
: m ∈ N

}
=

1

22n
> 0.

Let ζ : [0,∞)× [0,∞)→ R define by

ζ(t, s) =
s−Kt
1 +Ks

for all s, t ∈ [0,∞).

Similarly, in Example 4.2, the function define as above is simulation function
in the sense of Definition 4.1. Now, we show that T satisfies the condition (i).
Let given x = 1

2n with ( 1
2n , T ( 1

2n )) ∈ X≤. Then we have

ζ(2P (Tx, T 2x), P (x, Tx)) = ζ(2P (
1

2n+1
,

1

2n+2
), P (

1

2n
,

1

2n+1
))

= ζ(2
1

22n+4
,

1

22n+2
)

=

1

22n+2
− 2 ·

1

22n+4

1 + 2 ·
1

22n+2

=
22n+3 − 22n+2

(22n+2)(22n+3)
·

22n+1

22n+1 + 1

=
22n+2(2− 1)

(22n+4)(22n+1 + 1)

=
22n+2

(22n+4)(22n+1 + 1)

> 0.

Therefore, all the hypothesis of Theorem 4.3 are satisfied and, further, x = 0
is a fixed point of T .
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Corollary 4.5. Let (X,≤) be a partially ordered set and (X,D) be a complete
metric type space with constant K ≥ 1 and P be a wt-distance on X. Suppose
that T : X → X is a nondecreasing mapping satisfying the following conditions:

(i) there exists α ∈ [0, 1
K ) such that

P (Tx, T 2x) ≤ αP (x, Tx)

for all x ≤ Tx;
(ii) for all x ∈ X with x ≤ Tx,

inf{P (x, y) + P (x, Tx)} > 0

for all y ∈ X with y 6= Ty;
(iii) there exists x0 ∈ X such that x0 ≤ Tx0.

Then T has a fixed point in X.

Theorem 4.6. Let (X,≤) be a partially ordered set and (X,D) be a complete
b-metric space with constant K ≥ 1 and P be a wt-distance on X. Suppose
that T : X → X is a nondecreasing mapping and there exists ζ ∈ Z such that

ζ(KP (Tx, T 2x), P (x, Tx)) ≥ 0

for all (x, Tx) ∈ X≤. Assume that one of the following conditions holds:

(i) for all x ∈ X with (x, Tx) ∈ X≤,

inf{P (x, y) + P (x, Tx)} > 0

for all y ∈ X with y 6= Ty;
(ii) if both {xn} and {Txn} converge to z, then z = Tz;

(iii) T is continuous on X.

If there exists x0 ∈ X such that (x0, Tx0) ∈ X≤, then T has a fixed point in
X. Moreover, if Tx = x, then P (x, x) = 0.

Proof. In the case of T satisfying the condition (i), the conclusion was proved
in Theorem 4.3. Let us prove that (ii) =⇒ (i). Suppose that the condition (ii)
holds. Let y ∈ X with y 6= Ty such that

inf{P (x, y) + P (x, Tx) : (x, Tx) ∈ X≤} = 0.

Then we can find a sequence {zn} such that (zn, T zn) ∈ X≤ and

inf{P (zn, y) + P (zn, T zn)} = 0.

So we have

lim
n→∞

P (zn, y) = lim
n→∞

P (zn, T zn) = 0.

Again, by Lemma 2.14, we have limn→∞ Tzn = y.Moreover, limn→∞ T 2zn = y.
In fact, since

(4.14) 0 ≤ ζ(KP (Tzn, T
2zn), P (zn, T zn)) ≤ P (zn, T zn)−KP (Tzn, T

2zn),

it follow from (4.14) and K ≥ 1, we get that

lim
n→∞

P (Tzn, T
2zn) ≤ lim

n→∞
KP (Tzn, T

2zn) ≤ lim
n→∞

P (zn, T zn) = 0.
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Letting xn = Tzn, the sequences {xn} and {Txn} converge to y. Hence, by
the assumption (ii), y = Ty and so (ii) =⇒ (i). Obviously, (iii) =⇒ (ii). This
completes the proof. �

Now, we prove new theorems by replacing some conditions in Theorem 4.3
with other conditions.

Theorem 4.7. Let (X,≤) be a partially ordered set and (X,D) be a complete
b-metric space with constant K ≥ 1 and P be a wt-distance on X. Suppose
that T : X → X is a nondecreasing satisfying the following conditions:

(i) there exists ζ ∈ Z such that

ζ(KP (Tx, T 2x), P (x, Tx)) ≥ 0

for all (x, Tx) ∈ X≤;
(ii) there exists x0 ∈ X such that (x0, Tx0) ∈ X≤,

(iii) either T is orbitally continuous at x0 or
(iv) T is orbitally X≤-continuous and there exists a subsequence {Tnkx0} of

{Tnx0} converges to some element x? ∈ X such that (Tnkx0, x?) ∈ X≤
for any k ∈ N.

Then T has a fixed point in X. Moreover if Tx = x, then P (x, x) = 0.

Proof. If Tx0 = x0, then we are done. Suppose that the conclusion is not true.
Then there exists x0 ∈ X such that (x0, Tx0) ∈ X≤. Since T is monotone, we
have (Tx0, T

2x0) ∈ X≤. Continuing this process, we have a sequence {Tnx0}
such that

(Tnx0, T
mx0) ∈ X≤

for any n,m ∈ N. As in the same argument in Theorem 4.3, we can see that

(4.15) lim
n→∞

P (Tnx0, T
n+1x0) = 0.

