
Ultra low-power SpO2 measurement system based on
photoplethysmography

Claudio Barriuso Medrano

Tutor empresa: Carlos Millán Navarro

Tutor universidad: Germán Ramos Peinado

Trabajo Fin de Grado presentado
en la Escuela Técnica Superior de
Ingenieros de Telecomunicación de la
Universitat Politècnica de València, para
la obtención del T́ıtulo de Graduado en
Ingenieŕıa de Tecnoloǵıas y Servicios de
Telecomunicación

Curso 2015-16

Valencia, 31 de Julio de 2016

Resumen

Hoy en d́ıa técnicas de fotopletismograf́ıa son empleadas en la monitorización del cuerpo
humano para obtener constantes vitales. La principal ventaja es la posibilidad de realizar
medidas de manera no invasiva en tiempo real. La obtención del ritmo cardiaco y de la
saturación de ox́ıgeno en sangre son algunas de las principales aplicaciones.

Estos sistemas de medida necesitan funcionar durante un largo periodo de tiempo para
guardar un registro de las constantes vitales. Existen dispositivos portables que permiten
al usuario adquirir estas constantes y almacenarlas. Sin embargo estos dispositivos tienen
un tiempo de funcionamiento limitado por el consumo de corriente inherente al empleo de
fotopletismograf́ıa. Por esta razón es vital encontrar métodos y algoritmos que permitan
reducir al máximo el consumo de corriente.

A lo largo de este trabajo se proponen tres técnicas para optimizar el consumo a la hora
de obtener la saturación de ox́ıgeno en sangre, sin embargo también pueden aplicarse a
la obtención del ritmo cardiaco. Estas son implementadas en un sistema de medida en
tiempo real desarrollado con motivo de este trabajo y, posteriormente, evaluadas con un
circuito de medida de corriente consumida.

Resum

A dia d’avui les tècniques de fotopletismografia s’utilitzen per a la monitorització del cos
huma per a obtindre constants vitals. El principal avantatge és la possibilitat de realitzar
mides de manera no invasiva a temps real. L’obtenció del ritme card́ıac i de la saturació
d’oxygen en sang són algunes de les principals aplicacions.

Aquests sistemes de mida normalment necessiten funcionar durant un llarg peŕıode de
temps per a guardar un registre de les constants vitals. Existeixen dispositius portables
que permeten a l’usuari adquirir aquestes constants i almacenar-les. Tot i aix́ı aquests
dispositius tenen un temps de funcionament limitat pel consum de corrent inherent a la
utilització de fotopletismografia. Per aquesta raó és vital trobar mètodes i algoritmes que
puguen reduir al màxim el consum de corrent.

Al llarg d’aquest treball es proposen tres tècniques per a optimitzar el consum a l’hora
d’obtindre la saturació d’oxygen en sang, encara que també poden aplicar-se a la obtenció
del ritme card́ıac. Aquestes són implementades en un sistema de mida en temps real
desenvolupat amb motiu d’aquest treball i posteriorment avaluades amb un circuit de
mida de corrent consumida.

Abstract

Nowadays photoplethysmography techniques are used to monitor the human body to
obtain vital signs. Their main advantage is the ability to perform noninvasive
measurements in real time. Peripheral capillary oxygen saturation as well as heart rate
extraction are just some of the main applications.

These measuring systems need to be working for a long period of time in order to store
a vital signs log. There are portable devices that allow the user to acquire these signs
and store them. However these devices have a limited operational time due to the current
consumption of photoplethysmography techniques. For this reason it is of great importance
to find methods and algorithms that reduce the current consumption as much as possible.

Along this project, three techniques to optimize the current consumption when obtaining
the blood oxygen saturation are proposed, however they can also be applied to obtaining
the heart rate. They will be implemented in a real time measuring system developed for
this project and, then, its current consumption will be evaluated with a custom current
measuring circuit.

Index

Chapter 1. Introduction 3

Chapter 2. Objectives 5

Chapter 3. Operational theory 6

3.1 Photoplethysmogramphy theory . 6

3.2 SpO2 acquisition . 6

3.3 ADPD144 Sensor . 10

3.3.1 Photometric front end . 10

3.3.2 LED Driver . 11

3.3.3 Photodiode . 12

3.3.4 Sampling Block . 12

3.3.5 I2C Communication . 12

3.3.6 Sensor registers . 12

3.4 PPG Signal Filtering . 13

3.5 Low-power algorithms . 18

3.5.1 Pulse variation algorithm . 19

3.5.2 START / STOP algorithm . 20

3.5.3 Sampling frequency algorithm . 21

3.6 State of the art . 22

Chapter 4. Methodology 23

4.1 Project management . 23

4.2 Tasks temporal distribution . 23

Chapter 5. Implementation 25

5.1 Research measuring system . 25

5.1.1 Getting to know the hardware . 25

5.1.2 Initial project development . 29

5.1.3 UART Communication development 36

5.1.4 I2C Sensor Communication development 42

5.1.5 Main program function . 44

5.1.6 Adding bluetooth connection . 46

5.1.7 Matlab application . 47

5.2 End-user measuring system . 52

5.2.1 Microcontroller project setup . 53

1

5.2.2 Wrapping project . 53

5.2.3 SpO2 Library . 57

Chapter 6. Validation 64

6.1 ADPD144 unsuccessful validation approaches 64

6.1.1 Measuring the ADPD144 current consumption with the Tektronix
TCPA300 current probe . 64

6.1.2 Measuring the ADPD144 current consumption with the Keithley
power supply . 66

6.2 ADPD144 final consumption validation approach 69

6.3 Microcontroller validation . 73

Chapter 7. Results 75

7.1 ADPD144 Current consumption . 75

7.2 Microcontroller Current consumption . 76

Chapter 8. Conclusion and future work 79

Chapter 9. Appendix 81

9.1 SpO2 value validation . 81

Chapter 10. References 83

2

Chapter 1. Introduction

Body monitoring provides valuable information that properly transformed into manageable
signals can be used for different purposes. The most common application is to quickly spot
health problems in patients. However over time end consumer products have implemented
different technologies to obtain these signals in order to help the user to track information
about his body.

There is a wide variety of vital signs that can be gathered with nowadays technology.
Some of them are heart beat rate, breathing rate, body temperature, blood pressure and
SpO2

1. Only with this information you can build up a sound idea of someone’s health,
and this can be done within minutes.

However some time ago it was not so easy to obtain some of these signals. For example,
to get the SpO2 value, you had to extract blood so that it could be analyzed in a
laboratory[3]. These methods have changed and now there are faster, non-invasive,
solutions. When it comes to obtaining the SpO2 the most commonly used method is
photoplethysmography(PPG).

PPG is a method that consists in measuring changes in the volume of a certain area
of the body’s limbs using light. This volume will change with the heart beat so that
when there is no blood flowing through the arteries the volume will be small compared
to when the is blood flowing, in which the volume will be maximum. There are two
possible implementations: reflected and transmitted PPG. The difference resides in how
the measuring system is designed. Both implementations work by measuring the diffused
light that has travelled through the skin tissues. The received light will vary depending
on the volume of the flood flowing through the measured area.

However different light wavelengths will have different absorption for different blood
components. As we will explain later this enables us to measure the SpO2 by using just
two different wavelengths.

SpO2 calculation formula needs the amplitude of the reflected light signal in the local
maximum and minimum peaks. However, most of the reflected light signal does not give
us useful information. This means that for each heart beat period there is a small time
period corresponding to the peaks we care about and a large time period that does not
give us information.

The aim of this project is to determine if the current consumption of the process for
measuring the SpO2 can be optimized with some algorithms that sample the received light
more precisely in the peak time periods while in the rest of the signal less current is used
as precision is not a priority.

We will go through three different algorithm approaches that will vary some sampling
configurable variables such as the sampling frequency or LED pulses depending on the
current position of the heart beat.

The entire project will be developed from the ground up, taking just the needed hardware
and creating a complete software environment to measure the SpO2 implementing the
new algorithms. Two development boards will be mainly used for this purpose: An
Analog Devices photometric development board and a multi-purpose Cortex-M4 processor
development board.

This Analog Devices sensor will be placed in one of the fingertips. This is because the
signal quality in this zone is high as there are many capillaries inside. The better the

1Arterial Oxygen Saturation measured by a pulse oximeter

3

signal quality the better SpO2 value we will obtain.

A computer connected to the processor board will be used to plot the signal, system
information, vital sign values, and, in the early state of the project, to verify the viability
of the algorithms before implementing them in the processor.

Custom made algorithms will be developed to obtain the maximum and minimum signal
peaks as well. A special filter will be designed for this purpose, in order to get rid of the
noise and unwanted information.

Current consumption will be verified creating an evaluation system to determine which
algorithm is the best when it comes to optimizing current drainage. Then we will discuss
in which situation each algorithm could be used.

4

Chapter 2. Objectives

The main objective of this project is to propose and evaluate ways to reduce power
consumption when measuring SpO2 using PPG techniques. Three ideas were proposed to
achieve this before starting with the project. All of these approaches take advantage of
the fact that the information needed to obtain the SpO2 value is localized on the values
of the peaks of the PPG signal to reduce the power consumption. This means that most
of the signal does not give us information, and therefore we can sample with less
precision these zones. Each approach will be implemented as an algorithm that will run
in real time. In order to reduce the precision (and therefore the consumption) we will
change the sampling configuration of the sensor on the fly. Changing the sampling
frequency or the number of pulses send to the LEDs in each sample are two ways to
achieve this. The aim of this project is to check if these algorithms can be implemented
on the microcontroller so that they can run on their own and if they can reduce the
current consumed by the measuring system.

