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Abstract

The discontinuity factors are a technique widely used by nodal methods to minimize the error due to spatial homog-
enization of cross sections for a coarse mesh core calculation. In the present work, the introduction of discontinuity
factors in a high-order finite element approximation of the neutron diffusion equation is investigated. More pre-
cisely, classical reference and assembly discontinuity factors are introduced in a discontinuous Galerkin finite element
method stabilized using an interior penalty formulation for the neutron diffusion equation. The proposed method is
tested solving different one and two-dimensional benchmark problems, showing that the discontinuity factors tech-
nique can be successfully introduced in the discontinuous Galerkin formulation.
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1. Introduction

Traditionally, the stationary neutron distribution inside a reactor core is approximated using the energy multigroup
neutron diffusion equation (Stacey, 2007),
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where φg
(
~r
)

is the neutron flux for the g-th energy group (g = 1, . . . ,G), Dg
(
~r
)

the diffusion coefficient and Σag,
Σsg′g, νΣ f g′ , the nuclear cross sections, which are space dependent functions, and keff is the multiplication factor of the
reactor.

∗Corresponding author
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To take into account a detailed description of the different cross sections associated with the different materials a
reactor core is composed of is a very difficult task with the today’s computer capabilities (Davidson et al., 2011),
so a piece-wise homogenized version of the reactor core is used for the neutronic computations (Sanchez, 2009).
Homogenization techniques are frequently applied in different problems of physics and engineering dealing with het-
erogeneous models. The basic idea of these methods is to substitute the heterogeneous components with homogeneous
ones in such a way that the homogenized computation gives accurate average values. In this way, the homogenized
parameters associated with heterogeneous regions have to be computed to preserve the average values that would be
obtained from the heterogeneous solution.

This homogenization process is a source of error in the homogenized problem. To circumvent this homogenization
error, while preserving region-wise homogenized parameters, flux discontinuity factors are a widely used technique
(see section 2). Briefly, this technique forces jumps for the neutron flux between different homogenized regions and
it can be easily implemented with nodal methods.

On the other hand, nodal methods may have some difficulties obtaining accurate solutions when large neutronic flux
gradients appear (Palmtag, 1997). To obtain more accurate solutions, for example, high order finite element methods
have been proposed (Hébert, 1985, 2008; Wang et al., 2009; Park and Cho, 2001; González-Pintor et al., 2009; Vidal-
Ferrandiz et al., 2014). Most of these finite element methods look for the neutronic flux as a continuous function
in the reactor core. Thus, it is difficult to implement in such a methodology forced discontinuities between adjacent
subdomains. Park and Cho (2001) proposed a high order finite element method that treats each one of the subdomains
independently, where interface coupling conditions are imposed based on the incoming and outgoing partial currents
along the subdomain interfaces. Here, a different approach is proposed using a high order discontinuous Galerkin
finite element method where the jump condition for the neutron flux is imposed in a weak sense using interior penalty
terms.

The remaining of the paper is organized as follows. In section 2, the homogenization process and the flux discontinuity
factors are introduced. Then, in section 3, the formulation of the discontinuous Galerkin method for a homogenized
reactor with assembly discontinuity factors is presented, both for one-dimensional and multi-dimensional geome-
tries. Section 4 is devoted to present the method used to compute the reference discontinuity factors, both for one
dimensional and multidimensional reactors. In section 5, the numerical results obtained with the proposed method
are compared with a reference heterogeneous solution and with the results of a nodal method. Finally, the main
conclusions of the paper are summarized in section 6.

2. Homogenization and Flux Discontinuity Factors

A first step in a homogenization methodology is to choose heterogeneous reactor properties that should be reproduced
when the homogenized problem is solved. Usually, these quantities are the node averaged group reaction rates, the
surface-averaged group currents and the k-effective of the reactor, which is implicitly conserved if the two afore-
mentioned quantities are preserved. In this way, for every energy group g and every nuclear cross section Σα g, the
equations (Smith, 1986), ∫

Vk

Σ̂k
α gφ̂g(~r) d~r =

∫
Vk

Σα g(~r)φg(~r) d~r , (2)

and ∫
S k

(
D̂k

g
~∇φ̂g(~r)

)
d~S =

∫
S k

(
Dg(~r)~∇φg(~r)

)
d~S , (3)

must be satisfied, where Vk and S k are the volume of the homogenized region k and its limiting surface, respectively;
φg is the solution of the heterogeneous problem and φ̂g is the solution obtained using the homogenized parameters
Σ̂k
α g and D̂k

g.

The determination of the homogenized parameters from equation (2) requires the knowledge of the heterogeneous
solution, φg and the homogenized solution φ̂g, which depends on the homogenized parameters. To overcome this
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problem, an approximation must be done. The homogenized parameters are considered to be constant for every
region Vk, thus, expression (2) can be rewritten as

Σ̂k
α g =

∫
Vk

Σα g(~r)φg(~r) d~r∫
Vk
φg(~r) d~r

, (4)

where the average value of the homogeneous flux has been approximated by the average value of the heterogeneous
flux, i.e., ∫

Vk

φ̂g(~r) d~r ≈
∫

Vk

φg(~r) d~r , (5)

and the diffusion coefficient can be expressed

D̂k
g =

∫
S k

(
Dg(~r)~∇φg(~r)

)
d~S∫

S k

~∇φ̂g(~r) d~S
. (6)

When looking at the homogenized diffusion coefficients in equation (6), we see that they are, in general, different
for each surface, and this makes impossible to define constant diffusion coefficients in each homogenized region. To
overcome this difficulty, some conditions imposed to the solution of the homogenized region have to be relaxed. Dif-
ferent approaches to relax these conditions lead to different homogenization methods. In the generalized equivalence
theory (Smith, 1986), which is an extension of Koebke’s homogenization method (Wagner and Koebke, 1983), flux
discontinuity factors are introduced, relaxing the condition of continuity of the neutronic flux in the interior faces of
the homogenized regions.

