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Abstract

Background: The integrative analysis of multiple genomics data often requires that genome coordinates-based
signals have to be associated with proximal genes. The relative location of a genomic region with respect to the
gene (gene area) is important for functional data interpretation; hence algorithms that match regions to genes

should be able to deliver insight into this information.

Results: In this work we review the tools that are publicly available for making region-to-gene associations. We also
present a novel method, RGmatch, a flexible and easy-to-use Python tool that computes associations either at the
gene, transcript, or exon level, applying a set of rules to annotate each region-gene association with the region
location within the gene. RGmatch can be applied to any organism as long as genome annotation is available.
Furthermore, we qualitatively and quantitatively compare RGmatch to other tools.

Conclusions: RGmatch simplifies the association of a genomic region with its closest gene. At the same time, it is
a powerful tool because the rules used to annotate these associations are very easy to modify according to the
researcher’s specific interests. Some important differences between RGmatch and other similar tools already in
existence are RGmatch'’s flexibility, its wide range of user options, compatibility with any annotatable organism,

and its comprehensive and user-friendly output.
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Background

The flourishing of sequencing functional genomics as-
says has popularized the analysis of different chromatin
features to understand regulatory aspects of gene ex-
pression. These assays measure, for example, the binding
of transcription factors or histone modifications at
chromosomal locations (chromatin immune precipitation
sequencing; ChIP-seq), DNA methylation events (different
types of Methyl-seq), or chromatin accessibility (DNase I
hypersensitive sites sequencing or Assay for Transposase-
Accessible Chromatin with high-throughput sequencing;
DNase-seq or ATAC-seq). In all cases, analysis of these
data returns potentially functional regions, defined by
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genomic coordinates, which must then be related to
proximal genes in order to gain any biological meaning.
How these regions regulate nearby genes depends on
the type of experiment. For example, the transcription
factor binding sites predicted using ChIP-seq experiments
may be expected to be located in the transcription start site
(TSS) and promoter regions of the gene being regulated or
in distal enhancers depending whether they are cell-type
specific or not, and users might want to have control of
what association is relevant in their experiment. In the case
of open chromatin sites obtained from DNase-seq experi-
ments, the functional interpretation may differ depending
if they are in a promoter, intronic, or downstream gene
regions. Therefore, it is not only important to associate
genomic regions to the closest gene, but also to identify
the specific area of the gene where the region is located
(the promoter, first exon, an intron, downstream, etc.)
[1-5]. The solution to this problem is not straightforward
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because it depends on the isoform of the gene being con-
sidered. In addition, regions may span multiple areas of
the same gene (i.e. the TSS and first exon) or fall at over-
lapping genes. Moreover, regions at intergenic locations
can be associated with upstream or downstream areas of
different genes, and therefore a set of rules has to be
established to decide which association should be kept.

Because current sequencing technologies predict thou-
sands or even millions of genomic regions that must be
mapped to other genomic locations such as genes or
transcripts in order to perform integration studies, a
computational algorithm is required to match these gen-
omic regions to proximal features (e.g. genes). Moreover,
it must take the considerations listed above into account,
provide users flexibility to set the association criteria,
and be easily integrated with broader analysis pipelines.
Although there is an increasing need for such algorithms,
as far as we know, there are very few publicly-available
tools which can perform this task. One such tool is part of
the HOMER suite [6], which matches each genomic re-
gion to the closest transcript and returns the area of
the transcript overlapped by the midpoint of the region.
This tool can be used with custom annotations, but
other information like the overlapping of CpG islands,
repeat elements, etc., is only returned for supported spe-
cies. GREAT [7] is a web tool for predicting cis-regulatory
regions which takes into account not only nearby genes,
but also distal binding events. However, the main draw-
back of GREAT is its lack of support for species other
than human, mouse, and zebrafish. CisGenome [8] is one
of the first tools that appeared to deal with ChIP-seq data.
Among other utilities, it associates regions to proximal
genes but does not provide the location of the region
within the gene. This tool can either be used via a graph-
ical interface in Windows operating systems or by com-
mand line in OSX and Linux. Seq2pathway [9] and
ChIPseeker [10] are two different R packages that also
contain functions for associating genomic regions with
genes and annotate the location of the region within the
gene. Seq2pathway follows a similar approach to GREAT
but its main limitation is, again, that it only supports two
species (human and mouse). In contrast, ChIPseeker is a
more complete tool that supports any species, and which
associates regions with the closest gene in a similar way to
HOMER.

