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Abstract: Galicia is a region in NW Spain which is usually affected by a high number of forest fires, and it should 
meet the current regulations regarding the distance between forests and buildings. This paper aims to identify and 
characterize woodlands and classify buildings according to their fire risk, for a 36 km2 area in Forcarei (Pontevedra, 
Spain). We used LiDAR data to generate three spatial models (DTM: Digital Terrain Model, DSM: Digital Surface 
Model and nDSM: Normalized Digital Surface Model) and two statistics to characterize the forest stands (density 
of dominant trees per hectare and their average height). The identification of forested areas was performed using 
an object-based classification method using the intensity image, the height model and an orthophotograph of the 
area,  and a kappa coefficient of 0.82 was obtained in the validation. The woodlands were reclassified according to 
the magnitude of a possible fire, based on the density and the average height of the woodlands. The forest stands 
were mapped according to the magnitude of a possible fire and it was found that 1.18 km2 would be susceptible to 
a low magnitude fire, 3.75 km2 to a medium magnitude fire and 2.25 km2 to a fire of a high magnitude. Afterwards, it 
was determined whether the buildings in the area complied with the legislation relating to minimum distance from 
the forested areas (30 meters). For those that did not meet this distance, the risk of damage in case of a wildfire was 
calculated. The result was that 43.01% of buildings in the area complied with the regulations, 9.95% were located 
in a very low risk area, 25.74% in a low risk location, 12.37% in a medium risk area and 8.93% were in a high or very 
high risk area.

Key words: LiDAR, woodlands, buildings, forest fire, OBIA, PNOA.

Caracterización del interfaz forestal/urbano empleando LiDAR como herramienta para la 
estimación del riesgo de daños por incendios forestales
Resumen: Galicia (NO de España), afectada por alto número de incendios forestales, debería cumplir la normativa 
vigente en relación a la distancia entre masas forestales y edificaciones. Este trabajo tiene como objetivos identificar 
y caracterizar las masas forestales y clasificar las edificaciones en función del riesgo en caso de incendio para 
un área de 36 km2 del municipio de Forcarei (Pontevedra). A partir de los datos LiDAR se obtuvo la imagen de 
intensidades, modelos espaciales (MDT: Modelo Digital del Terreno, MDS: Modelo Digital de Superficies y MANO: 
Modelo de Alturas Normalizadas de Objetos) y dos estadísticos para la caracterización de las masas forestales 
(densidad de pies dominantes por hectárea y altura promedio de dominantes). La identificación de las masas 
forestales se realizó con un método de clasificación orientado a objetos empleando la imagen de intensidades, el 
modelo de alturas y ortofotografía de la zona, obteniéndose coeficiente kappa de grado de correspondencia de 0,82 
en la validación. Las masas forestales se reclasificaron en función de la magnitud de un posible incendio, basándose 
en la densidad y la altura promedio de la masa. Se generó la cartografía de las masas según la magnitud de un posible 
incendio, obteniéndose que 1,18 km2 serían susceptibles de incendios de baja magnitud, 3,75 km2 de magnitud media 
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1. Introduction

Galicia (NW Spain) was the Spanish region most 
affected by wildfires from 2001-2010, with 72423 
fires, 68 of them were classified as large forest 
fires (more than 500 ha) (MAGRAMA, 2012). In 
addition to the frequent wildfires in Galicia, the 
scattered distribution of the settlements and the 
large number of buildings located in the wild-
land-urban interface, brings to light the need to 
identify the buildings which could be affected if 
there was a wildfire and to quantify their risk of 
damage in regards to their location.

The law applicable to this field in Galicia is de-
termined by Title V of the Forestry Regulations 
for Galicia (Ley de Montes de Galicia), approved 
on 28th June 2012 (Xunta de Galicia, 2012), 
which tried to make the forest policy compatible 
with the urban development laws. These Forestry 
Regulations (Annex II) state that forests and 
buildings have to be, at least, 30 metres apart, 
regardless of whether the buildings are in a rural 
or an urban location. 