Figure 1: Reference discontinuity factors.

Figure 2: Assembly discontinuity factors.
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In this theory, the homogenized diffusion coefficients are computed as flux-volume weighted parameters, that is,

1
D̂k

g
=

∫
Vk

1
Dg(~r)φg(~r) d~r∫
Vk
φg(~r) d~r

, (7)

where we have used the equation (5) to avoid the homogeneous flux in the formulation and, for a given interface
S j limiting two adjacent homogenized regions, the energy-dependent discontinuity factors are defined as interface
constants f −g, j, f +

g, j, such that

f −g, j

∫
S j

φ̂−g (~r)dS = f +
g, j

∫
S j

φ̂+
g (~r)dS , (8)

where φ̂−g (~r) and φ̂+
g (~r) are the lateral (directional) limits of the homogenized flux in the surface S j viewed from the

two different regions sharing this surface (see Figures 1 and 2). A possible definition of these discontinuity factors is

f −g, j =

∫
S j
φ−g dS∫

S j
φ̂−g dS

, f +
g, j =

∫
S j
φ+

g dS∫
S j
φ̂+

g dS
, (9)

so continuity for the heterogeneous reconstructed flux is enforced. Condition (8) deals with averaged values in the
surface S j, so the generalized equivalence theory can be easily implemented into nodal methods, which use nodal-
average fluxes and surface-average currents (Smith, 1986).

At this point we need the value of the heterogeneous and homogeneous fluxes, φg(~r) and φ̂g(~r) respectively, to gener-
ate the discontinuity factors and the homogenized cross sections. Different choices for these fluxes generate different
homogenization parameters. Two techniques are considered in this work. The first one consists of using the heteroge-
neous flux calculated for the whole reactor for generating the Reference Cross Sections (RXS), and appropriate fixed
current boundary conditions from the heterogeneous solution, together with the global keff and these RXS to gener-
ate the homogeneous flux in a particular region considered here as a fuel assembly. Thus, Reference Discontinuity
Factors (RDF) are generated using equation (9) (See Figure 1). This technique provides very accurate homogenized
parameters, but it requires the solution of the whole heterogeneous problem to generate the homogenized parameters,
what makes it not practical. However, because of its reduced homogenization error, it is used here to verify that the
discontinuity factors technique is successfully implemented within the interior penalty finite element method.

To circumvent the need of the whole core heterogeneous solution, the second technique studied here consists of
considering that the heterogeneous flux is calculated for a single assembly with reflective boundary conditions. This
approach would be accurate if the different assemblies composing the core were similar to the assembly being homog-
enized. Thus, with the assembly heterogeneous flux, we generate the Assembly homogenized Cross Sections (AXS),
and the homogenized flux will be the solution of the homogenized problem with reflective boundary conditions, so
we can define the Assembly Discontinuity Factors (ADF) with these fluxes (See Figure 2). This approach reduces the
computational cost of obtaining a homogenized solution for the whole core, but introduces homogenization errors,
which can be very large in a situation where the assemblies composing the core are very different to each other. The
accuracy of the homogenized parameters can be increased by iterating between the solution of the homogenized prob-
lem and the homogenization process, using more accurate boundary conditions for the single assembly calculations
that take into account the neighbourhood of the assembly. This kind of technique is not considered here, because the
main focus of this work is the introduction of the flux discontinuity factors in the finite element formulation and not
the homogenization process, that will be addressed in future works.

Moreover, different definitions of discontinuity factors exist that will not be considered here, such as the flux dis-
continuity ratios (Sanchez et al., 2013) or the current discontinuity factors (Sanchez, 2009). In this work only flux
discontinuity factors are considered.
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3. Discontinuous Galerkin method with interior penalty

Discontinuous Galerkin methods, were introduced in the early seventies to study neutron transport equations (Reed
and Hill, 1973; Lesaint and Raviart, 1974). They have become very popular to solve problems arising from hyperbolic
type partial differential equations. Because of the versatility of these methods, they have been also applied to elliptic
and parabolic problems (Arnold et al., 2000, 2002).

Discontinuous Galerkin (DG) methods define an approximation to the solution by means of a variational formulation
that tries to enforce the partial differential equation of the model together with the boundary and continuity conditions
for the solution in a weak sense (Brezzi et al., 2006). In this way, the DG method establishes a linear relationship
between the residual of the approximation inside each element and its jumps across inter-element boundaries. This
yields a formalism, that in a natural way, allows imposing jumps across the element interfaces as proposed in the
generalized equivalence theory for homogenized reactors. It makes possible to use the finite element method for
coarse-mesh reactor calculation after the homogenization procedure together with discontinuity factors, providing a
suitable theoretical framework for developing new methodologies and more advanced schemes for the approximation
of the homogenized neutron diffusion equation.

In the following, we present the Discontinuous Galerkin method proposed for the neutron diffusion equation with
discontinuity factors, both for one and multi-dimensional problems.