In this work we review the main characteristics and
drawbacks of some of these tools and present a novel al-
gorithm, RGmatch, to associate genomic regions with
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proximal features whilst maintaining the flexibility for
researchers to set specific match criteria. RGmatch is
implemented in Python so it can either be used as a
standalone application or incorporated into any omics
analysis pipeline. One advantage of RGmatch is its abil-
ity to return associations at the gene, transcript, or exon
level. The user can deal with the problem of genomic
regions overlapping more than one area of a gene (e.g.
both the TSS and first exon), by instructing the algorithm
to report all the overlapped gene areas (by choosing the
exon aggregation level) or by reporting only one association
per transcript or per gene, based on a pre-established set of
rules. Importantly, these rules, as well as the width of the
TSS, promoter, transcription termination site (T'TS), or up-
stream areas, can be modified to meet the researcher’s
needs.

Methods

RGmatch is rule-based Python software designed to as-
sociate genomic regions to genes, transcripts, or exons
that also reports the area of the gene where the region
overlaps. It requires two essential input files: the genome
annotation in GTF format (http://www.ensembl.org/
info/website/upload/gff.html) and the chromatin loca-
tions of the genomic regions in BED format (https://gen-
ome.ucsc.edu/FAQ/FAQformat.html#formatl). RGmatch
associates each genomic region with the closest gene (or
genes in case of ties resulting from the set of rules used).
The distance is computed as the number of bases from
the region midpoint to the transcript TSS or TTS. To
annotate the area of the transcript where the region falls,
we defined eight default disjoint areas (Fig. 1): TSS,
TTS, 1st EXON, PROMOTER, INTRON, GENE BODY,
UPSTREAM, and DOWNSTREAM. These areas are de-
fined as follows:

e TSS: Intergenic area adjacent to the TSS point of the
gene with a length of ¢ (200 bp by default).

e Promoter: Intergenic area upstream of the TSS with
a length of p (1300 bp by default).

e Upstream: Intergenic area upstream of the promoter
area, hence more than ¢ + pbp from the TSS point of
the gene. This length is limited by the maximum
distance, ¢, allowed by the user, to associate a region
with a gene (10 kbp by default).

e 1st_Exon: The whole of the first exon of the gene.

e Intron: The whole area between two consecutive
exons of a gene.

Upstream Promoter TSS 1st_Exon Intron Gene_body Intron Gene_body TTS Downstream

.................................... -
-

Fig. 1 Definition of the areas of a gene used by the RGmatch algorithm
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e Gene_body: The whole area of any exon other than
the first exon of the gene.

e TTS: Intergenic area adjacent to the TTS point of
the gene with a length of s (0 bp by default).

e Downstream: The intergenic area downstream of the
TTS area, hence more than sbp from the TTS point
of the gene. The length of this area is limited by the
maximum distance, g, allowed by the user, between
the region and the gene (10 kbp by default).

There are two different cases in which a region could
be associated with more than one gene: when two or more
genes overlap (Fig. 2a) or when two (or more) genes are so
close (“quasi-overlapping” genes) that the region falls in
the overlapping areas of the two genes (Fig. 2b).