The aim of this work was to identify the buildings 
and forests which do not meet these regulations, 
using LiDAR data and other cartographic tools. 
LiDAR was chosen as the main data source in this 
study due to the improvements in data acquisition 
(quicker and more efficient), the increase in pre-
cision and its lower cost (McRoberts & Tomppo, 
2007), therefore more accurate and detailed 
maps can be obtained than in the past. LiDAR 
data was used also because the PNOA (Spanish 
National Plan for Aerial Orthophotography) has 
been registering these data from 2008 for most 
of the territory, with point densities of 4, 2, 1 and 
0.5 points m-2 (depending on the year and area). In 
Galicia, the flights took place in 2009 and 2011, 
with an average point density of 0.5 points m-2.

LiDAR data have been widely used in forest 
inventory (Hyyppä et al., 2008), forest variables 

estimation (González et al., 2014), wildfire man-
agement (Alonso et al., 2003) or modelling fuel 
variables in forest stands (Garcia et al., 2014).

Moreover, they have been used with other remote-
ly sensed data, as in Bujan et al. (2012), where 
LiDAR data and orthoimages were processed 
together to classify land cover in rural landscapes, 
or in Chen et al. (2009), where LiDAR data were 
combined with high spatial resolution imagery to 
characterize urban areas. The most common re-
sults in these applications are vector layers, raster 
data and statistics, which after their integration in 
Geographic Information Systems (GIS), increase 
the capability of the user to analyze, map and 
interpret this information for decision making 
(Martínez et al., 2009), as well as its dissemina-
tion through Spatial Data Infrastructures (SDI).

2. Objectives

The objectives of this work are: 

• Identify and characterize forested areas (from a 
wildfire point of view) using LiDAR data.

• Classify the buildings which are close to forest-
ed areas taking into account the risk of damage 
if a wildfire occurs.

3. Materials

3.1. Study area 

The study location is a 36 km2 area located in 
the municipality of Forcarei, in the province 
of Pontevedra (Galicia), in the NW of Spain 
(Figure 1). The study area is defined by a rectangle 
delimited by the following coordinates (in meters): 
ETRS89 UTM29 558000 4722000 and ETRS89 
UTM29 552000 4716000. This location was cho-
sen since it is representative of the Galician rural 
landscape, with forest lands (mainly oak, pine and 

y 2,25 km2 de elevada. Se determinó si las edificaciones de la zona cumplían la legislación relativa a los 30 metros de 
distancia mínima a la masa forestal, clasificando el riesgo de daños de aquellas que no cumplían en caso de incendio 
forestal. El resultado fue que el 43,01% de las edificaciones cumplía la normativa, el 9,95% situación de riesgo muy 
bajo, el 25,74% en riesgo bajo, el 12,37% en medio y que el 8,93% estaba en una situación de riesgo alto o muy alto.

Palabras clave: LiDAR, masas forestales, edificaciones, incendio, OBIA, PNOA.
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eucalyptus trees), farming areas, and also small 
settlements and scattered buildings. 

3.2. LiDAR data

The LiDAR data used for this work were gath-
ered as part of the PNOA in 2011, according to 
the technical specifications as described by the 
PNOA. For the study area the point density was 
2 points m-2, as it was for the whole province of 
Pontevedra.

These data are available for free for non-commer-
cial use in the region of Galicia, and they were 
downloaded from http://visorgis.cmati.xunta.es/
cdix/mapa.html in nine quadrants of 2 km×2 km. 
The files were in “.las” format and consisted of 
point clouds with the following data associated 
with each point: point number, X coordinate (m), 
Y coordinate (m), Z coordinate (m), Intensity, 
pulse number, return number and nadir angle. All 
data were downloaded in the coordinate reference 
system ETRS89 UTM Zone 29 (EPSG: 25829).

3.3. Cartographic reference data
The municipal and provincial boundaries were 
obtained as vector data through the Web Feature 
Service (WFS) of the Spatial Data Infrastructure 
of Galicia IDEGalicia: http://mapas.xunta.es/di-
rectorio-de-servizos-web/presentacion) at a scale 
of 1/25000. 