3.1. One-dimensional problems

To show the method, we start with a source problem associated with the mono-energetic one-dimensional diffusion
equation

−
∂

∂x

(
D
∂

∂x
φ

)
+ Σaφ = q , (10)

for a reactor R discretized in N + 1 cells with edges x0, x1, . . . , xN+1. Multiplying equation (10) by a test function, v,
and integrating over R we obtain

−
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∫
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vΣaφ dx =

∫
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Integrals defined over the whole domain in equation (11) can be written as the sum of integrals over each sub-domain
as follows
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D
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vq dx . (12)

After integrating by parts, equation (12) can be written as

N∑
i=0

∫ xi+1

xi

∂v
∂x

D
∂

∂x
φ dx −

N∑
i=0

∫ xi+1

xi

∂

∂x

(
vD

∂

∂x
φ

)
dx +

N∑
i=0

∫ xi+1

xi

vΣaφ dx =

N∑
i=0

∫ xi+1

xi

vq dx . (13)

Assuming that the neutronic flux and the diffusion coefficients can be discontinuous and making use of lateral limits,
expression (13) is expressed as

−

N∑
i=0

(
v−i+1D−i+1

∂

∂x
φ−i − v+

i D+
i
∂
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i
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N∑
i=0

∫ xi+1

xi

vq dx. (14)

where the piece-wise constant diffusion coefficient Di has moved outside of the integral, and φ±i is defined as the
lateral limit of the flux at point xi (considering the flux as belonging to the previous or posterior subdomain), i.e.,

φ±i = lim
x→x±i

φ(x) . (15)
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The first term of this equation, may be written as

T (φ) =

N∑
i=0
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i D+
i
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∂x
φ+
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1 D+
1
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1 − v−2 D−2
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0
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and introducing the notation

{v}i =
1
2

(
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,

{
D
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φ

}
i
=

1
2

(
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i
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i + D−i
∂
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φ−i

)
,
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[
D
∂
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φ

]
i
= D−i

∂
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φ−i − D+

i
∂

∂x
φ+

i ,

the term (16), is rewritten as

T (φ) = v+
0 D+

0
∂

∂x
φ+

0 −

N∑
i=1

(
{v}i

[
D
∂

∂x
φ

]
i

)
−

N∑
i=1

(
[v]i

{
D
∂

∂x
φ

}
i

)
− v−N+1D−N+1

∂

∂x
φ−N+1 .

We are looking for solutions of the neutron diffusion equation that satisfy the continuity of the neutron current in the
interior vertices of the mesh and that satisfy also the discontinuity factors condition in these vertices. That is,[

D
∂

∂x
φ

]
i
= 0 , (17)[

φ
]

f i = f −i φ
−
i − f +

i φ
+
i = 0 , i = 1, 2, . . . ,N, (18)

where f +
i and f −i are the right and left discontinuity factors for vertex xi, respectively.

Using the continuity condition for the current in the interior vertices from equation (17), the term (16) can be expressed
as

T (φ) = v+
0 D+

0
∂

∂x
φ+

0 −

N∑
i=1

(
[v]i

{
D
∂

∂x
φ

}
i

)
− v−N+1D−N+1

∂

∂x
φ−N+1 , (19)

while preserving the consistency of the formulation (the weak formulation is satisfied by the solution of the original
strong formulation defined by equation (10)).

To stabilize this method, a penalty term is introduced (Brezzi et al., 2006),

P(φ) :=
N∑

i=1

si

([
φ
]

f i [v]i

)
, (20)

which does not affect the consistency of the formulation (P(φ) = 0 when φ is satisfies the discontinuity factors
condition (18)), and the new term T sp(φ) := T (φ) + P(φ) is written as

T sp(φ) = v+
0 D+

0
∂

∂x
φ+

0 − v−N+1D−N+1
∂

∂x
φ−N+1 −

N∑
i=1

({
D
∂

∂x
φ

}
i
[v]i

)
+

N∑
i=1

si

([
φ
]

f i [v]i

)
. (21)
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Then, equation (14) is rewritten as

N∑
i=0

∫ xi+1

xi

∂v
∂x

D
∂φ

∂x
dx +

N∑
i=0

∫ xi+1

xi

vΣaφ dx −
N∑

i=1

({
D
∂

∂x
φ

}
i
[v]i

)

+

N∑
i=1

si

([
φ
]

f i [v]i

)
+ v+

0 D+
0
∂

∂x
φ+

0 − v−N+1D−N+1
∂

∂x
φ−N+1 =

N∑
i=0

∫ xi+1

xi

vq dx . (22)

Boundary conditions remain to be introduced in the method to be completely defined. The boundary conditions are
imposed in a weak form (Rivière, 2008) and this can be made modifying the terms

v+
0 D+

0
∂

∂x
φ+

0 − v−N+1D−N+1
∂

∂x
φ−N+1 (23)

in equation (22). Hence, if zero current conditions are imposed, these terms are identically zero. If zero flux boundary
conditions are imposed these terms remain unaltered. And if albedo boundary conditions are considered,

−D+
0
∂

∂x
φ+

0 = α0φ
+
0 , D−N+1

∂

∂x
φ−N+1 = αN+1φ

−
N+1 ,

then, the terms (23) are substituted by
−v+

0α0φ
+
0 − v−N+1αN+1φ

−
N+1 . (24)

This scheme requires the user to specify a parameter, si, which is known as a penalty parameter. This parameter
can be viewed as a Lagrange multipliers condition to enforce the discontinuity factor condition in the finite element
formulation. If the value of this parameter is not sufficiently large, the approximate solution is unstable. On the other
hand, for an arbitrarily large value of the penalty parameter the condition number for the resulting matrices of the
discretization would degenerate (Shahbazi, 2005). The development of optimal lower bounds for this parameters is
out of the scope of this work, so here the penalty parameters are chosen, based in the expressions provided by Epshteyn
and Rivière (2007) and Shahbazi (2005), as a large enough parameter ensuring convergence for the method.