When the region overlaps several areas of a gene but
the user needs to choose a single area per gene or tran-
script to annotate the association, a set of rules has to be
defined in order to select the most appropriate one. The
rules defined by RGmatch are based on the percentage of
the region overlapping each area of the gene (“PercRe-
gion”), the percentage of each gene area that is overlapped
by the region (“PercArea”), and a rank of priorities for the
areas to be used in the case of any ties (by default: TSS,
1st EXON, PROMOTER, TTS, INTRON, GENE BODY,
UPSTREAM, DOWNSTREAM). As summarized in Fig. 3,
if there is an area for which PercRegion > w (50 % by de-
fault), this area will be the annotation for that region-
transcript association. Otherwise, the algorithm uses the
area with PercArea = v (90 % by default).
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When several areas meet this condition, the one with
highest PercRegion is selected. In the case of ties, the se-
lected area is determined according to the list of priorities.
The default percentages to apply the rules (v and w)
and the default area priorities can be easily modified by
the user.

One of the main advantages of RGmatch is its ability
to report the associations at different aggregation levels
(exon, transcript, or gene). By default, it reports all pos-
sible associations to the different areas of the exons.
When choosing the report at the ‘transcript aggregation
level, the algorithm applies the set of previously-defined
rules in order to return a single area per region and
transcript. The same rules apply when reporting at the
‘gene aggregation level, but in this case, if the region is
located in different areas for each transcript of a given
gene, the rank of priorities will be used to annotate the
association to only one of them.

RGmatch generates a tabular text output file with the
following columns:

e Region: Identifier (ID) of the region being associated.
This ID is generated by RGmatch and consists of the
chromosome, start, and end position, separated by an
underscore (chr_start_end).

e Midpoint: Midpoint of the region being associated.

e Gene: Gene ID for the gene that has been associated
to the region.

e Transcript: Transcript ID for the transcript that has
been associated to the region. When reporting at the
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Fig. 2 Examples of two different situations that would result in a region being associated with more than one gene. a Two overlapped genes
with different isoforms. b Two different genes with common areas overlapping the region (quasi-overlapping genes)
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(default algorithm options)

Fig. 3 Flowchart describing the rules used by RGmatch to decide the gene area to annotate the region-transcript association
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gene aggregation level the algorithm will report all
the possible transcripts in the case of internal ties.

¢ Exon: Exon number of the exon associated to the
region. In the case of transcript ties, when reporting at
gene aggregation level, the value reported will be -1.

e Area: Area of the gene (or transcript) where the
region falls.

e Distance: Distance from the TSS or TTS to the
midpoint of the region. When the region overlaps a
gene, the distance reported is 0.

e PercRegion: Percentage of the region that overlaps
the area of the gene reported.

e PercArea: Percentage of the reported area
overlapped by the region.

e If the input BED file had more columns than the
three mandatory ones, these columns are attached
in the output file after the PercArea column.

The associations rendered by RGmatchat the three
different aggregation levels for the two examples shown
in Fig. 2, according to the rules described and using the
default parameters, are shown in Table 1, and to illus-
trate how the algorithm works some of them are also
described below.

Region 1 (1_3400_3700) from Fig. 2a overlaps Gene 1
and Gene 2. Gene 1 has two different transcripts. If we
report at the exon level, RGmatch returns all the areas
of the different genes overlapped by the region. In this
example, Region 1 overlaps the entire “TSS’ (100 %) and
part of the ‘Ist_exon’ (5.94 %) of both transcripts of
Gene 1, and part of the ‘gene_body’ and ‘intron’ areas of
Gene 2. RGmatch reports the different overlap percent-
ages, except for introns (for which it returns a -1 result).
Of the total length of Region 1, 66 % overlaps the “TSS’
of Gene 1 (for both transcripts) and the ‘intron’ of Gene

Table 1 Table showing the results at the exon level for the example shown in Fig. 2