In addition, the vector file with the building loca-
tions and geometry (named “Constru”) was also 
downloaded for free from the Cadastre website 
(http://www.sedecatastro.gob.es/) 

3.4. PNOA orthophotograph

The 2011 orthophotograph which covered the 
study area was downloaded from the (http://
centrodedescargas.cnig.es/CentroDescargas/index.
jsp) in the coordinate reference system ETRS89 
UTM Zone 29 (EPSG: 25829). This image match-
es the map sheet number 153 of the National 
Topographic Map at a scale 1/50000 (MTN50) 
and provided spectral information in the visible 
region of the electromagnetic sprectrum.

Figure 1. Study area location. 

http://visorgis.cmati.xunta.es/cdix/mapa.html
http://visorgis.cmati.xunta.es/cdix/mapa.html
http://mapas.xunta.es/directorio-de-servizos-web/presentacion
http://mapas.xunta.es/directorio-de-servizos-web/presentacion
http://www.sedecatastro.gob.es
http://centrodedescargas.cnig.es/CentroDescargas/index.jsp
http://centrodedescargas.cnig.es/CentroDescargas/index.jsp
http://centrodedescargas.cnig.es/CentroDescargas/index.jsp
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3.5. Software
Diverse software has been used to complete the 
different parts of this project. For the LiDAR data 
processing, we used FUSION 3.30 and ALDPAT 
1.0; for the statistical analysis: R 3.1.0; for the 
image segmentation and classification tasks, 
eCognition 8.9.0; and for mapping and GIS anal-
ysis ArcGIS 10.1.

4. Methods

The workflow followed in this study is showed in 
Figure 2. First of all, the LiDAR data were used 
to create the intensity image; secondly the ground 
data were identified by a filtering algorithm and the 
digital terrain model (DTM) was obtained. Later 
the DTM and the digital surface model (DSM) 
were used to create the normalized digital surface 
model (nDSM). The next step was the identifica-
tion and statistical characterization of the forest 
stands. Once the forests were classified according 
to the potential magnitude of a wildfire, a spatial 
analysis was carried out taking into account the 
proximity of the buildings to the forested areas.

4.1. Intensity image
In order to create the intensity image (Figure 3), 
we analyzed the histograms of the LiDAR intensi-
ty data for the different files that were gathered to 
cover the study area. It was noticed that 95% of the 
values were between 10 and 370. Therefore, these 
two values were chosen as thresholds in order to 

adjust the histogram of the intensity image that 
was created to cover the whole area. This proce-
dure was followed by McGaughey et al. (2007) 
and Bujan et al. (2012, 2013) for similar works. 
The pixel size of the resulting intensity image was 
set to 2 m×2 m. This step was a requirement that 
was needed in order to process the data using the 
software Fusion 3.30. The intensity image was 
also used in other processes which are described 
in the next sections.

4.2. Ground point filtering and validation

First of all the outliers and extreme values were 
eliminated from the data, so that they would not 
interfere in the next steps of the workflow. This 
task was performed using the tool “Filterdata” 
(McGaughey, 2014), available in Fusion 3.30, 
setting the multiple of the standard deviation to 
2 and the window size to 150. Then, two differ-
ent filtering algorithms were applied to extract 
the ground points: the iterative linear prediction 
method (Kraus y Pfeifer, 1998) and the adaptive 
triangulated irregular network model (Axelsson, 
2000), implemented in Fusion 3.30 and Aldpat 
1.0, correspondingly. The parameter values cho-
sen for the linear prediction algorithms were: 
g:–2, w: 2.5, average: 5, and a cell size of 3×3 for 
the intermediate models. On the other hand, for 
the adaptive filter the values were: cell size: 1×1, 
elevation increase: 0.30, angle threshold: 0.20, tri-
angulation size: 50, algorithm window: 150×150 
and a buffer size of 20. The values were chosen 

Figure 2. Workflow.
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taking into account the characteristics of the study 
area and considering previous works in similar 
locations, such as Bujan et al. (2012).