Using the discontinuity factor condition (18), also a symmetrizing term could be introduced in the method, which is
identically zero for the exact solution of the problem,

θ

N∑
i=1

([
φ
]

f i

{
D
∂

∂x
v
}

i

)
, (25)

thus equation (22) can be substituted by

N∑
i=0

∫ xi+1

xi

∂v
∂x

D
∂φ

∂x
dx +

N∑
i=0

∫ xi+1

xi

vΣaφ dx

−

N∑
i=1

({
D
∂

∂x
φ

}
i
[v]i

)
+ θ

N∑
i=1

([
φ
]

f i

{
D
∂

∂x
v
}

i

)
+

N∑
i=1

si

([
φ
]

f i [v]i

)
+ v+

0 D+
0
∂

∂x
φ+

0 − v−N+1D−N+1
∂

∂x
φ−N+1 =

N∑
i=0

∫ xi+1

xi

vq dx , (26)

where different values for the parameter θ = {−1, 0, 1} can be selected, obtaining different methods (Sun and Wheeler,
2005). Selecting θ = −1 a method similar to the Symmetric Interior Penalty Galerkin (SIPG) method is obtained. For
θ = 1 it gives the analogous to the Non-symmetric Interior Penalty Galerkin (NIPG) method, and θ = 0 corresponds
to the Incomplete Interior Penalty Galerkin (IIPG) method. The symmetrizing term (25) is different from the one used
in interior penalty methods, because it has the jump with respect to the discontinuity factors instead of the classical
jump respect to the continuity of the solution. Thus, it does not provide symmetry for the linear systems when using
the SIPG method, and has not known advantages for the NIPG method. because no known reason justifies using one
of the other methods, θ = 0 is considered in our formulation.
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3.2. Multidimensional problems

The interior penalty finite element method can be generalized to problems with multidimensional geometry. For this
kind of problems, equation (10) is written as

−~∇D~∇φ + Σaφ = q . (27)

This equation is defined for a reactor Ω, which is divided into subdomains Ω1,Ω2, . . . ,ΩN , where the homogenized
cross sections are considered as constant values.

Multiplying equation (27) by a test function, v, and integrating over Ω, it is obtained

−

∫
Ω

v~∇D~∇φ d~r +

∫
Ω

vΣaφ d~r =

∫
Ω

vq d~r ,

which can be rewritten as

−

N∑
e=1

∫
Ωe

v~∇D~∇φ d~r +

∫
Ω

vΣaφ d~r =

∫
Ω

vq d~r . (28)

Integrating by parts the first term and using Green’s theorem, we rewrite the first term of equation (28) as

−

∫
Ωe

v~∇D~∇φ d~r = De

∫
Ωe

~∇v~∇φ d~r −
∫
∂Ωe

vD~∇φ~ndS .

In this way, equation (28), can be written as

N∑
e=1

De

∫
Ωe

~∇v~∇φ d~r −
N∑

e=1

∫
∂Ωe

vD~∇φ~ndS +

∫
Ω

vΣaφ d~r =

∫
Ω

vq d~r . (29)

The surface integrals are decomposed as a sum over the different faces limiting each node, distinguishing the interior
faces E1, E2, . . . , EI from the faces, B1, B2, . . . , BF , placed at the boundary of the reactor. For two adjacent nodes Ωi

and Ω j, sharing the interior face El, the jump and average operators are defined by{
D~∇φ

}
El

=
1
2

(
Di~∇φ

−
i + D j~∇φ

+
j

)
, {v}El

=
1
2

(
v−i + v+

j

)
,[

D~∇φ
]

El
= Di~∇φ

−
i ~ni + D j~∇φ

+
j ~n j , [v]El = v−i ~ni + v+

j ~n j , (30)

where Di, φ±i , v±i are the lateral limits in the surface El of D, φ, v in the node Ωi and ~ni is the normal vector to the face
El pointing outwards of node Ωi. Collecting together the integrals over the same face and operating in a similar way
as it has been done for the one-dimensional case, using the definitions (30), we set

−

N∑
e=1

∫
∂Ωe

vD~∇φ~n dS = −

F∑
j=1

∫
B j

vD~∇φ~n dS −
I∑

l=1

∫
El

{
D~∇φ

}
El

[v]El ~n dS −
I∑

l=1

∫
El

[
D~∇φ

]
El
{v}El

~n dS . (31)

We are looking for a solution, φ, of the neutron diffusion equation (27) on each of the subdomains Ωe such that in
each interior surface, El that is shared by nodes Ωi and Ω j, the neutronic current is continuous and the assembly
discontinuity factors condition is satisfied. These conditions can be expressed as[

D~∇φ
]

El
= 0 , (32)[

φ
]

fEl
= f −i φi~ni + f +

j φ j~n j = 0 , (33)
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which are imposed in a weak form in the interior penalty method.

Using the current continuity condition (32), equation (31) is rewritten as

−

N∑
e=1

∫
Ωe

vD~∇φ~n dS = −

F∑
j=1

∫
B j

vD~∇φ~n dS −
I∑

l=1

∫
El

{
D~∇φ

}
El

[v]El ~n dS . (34)

As in the one-dimensional case, using the assembly discontinuity factors condition (33), a penalty term is introduced,
thus,

−

N∑
e=1

∫
Ωe

vD~∇φ d~r = −

F∑
j=1

∫
B j

vD~∇φ~n dS −
I∑

l=1

∫
El

{
D~∇φ

}
El

[v]El ~n dS +

I∑
l=1

∫
El

sl
[
φ
]

fEl
[v]El dS . (35)

Inserting the expression (35) into equation (29) the multidimensional interior penalty method for the neutron diffusion
equation is obtained.

N∑
e=1

De

∫
Ωe

~∇v~∇φ d~r +

∫
Ω

vΣaφ d~r −
I∑

l=1

∫
El

{
D~∇φ

}
El

[v]El ~n dS

+

I∑
l=1

∫
El

sl
[
φ
]

fEl
[v]El ~n dS −

F∑
j=1

∫
B j

vD~∇φ~n dS =

∫
Ω

vq d~r . (36)

The boundary conditions in the method affect the surface integrals over the external faces B j and the changes are
similar to the ones exposed in the one-dimensional case.