Three main elements will be essential in our project. The first one is the sensor we will use
to obtain the PPG signal, the ADPD144. It features two LEDs and a photodiode that will
obtain the light coming from the LEDs and diffused by the human tissue. The second one
is the microcontroller multi-purpose development board. This element will establish the
communication with both the sensor and the computer. The last element is the computer,
it will plot the PPG signal and show the information of the sensor among other tasks.

To test these algorithms a Matlab application will be developed[6] along with the
microcontroller software to obtain the PPG signal from the sensor and send it to the
computer. Once the signal is received, the Matlab application will run the signal
processing.

Once we have tested with this PC setup the algorithms, we will create another
microcontroller software along with another Matlab GUI. This time all the processing
tasks will be carried out by the microcontroller, and the Matlab application will just plot
graphics and information. The peak detection algorithm will also be implemented in
Matlab in the first setup and in the microcontroller in the second one. This peak
algorithm will obtain the peaks of the PPG signal in real time thanks to a custom
designed filter[7].

In both projects we will have to stablish a communication between the sensor and the
microcontroller using an I2C interface and between the microcontroller and the computer
using a USB cable.

In order to cope with the ADPD144 sensor, we will have to fully understand its datasheet
and its registers. We will also have to understand the driver that the sensor development
team has created and we will have to include it in the code of our microcontroller. We
will also have to learn how to program the microcontroller, the STM32F405 using the
IAR development environment as well as understanding how the board the processor is
embedded in works[13]. Matlab programming will also be learnt in order to develop the
GUI.

A current consumption measuring system will have to be developed to validate that the
algorithms can reduce the current consumption. It will be able to measure the current
drained by the sensor and the microcontroller. The consumption of the sensor will be
reduced, however the microcontroller consumption may increase, due to the extra
processing involved.

5

Chapter 3. Operational theory

3.1 Photoplethysmogramphy theory

PPG is a optical technique to measure surface tissue capillaries volume. The volume of the
capillaries will vary along a heart beat period. When the blood flows through an artery
its volume rises to its maximum, following the opening of the aortic valve, and then it
lowers until its minimum when no blood flows.

To measure this volume, light is pulsed towards the skin. This beam of light travels
through the tissues and it will eventually get out of the skin attenuated. This emerging
beam is measured with a photodiode. The received light will vary with the arterial volume.
When we have the maximum volume the light will be absorbed more compared to the time
period in which the volume is low. With this simple setup we could measure the heart
beat rate either by obtaining the mean peak-to-peak period or looking at the FFT of the
PPG signal.This is possible thanks to the light absorption of the blood.

There are two types of possible measurement designs depending on the configuration of
the sensor:

- Transmissive PPG In these type of solutions the light emitting source is opposed to
the photodiode in such a way that the light beams travel through the human tissues
and they reach the photodiode at the opposite side. This approach is commonly
used to measure the PPG signal in the fingers or in the ear lobes.

- Reflective PPG Is the one used in the project. In this type of sensors the LED and
the photodiode are located in the same side. They work by measuring the light after
travelling through the tissues and returning back to the photodiode. This approach
is commonly used in zones of the body where it is not possible to put a sensor at the
other side, such as in the wrist or in the forehead. The signal however looks almost
the same, the only difference is that it looks inverted compared to the transmissive
PPG signal.

3.2 SpO2 acquisition

As commented before SpO2 can be obtained through PPG signals, however the setup is
more complex. SpO2 can be measured thanks to the different light absorption coefficients
of the components in the blood. Lets first have a look at the different blood components[8]:

- Erythrocytes Also known as red cells. It is mainly composed by different hemoglobin
types, which are the most important light absorption elements. It is responsible for
the oxygen and carbon dioxide transport. It is divided into two different groups:

- Functional hemoglobin These are the erythrocytes that are able to carry
oxygen. They can be found in two different states depending on the number
of oxygen molecules that are binded to them. We call them
Oxyhemoglobin(HbO2) when they carry four oxygen molecules and reduced
hemoglobin(Hb) when they carry less oxygen molecules.

- Dysfunctional hemoglobin These are erythrocytes that cannot bind oxygen.
This group is mainly made up by Methemoglobin (Oxidized hemoglobin) and
CarboxyHemoglobin (hemoglobin combined with carbon monoxide).
Methemoglobin can be transformed into reduced hemoglobin thanks to

6

Figure 1: Extinction coefficients of the different blood components

natural reducing systems. CarboxyHemoglobin shows up when there is
presence of carbon monoxide in the blood. The affinity of hemoglobin binding
with carbon monoxide is 210 larger than that of oxygen[5], which means that
they are more likely to bind carbon monoxide than oxygen.

- Leukocytes Their main task is to protect the body against external organisms and
fight diseases. They are colourless and do not affect light absorption significantly.

- Platelets These are not cells strictly speaking. They serve different tasks such as
stopping bleeding and destroying bacteria.

Thanks to the different absorption coefficients for the oxyhemoglobin and the hemoglobin
we can obtain the SpO2 value. This is the conclusion that can be obtained with the Beer-
Lambert’s law. These extinction coefficients are shown in Figure 1. As we can see for
each blood component we have a light absorption graph for different wavelengths values.
The fact that these absorption coefficients are not equal for all the components for certain
wavelengths will enable us to obtain the SpO2 value.

Beer-Lambert’s law describes the attenuation of light travelling through a uniform medium
containing an absorbing substance. The intensity of light inside this medium decreases
exponentially with the distance[5]:

I = I0e
−ε(λ)cd (1)

Where c stands for the concentration of the substance in mmol · L−1, ε(λ) the extinction
coefficient for a certain wavelength in L ·mmol−1 · cm−1, d the length of the medium in
cm and I0 the intensity of the light before it reaches the medium in W/m2.

7

Figure 2: Reflective PPG Signal shape

If the light goes through several mediums, each one applies the exponential attenuation
to the incident light. Therefore we can write a generic formula for light going through
certain N mediums, each one with a specific concentration:

I = I0e
∑N−1

i=0 −εi(λ)cidi (2)

As we know, the PPG signal is made up of different components. The main part of the
signal is reflected light that has no information. This is the light that has been reflected on
the surface of the skin. Another component is the light that has travelled through the skin
tissue but that does not give us information because it has not reached the capillaries.
Finally, we have the diffused light that has travelled through the capillaries and that
therefore has the information we care about. The amount of light detected will depend on
the amount of the blood flowing through the capillaries. This flowing blood will change
the diameter of the capillary and therefore the light reflected back to the photodiode.

For this reason we can model the reflected light during systole2(IL) and diastole3(IH) as
shown in Figure 2. The variables dmin and dmax stand for the capillaries diameter when
there is no blood flowing and when there is blood flowing respectively. The variables with
the DC subscript are characteristics of the non-variable medium that light goes through.
This medium is made up by the skin tissue that does not contain capillaries. It will
attenuate the input light intensity by a fixed and constant value. With this formula we
can distinguish the constant and the variable attenuation.

IH = I0e
εDC(λ)cDCdDCe−[εHb(λ)cHb+εHbO2

(λ)cHbO2
]dmin (3)

IL = I0e
εDC(λ)cDCdDCe−[εHb(λ)cHb+εHbO2

(λ)cHbO2
]dmax (4)

On the other hand, we have the formula for the SaO2
4. It measures the proportion of

2Contraction of the heart during the normal heart rhythm
3Dilatation of the heart during the normal heart rhythm
4Saturation level of oxygen in hemoglobin, obtained from arterial puncture.

8

HbO2 in a solution with HbO2 and Hb:

SaO2 = 100 · cHbO2

cHbO2 + cHb
(5)

However here we have two incognitas: cHbO2 and cHb. We will have to obtain a second
equation with the Beer’s-Lambert law.

By their own, IH and IL have many incognitas. However, if we divide IH by IL we will
reduce the number of incognitas to three(HbO2, Hb and ∆d):

IL/IH = e−[εHb(λ)cHb+εHbO2
(λ)cHbO2

]∆d (6)

This formula is valid for a generic wavelength. If we use two wavelengths and we apply
an approximation we can obtain a formula with just two incognitas, cHbO2 and cHb again.
The two wavelengths we will use will be λR and λIR. We will take for granted that
∆dR = ∆dIR, which is an approximation. This way we will be able to obtain a formula
with the two incognitas:

Q =
IL,R/IH,R
IL,IR/IH,IR

=
e[εHb(λR)cHb+εHbO2

(λR)cHbO2
]

e[εHb(λIR)cHb+εHbO2
(λIR)cHbO2

]
(7)

We will obtain the natural logarithm of the quotient of the ratios of the red and infra red
signals so that it is easier to work with the formula:

R =
ln(IL,R/IH,R)

ln(IL,IR/IH,IR)
=

[εHb(λR)cHb + εHbO2(λR)cHbO2]

[εHb(λIR)cHb + εHbO2(λIR)cHbO2]
(8)

Given SaO2, defined in Equation 5, we can rewrite Equation 8 as shown in Equation 9

R =
εHb(λR)(1− SaO2) + εHbO2(λR)SaO2

εHb(λIR)(1− SaO2) + εHbO2(λIR)SaO2
(9)

And finally we can obtain the SaO2 equation:

SaO2 =
εHb(λR)− εHb(λIR)R

εHb(λR)− εHbO2(λR) + [εHbO2(λIR)− εHb(λIR)]R
· 100 (10)

This is a brief summary on how to obtain the SaO2 value[5]. With this formula, if we
obtain the natural logarithm of the peaks ratios of both wavelengths we can obtain the
SaO2 value.