Moreover,

(4.16) lim
m,n→∞

P (Tnx0, T
mx0) = 0.

and {Tnx0} is a Cauchy sequence converges to some element z ∈ X. Next,
we prove that z is a fixed point of T . If the condition (iii) holds, then Tn+1x0 →
Tz. By P (x, ·) is K-lower semi-continuous and (4.16), we have

(4.17) P (Tnx0, z) ≤ lim inf
m→∞

KP (Tnx0, T
mx0) ≤ α′

n (say)

and

(4.18) P (Tnx0, T z) ≤ lim inf
m→∞

KP (Tnx0, T
m+1x0) ≤ β′

n, (say)

where the sequences {α′

n := αn

K } and {β′

n := βn

K } which converges to 0. By
Lemma 2.14 (i), we conclude that z = Tz.

Suppose that the condition (iv) hold. From the fact that {Tnkx0} → z
as k → ∞, (Tnkx0, z) ∈ X≤ and T is orbitally X≤-continuous, it follows that
{Tnk+1x0} → Tz as k →∞. Similarly, since P (x, ·) is K-lower semi-continuous
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as above, we conclude that z = Tz and the remaining part of the proof follow
from the proof of Theorem 4.3. �

Corollary 4.8. Let (X,≤) be a partially ordered set and (X,D) be a complete
metric space and p be a w-distance on X. Suppose that T : X → X is a
nondecreasing satisfying the following conditions:

(i) there exists ζ ∈ Z such that

ζ(p(Tx, T 2x), p(x, Tx)) ≥ 0

for all (x, Tx) ∈ X≤;
(ii) there exists x0 ∈ X such that (x0, Tx0) ∈ X≤,

(iii) either T is orbitally continuous at x0 or
(iv) T is orbitally X≤-continuous and there exists a subsequence {Tnkx0} of

{Tnx0} converges to some element x? ∈ X such that (Tnkx0, x?) ∈ X≤
for any k ∈ N.

Then T has a fixed point in X. Moreover if Tx = x, then p(x, x) = 0.

Corollary 4.9. Let (X,≤) be a partially ordered set and (X,D) be a complete
b-metric space with constant K ≥ 1 and P be a wt-distance on X. Suppose
that T : X → X is a nondecreasing satisfying the following conditions:

(i) there exists λ ∈ [0, 1
K ) such that

P (Tx, T 2x) ≤ λP (x, Tx)

for all (x, Tx) ∈ X≤;
(ii) there exists x0 ∈ X such that (x0, Tx0) ∈ X≤,

(iii) either T is orbitally continuous at x0 or
(iv) T is orbitally X≤-continuous and there exists a subsequence {Tnkx0} of

{Tnx0} converges to some element x? ∈ X such that (Tnkx0, x?) ∈ X≤
for any k ∈ N.

Then T has a fixed point in X. Moreover, if Tx = x, then P (x, x) = 0.

Example 4.10. Let X = [0, 1] and D(x, y) = (x− y)2 with the wt-distance P
on X defined by P (x, y) = |y|2. We consider the following set:

X≤ =
{

(x, y) ∈ X ×X : x = y or x, y ∈ {0} ∪ { 1

n
: n ≥ 1}

}
,

where ≤ is the usual ordering. Let T : X → X be a mapping define by

T (x) =


x2, if x =

1

n
, n ≥ 2,

x

2
, otherwise.

Then T is a nondecreasing mapping. Also, x = 0 is an element in X such that
0 ≤ T (0) = 0 and so (0, T (0)) ∈ X≤. Hence T satisfies the condition (ii).

Next, we show that T satisfies the condition (i) of Theorem 4.7 with the

simulation function in given in Example 4.4. If x 6=
1

n
for all n ≥ 2, then
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(x, T (x)) ∈ X≤ and it is easy to see that T satisfies the condition (i). If x =
1

n

for all n ≥ 2, then (
1

n
, T

1

n
) ∈ X≤. Further, we have

ζ(2P (Tx, T 2x), P (x, Tx)) = ζ
(

2P
( 1

n2
,

1

n4

)
, P
( 1

n
,

1

n2

))
= ζ

(
2
( 1

n4

)2
,
( 1

n2

)2)
=

( 1

n2

)2
− 2
( 1

n4

)2
1 + 2 ·

( 1

n2

)2
=

n8 − 2n4

n12
·

n4

n4 + 2

=
n8 − 2n4

n8(n4 + 2)

=
n4 − 2

n4(n4 + 2)
> 0.

Hence T satisfies the condition (i). Furthermore, for each x ∈ X, Tni(x)→
0 ∈ X as i → ∞, and also Tni+1(x) → T (0) ∈ X as i → ∞. Hence all the
conditions of Theorem 4.7 are satisfied. Furthermore, x = 0 is fixed points of
T .
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[15] F. Khojasteh, S. Shukla and S. Radenovi ć, A new approach to the study of fixed point

theorems via simulation functions, Filomat 96 (2015), 1189–1194.
[16] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans.

Amer. Math. Soc. 226 (1977), 257–90.

[17] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001),
2683–2693.

[18] A. Roldán-Lopez-de-Hierro, E. Karapinar , C. Roldán-Lopez-de-Hierro and J. Martinez-

Morenoa, Coincidence point theorems on metric spaces via simulation function, J. Com-
put. Appl. Math. 275 (2015), 345–355.

[19] N. Shioji, T. Suzuki and W. Takahashi Contractive mappings, Kanan mapping and

metric completeness, Proc. Amer. Math. Soc. 126 (1998), 3117–3124.
[20] W. Takahashi, Existence theorems generalizing fixed point theorems for multivalued

mappings, in Fixed Point Theory and Applications, Marseille, 1989, Pitman Res. Notes

Math. Ser. 252: Longman Sci. Tech., Harlow, 1991, pp. 39–406.
[21] W. Takahashi, Nonlinear Functional Analysis–Fixed Point Theory and its Applications,

Yokohama Publishers, Yokahama, Japan, 2000.

c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 1 105