The penalty parameters sl are chosen as a large enough parameter ensuring convergence for the method, based in the
expressions provided by (Epshteyn and Rivière, 2007) and (Shahbazi, 2005).

As in the one-dimensional case, using the discontinuity factors condition (33), a symmetrizing term could be intro-
duced, obtaining

N∑
e=1

De

∫
Ωe

~∇v~∇φ d~r +

∫
Ω

vΣaφ d~r

−

I∑
l=1

∫
El

{
D~∇φ

}
El

[v]El ~n dS + θ

I∑
l=1

∫
El

[
φ
]

fEl

{
D~∇v

}
El
~n dS

+

I∑
l=1

∫
El

sl
[
φ
]

fEl
[v]El dS −

F∑
j=1

∫
B j

vD~∇φ~n dS =

∫
Ω

vq d~r . (37)

Nevertheless, for the same reason as in one-dimensional problems, no symmetrizing term is considered in our formu-
lation (θ = 0).

4. Reference homogenized cross sections and discontinuity factors

In order to calculate the best possible homogenized solution, the heterogeneous solution over the whole reactor is
used to calculate the reference values of the homogenized coefficients, cross sections and discontinuity factors. The
computed parameters are called reference homogenized cross sections (RXS) and reference discontinuity factors
(RDFs) to differentiate them from the isolated assembly parameters, assembly homogenized cross sections (AXS)
and assembly discontinuity factors (ADFs), which are computed using the heterogeneous flux in an isolated assembly

9



with reflective boundary conditions. Obviously, this reference homogenized calculation does not have any practical
application because the full heterogeneous reactor is must be solved first. However, the reference homogenized
solution can be used to distinguish between the error when solving the homogenized problem, and the error of the
homogenization procedure.

To compute the reference cross sections the neutron diffusion equation is solved taking into account the heterogeneous
composition of each one of the assemblies composing the reactor, obtaining the heterogeneous neutron flux, φg

(
~r
)
.

Reference cross sections have been calculated with the usual flux-weighting method by means of equation (4) and
(7) (Smith, 1986). A calculation method of the reference discontinuity factors has been proposed in one dimensional
assemblies and its extension to multidimensional assemblies.

4.1. One-dimensional assemblies

First, the solution for the heterogeneous whole core reactor is obtained, φg(x). Using this flux, the reference homog-
enized cross sections, Σ̂α, g and D̂g are obtained for the different assemblies. The reference discontinuity factors at
vertex xi are defined as

f −g, i =
φ−g (xi)

φ̂−g (xi)
, f +

g, i−1 =
φ+

g (xi)

φ̂+
g (xi)

, (38)

depending also on the homogenized flux. This homogenized flux is the solution of a boundary value problem, defined
in one-group of energy (see Figure 3) as

−D̂i
d2

dx2 φ̂(x) + Σ̂a, i φ̂(x) −
1

keff

νΣ̂ f , i φ̂(x) = 0 (39)

with the boundary conditions

−D̂i
dφ̂
dx

(xi) = Ĵx(xi),

−D̂i
dφ̂
dx

(xi+1) = Ĵx(xi+1).

xi xi+1

Jx(xi+1)Jx(xi)

Figure 3: 1D assembly.

These boundary conditions and the keff present in equation (39) are obtained from the whole core heterogeneous
reactor calculation, using

Ĵx(xi) ≈ Jx(xi) = Di
dφ
dx

(xi) ,

Ĵx(xi+1) ≈ Jx(xi+1) = Di
dφ
dx

(xi+1) .

Although, problem (39) has an analytical solution for one energy group approximation, the solution of the same
problem for the multigroup approximation has to be computed numerically. The numerical method selected to solve
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this problem has been a high-order continuous finite element method (Vidal-Ferrandiz et al., 2014). The weak form
of this problem for a test function ϕ can be written as

D̂i

∫ xi+1

xi

dϕ
dx

dφ̂
dx

dx +

Σ̂a, i −
νΣ̂ f , i

keff

 ∫ xi+1

xi

ϕ φ̂ dx = ϕ Ĵx(xi) − ϕ Ĵx(xi+1) (40)

which after spatial discretization becomes the algebraic linear system

AΦ = f , (41)

where Φ is the vector of coefficients of of the polynomial expansion of the homogeneous neutron flux. The elements
of the matrix A and the right hand side vector f are given by

Alm = D̂i

∫ xi+1

xi

dNl

dx
dNm

dx
dx +

Σ̂a i −
νΣ̂ f , i

keff

 ∫ xi+1

xi

Nl Nm dx,

fl =


+Nl Ĵx(xi) if l = 0 ,

0 if l , 0,K ,

−Nl Ĵx(xi+1) if l = K .

where Nl are the shape function considered and K is the polynomial truncation order chosen.

4.2. Multidimensional assemblies

The method exposed above, used to obtain the homogeneous flux contributing to the discontinuity to the discon-
tinuity factors definition, can be generalized to multidimensional assemblies by alternatively solving coupled one-
dimensional problems following the lines presented in Smith (1986). To present the method, a two-dimensional
assembly, like the one shown in Figure 4, is considered.

(xi, yj)

Jx(xi+1)Jx(xi)

(xi+1, yj)

(xi+1, yj+1)(xi, yj+1) Jy(yj+1)

Jy(yj+1)

Figure 4: 2D assembly.