The only unknown variable in this formula is SaO2. R can be calculated once we obtain
the PPG signal peaks. Therefore this is the theoretical formula to obtain SpO2 given the
reflected light from red and infrared LEDs.

However when it comes to the actual implementation these formulas are not used. Instead,
a calibration formula is obtained that relates R and SpO2. There are several reasons of
why the theoretical model does not give accurate results. The main one is that this model
does not take into account light scattering in the skin and the tissues. Moreover blood is
not a homogeneous liquid, which may lead to a non-linear absorbency of light. Another
reason is the fact that the light paths are not equal for both wavelengths.

The calibration curve is obtained acquiring blood samples of a subject that breaths a
controlled mixture of oxygen and nitrogen in a hospital. Each blood sample has a PPG
signal ratio R associated. Once several samples have been acquired for different

9

Figure 3: Theoretical and second order curves

concentrations of oxygen a regression curve is obtained for the data. The formula that
we will use in this project has been obtained in a hospital of Boston for the ADPD144
sensor, using least squares to adjust the curve to the obtained data. This curve along
with the theoretical one calculated with the data from Zijlstra[15] can be seen in Figure
3. The regression curve formula can be seen in Equation 11

SpO2 = −11.6768R2 − 15.3598R+ 108.5978 (11)

3.3 ADPD144 Sensor

This is the sensor we will use to obtain the PPG signal in order to get the SpO2 value. It is
a photometric system to measure optical signals from synchronous reflected LED pulses.
This synchronous measurement technique enables us to reject ambient light interference.
It features a photometric front end, two LEDs and a four channel photodiode. To sample
the light the sensor has a 14-bit ADC with 2 independently configurable LED drivers. The
communication is carried out with a I2C interface. Lets review in-depth these parts of the
sensor:

3.3.1 Photometric front end

This is the part of the sensor that obtains the PPG signal. It controls the LEDs and the
sampling periods to measure the reflected light. In order to capture the received light
the signal goes through different blocks before being sampled as shown in the ANALOG
BLOCK of the ADPD144 block diagram shown in Figure 4. This photometric front end
has four channels, which means that it can sample for each sampling period four different
sources. This is why the four channels of the photodiode are connected inside the sensor
to the ANALOG BLOCK. Moreover the sensor can be configured to have two sampling
slots for each sample. This means that for each sample we can have two different sampling
configurations, which will enable us to obtain the reflected light coming from the red LED
and from the IR LED independently.

The current coming from the 4-channel photodiode is converted into voltage thanks to a
transimpedance configured operational amplifier. The gain of the amplifier can be changed

10

Figure 4: ADPD144 Block Diagram

through registers as we will see later. Then this signal is filtered with an analog filter that
gets rid of the ambient light. This is possible thanks to the synchronization with the LED
pulses. Then the signal is amplified within the AFE5 Gain block. Finally the signals are
converted with an ADC and put into a FIFO.

3.3.2 LED Driver

The sensor features two different LEDs. One of them as shown in Figure 4 works at a
wavelength of 660nm (in the red spectrum), and the other one at 940nm (in the infrared
spectrum). Red and infrared wavelengths have been used historically in SpO2 measuring
systems due to reasons. The main one is the amplitude difference of the extinction
coefficients of the HbO2 and the Hb at those wavelengths. This enables us to obtain the
PPG more precisely. The second reason is the flatness of the extinction coefficients of the
functional and dysfunctional hemoglobin at those wavelengths6.

These LEDs light when the AFE pushes current through the variable current sources
connected to them. The current that these sources generate is controlled with different
registers of the sensor. For each sampling period the LED lights a certain amount of times,
which can also be defined through registers. This way if we average the pulses we can
reduce the measuring noise. The pulses width and their period can also be configured. As
we can see we have many different variables that enable us to adjust the parameters for
each different situation, however there are certain values for some of these registers that
produce an optimum result. Each LED can be associated to a sampling slot, this way we
will be able to obtain the PPG signal of each wavelength separately.

5Analog Front End
6Flatness of the extinction coefficients is important as LEDs wavelength can vary and they are not

exactly centred at a certain one. This way if the wavelength is slightly different it will not affect the
measurement

11

Figure 5: ADPD144 Read/Write procedure

3.3.3 Photodiode

The sensor has a photodiode with four channels. Each channel has a different separation
from the LED source. This means that each channel will receive a different amount of
reflected light. The aim of these four channels is to process them through software in
order to obtain a better signal. However in this project we have added the signal from
the four channels to obtain a single PPG signal. The photodiode as well as the LEDs are
embedded in the silicon chassis.

3.3.4 Sampling Block

The sensor sampling block can result rather complex. It has to sample all four photodiode
channels at two different time slots. Moreover it has to take into account the variable
sampling frequency, the number of LED pulses for each sample, the number of averaged
samples, etc. It features a 14-bit ADC, however a better resolution can be achieved thanks
to the various averaging options available.

After converting the analog signal to the digital domain, a register configurable DC offset
is subtracted. Then all the pulses of the sample period are added added up. However, the
output will be clipped, it will only contain the 20 least significant bits. This output value
is one sensor sample.

Once the sample is ready it is stored in the FIFO. When a new sample arrives the FIFO
scrolls like a shift register. The size of this FIFO is 128 bytes. The number of samples
that can fit into the FIFO depends on the configuration of the sample slots. When the
FIFO is filled and a new sample arrives, the oldest sample is discarded.

As soon as the number of available samples in the FIFO reaches a value defined in a
register, the new sample in FIFO interruption rises. The FIFO can be read at any time.

3.3.5 I2C Communication

The ADPD144 features an I2C interface to communicate with a master device. It supports
I2C fast mode (400 kbps) data transfer. It has to be configured as a slave with the 7-bit
address 0x64. The interface is used to read and write internal sensor’s registers. The
communication flow diagram is shown in Figure 5. This flow diagram will be implemented
in the hardware abstraction layer provided by the microcontroller manufacturer, therefore
we will not have to implement it. We will just call the necessary functions to write and
read registers.

3.3.6 Sensor registers

The ADPD144 has many different configurable variables that can be set through these
registers. All the registers have a size of 2 bytes. The information of the registers is

12

Figure 6: PPG Signal(Blue) and breathing signal(green)

specified in the sensor’s datasheet.

3.4 PPG Signal Filtering

PPG signal has a big amount of information. For the purpose of this project, only part of
this information is needed. For this reason a filter has to be applied to the signal in order
to obtain the valuable data.

The PPG signal is basically made up of these elements:

- DC Signal Most part of the received signal turns out to be a DC level. When it comes
to the reflective PPG, DC signal is caused by several factors. The main one is
the light being reflected in the skin surface that does not penetrate into the skin.
Another factor is the reflected light beams that penetrate into the skin but that do
not reach capillaries.

- Breathing signal PPG signal does not only contain information about the heart rate
and SpO2. It can also provide information about the breath pace. This breathing
signal is modulated over the PPG signal as shown in Figure 6 and can be obtained
filtering it with a bandpass filter around the maximum and minimum breathing
frequencies.

- Dark Offset DC Even if no light hits the photodiode there is a DC offset at the output
due to the input offset of the TIA amplifier and the photodiode dark current among
other factors. The good thing about this part of the signal is that it can be measured
and corrected.

- Ambient Light offset If the sensor is not properly, placed ambient light can affect the
measurement. Nevertheless the sensor we will use in this project has the best in
class ambient light rejection filter that will reduce this problem.

- AC signal This is the part of the signal we are interested in. It is shown in a blue color
in Figure 6. It usually represents 1-3% of the received signal. We will have to design
a filter to fit this signal needs in order to differentiate it from the other components.

13

(a) (b)

Figure 7: Signal artefacts (a) Dicrotic notch and (b) Signal noise

We have already spotted the useful signal for our purpose. Our aim is to obtain the peaks
of this signal in order to calculate the SpO2 Value. However this signal has some artefacts
that makes this a difficult task as shown in Figure 7:

- Dicrotic Notch This peak in the PPG signal is produced by te closure of the aortic
valve in the heart. This could give information about a subject’s health but it is not
useful to obtain the SpO2 and for this reason we will filter it. Sometimes it can be
hard to tell the difference between a PPG signal peak produced by the abrupt flow
of blood produced by the heart beat and the flow change produced by the aortic
valve.

- Signal Noise The signal sampled is not as clean as desired and for this reason a low
pass filter has to be applied to get rid of these components.

For these reasons we have to filter the signal in order to find the peaks.

The filter design procedure starts by eliminating the noise of the signal. In order to do so
we apply a moving average filter. This filter output is shown in Equation 12.

y[n] =
1

M

M−1∑
i=0

x[n− i] (12)

Where M stands for the number of samples averaged. In the Z domain the equation of
the filter is shown in Equation 13.