Region Midpoint Gene Transcript Exon Area Distance PercRegion PercArea
1_3400_3700 3550 Gene2 Tr1_Gene2 2 INTRON 0 66.45 -1
1_3400_3700 3550 Gene2 Tr1_Gene2 2 GENE_BODY 0 3355 6.73
1_3400_3700 3550 Genel Tr1_Genel 1 TSS 0 66.45 100.0
1_3400_3700 3550 Genel Tr1_Genel 1 1st_EXON 0 33.55 5.94
1_3400_3700 3550 Genel Tr2_Genel 1 TSS 0 66.45 100.0
1_3400_3700 3550 Genel Tr2_Genel 1 1st_EXON 0 3355 594
1_5900_6250 6075 Gene2 Tr1_Gene2 1 1st_EXON 0 100 2923
1_5900_6250 6075 Genel Tr2_Genel 2 INTRON 0 56.98 -1
1_5900_6250 6075 Genel Tr2_Genel 2 GENE_BODY 0 43.02 37.66
2_2102_2702 2402 Gene4 Tr1_Gene4 1 TSS 0 33.28 100.0
2_2102_2702 2402 Gene4 Tr1_Gene4 1 PROMOTER 0 4842 2238
2_2102_2702 2402 Gene4 Tr1_Gene4 1 1st_EXON 0 18.30 80.88
2_2102_2702 2402 Gene3 Tr1_Gene3 1 TSS 0 33.28 100.0
2_2102_2702 2402 Gene3 Tr1_Gene3 1 PROMOTER 0 33.61 15.54
2_2102_2702 2402 Gene3 Tr1_Gene3 1 1st_EXON 0 11.65 100
2_2102_2702 2402 Gene3 Tr1_Gene3 1 INTRON 0 2146 -1
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2. According to the previously described rules, given that
this percentage is higher than the 50 % set as the thresh-
old, these areas will be returned when reporting at the
transcript level. In the gene-level report, both Genel
and Gene2 are associated with Region 1 (overlapping
genes). For Genel, the association is annotated to “TSS’
since both transcripts had the same annotation.

Region 3 from Fig. 2b overlaps Gene 3 and Gene 4,
and has a percentage of overlap of 33.28, 33.61, 11.65,
and 21.46 % with the “TSS; ‘promoter; ‘1st_exon, and ‘in-
tron’ regions of Gene 3, respectively. When reporting at
the transcript or gene aggregation levels, since these
overlap percentages do not exceed 50 % in any case, we
have to look at the percentage of each gene area over-
lapped by the region. Two different areas (‘TSS’ and
‘Ist_exon’) are completely overlapped with a percentage
higher than 90 %, and so they are tied. In this case the
algorithm returns the area with the highest percentage of
the region overlapping it, which corresponds to the TSS
(33.28 %). The same procedure also has to be applied to
Gene 4, this process results in the same TSS annotation.
Therefore, Region 3 will have two associated genes reported
with the “TSS annotation (quasi-overlapping genes).

RGmatch provides many configuration options and
the user can modify the priorities and rules followed to
associate a region with a gene area. The following argu-
ments can be optionally set by the user:

e Report: Argument to select the aggregation level
for the report. By default, it is set to ‘exon’ and all
possible associations to all the different areas of a
gene or genes where the region overlaps will be
reported. When it is set to ‘transcript’ or ‘gene’ the
rules explained above are applied.

e Distance: By default, a region will be associated
with a gene if it is closer than 10 kbp.

e TSS: Area starting at the transcription start site of
a gene and finishing ¢ bp upstream from that point.
By default, ¢ =200.

e TTS: Intergenic area starting at the transcription
termination site of a gene with a length of s bp. By
default, s=0, so this area is not considered unless
this parameter is modified by the user.

e Promoter: Area starting one nucleotide after the
predefined TSS area and extending up to p bp
upstream from that point. By default, p = 1300.

e PercArea: Threshold for the percentage of the gene
area overlapped by the region, used in the selection
rules (see flowchart in Fig. 3). By default, this is set
at 90 %.

e PercRegion: Threshold for the percentage of the
region overlapping the gene area, used in the selection
rules (see flowchart in Fig. 3). By default, this is set
at 50 %.
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e Rules: In case of ties after following the rules shown
in Fig. 3, the algorithm will decide the area to
annotate the association to according to a rank of
priorities, by default this is: TSS, 1st_EXON,
PROMOTER, TTS, INTRON, GENE_BODY,
UPSTREAM, and DOWNSTREAM. To modify these
priorities, a string containing the eight disjoint areas
must be introduced.