The Reference Discontinuity Factors for the faces containing the vertices (xi, y j) and (xi, y j+1) (parallel to the y axis)
are defined by

f −g, i =

∫ y j+1

y j
φ−g (xi, y) dy∫ y j+1

y j
φ̂−g (xi, y) dy

; f +
g, i−1 =

∫ y j+1

y j
φ+

g (xi, y) dy∫ y j+1

y j
φ̂+

g (xi, y) dy
. (42)
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The definition of the discontinuity factors for the other faces of the assembly (parallel to the x axis) is similar. In order
to calculate the discontinuity factors, the homogenized flux has to be calculated. Lets consider the neutron diffusion
equation for the 2D assembly i

−~∇D̂i~∇φ̂(x, y) + Σa, iφ̂(x, y) = νΣ f , iφ̂(x, y) . (43)

Integrating along the y direction, equation (43) can be written as the one-dimensional problem

−D̂i
d2

dx2 Φ̂(x) +

Σ̂a, i −
νΣ̂ f , i

keff

 Φ̂(x) = S (x) , (44)

where the unknown, Φ̂(x), is defined by

Φ̂(x) =

∫ yi+1

yi

φ̂(x, y)dy,

and the leakage

S (x) = D̂i

∫ yi+1

yi

d2

dy2 φ̂(x, y)dy ,

has been introduced, which is computed using the previously calculated heterogeneous neutronic flux. The boundary
conditions considered for this problem are as follows

Ĵx(xi) = −D̂i
d
dx

Φ̂(xi) =

∫ y j+1

y j

d
dx
φ(xi, y) dy,

Ĵx(xi+1) = −D̂i
d
dx

Φ̂(xi+1) =

∫ y j+1

y j

d
dx
φ(xi+1, y) dy,

which are also obtained from the heterogeneous neutron flux.

The resulting problem is a one-dimensional source problem similar to the one exposed in subsection 4.1, which is
solved using the finite element method. A similar procedure is used to obtain the Reference Discontinuity Factors in
the other faces of the assembly (parallel to the y axis).

5. Numerical Results

To assess the capabilities of the proposed interior penalty method with assembly discontinuity factors, a code has been
implemented in a standard finite element library named Deal.II (Bangerth et al., 2007) using Lagrange polynomials.

To check the performance of the discontinuous Galerkin method in introducing the discontinuity factor conditions
between the interior faces of adjacent nodes, first we will use the reference cross sections (RXS) and reference as-
sembly discontinuity factors (RDF) computed from the heterogeneous flux. These results are complemented with the
calculations using the homogenized cross sections (AXS) and the assembly discontinuity factors (ADF), calculated
considering an isolated assembly with reflecting boundary conditions during the homogenization process.

Several one and two-dimensional benchmark problems have been analysed and the results obtained with the finite el-
ement method have been compared with the results obtained with the code PARCS (Joo et al., 1998). The 1-D bench-
marks are slab of assemblies which are simplified representations of Boiling Water Reactor (BWR) configurations,
while the 2-D benchmark problems are two small subsets of the CISE core and the complete CISE core (Rahnema
and Nichita, 1997).

5.1. One dimensional problems

The 1D cores are extracted from (Rahnema and Nichita, 1997) and are composed of seven assemblies. These config-
urations are constructed by combining three different assemblies which are 1-D representations of BWR assemblies
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(Chiang, 1982). The geometry of the assemblies and their configurations are shown in Figure 5. Cross sections for
each region of these assemblies are given in Table 1. Configurations are sort by heterogeneities between assemblies.
The first configuration is composed of similar assemblies and in the last one heterogeneous assemblies have been
joined together, which is used to test the method in an extreme situation. Zero-current boundary conditions are im-
posed at the edges of the system. All the calculation are made using cubic polynomials in the finite element method.

Configuration 3

31 1 3 1 3 1

Configuration 2

21 1 2 1 2 1

41 1 4 1 4 1

Configuration 1

Type 3 Type 4

Type 1 Type 2

Water

I II II I I I I I

I IIg IIIg IIg IIg IIg IIg

Figure 5: Core and assemblies configurations for the 1D benchmark problems.

Table 1: Material properties for the 1D benchmark problems.

Mat. Thickness D1 D2 Σa1 Σa2 Σ12 νΣ f1 νΣ f2
(cm) (cm) (cm) (1/cm) (1/cm) (1/cm) (1/cm) (1/cm)

Water 1.158 1.7639 0.2278 0.0003 0.0097 0.0380 0.0000 0.0000
Fuel I 3.231 1.4730 0.3294 0.0096 0.0764 0.0161 0.0067 0.1241
Fuel II 3.231 1.4804 0.3362 0.0101 0.0901 0.0156 0.0078 0.1542
Fuel IIg 3.231 1.5342 0.3143 0.0135 0.4873 0.0136 0.0056 0.0187

In addition to the explained finite element calculations, two more cases are presented for comparative purposes. The
first one is done with the nodal code PARCS (Joo et al., 1998) using discontinuity factors. All PARCS calculations are
made with 16 cells per assembly in order to achieve a reasonable accuracy for these small problems. The reference
solution is obtained using an heterogeneous fine mesh calculation made with the finite element code.

Assembly errors are condensed using the root mean square (RMS) of the relative errors as defined in equation (45)

RMS =

√√
1∑
i Vi

∑
i

Vi

(
ϕhom,i − ϕhet,i

ϕhet,i

)2

, (45)

where ϕhom,i and ϕhet,i represent the homogeneous and the heterogeneous (reference) variable of interest (either fluxes
or power averaged in assembly i). Vi represent the measure of the region i (longitude in 1D and area in 2D).

Figure 6 shows the fast and thermal fluxes for the homogenized reactor associated with Configuration 1, making use
of the discontinuity factors and without using them. It is shown that a discontinuous solution for the flux is obtained
with the interior penalty finite element method proposed here.
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Figure 6: Fast and thermal homogeneous fluxes for the Configuration 1.

System keff and assembly averaged fluxes and power errors for configurations 1, 2 and 3 are given in Tables 2, 3, and
4, respectively. In Table 2 it is shown a very good behavior for all the methods, being the solution with the RXS and
RDFs the most accurate. It is worth to notice that this problem represents the less heterogeneous configuration, so the
solution without discontinuity factors, even if the worst one, is obtained with very good accuracy.