Y (z) =
1

M

M−1∑
i=0

X(z)z−i =
1

M
X(z)

M−1∑
i=0

z−i (13)

Y (z)

X(z)
= H(z) =

1

M

M−1∑
i=0

z−i (14)

The summation is a geometric progression. We can apply the property of geometric
progressions shown in Equation 15 in order to get a more compact formula. This way we
obtain Equation 16.

n∑
i=m

ari =
a(rm − rn+1)

1− r
(15)

H(z) =
1

M

1− z−M

1− z−1
(16)

14

Figure 8: Avg filter example for M = 5 and Fs = 25Hz

If we step to the frequency domain we will obtain the formula shown in Equation 17.

H(w) =
1

M

1− e−jwM

1− e−jw
(17)

Lets see where do we have the notch of this filter. For this purpose we only need the
magnitude of the filter H(w) . Lets multiply and divide Equation 17 by:

ejwM/2

ejw/2

With this, we obtain:

H(w) =
1

M
∗ e

−jwM/2

e−jw/2
ejwM/2 − e−jwM/2

ejw/2 − e−jw/2
(18)

Lets recall this identity:

sin(w) =
ejw − e−jw

2j
(19)

This way we can rewrite Equation 18 like this:

H(w) =
1

M

e−jwM/2

e−jw/2
sin(wM/2)

sin(w/2)
(20)

As we only care about the magnitude, we obtain:

|(H(w)| = 1

M

∣∣∣∣sin(wM/2)

sin(w/2)

∣∣∣∣ (21)

Therefore the notches will be located at:

sin(wM/2) = 0

wM/2 = kπ

w = 2π
f

fs
= k

2π

M

f = k
fs

M

(22)

In Figure 8 we can see the filter response for M = 5

As for now, we have averaged the signal to remove the noise and we have the notches as
specified in Equation 22. Now that we have reduced the noise we can look for the peaks.
At first a status machine was thought to do this job. This would go through the signal and
detect changes in the amplitude in order to determine the peaks. However this approach

15

Figure 9: First derivative filter approach

did not work properly and another one was researched. As we know, peaks are signal
points whose slope is zero. Therefore one solution could be to get the signal derivative
and look for the zero crosses. At first we thought this derivative could have this form:

y[n] = x[n]− x[n− 1] (23)

Which is the general derivative definition. However this did not work as expected. The
reason is that the remaining noise produces a lot of slope changes. This can be seen if
we obtain the frequency response of this filter as shown in Figure 9. If we take a look at
high frequencies we can see in the magnitude that they get amplified. For this reason we
looked of another way of achieving this. The solution was to use some kind of averaged
derivative. We can do it as shown in Equation 24.

y[n] = x[n]− x[n−N] (24)

As we can see instead of subtracting the previous arrived sample to the actual one, we
subtract the sample arrived N samples ago. This way the high frequencies will not affect
as much as it did with the first approach. However we have to be careful and see where
are the notches of the filter. For this purpose lets obtain the filter frequency response and
obtain the value where the magnitude is zero:

Y (z) = X(z)−X(z)z−N (25)

H(z) =
Y (z)

X(z)
= 1− z−N (26)

H(w) = 1− e−jwN (27)

|H(w)| =
∣∣1− e−jwN ∣∣

|H(w)| = |1− cos(wN) + jsin(wN)|

|H(w)| =
√

(1− cos(wN))2 + sin2(wN)

|H(w)| =
√

1 + cos2(wN)− 2cos(wN) + sin2(wN)

|H(w)| =
√

2(1− cos(wN))

(28)

Now we obtain the zero of the frequency response at:

1− cos(wN) = 0

wN = 2kπ

2π
f

fs
N = 2kπ

f = k
fs

N

(29)

16

Figure 10: Comb filter example for N=4 and Fs = 25 Hz

This last filter turns out to be known as a comb filter due to its magnitude shape whose
notches recall a comb as shown in Figure 10

In summary, the notch of both filters are:

fcoAverage = k
fs

M
∀k ⊂ N− {0}

fcoComb = k
fs

N
∀k ⊂ N

(30)

Right now we have the notches of two filters that applied to the original signal will return
a signal in which zero crosses represent peaks in the original signals delayed by the group
delay of the filter. However we still have to decide the location of these notches. These
notches will be determined by the maximum and minimum heart beat rates. We will
design our application to work properly between 40 and 220 beats per minute.

fmin =
1

T
=

1
60
40

= 0.66Hz

fmax =
1

T
=

1
60
220

= 3.7Hz

(31)

At the end fmin and fmax will determine notch location. We will focus on choosing the
notch to fit fmax requirements, as fmin will be accomplished by the comb filter DC rejection
as shown in Figure 10. This way let’s set the first notch for k = 1 of both filters. We will
add a margin to the originally designed 3.7 Hz notch frequency. This is because our filter
will have a low number of coefficients, and with these margins excessive attenuation close
to the originally designed notches will be avoided. Instead of locating the notch at 3.7Hz,
we will locate it at 5Hz:

fcoAverage = 5 =
fs

M
→M =

fs

5
∀k ⊂ N− {0}

fcoComb = 5 = k
fs

N
→ N =

fs

5
∀k ⊂ N

(32)

In Figure 11 we can see the resulting filter for a sampling frequency of 50 Hz. It can
be obtained convolving the coefficients of both filters. As we can see the phase is linear,
which is essential as this way the group delay will be a constant. This way we will be able
to locate the peaks in the original signal simply by subtracting the group delay.

The filter we have designed has to meet some other specifications needed in order to work
in real time[7]. The most important one is the filter length. This has to be kept as low as
possible in order to detect the peaks as soon as possible. However lowering the number of
coefficients could worsen the frequency response.

17

Figure 11: Total filter shape for fs = 50 Hz

Lets have a look at the design filter length. We currently have one filter obtained
convolving the averaging and the comb filter. The original filter sizes are:

SizeAvg = M

SizeComb = N + 1
(33)

Then, the convolution will have a size of:

Sizeconv = M + (N + 1)− 1 = M +N =
2

5
fs (34)

Then the group delay can be calculated this way:

GrpDelay =
Sizeconv − 1

2
=

2fs− 5

10
(35)

This means that the filtered signal will be delayed GrpDelay samples. As we have
commented before it is of high importance to have a low delay group. This is because we
will be analyzing the signal in real time and delays must be avoided.

Both the group delay and the heart rate will determine at which percentage of the heart
period we can start the low precision acquisition period. Lets say that we want to go from
the high precision to low precision acquisition period at the percentage R%. Then there
is a maximum heart rate we can face. This can be calculated as shown:

2fs− 5

10
=

R

100
Tfs

T =
60

bpm

R =
(2fs− 5)bpm

6fs

(36)

In Equation 36, T stands for the heart rate period in seconds and bpm stands for the heart
rate pace in beats per minute. This formula can be seen plotted in Figure 12 for different
sampling frequencies.

3.5 Low-power algorithms

In many situations PPG systems are interesting to track the evolution of the measured
signals over a long period of time. However sometimes this requires the user to wear the

18

Figure 12: Relation between Heart Rate and LPAP Start percentage

measuring device wherever he goes. For this reason large batteries are needed in order
to provide the system the enough current to work properly. Nevertheless it is possible
to lower the current consumption using some techniques. As we have already said SpO2

calculation only needs the maximum and minimum peaks of the PPG signal. The rest of
the signal is useless for this purpose.

Given the shape of a finger PPG signal, we can distinguish different time periods in which
we need to sample the received light in the photodiode precisely and time periods in which
we can lower the acquisition accuracy in order to save current.

Theoretically in each heart period there are two zones in which we must sample the signal
precisely (the peaks) and two other zones that do not give us useful information. However
due to the filtering delay previously commented we cannot guarantee that the maximum
peak will be detected before this time period starts, therefore we will only consider one
high sampling precision zone and one low power consumption zone for each heart period.
We will explain this problem in detail later. We will call HPAP to the High Precision
Acquisition Period and LPAP to the Low Precision Acquisition Period from now on.

Three algorithms were proposed to lower the current consumption, each of which has a
different way to reduce the activity of the sensor in the LPAP.

3.5.1 Pulse variation algorithm

As explained in Section 3.3 for each sample multiple pulses are sent to the LED. Then,
the AFE adds these pulses in order to lower the noise. The main idea of this algorithm
is to reduce the number of pulses in the LPAP and increase them in the HPAP. The
disadvantage of this method is that in the LPAP the noise will be increased noticeably.
This noise will not affect the peak detection. This is because of the designed peak detection
procedure. First of all, signal filtering will get rid of the high frequencies produced by this
noise. Then, we will locate the peaks by looking at the zeros of the derivative. With this
information we will look for the local peaks in the original signal. As the noise will not be
located close to the peaks of the original signal, it will not be a problem.

In the Figure 13 a representation of the mechanism of this algorithm can be seen.