e Gene: Tag indicating which gene identifier from the
GTF annotation file is to be reported. By default
‘gene_id’ is used.

e Transcript: Tag indicating which transcript identifier
from the GTF annotation file is to be reported. By
default ‘transcript_id’ is used.

e GTF: Mandatory input. GTF annotation file. Files
compressed with gzip are also accepted.

e BED: Mandatory input. BED file with the set of
genomic regions to be matched. Files compressed
with gzip are also accepted.

e Output: Mandatory input. Full path and name of
the file where the output will be written.

Results and discussion

In order to show the functionalities and main advantages
of RGmatch, we compared it to the other methods avail-
able: HOMER, GREAT, CisGenome, Seq2pathway, and
ChlIPseeker. Comparisons are difficult because, on the
one hand, there is no gold-standard data set of true as-
sociations between the genomic regions and the genes
and, on the other hand, the goal of the different methods
is not always exactly the same. For instance, GREAT and
Seq2pathway do not only return the closest gene but
also other distal genes by following an approach that is
completely different to the other methods. GREAT assigns
a ‘regulatory domain’ for each gene, so if any region lies
within the regulatory domain, it is assumed to regulate the
gene. There are three options to define this regulatory do-
main. The default option (the one we compared RGmatch
to), called the ‘basal plus extension, assigns a ‘basal
regulatory region’ that extends 5 kbp upstream and 1 kbp
downstream of the TSS, irrespective of the presence of
any neighboring genes. Based on a similar approach,
Seq2pathway takes the functional impact of coding and
non-coding genes into account to make associations. In
the following sections we provide both qualitative and
quantitative comparisons based on the results obtained
with a publicly available set of genomic regions.

Qualitative comparison to the state of the art methods

In this section, we highlight the characteristics of
RGmatch that make it different from any of the other
approaches (see a summary in Table 2), and which
therefore support the need to make this novel tool
available to the research community.
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Table 2 Comparison of the functionalities of the different algorithms
RGmatch Homer GREAT CisGenome Seqg2pathway ChiPseeker
User — friendly Command line Command line Web tool Command line/Gl  R/Bioc R/Bioc
(only in Windows)
Adaptable to pipelines Yes Yes? No Yes? Yes? Yes?
Input format BED (also gzip- BED BED (only 3 BED ->COD BED - > GRanges BED
compressed BED file) columns)
Association resolution Gene, transcript, exon  Gene, transcript Gene Gene Gene Gene,
transcript
Area annotation Yes Yes No No Yes Yes
Flexibility Distance, Areas, Rules, No Distance Distance Search radius Area priorities,
Area priorities TSS distance
Supported species All All 3 12 2 AllP
Output: Gene IDs? Any in the GTF Gene and transcript ~ Gene Gene IDs Gene IDs and gene Gene and
IDs names names transcript IDs
Output: Distance? Yes Yes Yes No Yes Yes
Output: Overlapping Yes No No No Yes No

genes?

HOMER and CisGenome can be integrated in analysis pipelines, although the process to obtain the annotations and parse these results is not as straightforward
as with RGmatch. Seq2pathway and ChlIPseeker can also be integrated with additional scripting
PIt supports all species, provided the input format is a TxDb R object. This format can be obtained from a GTF file by using the makeTxDbFromGFF function in the

GenomicFeatures package

User-friendly

RGmatch and HOMER are easy-to-use command line
algorithms that can be run locally on any computer and
in any operating system provided Python or Perl inter-
preters are installed. GREAT is accessible via their website,
which makes it user-friendly on any operating system, but
it cannot be used locally. CisGenome can also be used in
any operating system via command line and has a graph-
ical interface, but only for Windows. On the contrary,
ChIPseeker and Seq2pathway are both R packages that
can be easily used if the R interpreter is installed. However,
we had problems using Seq2pathway on the Linux plat-
form because the association function did not work.