Table 2: Results for Configuration 1 core.

Assembly Errors (%)
Method keff Error Fast Thermal Power

(pcm) Flux Flux
FEM (No DFs) 1.31997 5 0.19 0.47 0.36
FEM (DFs) 1.31991 1 0.04 0.02 0.03
PARCS (DFs) 1.31990 2 0.05 0.04 0.04
FEM (RDFs) 1.31992 0 0.02 0.04 0.04
Heterogeneous 1.31992

Table 3 shows the results for a more heterogeneous configuration. For this problem, the use of discontinuity factors
become necessary. We can observe a great improvement of the keff approximation, even if the errors in the flux
are mostly the same as without discontinuity factors. Again, a good agreement is found between the finite element
method with ADFs and PARCS with ADFs. For this reactor the RXS and RDFs the most accurate, meaning that the
homogenization process should be improved to achieve higher accuracy.

Table 3: Results for Configuration 2 core.

Assembly Errors(%)
Method keff Error Fast Thermal Power

(pcm) Flux Flux
FEM (No DFs) 1.10350 1736 3.25 3.19 3.83
FEM (ADFs) 1.11934 152 1.31 5.90 3.58
PARCS (ADFs) 1.11955 131 1.32 6.03 3.69
FEM (RDFs) 1.12062 14 0.10 0.18 0.16
Heterogeneous 1.12086

For Configuration 3, the most heterogeneous among the ones chosen for the one-dimensional problems, we observed
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that more accurate calculations (higher order polynomial expansions for the FEM) are necessary in order to converge
the method, so 5th order degree FEM has been added to the calculations. Using ADFs, we see that the FEM converges,
when increasing the truncation degree, to the same solution as PARCS with ADF. Using the RDFs it is also necessary
to go to 5th degree to achieve accurate results. This is due to the strong heterogeneity of the reactor, what makes
also more challenging for the Finite Element Method to converge spatially (the homogenization error is larger for this
configuration, but also the error due to the FEM approximation).

Table 4: Results for Configuration 3 core.

Assembly Errors(%)
Method keff Error Fast Thermal Power

(pcm) Flux Flux
FEM (No DFs; 3rd degree polynomials) 1.01482 703 4.56 13.56 6.22
FEM (No DFs; 5th degree polynomials) 1.01463 722 4.38 13.45 6.02
FEM (ADFs; 3rd degree polynomials) 1.02464 279 1.68 15.23 3.31
FEM (ADFs; 5th degree polynomials) 1.02797 612 3.15 18.18 6.80
PARCS (ADFs) 1.02865 680 3.42 16.97 5.25
FEM (RDFs; 3rd degree polynomials) 1.01828 357 2.96 4.05 3.85
FEM (RDFs; 5th degree polynomials) 1.02131 54 0.50 0.68 0.65
Heterogeneous 1.02185

5.2. Multidimensional problems

The two-dimensional test problems chosen are based in the CISE benchmark (Rahnema and Nichita, 1997). The
layout for the CISE core, together with the assembly definition, are shown in Figure 7, while the cross sections for
the blade, water, the fuel A (fresh nuclear fuel) and the fuel B (depleted nuclear fuel) used in the tests are given in
Table 5.
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(a) Quarter of the whole core CISE reactor composition.
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(b) Detailed view of the mesh used for the fine mesh heteroge-
neous calculation.

Figure 7: CISE core and assembly definition.
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Table 5: Cross section values for CISE benchmarks.

Material D1 D2 Σa1 Σa2 Σ12 νΣ f1 νΣ f2
(cm) (cm) (1/cm) (1/cm) (1/cm) (1/cm) (1/cm)

Water 2.0000 0.3000 0.0000 0.0100 0.0400 0.0000 0.0000
Fuel A 1.8000 0.5500 0.0080 0.0850 0.0120 0.0060 0.1100
Fuel B 1.8000 0.5500 0.0080 0.0850 0.0120 0.0050 0.1000
Blade 3.0000 0.1500 0.0800 1.0000 0.0000 0.0000 0.0000

Three problems are defined based on the CISE benchmark. First, a small subset composed by four assemblies sur-
rounding an inserted control blade is considered, together with reflective boundary conditions. The geometry for the
proposed problem, named Small CISE, is shown in Figure 8a. Within this problem, the heterogeneities considered
inside the reactor are taken into account. In order to analyze the method against a more heterogeneous problem, a
non-realistic problem, called Modified Small CISE, is defined (see Figure 8b). This problem is similar to the small
Cise, but the control blade inside the assemblies defined with material A is removed. This causes the flux to have
an strong gradient on the interfaces, thus being more challenging for the homogenization procedure to preserve the
properties of the original problem. The third problem to be considered is the original whole core CISE reactor (see
Figure 7), together with zero-flux boundary conditions.

B

A B

A

(a) Small CISE

B

A B

A

(b) Modified small CISE

Figure 8: Definition of subsets of the CISE reactor

An heterogeneous fine-mesh whole core calculation (Heterogeneous), with the fine mesh shown in Figure 7b, is
used as reference solution. Then, after the homogenization process, the different problems are solved using a coarse-
mesh of once cell per assembly, together with the different homogenized parameters and discontinuity factors, both
the isolated assembly homogenized data (FEM (ADFs)), and the reference homogenized data (FEM (RDFs)). The
calculations are complemented with the results obtained by PARCS with the ADFs and AXSs (PARCS (ADFs)), in
order to verify the introduction of the discontinuity factors in the FEM. The calculations with the Finite Element code,
as in the previous section, were made using cubic polynomials,.

The results for the small CISE benchmark are shown in Table 6. We can see that all the methods show very accurate
solution, being the calculations with the RDFs and RXSs the most accurate ones. It is worth to note the agreement
between the FEM and PARCS when using ADFs and AXSs, being the error due mostly to the homogenization process,
and corrected only by means of an improvement of the homogenized data.