19

Figure 13: Pulses Algorithm mechanism representation

3.5.2 START / STOP algorithm

This approach is the most aggressive. The main point is to send the ADPD sensor to
standby mode in the LPAP and sample again in the HPAP. The main advantage is that
this would be the best algorithm when it comes to reducing current consumption, however
it has some drawbacks: In case the PPG signals gets distorted, peak estimation may fail
making the algorithm turn off in a HPAP, which would lead to a peak loss, which will
again lead to a peak loss and so on. For this reason at first sight this algorithm seems to
be quite risky as we will corroborate with the tests. Moreover as we will stop sampling we
will have to interpolate samples so that there are not abrupt changes in the signal shape
that could affect the filter. In the Figure 14 a representation of the mechanism of this
algorithm can be seen.

20

Figure 14: Start/Stop Algorithm mechanism representation

3.5.3 Sampling frequency algorithm

The proposal of this algorithm is to lower the sampling frequency in the LPAP and increase
it in the HPAP. The advantage compared to the START/STOP algorithm is that this way
a peak will never be lost as we are continuously sampling in the heart rate period. On
the other hand the current consumption savings will not be that high. Moreover with
this algorithm we will not have noise as we have with the pulse variation algorithm. The
disadvantage is that as we will lower the sampling frequency, we will have to interpolate
programmatically so that the filter works properly. In Figure 15 a representation of the
mechanism of this algorithm can be seen.

Figure 15: Fs Algorithm mechanism representation

21

3.6 State of the art

PPG is a mature technique to measure differences in the variations of the volume of the
capillaries due to the blood flow. The average current that the devices that implement this
technology drain is rather high, however these devices are usually plugged to the mains
and the consumption is not a critical factor.

However over the last years new PPG applications have emerged. Most of the times they
require to run from a battery, and therefore current consumption has to be taken into
account.

Some techniques to reduce power consumption are well known. One of the most important
advises is to use efficient LEDs and photodiodes with high responsivity. Moreover instead
of pushing continuous light, we can just push current to the LEDs when sampling and
integrate the reflected light in the AFE, also known as synchronized sampling. We can
also configure the sensor to raise the new sample interruption once it has sampled several
of them, this way the communication is more efficient.

Entire PPG systems on chip are being develop to reduce the consumption. The one used in
this project is a good example of this approach as we can see in Figure 18. The drawback
of these devices is that they reduce the freedom to choose the LEDs and the photodiodes.

The tendency of PPG technology is to integrate all the processing on the chip as well.
This way all the filtering and processing tasks are carried out by the hardware, which is
always faster and more efficient than software implementations. Moreover it is easier for
the developer to work with them as most of the job is already done.

22

Chapter 4. Methodology

In this section we will review how the project was organized and managed. This is one
of the most important part of the project as it helps to set deadlines for objectives and
tasks. This schedule forces you to hurry up when a task is not as developed as it should
be.

4.1 Project management

This project has taken 6 months of work to be finished. Along these 6 months the author
of this project has carried out the objectives set before starting. The development of the
project started the 1st of February and finished the 31st of July. During the months of
February, March, April and May the author has worked for 6 hours a day, whereas during
June, July and August he has worked for 8 hours a day. The number of weeks worked
along these months is 26. Taking into account the vacation days, the author has worked
870 hours.

This project has been developed within the company Analog Devices S.L.U as a part of an
internship. The author has been supervised by his supervisor along these 6 months. The
design centre manager of Valencia’s headquarters of Analog Devices has also given some
advice about how to carry out the project. The university tutor has also helped giving
advice at some points of the project.

Once a week the author of the project met with his supervisor in order to catch up with
the new tasks developed.

The author of the project had a diary in which every day he used to write the new work
carried out as well as the problems faced. This was really useful when writing this report.

4.2 Tasks temporal distribution

Before starting with the project several tasks were arranged given the objectives that had
been set. These divide the objectives into smaller specific tasks easier to focus on. Then,
for each task a number of weeks were assigned. This is how we set the deadlines for each
task. Along the project some tasks took longer than expected. This may be because
the implementation approach faced some problems that required researching sort outs.
Nevertheless enough time was set for each task and most of them could meet the deadline.
We will go through now the different task we divided this project in:

1. Gathering information The very first task was, as in every project, to look for
information about the state of the art and to get to know the hardware we were going
to be working with. We had already been working in the past with the ADPD144
sensor as well as the STM32F4 microcontroller, and for this reason it was easier to
catch up. This task took the first half of February.

2. Develop the research measuring system Before implementing the algorithms
directly on the microcontroller we thought that we should try to implement them
in Matlab. This is because it is much easier to work with signal filtering within
Matlab. For this reason we started developing the research measuring system in
first place. It was necessary to develop both the microcontroller c and the Matlab
code almost at the same time. This is because the microcontroller communicates
with the computer, and it is easier to implement the communication at the same
time. This task was thought to take one month and a half to be finished.

23

Figure 16: Task distribution

3. Develop the end-user measuring system After checking that the algorithms
could work, we implemented the code on the microcontroller. This task is harder
than the previous one, however as we knew how to implement it, we thought it was
going to take one month and a half as well.

4. Create the evaluation system The evaluation system was created to verify the
current reduction thanks to the use of the algorithms. We thought that it was going
to take just a month to complete, however it ended up taking one month and a half
due to some problems we faced as we will go through later in Chapter 6.

5. TFG report This task took half of the month of July.

6. Final tuning The last half of July was reserved to troubleshoot the small problems
that could appear in the software as well as to clean the code.

In Figure 16 we can appreciate the task distribution along time.

24

Chapter 5. Implementation

The implementation of the project is the part that took most time to complete. As
commented in the Objectives section, two different projects were carried out to ease the
process of implementation. The main objective is to implement the power reduction
algorithms directly on the microcontroller. However coding it directly on the
microcontroller without even testing if it could be done was not a good idea. For this
reason we started with a system in which the PPG signal was gathered with the sensor
and the microcontroller and then processed in Matlab. In this first approach Matlab was
also responsible for sending the necessary commands to the sensor through the
microcontroller in order to change its parameters as the algorithms dictate. As Matlab is
a user friendly environment to process signals it is easier to implement the peak
detection algorithms as well as the power reduction algorithms.This setup will be called
Research measuring system as it could not be used in and end-user product.

Once we checked that the algorithms could work, another system was developed. In this
system we also have the sensor connected to the microcontroller, and this microcontroller
to another Matlab GUI. This time all the processing is carried out by the
microcontroller. The computer application will just plot the PPG signal and other
important information. This means that the microcontroller could run without needing
any device attached, however to check that the algorithm is working properly we will
watch the output of the sensor and the algorithm on the computer. This setup will be
called End-user measuring system as it could be used in and end-user product.

In the following sections the development process of these two systems will be covered. As
the End-user measuring system has many things in common with the Research measuring
system, some redundant information may be omitted.

5.1 Research measuring system

The research measuring system was developed to test if the algorithms could be
implemented in a real scenario. The measuring systems have two main different parts:
the microcontroller programming and the Matlab GUI. We developed both parts in
parallel, because this way it is easier to develop the communication protocol between the
computer and the microcontroller board. However before starting coding we had to
understand the hardware we were going to deal with.

5.1.1 Getting to know the hardware

The sensor we are using is embedded on an evaluation board that helps us to setup the
measuring process. It features a connector that carries the lines of the I2C bus. We will
connect this board to the microcontroller with this socket. The sensor itself is on the right
side of the board, as can be seen in Figure 17. The ADPD is an IC chip, however in the
photo it is covered with a transparent window with a black frame that is meant to improve
the measurement quality. Nevertheless the sensor is behind this window and can be seen
in Figure 18. We have highlighted the photodiodes and the LEDs locations on the image.

25

Figure 17: Sensor board photo

Figure 18: ADPD sensor detail

In order to establish the communication with the sensor, an I2C capable microcontroller
is needed. For this reason we looked for a microcontroller development board. We chose
an Analog Devices development board with a Cortex-M4 microcontroller. These are the
most important characteristics of the board:

- Cortex-M4 microcontroller This is the board’s main component. It is a ST32F405
microcontroller. It features 32bits, 168MHz clock, 140 I/O ports, 15 communication
interfaces (3xI2C, 4xUSART, 2xUART, 3xSPI,2xCAN,2xSDIO), USB OTG HS/FS,
3 DAC, 2 ADC, Ethernet, TRNG.

- FTDI This is a USB to serial UART interface that will allow us to communicate the
microcontroller with the computer.

26

- Bluetooth This is a fully integrated Bluetooth 2.1 + EDR class 2 module. It is
connected to the microcontroller through a UART interface.

- Breakout socket This is the socket we will use to connect the sensor with the
microcontroller. It has 14 pins with the necessary pins to establish the I2C
communication. It also has the supply pins to feed the elements on the sensor
board. Apart from these pins there are some other routed to the microcontroller.
Analog Devices has different sensor boards and some of these have components
hooked to a SPI interface. The spare PINs are thought to hold the SPI lines.

- Power System The board may run powered by a USB or by a battery. This system
feeds all the integrated circuits. It has an Analog Devices AD5061 IC that handles
the charging process and the current source for the rest of the board. It is also
connected to the microcontroller through an I2C interface that enables us to change
the output current or to start/stop charging the battery. We will not use this feature
as we will focus on obtaining the SpO2.

- Level shifters The output voltage of the lines of the interfaces are fixed to 3.3V by
the microcontroller. However the ADPD sensor works with a 1.8V signaling. This
is why we need level-shifters to lower the voltage in the communication between the
sensor and the ST chip.