As a result of the filtering process, two “.las” 
files that contained ground data were obtained. 
The results were validated by calculating the 
omission and commission errors associated to 
each algorithm. This accuracy assessment was 
critical in deciding which ground data file would 
be used to obtain the DTM. The reference samples 
for the validation were selected from the LiDAR 
data files where the outliers had been already 
removed, using a random sampling. Afterwards, 
each sample point was assigned to the “Object” 
(O) or “Terrain” (T) classes, using the PNOA or-
thophotograph as a surrogate for the ground truth 
data. This orthophotograph was from the same 
year as the LiDAR data. Overall, 47 terrain and 
28 object validation points were selected. The 
omission and commission errors were computed 
using R, therefore the results were validated from 
the point of view of the filtering methods applied. 
This process consisted of checking whether the 
reference points that were identified as terrain 
were in the filtered model or not, this process was 
repeated for the reference points that were identi-
fied as objects. To determine if a point was in the 

filtered model, we calculated the distance between 
the reference points (terrain or object) and the fil-
tered (ground) data, considering that any distance 
smaller or equal to 10 cm indicated that there was 
a coincidence between the reference point and the 
model. A distance of zero was not required, since 
some differences can be caused by the decimal 
places, and it could lead to an underestimation of 
the accuracy of the filtering method.

4.3. Digital terrain model (DTM)

Two different DTM were created using the ground 
data resulting from applying the most suitable 
filtering algorithm and two interpolations tools 
existing in Fusion 3.30: “GridSurfaceCreate” and 
“TINSurfaceCreate”. Since accurate coordinates 
for a sample of ground points were not available, 
the selection of the most adequate interpolation 
method was based on determining the differences 
between both models. In case the differences were 
small, computational efficiency was the criterion. 
Thus, a normalized DTM was obtained, using the 
GRS80 ellipsoid as a reference. As for the inten-
sity image, the cell size for the model was set to 
2 m×2 m.

4.4. Normalized digital surface model 
(nDSM)

A digital surface model (DSM) is the result of 
creating a surface using the first returns of the 
point cloud, assuming that they belong to the top 
of the elements (objects) above the ground. The 
DSM was created using the first returns of the 
LiDAR data and the “CanopyModel” algorithm 
(McGaughey, 2014), available in Fusion 3.30.

In order to obtain the normalized digital surface 
model (nDSM), which consists of the normalized 
heights of the objects above the ground, it was 
necessary to add the DTM to the “CanopyModel” 
workflow. The resulting nDSM had a cell size 
of 2 m×2 m and one constraint was that the nor-
malized height values were between 0 and 50 m. 
Figure 4 shows the DTM and nDSM for a section 
of the study area 

Figure 3. Intensity image.
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4.5. Identification of the forested areas 
The forest stands were identified using a super-
vised classification, following an object oriented 
approach. The fundamentals of an object based 
workflow are described in Benz et al. (2004). 
The input data were: the intensity image (sec-
tion 4.1), the nDSM (section 4.4) and the PNOA 
Orthophotograph, while the software was eCog-
nition 8.9.0. 

The first step for the identification of the stands 
was a segmentation to obtain homogenous seg-
ments (objects). Regarding intensity and height, 
we weighed the intensity (2) to be double the 
weight of the height (1). We tested several val-
ues for the segmentation parameters, taking into 
consideration the experience from previous works 
(Álvarez Taboada, 2006; Fernández-Luque et al., 
2013, Fernández-Luque et al., 2014), the final 
values we chose were a scale parameter of 30, a 
compactness of 0.50 and a shape value of 0.30. 
With the aim of extracting spectral information 
from the orthophotograph that would be suitable 
to identify the forested areas, the green ratio was 
computed on the segmented image (Equation I).

GR G B R
G= + +  (I)

Where GR is the Green Ratio for a certain object, 
and G, B and R are the average values of the 
Green, Blue and Red band (respectively) for the 
pixels which belong to that object.