Adaptable to pipelines

All methods except GREAT, which is a web tool, can be
easily integrated into any analysis pipeline. HOMER is a
suite of tools, and the whole suite has to be installed for
the method to work. As for all R packages, ChIPSeeker
and Seq2pathway, can also be integrated into any ana-
lysis pipeline, although some additional scripting is re-
quired. In contrast, RGmatch can be directly used in
any pipeline and does not require additional steps or
modules to work.

Input format

RGmatch, GREAT, HOMER, and ChIPSeeker take a
BED file containing the regions to be associated as input.
CisGenome and Seq2pathway require the BED file to be
converted into their own formats. GREAT accepts a 3-
column BED file. The other methods accept BED files
containing information other than genome coordinates,

but only RGmatch and ChIPSeeker return the additional
columns in the output file.

Association resolution

A unique feature of RGmatch is its ability to report asso-
ciations at the exon, transcript, or gene level. GREAT,
CisGenome, and Seq2pathway only report associations
at the gene level, whereas HOMER and ChIPSeeker can
report associations at the gene or transcript level.

Location of the region

RGmatch, HOMER, Seq2pathway, and ChIPSeeker re-
port the area of the gene where the region overlaps for
each association. Neither GREAT nor CisGenome return
this information.

Flexibility

RGmatch, CisGenome, Seq2pathway, and GREAT let users
modify the basic parameters (related to the maximum dis-
tance) used to associate a region to a gene. HOMER, on
the contrary, always associates the region to a gene no mat-
ter how far it is. RGmatch and ChIPSeeker also allow the
user to modify the length of some gene areas, as well as the
priorities for annotating the association with the gene
area. In addition, RGmatch offers a flexible definition
of the association rules, while this is not possible in
HOMER or Seq2pathway.

Supported species

RGmatch, HOMER, and ChIPseeker work with any or-
ganism as long as the user provides the GTF annotation
file. However, the annotations must be converted to TxDb



The Author(s) BMC Bioinformatics 2016, 17(Suppl 15):427

R objects for ChIPseeker to function. GREAT, Seq2path-
way, and CisGenome only work with the species list they
provide; at the moment, GREAT and Seq2pathway sup-
port four species assemblies each, (both support hgl9,
mm9, and mm10, plusdanRer7andhg38 in GREAT and
Seq2pathway, respectively), and CisGenome supports 12
different species.

Output

All of the algorithms compared return a tabulated file
containing the region-gene associations and some
additional information. Only RGmatch and ChIPSeeker
preserve the original columns in the BED file when
more than the three mandatory columns containing
the genomic positions are provided (e.g. coverage, quality,
p-values, etc. may also be included in the region BED file).
RGmatch also allows the user to choose the gene identifier
to be reported among all the identifiers in the GTF file. In
HOMER and ChIPseeker, the user can choose between
gene and transcript IDs, CisGenome reports the gene ID,
and GREAT returns gene names. All the methods except
CisGenome report the distance between the gene and the
region. RGmatch, HOMER, ChlIPseeker, and Seq2pathway
return the area of the gene overlapped by the region. The
gene area definitions are similar forHOMER, ChIPseeker,
and RGmatch, or at least they can be made almost equiva-
lent by tuning the RGmatch parameters. However, the
column containing the gene area in the HOMER and
ChIPseeker outputs also contains additional informa-
tion so this column cannot be directly used in further
analyses where a categorical classification of the gene
areas is needed (see output examples in Additional file 1).
Another unique feature of RGmatch and Seq2pathway is
that if a region can be associated with two or more over-
lapping genes, all of them are reported as different rows in
the output file, while the other methods only provide one
associated gene in these cases.

Quantitative comparison
To quantitatively assess the functionality of our approach,
we compared RGmatch to HOMER and CisGenome using
a public set of genomic regions. We discarded GREAT
and Seq2pathway from the comparison because they
follow a completely different approach to associate
chromatin regions, meaning that the results are not
directly comparable. We also decided not to include
ChIPseeker because it is very similar to HOMER. The
public set of genomic regions, containing 2638 regions,
comes from a human ChIP-Seq experiment, and was
downloaded from the Sequence Read Archive (SRA) with
accession number GSE55727. The annotation (GTF file)
was downloaded from Ensembl GRCh37.75.