There are some other features available on the board we will not use, such as the micro SD
Card reader or some other breakout sockets. A photo of the board can be seen in Figure
19

Figure 19: Development board and its components

Apart from this board and the sensor board, in some parts of this project we have also
used a breakout board of the cable that communicates the microcontroller with the sensor.
This board can be seen in Figure 20, where we have highlighted with the red rectangle the
part of the board we will use. The aim of this circuit is to help us to debug the signals of
the I2C interface. It makes it easy to hook an oscilloscope probe to any line and watch
its response. It has been used when we have faced problems when reading the sensors
registers and samples. The most common problem that this board helps to detect is the

27

Figure 20: Development board and its components

overrun of the FIFO of the sensor, that happens when the samples are not read on time
and they get lost.

We will be working with these three boards along with the computer to build the SpO2

power reduction measuring system. The way we will connect each other is shown in Figure
21 .The tasks of the different components are:

- Computer We will run in the computer a Matlab GUI. This Matlab GUI will ask the
microcontroller board to receive the PPG signal as well as the sensor registers. It
will also send register values to write them to the sensor. Apart from controlling
the sensor through the microcontroller, it will process the incoming PPG samples.
It will first filter them to obtain the peaks, then it will estimate where the next
peak should take place, and with this information it will decide when to send the
necessary commands in order to put the sensor in the LPAP and when to return to
the HPAP.

- Microcontroller Board It has two main tasks. The first one is to listen to the
UART interface for incoming commands from the computer and attend them.
Some commands may require the microcontroller to send read or write requests to
the sensor using I2C transactions. Its second main task is to receive incoming data
from the ADPD and send it to the computer where it will be processed.

- Breakout Board The aim of this board is to help debugging errors related to the I2C
communication or unusual sensor behaviour. It is useful to detect ADPD FIFO
overruns due to excessive delays reading samples.

- Sensor Board This is the component that holds the ADPD sensor, which pulses light
and samples the received light as specified with the Matlab GUI. Its main task is to
attend the microcontroller requests, whether they are register read or register write
commands.

28

Figure 21: Measurement setup and connection among the boards

Figure 22: CubeMX project setup

5.1.2 Initial project development

Once we have the hardware setup we can start developing the software. We will start
going through the process of creating the microcontroller software and then we will move
on to the Matlab GUI. When programming these types of chips it is rather useful to start
with a template or an example. In this case the manufacturer of the chip (ST) provides an
application to ease developers work in the early stage. It is called STM32CubeMX. It is
a graphical software that generates the basic code as specified by the user using wizards.
This way we can easily configure the pinout, the interfaces and the clock configuration.
To start with, we open the program and create a new project choosing File-New Project...
from the top menu. Then we select the processor of our board STM32F405VGTx as shown
in Figure 22 .Then we click OK.

A screen with the microcontroller icon will appear. In this view we can configure the
pinout of the microcontroller. In order to configure the pin routing we have to look at the
microcontroller board schematic summarized in Figure 23. We will tell the ST program to
configure the pins of each module with the corresponding ones from the microcontroller.

29

Figure 23: Most important sections of the microcontroller board schematic

30

Let’s enumerate the devices and pins we have to connect so that the program can work
properly:

1. FTDI For the UART communication with the computer. It uses two pins,
UART1TX and UART1RX, named PB6 and PB7 on the microcontroller.

2. ADPD For the I2C communication with the sensor. It uses two pins for the I2C
interface and 1 interruption pin. SDA and SCL are connected to PB11 and PB10
of the microcontroller, whereas the ADPD interruption pin will be connected to pin
PE13.

3. GPIOs Some GPIOS will also be needed. We will enable two of them to light 2
LEDs to use them as debug flags. These LEDs are routed to pins R18 and R14. We
will also configure a push button just in case we want to use it at some point. It is
physically connected to pin PD15

4. Bluetooth Bluetooth is used in one section of the project. For this reason we will
enable it. It connects to the microcontroller using a UART interface with hardware
flow control. This means that it requires 4 pins: UART2TX, UART2RX,
UART2CTS and UART2RTS. These two last pins stand for Clear To Send and
Ready To Send and are meant to implement the hardware control flow. They are
physically connected to PA2, PA3, PA0, and PA1 respectively.

When we started with the project we did not know which features of the board we were
going to use. At first we thought that it could be a good idea to configure the SDCard just
in case we would want to log data. We also thought that it could be interesting to setup
the battery controller chip. Moreover Analog Devices has developed some other sensor
boards that have different features. Some of them have an SPI accelerometer. We thought
that in a future we may use a different sensor board, and for this reason we configured
the accelerometer so that in a future it could be used effortlessly. For these reasons apart
from the pins commented before we configured these ones:

1. ADP5061 This is the chip that controls the voltage source and the one that charges
the battery. It is connected to the microcontroller through an I2C interface. It uses
two pins for this bus and two other pins configured as GPIOs for the interruption
and the supply enable. They are physically connected to pins PB9, PB8, PE0, and
PE1.

2. SDCARD The interface that connects the SDCard with the microcontroller is the
SDIO. It uses 4 pins for data (Data[0:3]) one pin for the clock signal and another pin
to detect Card presence. We will connect them to pins PC8-11 for the Data pins,
PC12 for the clock and PD0 for the card presence detection.

3. SPI interface We also setup the SPI Interface. It uses 4 lines. We will connect
MISO to PB14, MOSI to PB15, SCK to pin PB13 and NSS(Chip Select) to pin 12.
As this is thought to work with the ADXL362 accelerometer present in some sensor
boards we will also need an additional pin for its interruption. This line is routed
from the connector socket to pin PE14 of the microcontroller.

Now that we know which pins need to be connected we can set them up within the
application. Some of them will be connected as GPIOs and some other as interface lines.
Finally, we configured the clock input so that the microcontroller runs with the external
clock provided by the board. Once all the pins have been configured as shown in Figure

31

Figure 24: Microcontroller pinout selection

24 we need to enable the hardware chip select of the configured SPI, bypass the internal
clock of the microprocessor, and enable the timer TIM3, as can be seen in the left column
of Figure 24. At first we thought that having a timer could be very handy to measure
times between peaks, but it is finally used in the End-user measuring system.

The next setting we have to configure is the microcontroller clock. To do so we click on
the Clock configuration tab at the top of the program. As we have seen before, the main
clock source of the microcontroller is the external oscillator located on the board. This
clock signal will go through different PLL prescalers that will feed the different clocks of
the modules of the microcontroller.

To assure the best performance we will set the main clock frequency (HCLK) to its
maximum, 168 MHz. Before setting this value we will have to set the PPL Source to
HSE (External Clock). Then we will set the external clock frequency that according to
the board schematic is 8MHz as shown in Figure 25.

32

Figure 25: Microcontroller external clock value

Then we will set the peripherals clock to its maximum value. The battery charger
(Interface I2C1), the Bluetooth module (Interface UART2), the ADPD Sensor (Interface
I2C2), the accelerometer (Interface SPI2) and the SDCard (Interface SDIO) work with
the APB1 7 clock, whereas the FTDI (Interface UART1) works with the APB2 Clock.
These clock sources have a maximum values of 42MHz for the APB1 and 84MHz for the
APB2 as we can see in Figure 26. We will setup these clocks to its maximum
frequencies. When setting up these values the program automatically calculates the
value of the PPL’s so that we obtain the desired frequencies. The resulting clock
configuration is shown in Figure 27

We have almost finished with the project setup. However we still have to configure the
interfaces, the timers, and the interruption vector. To do so we will switch to the
Configuration tab at the top of the program. There a table with the enabled interfaces,
the timer, the GPIOs, the NVIC8 among other configurable elements will turn up. We
will click on the NVIC button and we will enable:

1. System Tick Timer We will need this interruption for the timer. It will be called
when the timer internal counter reaches its maximum value.

2. EXTI line1 interrupt We need this interruption for the AD5061 battery charger
chip. Although we configured it was not used in this project.

3. USART1 global interrupt This interruption will be called when there is a new
event regarding USART1 communication. This is the interface that communicates
the microcontroller with the computer through the USB cable.

4. USART2 global interrupt This interruption will be called when there is a new
event regarding USART1 communication. This is the interface that communicates
the microcontroller with the computer through Bluetooth.

5. EXTI line[15:10] interrupts Used for the ADPD, push button and SPI interrupts.

7Advanced Peripheral Bus 1
8Nested Vectored Interruption Controller

33

Figure 26: Microcontroller block diagram

34

Figure 27: Microcontroller clock configuration

Once we have configured the NVIC, the will move to the I2C interfaces. We will set the
clock speed of their communications to 400kHz (the maximum allowed by the protocol)
because both the ADP5061 and the ADPD sensor can run at this frequency as shown on
their datasheets. The rest of the parameters will be left as they are set by default.

Then we will configure the UART interfaces. We will set the baud rate of both to 921600
Bits/s, which is the maximum value allowed by the computer.

We will leave the configuration of the SPI as it is by default. The timer will not be used
for this project setup, however it will be used in the End-user measuring system.

The next thing to do next is to generate the code. Before generating it we have to adjust
the generation parameters clicking on Project-Settings. In the Project tab we will set
where to store the code. Then in the Code Generator Tab we will enable these options:

1. Copy all used libraries into the project folder This will copy all the necessary
files of the processor hardware abstraction layer to the project. This way we will be
able to compile the project in another computer without installing the drivers of the
processor.