The segmented image was classified using a 
thresholding method. For the “forest” class the 
threshold values were established taking into 
account the values obtained from a sample of seg-
ments which were visually identified as forested. 
These values had a Green Ratio larger or equal 
to 0.35 and a normalized height larger than 1.5 
meters. Once the image was classified following 
these criteria, the result was exported as a vector 
file, so it could be visualized in ArcGIS 10.1. 

For the validation we used a stratified random 
sampling which covered the whole study area, 
45 samples for forested areas and 34 for non-for-
ested were obtained. The user’s and producer’s 
accuracies and Kappa were calculated, as well 
as the omission and commission errors (Jensen, 
2005) with the corresponding confidence intervals 
at 95% (Sauro y Lewis, 2005). The forest stands 
were mapped in the study area as homogeneous 
polygons.

4.6. Classification of the forest stands 
regarding the magnitude of a possible 
wildfire

For the classification of the forest stands de-
pending on the magnitude of a possible wildfire, 
it was necessary to characterize them using the 
LiDAR data. This process was carried out with 
the tools “Cloudmetrics” and “CanopyMaxima” 
(McGaughey, 2014), implemented in Fusion 3.30.

Figure 4. Visualization of the nDSM (green) and DTM (grey) with the LDV tool (Fusion 3.30).
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“Cloudmetrics” provided the statistics which 
allowed the estimation of stand variables. On the 
other hand, “CanopyMaxima” supplied informa-
tion about the location and height of the dominant 
and codominant trees in each forested polygon, 
using the nDSM as input data.

Once the statistics were processed, the derived 
forest information was linked to the corresponding 
polygon, and the stands were reclassified consid-
ering the dominant/codominant tree density per 
hectare and the average height of the dominant/
codominant trees. Three levels of magnitude of a 
possible wildfire were established: Low, Medium 
and High, as showed in Table 1.One advantage of 
this classification approach is that it can be applied 
to all the species in the study area and that it de-
pends only on variables derived from LiDAR data. 
The proposed classes were a generalization of the 
schema proposed by Fernandes (2009), where fire 
risk (characterized by variables as propagation, in-
tensity or crown fire potential) was related to forest 
structure, defined by tree density and height. In the 
same direction is the work developed by Castedo 
et al. (2012), which shows that, in general and 
also in particular for maritime pine in Galicia, the 
higher the tree density, the lower the above ground 
fuel load (due to the shadowing effect of the trees 
on the understory), and therefore the fuel model 
would lead to wildfires of a lower magnitude. With 
respect to the height of the forest stand, in general, 
the higher the trees, the lower the probability of a 
fire reaching the crowns and propagating through 
them, increasing the magnitude of the wildfire, as 
Gómez-Vázquez et al. (2014) found for maritime 
pine. 

After assigning the values of Table 1 to each poly-
gon, the forest stands were mapped depending on 
the magnitude of a possible wildfire.

Table 1. Classification of the wildfire magnitude based on 
the stand density and the average dominant height. Ddom 
(trees /ha): dominant stand density; Hdom (m): average do-
minant height; L: Low; M: Medium; H: High.

Ddom (trees/ha)
Hdom (m)

<8 8-15 >15
<100 H H M
100-250 H M L
>250 M L L

4.7. Risk of damage to buildings in case 
of a wildfire

The first step in estimating the risk of damage 
to the buildings close to forested areas in case 
of a wildfire was to map all the buildings in 
the study area. In order to do that, we created a 
vector layer with the edifices and built-up areas 
that were already registered in the Cadaster file 
named “Constru”, and the constructions which 
were found in the LiDAR intensity image and the 
PNOA orthophotograph and which were missing 
in the Cadaster file. The latter were digitized as 
polygons and added to the file.  

Secondly, the radius defining the minimum dis-
tance between buildings and forest stands was set 
to 30 m, following the requirement of the Forestry 
Regulations for Galicia (Xunta de Galicia, 2012). 
The forested areas which did not meet the min-
imum distance from the built up structures were 
evaluated, and the risk of damage to each build-
ing in case of a wildfire was computed using 
Equation II.