Table 7 shows the results for the modified small CISE problem. This problem has been artificially modified to have
stronger heterogeneities. We can observe that the results without using discontinuity factors are very big, while the
introduction of the discontinuity factors mitigate the error due to the homogenization process. Comparing the solution
of FEM with ADFs and PARCS with ADFs we observe that the two codes agree very well, and these errors can be
reduced by means of improving the homogenization procedure, as we can see when we use the RDFs and RXSs.
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Table 6: Results for small CISE benchmark.

Assembly Errors(%)
Method keff Error Fast Thermal Power

(pcm) Flux Flux
FEM (No DFs) 0.83189 54 0.68 1.03 1.06
FEM (ADFs) 0.83188 55 0.71 1.06 1.09
PARCS (ADFs) 0.83184 59 0.72 1.06 1.09
FEM (RDFs) 0.83249 6 0.16 0.13 0.13
Heterogeneous 0.83243

Table 7: Result for the modified small CISE.

Assembly Errors(%)
Method keff Error Fast Thermal Power

(pcm) Flux Flux
FEM (No DFs) 0.94627 5354 6.37 11.32 7.90
FEM (ADFs) 0.92747 3473 4.06 4.53 5.37
PARCS (ADFs) 0.92754 3480 4.06 4.45 5.29
FEM (RDFs) 0.88843 431 1.58 2.54 2.35
Heterogeneous 0.89274

Table 8 shows the results for the whole CISE reactor problem. The main differences between this problem and
the previous ones is that here we use zero-flux boundary conditions, and that we have some assemblies (defining
one layer of reflector) composed only by moderator. The use of zero-flux boundary conditions produce higher flux
gradients close to the reflector, making the problem more challenging and thus requiring increase the polynomial order
of the FEM. Moreover, reflector assemblies should be considered inside a macro-assembly while homogenizing the
surrounding assemblies during the isolated assembly homogenization process, otherwise the homogenization error
close to the reflector will also be higher. It has not been done here, but instead the RXSs and RDFs take them into
account, so the homogenization error can be reduced. It is observed that, even if the assembly errors are around 5%

Table 8: Results for CISE benchmark.

Assembly Errors(%)
Method keff Error Fast Thermal Power

(pcm) Flux Flux
FEM (No DFs; 3rd degree polynomials) 0.94957 192 5.76 4.33 5.10
FEM (No DFs; 5th degree polynomials) 0.94957 192 5.69 4.30 5.07
FEM (ADFs; 3rd degree polynomials) 0.95100 49 0.79 2.00 1.07
FEM (ADFs; 5th degree polynomials) 0.95092 57 0.89 2.11 1.15
PARCS (ADFs) 0.95078 71 1.00 2.39 1.16
FEM (RDFs; 3rd degree polynomials) 0.95184 33 1.93 1.52 0.39
FEM (RDFs; 5th degree polynomials) 0.95177 27 0.45 0.46 0.47
Heterogeneous 0.95149

when the discontinuity factors are not used, we can decrease the error with the inclusion of the ADFs in the FEM.
Again there is a good agreement between the FEM and PARCS when both use ADFs. The when using RDFs and
RXSs we observe that, for degree 3, results show lower error in the power, while the errors in the flux are still quite
large. This is due to different signs for the fast and for the thermal flux approximation errors, being canceled when
calculating the power by chance. Increasing the polynomial degree for the RDFs solve the problem, giving a very
good approximation (assembly errors smaller than 0.5%) for both fluxes and for the power.

17



In order to show the homogenization process, Figures 9 and 10 show the heterogeneous and homogenized solutions
for the fast and the thermal neutron flux for the CISE reactor. It can be seen, that the homogenized calculation also
obtains discontinuous neutron fluxes in the 2D CISE benchmark problem.

(a) Heterogeneous solution (b) Homogenized solution with ADFs

Figure 9: Fast flux for the CISE core.

(a) Heterogeneous solution (b) Homogenized solution with ADFs

Figure 10: Thermal flux for the CISE core.

6. Conclusions

A detailed description of a nuclear power reactor core taking into account the detailed composition of the different
materials composing the fuel assemblies is a very expensive task from the computational point of view, even when
a low order approximation of the neutron transport equation such as the neutron diffusion equation is used. Thus, a
homogenized version of the core is generally used for whole core reactor calculations. The use of assembly flux dis-
continuity factors has been proposed to improve the homogenization process, searching for discontinuous solutions
for the neutron flux. The assembly discontinuity factors conditions have been successfully implemented in nodal
methods, since the unknowns of these methods are the average neutron fluxes and currents in the nodes. To increase
the accuracy obtained with the nodal calculations, high order finite element methods have been proposed to discretion
the neutron diffusion equation. In this work, we propose a discontinuous Galerkin method that introduces the assem-
bly discontinuity factors condition in a weak form, by means of an interior penalty method, obtaining discontinuous
solutions for the neutronic flux. The performance of the method have been tested with 1D and 2D benchmark prob-
lems, using both reference homogenized cross sections together with reference discontinuity factors, and assembly
cross sections together with assembly discontinuity factors obtained with the standard homogenization method. It is
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shown that the finite element method proposed has a very good performance, being the most part of the errors found
due to the homogenization process.

It has also been observed that the FEM could need to increase the polynomial degree to more than 3 for some problems
in order to achieve enough accuracy. It could be automatized by means of an local mesh refinement based on error
estimator, so the method will automatically reduce the spatial truncation error, being the homogenization error then the
dominant one. This should be considered future works, together with different improvements of the homogenization
error.
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Hébert, A., 1985. Application of the Hermite method for finite element reactor calculations. Nuclear Science and Engineering 91 (34-58), 45.
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