2. Generate peripheral initialization as a pair of ’.c/.h’ files per IP This way
the code will be more organized as it will generate a pair of files per interface/module
initialization.

3. Keep user code when re-generated This is a feature we will not use very often.
It is useful when you want to modify the project configuration and you want to keep
you code untouched. The problem is that it restricts the zones of the code you can
write, this is why we did not use this function. Whenever we wanted to modify

35

Figure 28: Serial port configuration

something we changed it directly from the code.

Once we have finished we click OK and we can finally generate the code clicking on
Project-Generate Code.

5.1.3 UART Communication development

Let’s review how the program has been developed. We will divide the microcontroller
project into three main parts: Computer communication, Sensor communication, and
Main loop.

The computer communication is maybe one of the trickiest parts. There are some
requirements that have to be accomplished to make it work properly. One of the main
characteristics is that the communication is bidirectional, which means that both the
computer and the microcontroller will be able to send data to the other device.

The computer side is easier to implement for several reasons. The first one is that we will
code it on Matlab, and with a couple of functions we will achieve it. The second one is
that a computer has more memory flexibility, its memory is bigger and there is no need to
optimize every single array. The third one is that receiver and transmitter buffer sizes can
be set up to 4096 bytes in the computer driver as shown in Figure 28, which means that
the odds of loosing data are low as we have enough time to read arrived bytes before it gets
filled and a FIFO overrun occurs. However the microcontroller side is much complex[4].
The memory available is limited and the FIFO is a small shift register, which means that
we have to be careful in order to avoid FIFO overruns and therefore data loss.

At first we thought to send ADPD samples as raw data through the interface. However
we realized that this approach had some drawbacks. The main one is that if several
commands are sent and the microcontroller answers to these commands, we cannot know
which response corresponds to each command sent. This problem can be clearly seen if we
imagine a situation in which we want to read a register while gathering the PPG Signal.
As the PPG Signal would be sent in raw data format, we could not distinguish the response
among all the other bytes. For this reason we decided that a packet structure should be
implemented. This way each request and response would have a header defining the type
of packet and its content length. With this approach we could distinguish different types
of responses. This means that the PPG signal cannot be sent as raw data. At least we

36

Byte 0 1 2 3 4 5 6 7-255

Content Packet detection Packet number Packet length Packet type Data

Value 0x53 0xF0 0x0C 0-65536 0-121 0-255 ...

Table 1: Packet header and Data

have to introduce the raw data in packets before sending them.

The designed packet structure is rather simple. It has a header identification to detect a
new packet, two packet identification bytes, a packet length byte and two bytes to identify
the number of packet of PPG signal. In Table 1 we can see the packet structure. Lets
have a look at each header element:

1. Packet detection sequence These are three bytes that define the beginning of
a packet. We will use them to detect new packet arrivals. We chose three bytes
with a big difference among its values. This way it would be rather difficult to
misunderstand PPG samples with the same three bytes because PPG signal does
not have such abrupt amplitude changes.

2. Packet number This field is used when sending PPG samples. It identifies the
packet with a packet counter number. This way we can know if a packet has got
lost, which is especially useful when working at high sampling frequencies, as the
odds of loosing packets increase.

3. Packet length This field is made up by a single byte that specifies the size of the
data carried by the packet. This value can be any number between 0 and 121. The
maximum value is 121 because the maximum size of the complete packet is 128.
Therefore if we add the packet header size to 121 we will obtain 128

4. Packet type This is the one byte packet identification field. There are different
packet types as we will explain later. Some of them may be a ”read request” packet
or a ”PPG Data” packet. It is used when attending the command.

5. Data Array of bytes with the data carried by the packet. The maximum array size
is 121.

The maximum packet size is 128. At first we set this value to 16 bytes. It was enough
to store one sample. However we realized that for some commands we were going to need
more space. The command Multi-Write is a good example. This command sends several
register numbers along with their value to write to the sensor.

Now that we have defined the packet structure we can start designing the code that will
receive the bytes from the computer and that will attend the commands. We will define
two code pieces that will handle the UART communication. In the first place we have the
UART interruption handler. This piece of code will receive data and put it in a matrix
buffer. Then the attendCommand function will read this buffer and process the commands
sent by the computer. We have divided the code this way for a reason. The amount of time
that we are inside the interruption should be as small as possible. Otherwise we could run
into interruption overruns. For this reason the UART interruption handler function will
just receive the data and put it into the matrix. the attendCommand function however

37

Figure 29: Main execution loop and UART interruption

can take more time to execute as it will run in the main loop and it can be interrupted at
any time. This working procedure can be seen in Figure 29.

The buffer is a 16x128 bytes matrix called commandStack that stores the commands until
they are read. This matrix can store up to 16 commands, because each row is reserved for
a single command. This approach is not optimized, because in case the command’s size is
smaller than 128 bytes we will be wasting memory. However we wanted a quick and safe
way to store the commands because this project was not the final one, and the optimization
was not that important, in the End-user measuring system instead of a matrix we use a
circular buffer as we will explain in that section.

Let’s have a look at how the main UART pieces of code are designed

UART interruption Handler function HAL UART RxCpltCallback in the code. The
task of this function is to receive the incoming data from the computer and store it on
the commandStack matrix. The microcontroller calls this interruption handler as soon
as there is a certain number of bytes available in the FIFO of the UART interface. The
number of bytes necessary to be called has to be configured, otherwise it will never be
called. Moreover every time it is called it has to be reconfigured so that it can be called the
next time. At first we configured this value to 1, which means that the interruption would
be called each time a byte from the computer arrived. However this turned out to be a bad
idea due to the high baud rate we set. The main problem we had is that the processor was
not fast enough to call the interruption and set again the interruption for the next byte,
and eventually a sample could be lost. The code of this approach can be seen summarized
in Code 1. As we can see in line 7 we start the reception of data asking the UART HAL9

to raise the interruption when a byte arrives with the function HAL UART Receive IT.
The two first arguments of this function are the HAL UART handler and the array where
the incoming bytes will be stored. Then, inside the function once the byte is stored in the
commandStack we configure again the interruption(line 18)

1 uint8_t response [128]; //Temp array to store data

2 UART_HandleTypeDef * huartOut; //UART Handler

3

9Hardware Abstraction Layer

38

4 int main(void)

5 {

6 HAL_UART_Init (& huartout);

7 HAL_UART_Receive_IT(huartOut ,response ,1);

8 //Main for loop

9 while (1)

10 {

11 attendCommandStack ();

12 }

13 }

14
15 void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle)

16 {

17 addArrivedByteToCommandStack ();

18 HAL_UART_Receive_IT(huartOut ,response ,1);

19 }

Code 1: First UART handling attempt

However as this approach did not work properly, we thought in another way of reading
the data. The best solution was to read the entire header first and then the rest of the
data. This is possible thanks to the packet length field we created. Therefore we will start
asking the HAL to raise the interrupt once 7 bytes of data have arrived. Then, once inside
the interruption we will read the number of expected bytes and then we will configure the
interruption to raise when these bytes have been read. This code is summarized in Code
2. Here we can see in line 8 that we ask the HAL to wait for 7 bytes, and once in the
interruption function depending on whether we are waiting for another packet or for data
we set it to wait for 7 bytes or the number of bytes of the packet (response[5])

1 uint8_t response [128]; //Temp array to store data

2 UART_HandleTypeDef * huartOut; //UART Handler

3 uint8_t NOW_READ_DATA;

4 int main(void)

5 {

6 NOW_READ_DATA =0:

7 HAL_UART_Init (& huartout);

8 HAL_UART_Receive_IT(huartOut ,response ,7);

9 //Main for loop

10 while (1)

11 {

12 attendCommandStack ();

13 }

14 }

15
16 void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle)

17 {

18 addArrivedByteToCommandStack ();

19
20 if(NOW_READ_DATA){

21 HAL_UART_Receive_IT(huartOut ,response ,response [5]);

22 NOW_READ_DATA =0;

23 }

24 else{

25 HAL_UART_Receive_IT(huartOut ,response ,7);

26 NOW_READ_DATA =1;

27 }

28 }

39

Code 2: Second UART handling attempt

The code shown before is similar to the real one, however due to the size of the original it
has been summarized. For this reason the part of the code that copies the bytes from the
response array to the commandStack has been omitted. However we can give a brief idea
of how it is managed. As specified before commands are stored in the rows of the command
stack. The program knows where to store the next packet thanks to a pointer that indicates
the next available row in the commandStack. This pointer is incremented each time a new
packet is introduced. However as the commandStack is a circular matrix, once the pointer
reaches the end of the command stack its value is set to zero. The same thing happens
when reading from the commandStack. There is a pointer that indicates which is the next
packet that should be read, and is also a circular pointer. These pointers are automatically
managed by two functions, named lastCmdAReceived and nextCmdPtr respectively. These
functions have to be called when putting a new command and when reading a new one,
so that the pointers get updated. These functions also detect overruns of the FIFO. This
happens when too many packets need to be attended but there is not enough time to attend
them. In other words, this happens when the nextAttendPtr − lastReceivedP tr > 16.
An illustration explaining the mechanism of the commandStack is shown in Figure 30

The command attention function The main objective of this function is to attend the
commands sent by the computer. It is located in the main loop, so that it is executed in
every iteration. It reads the command stack until there are no new commands to process.
It has a switch structure in which depending on the command that needs to be attended it
does one task or another. We can see this in Code 3. We go through all the new commands
with the while loop, then depending on the type of the current command, we go into a
certain task. The types of commands are declared as enumerations in order to maintain
a clean program.