( )R A Mp p
n
1 $=|  (II)

where R is the risk for a certain building, n the 
number of forest stand polygons within the 30 m 
buffer area, Ap is the intersected area of each forest 
polygon in the 30 m buffer area and Mp is the mag-
nitude of the wildfire which could take place in 
each forest stand polygon. The magnitude classes 
defined in Table 1 were converted into numerical 
values, so the Low, Medium and High magni-
tudes corresponded to 1, 2 and 3 in this equation, 
respectively. 

Finally, the constructions were classified regarding 
their risk, using the method of half the standard de-
viation to define the intervals (Slocum et al., 2008).

5. Results and discussion

5.1. Intensity image 

The intensity image (Figure 3) was created using 
a pixel size of 2 m×2 m, which was considered to 
be suitable since it decreased the number of pixels 
with no data (showed in red in the image) and it 
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also minimized the size of the image, with respect 
to a pixel size with a higher spatial resolution.

5.2. Ground filtering and validation

The selection of a suitable filtering algorithm to 
extract the ground points was crucial in the crea-
tion of the DTM and all the models derived from 
it, as well as the correct selection of the values for 
the parameters which define the algorithm. For the 
“GroundFilter” (McGaughey, 2014) tool, several 
cell sizes for the intermediate surface models 
were tested. A value of 5 provided results which 
led to miscalculations in the normalized heights, 
while a value of 1 caused errors in the nDSM in 
the built-up areas. Intermediate values were test-
ed to balance these errors; in the end a value of 
3 m×3 m as a pixel size was chosen. The results 
for the different values were visually tested using 
ArcGIS 10.1. 

Two point clouds (LP and ATIN) were obtained 
from the two tested algorithms: the Linear 
Prediction method (“GroundFilter” tool, availa-
ble in Fusion 3.30) and the adaptive triangulated 
irregular network model (“ATIN” tool, available 
in Aldpat 1.0), respectively. The results of the 
validation are showed in Table 2. 

Table 2. Validation of the filtering algorithm (ground point 
identification)

Errors (%)
Commission Omission

ATIN 70,21 17,86
Groundfilter 75,00 2,13

Both models provided commission errors higher 
than 70%, because some points were classified as 
ground data points although they were not on the 
terrain. Ultimately, the model created using the 
GroundFilter tool was chosen, since it had a small-
er omission error and the differences between the 
commission errors were not significant (smaller 
than 10%). These errors were taken in considera-
tion in the next steps of this work, especially when 
discussing the results obtained for the land cover 
classification (forest/non-forest) and the risk of the 
building in case of a wildfire.

5.3. Digital terrain model (DTM)

As a result of the interpolation, two DTM were avail-
able: one created with the “GridSurfaceCreate” 
tool and another one with the “TINSurfaceCreate” 
method. In order to choose the most suitable mod-
el, the differences between them were calculated, 
being the values not very different. Since accord-
ing to the data values it was irrelevant whether one 
model was chosen over the other, the computa-
tional efficiency of both tools was examined. The 
“TINSurfaceCreate” tool cannot process a large 
amount of data, so its use required splitting the 
ground point cloud in order to create the models, 
which then had to be assembled together again for 
the derived models. These steps are cumbersome 
and slow down the workflow. Therefore, we chose 
the “GridSurfaceCreate” method, which allows 
the automatization of the whole process and can 
work with the whole database.

An in-depth analysis of the DTM showed that 
it did not perform well in the treed areas, due to 
the low LiDAR point density in large and dense 
forested areas, where the laser pulse cannot reach 
the ground. This fact means that some points were 
classified as ground when they were not, which 
caused the MDT to be higher than what it should 
have been in those areas, and led to an unrealistic 
decrease in the values for the vegetation height. 