In order to make the outputs comparable between
the methods, the RGmatch report was performed at the
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gene aggregation level, the maximum distance for
reporting associations was set to 1000 kbp to allow at
least one association per region, the promoter length
was set to 0, and the TSS area was set to 1kbp. The rest
of the parameters were left at their default values. We used
the default parameters for HOMER. To run CisGenome,
first the GTF was converted to refFlat format using the
gtfToGenePred tool from the University of California
Santa Cruz Genomics Institute, and then the BED file was
converted to COD format using the file_bed2cod tool pro-
vided by CisGenome. CisGenome was then run setting the
distance limits to 1000 kbp and leaving the rest of the pa-
rameters at their default values. Regions corresponding to
chromosomes X and Y were removed from the BED file
used for all of the algorithms because CisGenome does
not take them into account, which left a total of 2592
regions.

Each of the final 2592 regions was associated with a
single gene by HOMER and CisGenome. RGmatch
returned 3406 associations due to overlapping and
quasi-overlapping genes. The percentage of common
associations reported by the three methods was high
(Fig. 4). Almost 100 % of the associations called by
RGmatch were also reported by HOMER and/or CisGen-
ome. However, RGmatch reported 739 associations that
were not called by the other two methods. Most of them
(731) were due to the fact that RGmatch can associate re-
gions to two different genes, so one of the two genes is re-
ported by the other two methods, but the second gene is

e N

RGmatch

Homer

CisGenome

Fig. 4 Venn diagram showing the number of region-gene associations
obtained with the HOMER, RGmatch, and CisGenome methods
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Table 3 Equivalences between the gene areas defined by
RGmatch and HOMER

RGmatch HOMER

INTRON Intron

UPSTREAM Intergenic
DOWNSTREAM TTS; Intergenic
GENE_BODY exon; 3" UTR; 5" UTR

TSS promoter-TSS
1st_EXON exon; promoter-TSS; 5" UTR; 3" UTR

only reported by RGmatch. The reason for the remaining
8 associations, that were exclusively detected by RGmatch,
was because RGmatch associated the region to the closest
gene (which was downstream), while HOMER associated
it to a more distal gene in an upstream area. There is no
clear reason why CisGenome returned a different associ-
ation for these cases. The associations that were common
to RGmatch and only one of the other two methods were
generally also due to RGmatch associating the region to
two overlapping (or quasi-overlapping) genes whereas
HOMER reported one of the two associations and Cis-
Genome reported the other.

We also observed that, in some cases where the
methods returned different results, the associated region
was far away from the genes. RGmatch associated the
region to the closest gene, even if the region was down-
stream from the gene. In these cases, CisGenome tends
to associate the region to a gene with an upstream anno-
tation (even if it is not the closest gene), while HOMER
either does the same or chooses a downstream annota-
tion but to the second closest gene.

RGmatch and HOMER also report the area of the
gene where the region overlaps. However, the definition
of the gene areas reported by these two methods is not
exactly the same. HOMER defines their ‘promoter-TSS’
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as the region comprising —1kbp to +100 bp and the
‘TTS as from -100 bp to +1kbp. In order to cover the
same areas, we defined our “TSS’ area as —1kbp to -1 bp
and removed the ‘promoter’ area. This way, HOMER’s
TSS area was equivalent to ours plus the first 100 bps
from our ‘Ist_exon’ area, and our ‘Downstream’ area was
equivalent to Homer’s TTS and Intergenic area, etc. (see
all the equivalences in Table 3).