Another source of error was detected, regarding 
the transition zones between bare soil and vege-
tated areas, since they showed irregularities due to 
abrupt changes in height between the points located 
in bare land and the points that were misclassified 
as terrain in the forested areas. With the aim to 
minimize this problem, we reduced the window 
size for the intermediate models which were cre-
ated by the algorithms. The size of the window is 
set by considering the average size of the objects 
in the study area, so that if the window size is too 
small, large objects will be classified as ground 
points, and if it is too large, the ground points will 
be classified as objects. Likewise, it was verified 
that diminishing the size of the window used in the 
intermediate processes, made the buildings larger 
than the window size to be included in the DTM. 
To overcome these inconveniences, an interme-
diate widow size of 3×3 pixels (3 m×3 m) was 
considered, as suggested by Evans et al. (2007). 
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5.4. Normalized digital surface model 
(nDSM)

The Digital Surface Model (DSM) was created 
to visually assess the correct filtering of the first 
return data. After checking the correctness of the 
data in this model, the normalized digital surface 
model (nDSM) was computed. The nDSM showed 
that in the study area the heights of the objects var-
ied between 0 m and 39.05 m. We confirmed that 
the highest values corresponded with the forested 
areas, where pines, oaks and eucalyptus trees were 
the dominant species.

5.5. Identification of the forested areas

The segmentation of the image provided 10801 
elements in the study area. Their homogeneity 
regarding the land cover was tested visually. 
The classification was validated. The results are 
showed in Table 3. The forested areas were classi-
fied. The producer’s accuracy of the classification 
was 84.44%, while the user’s accuracy was 100% 
and it had an overall accuracy of 91.14%. 2432 
segments were classified as forested areas, cover-
ing an area of 7.30 km2. 

The commission error of the DTM had an effect 
on the final classification, since for the points 
that were misclassified as terrain there was not a 
difference between the DTM and the DSM, and 
therefore the nDSM was 0. Since the nDSM was 
one of the variables used to identify the “Forest” 
class, the omission error for this class (15%) was 
larger than that for the “Non-forest” class (0%). 
This means that some of the forested areas were 
missing and that our model underestimated the 
risks of the buildings in case of a wildfire. Having 

a more dense LiDAR point cloud available could 
help minimize this error, especially in areas with 
a dense canopy cover (Watt et al., 2014). 

5.6. Classification of the forest stands 
regarding the magnitude of a possible 
wildfire

The statistics obtained using “Cloudmetrics” did 
not characterize the forest stands properly. In 
the inner areas of the forest stands the DTM did 
not registered the ground correctly, thus the tree 
heights were reduce to value that were too low, 
and therefore the stand statistics derived from 
the elevation data were not correct (e.g. very low 
average heights).

The statistics obtained for individual trees were 
more accurate than for the stand approach. The 
“CanopyMaxima” tool detects the maximum 
values in the nDSM and uses those values to 
compute the statistics, excluding the other values 
of the nDSM from the calculations. The maxi-
mum values corresponded with the dominant and 
codominant trees, so the statistics were only rep-
resentative of those trees. It should be taken into 
account that in the stands where the tree heights 
were very similar, the stand density was under-
estimated, since the algorithm had difficulties to 
find maximum values.

115232 dominant and codominant trees were 
found, distributed in 2346 forested polygons. 
This result means that for 77 polygons identified 
as forested, the differences in the tree heights 
were not large enough for the “CanopyMaxima” 
to identify dominant/codominant trees. 

Table 3. Accuracy assessment of the classification to identify forested areas. The values in brackets for the accuracies and 
errors are the Adjusted Wald confidence intervals.

Class
Ground Truth 

Forest Not forest Total User’s accuracy (%) Commission Error (%)

Im
ag

e 
C

la
ss

ifi
ca

tio
n Forest 38 0 38 100 (92.06-100.00) 0 (0-7.94)

Not forest 7 34 41 81.40 (68.42-91.79) 17.07 (8.21-31.58)
Total 45 34 79
Producer’s accuracy  
(%)

84.44 
(70.90-92.57)

100  
(91.20-100.00)

Overall Accuracy (%): 
91.14 (82.56-95.91)

Omission Error  
(%)

15.56 
(7.43-29.10)

0  
(0-8.80)

Kappa:  
0.82



REVISTA DE TELEDETECCIÓN  (2016) 45, Special Issue, 57-69

Robles et al.

66

Therefore these polygons (less than 4% of the 
total) were removed from the analyses. Figure 
5 shows the forest stands in the study area, 
classified according to the magnitude of a pos-
sible wildfire (Table 1). 1.18 km2 were covered 
by forest stands where the magnitude was low, 
3.75 km2 where it was medium and 2.25 km2 
were it was high.

When applying the proposed methodology, it 
should be taken into account that, although the 
threshold values chosen to define the magni-
tude of the wildfires are coherent with the fire 
behaviour models that were set as a reference 
(Fernandes 2009; Castedo et al., 2012) and that 
they have been considered to be suitable for the 
study area, a different choice would have led to 
different results. The difficulty of setting these 
values lays in the fact that the fire behaviour 
models we used do not specify what is consid-
ered to be a dense or a tall stand, and therefore 
the user has to establish these values arbitrarily. 
It would be suitable to have empirical models 
available which relate these forest variables 

and the magnitude of wildfires, so the threshold 
values can be verified or set.

5.7. Risk of damage to the buildings in 
case of a wildfire

The Cadaster data did not show all the existing 
buildings in the study area, which probably 
meant that the information was not up-to-date. 
42 new polygons were digitized to complete 
the cadastral information. The total number of 
buildings in the study area was 1488. The re-
sults about the risk of damage to each building 
in case of a wildfire, showed that 640 (43.01%) 
constructions had a minimum risk, since they 
complied with the regulations. Table 4 shows 
the complete results of the risk of damages to 
the buildings in the study area, where more than 
80% (83.67%) had a low, very low or minimum 
risk. As an example, Figure 6 and Figure 7 show 
the risk situation for some of the buildings in 
the study area, with regards to Article 6 of the 
Forestry Regulations for Galicia.

Table 4. Analysis the risk of damage to the buildings due 
to wildfire.

Buildings
Class Count %
Legal- Minimum risk 640 43.01

Very Low Risk 148 9.95

Low Risk 383 25.74

Medium Risk 184 12.37

High Risk 81 5.44

Very High Risk 52 3.49

TOTAL 1488 100.00

It should be taken into account that applying the 
proposed model to assign the risk of damage to a 
building (Equation II) involves the acceptance of 
several assumptions which have not been proved 
a priori, such as the risk linked to a high mag-
nitude wildfire is three times the risk for a low 
magnitude one. Hence, the implementation of the 
proposed methodology would improve if there 
were available indices which measure the risk 
of damages and also the magnitude of a wildfire, 
and therefore we could establish an empirical 
relationship between the two variables. 

Figure 5. Classification of the forest stands in the study 
area, according to the magnitude of a possible wildfire.
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6. Conclusions 

The results of this work show that in some 
areas of Galicia it is advisable to have a more 

exhaustive control of the compliance with the 
Forestry Regulations, since more than half of the 
buildings are closer to the forested area than the 
required distance.

There is a need for a suitable LiDAR point density, 
since it affects the quality of the DTM and there-
fore the DSM and nDSM, and this reduces the 
opportunities for a multi-purpose use of the data 
and has an impact on works like this one.

The intensity image did not add any relevant 
information to help identify the forested areas, 
since it did not differentiate between the forest-
ed and built-up areas, but it can be useful in the 
segmentation process if there are not any updated 
orthophotographs for the area.

Using the cadastral information as a source to map 
land use/cover classes such as buildings can lead 
to several errors, not only due to the differences 
between the geometrical accuracy of the existing 
polygons, but also because of the out of date data, 
which do not represent the existing reality. 

The data generated in this study can be a starting 
point for other works, like a detailed characteriza-
tion of the forest stands. The created maps could 
be used when searching for suitable locations for 
new forest plantations, or to develop evacuation 
models in case of a wildfire.

This study did not have forest field data available, 
and it would be interesting to use them for the 
validation processes.

In the case of applying this methodology to a larger 
or different area, Fusion 3.30 allows the workflow 
to be semi-automated, although, as it has been 
explained before, the values of some parameters 
should be modified, since our values were set to 
optimize its performance in this study area. 
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study area and magnitude of a possible wildfire. 

Figure 7. Risk situation for some of the buildings.
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