Table 4 shows the number of associations reported by
HOMER and RGmatch with equivalent annotations for
the region location (in green), accounting for the vast
majority (more than 95 % of the reported associations).
Associations where the gene area did not agree are indi-
cated in red. Discrepancies are due to regions overlapping
several areas of the gene. In such cases, the true location of
the region in the gene is unclear. While HOMER chooses
the area overlapping the midpoint of the region, the
RGmatch annotation is based on the overlap percentage
and on the priorities chosen by the user, allowing them to
fine-tune the association results depending on their analysis
goals.

In summary, the association results from RGmatch are
comparable to the results provided by other methods.
Nevertheless, RGmatch is more flexible than other ap-
proaches because it allows the rules used to compute the
associations, and annotate them with the region location
within the gene, to be defined by the user. Moreover, it
returns all the possible associations when the region
overlaps more than one gene (overlapping or quasi-
overlapping genes), and the output is easier for the user
to understand and re-use.

To check the efficiency of the algorithms, we compared
the computation time and memory used when running
the algorithms on the full human ChIP-seq example (2638
regions, including the X and Y chromosomes) with the hu-
man reference genome annotation GTF file. RGmatch

Table 4 Annotations for the region location within the gene returned by RGmatch (columns) and HOMER (rows)

RGmatch
UPSTREAM | INTRON [ DOWNSTREAM TSS TTS 1st_Exon GENE_BODY
HOMER | intron 1246 1

Intergenic 440 341

exon 14 24 20
promoter-TSS 1 171 1 23

TTS 104 3 6

5 UTR 1 4

3'UTR 12

Associations with equal or equivalent annotations in both methods are shown in green, and associations with different annotations are shown in red
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took 32 s to obtain the results and required 1 GB of RAM
memory. In contrast, HOMER took 1 min and 30 s and
required up to 3 GB of RAM. CisGenome was almost in-
stantaneous, since some prior extra work had been per-
formed. These calculations were performed on an Intel(R)
Xeon(R) CPU E3-1225 V2 @ 3.20GHz machine.

RGmatch has been designed in order to check only
the proximal annotations for each region. This implies
that it is highly scalable despite having a large number of
regions. In our tests, RGmatch obtained results in 15 s
using a file with ~25,000 regions, 50 s with ~200,000 re-
gions and 122 s with ~600,000 regions in a 2.4 GHz
Intel Core i5. The slowest step is the internal ordering of
the regions and annotations, but the association step is
really straightforward.

Conclusions

As sequencing technologies evolve and studies that inte-
grate gene expression with chromatin features become
more common, the need to associate genomic regions to
genes in order to understand regulatory mechanisms has
increased. Although there are a number of publicly-
available tools to perform this task, most of them have
limitations in terms of flexibility or usability.

In this work, we present RGmatch, a user-friendly tool
for matching genomic regions and genes (as well as
transcripts or exons), which reports the area of the gene
where the region overlaps. RGmatch supports all species
as long as the user provides the GTF file with the reference
genome annotation. The tool is a freely accessible Python
script, which promotes integration into broader analysis
pipelines. RGmatch is a valuable resource for facilitating
analysis in multi-omics experiments involving gene expres-
sion and different types of chromatin features.

The main advantages of RGmatch, when compared to
the state-of-the-art methods, are its flexibility for the user
to define its association rules, gene areas, gene identifiers
to be reported, and priorities for the gene area annotation
when the region overlaps different areas of the gene, as
well as its ability to report associations at different aggre-
gation levels. In addition, when a genomic region overlaps
several genes, all the associations are returned. Hence
RGmatch provides a biologically meaningful set of rules
and parameters that can be tuned by users to adapt the as-
sociations to their preferences or needs.

Additional file

Additional file 1: Examples of the output files for some of the
compared algorithms. (DOCX 20 kb)

Abbreviations

ATAC-seq: Assay for Transposase-Accessible Chromatin with high-throughput
sequencing; ChIP-seq: Chromatin immune precipitation sequencing;
DNase-seq: DNase | hypersensitive sites sequencing; GREAT: Genomic

Page 9 of 49

regions enrichment of annotations tool; HOMER: Hypergeometric
Optimization of Motif EnRichment; ID: Identifier; Methyl-seq: Methylation
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