Figure 30: CommandStack working mechanism

40

1 void attendCommandStack ()

2 {

3 while(nextAttendPtr <(lastReceivedPtr +16* samepage) &&

nAdpdFifoLevelSize <100) // <100 to prevent fifo overrun

4 {

5 switch(commandStack[nextAttendPtr][3])

6 {

7 case WRITEPACKET:

8 ...

9 break;

10 case READREGISTER:

11 ...

12 break;

13 }

14 nextCmdPtr ();

15 }

16 }

Code 3: Command stack attention summarized function

Now that we know what happens with the packets since they are sent until they are
processed, lets have a look at some of the most important packet types we have been
using in this project:

1. STARTMEASUREMENT (0xC0) This packet is used to start sampling the
data with the ADPD sensor. As soon as this command arrives, the main loop goes
into a state in which it writes the default register values to the ADPD and prepares
the necessary variables to start gathering data.

2. INIT (0xE2) This packet is used as a flag so that the microcontroller knows when
the computer wants to engage with it.

3. STOP (0xE0) This packet is used to stop the measurement and set the variables
to their default value.

4. RESTART (0xE2) This packet puts the main loop in a state in which the program
looks for flag packets to engage with the computer. It is used to ”Restart” the
program.

5. WRITEPACKET (0xD0) This packet is used to request to write a register of
the ADPD. It contains the register and the value to be written.

6. READREGISTER (0xD1) This packet contains an ADPD register read request.
It specifies the register number to be read.

7. ADPDDATA (0xD2) This packet contains samples of the PPG Signal sampled
by the sensor.

8. MULTIWRITEWITHONOFF (0xD4) This packet contains several registers
that have to be written in the ADPD sensor as well as its values. Prior to writing
them the program has to set the ADPD sensor operation mode to Standby. Then,
after writing the registers it has to return to the sampling operation mode. This
command is useful when entering the LPAP and the HPAP as with one only
command you can change all the settings you need, saving time.

41

9. MULTIWRITEWITHOUTONOFF (0xD5) This packet is similar to the
previous one. The difference is that with this command the operation mode of the
ADPD sensor is not changed.

This is basically the working flow that bytes sent from the computer go through until they
are processed as packets. We will now go through the process of communicating with the
ADPD sensor.

5.1.4 I2C Sensor Communication development

The interaction with the ADPD sensor is easier compared to the PC communication. One
of the main reasons is that the I2C transactions are automatically handled by the HAL.
We do not have to care about packet headings and number of bytes to read because this
task is carried out by the HAL and the sensor’s library.

To start with, we took the ADPD library and we had a look at its code in order to
determine how to implement it in our project. Inside the main header file of the library
we located the functions used to interact with the device. We have included some of the
most important ones in Code 4.

1 /* Adpd control functions */

2 void Init(void);

3 int16_t AdpdDrvSoftReset(void);

4 int16_t AdpdDrvOpenDriver(void);

5 int16_t AdpdDrvCloseDriver(void);

6
7 /* Adpd register read and write functions */

8 int16_t AdpdDrvRegRead(uint16_t nAddr , uint16_t *pnData);

9 int16_t AdpdDrvRegWrite(uint16_t nAddr , uint16_t nRegValue);

10
11 /* Adpd slot selection and operation mode setting */

12 int16_t AdpdDrvSetOperationMode(uint8_t nOpMode);

13
14 /* Adpd read data from hardware fifo */

15 int16_t AdpdDrvReadFifoData(uint8_t *pnData , uint16_t

nDataSetSize);

16 int16_t AdpdDrvGetParameter(AdpdCommandStruct eCommand , uint16_t

*pnValue);

17
18 /* Adpd register interrupt callback */

19 void AdpdDrvDataReadyCallback(void (* pfAdpdDataReady)());

20 /* Adpd interruption handler */

21 void AdpdISR ();

Code 4: List of functions declared in the ADPD Library

Here we can see that there are different functions to control the sensor’s parameters
without having to modify specific registers. This eases our task because we do not have
to worry about which registers we should write in order to carry out a certain task, as
there is a function that does this for us. There are also other functions such as the
AdpdDrvOpenDriver or the AdpdDrvCloseDriver that handle the library status.

Apart from these functions there is a particular one rather important: the
AdpdDrvDataReadyCallback. We will use this function to set the pointer to the function
of our code that should be called whenever the ADPD interruption rises. This will be
called within the AdpdISR function, as this is the interruption handler of the library.

42

ADPD Library

Wrapping functions

Our code

HAL functions

Table 2: Code hierarchy (Bottom = closest to hardware)

Now we know how to interact with the library. However we have not clarified how the
library communicates with the ADPD sensor. As we can see in the functions
AdpdDrvRegWrite and AdpdDrvRegRead, the library uses two external functions that we
have to create in order to send and receive I2C commands from the sensor. These
functions are called ADPD I2C Transmit and ADPD I2C TxRx. It is quite easy to
create this two new functions, as we only have to call the I2C read and write functions of
the HAL linking the arguments. Sometimes this is called in the programming argot
library wrapping, i.e. defining functions that link the code with the bottom code layers.
This wrapping functions can be seen in Code 5. In the Table 2 we can see the code
hierarchy in our project once we add the library.

1 ADI_HAL_STATUS_t ADPD_I2C_Transmit(uint8_t * I2CData , uint16_t

size)

2 {

3 return (ADI_HAL_STATUS_t) HAL_I2C_Master_Transmit(hi2c ,

4 (uint16_t) ADPD_I2C_ADDRESS ,

5 I2CData ,

6 size ,

7 (uint32_t) 100);

8 }

9
10 ADI_HAL_STATUS_t ADPD_I2C_TxRx(uint8_t *pTxData , uint8_t *

pRxData , uint16_t RxSize)

11 {

12 return (ADI_HAL_STATUS_t) HAL_I2C_Master_TxRx(hi2c ,

13 (uint16_t) ADPD_I2C_ADDRESS ,

14 pTxData ,

15 pRxData ,

16 RxSize ,

17 (uint32_t)100);

18 }

Code 5: Wrapping functions

Once we put all this code together we can access the library functions and start
configuring the sensor. Before going into the main loop we engage with the device and
we perform a first-init configuration as shown in Code 6. In this code we can appreciate
the work flow of this initialization. In first place we tell the wrapping functions which is
the HAL I2C interface handler, so that when they are called by the library they can tell
the HAL which interface it has to interact with. Then we have the function that opens
the library. This function basically sets up the interruption configuration. Next we have
the set callback function. As we can see in the code we have created a function called
ADPDInterruptionRise. This will be the function that will handle the interruption in
our code environment. The aim of the last function of this code is to configure the

43

sensors registers. To do so we ensure that the ADPD is in idle mode and then we call
proceed with the register configuration. This function is made up by a for loop in which
in each iteration a register is written by calling the function of the library.

1 /*Set I2C handle pointer to the wraping functions */

2 ADPD_I2C_Interface_Init (& hi2c2);

3
4 /* Initialize ADPD Driver */

5 AdpdDrvOpenDriver ();

6
7 // Configure ADPD Interruption function

8 AdpdDrvDataReadyCallback(ADPDInterruptionRise);

9 // Write the sensor ’s default values

10 configure144BoardInitialRegisters ();

Code 6: Sensor nitialization process

When it comes to the interruption, its work flow is shown in Figure 31. As soon as the
interruption line rises, the uC notices it and calls a callback defined in our code. In this
callback we call the Library’s interruption function handler. This, among other things
calls back the function of our code we defined with the AdpdDrvDataReadyCallback. We
could actually call the AdpdISR() and the ADPDInterruptionRise() functions within out
code’s interruption callback, however this approach is mode adequate.

As we saw in Section 3.3 this interruption rises when there is a certain number of samples
in the sensor’s FIFO. The number of necessary samples to rise the line is defined in one of
its registers. In our project, as operating in real time is a priority, we decided to configure
the sensor so that it raises the interruption with each new sample.

This information gives us a brief idea of how the library has been configured and included
in our code. Now that we are able to detect available samples when sampling lets have a
look at how these samples are managed.

5.1.5 Main program function

Up to this point we have gone through the process of communicating with the ADPD
sensor and the computer. However we still have to link somehow this communication
so that the computer can access the sensor’s information. This is done within the main
function.

The main function has two different sections of code: Initialization and the loop.

Initialization This fragment of code boots up the HAL, the library, and sets the variables
to their default values. To start with we call the HAL Init function, that sets up the

Figure 31: Interruption procedure

44

Engagestart

User input

Sampling

Pre Init

A
B

C

D

E

Figure 32: Main Loop Status machine

NVIC. Then we configure the clock with the SystemClock Config function generated in
our main file by the STCubeMX program. This one sets up the clock source as well as
the PLL values. Once the bus clocks are set we can boot the interfaces. Most of them are
initialized with this function prototype: MX [interface] INIT();. Once we have configured
the interfaces we init the ADPD Sensor as specified in Code 6. Now that all the hardware is
ready we set the necessary variables to its default value. In this section the commandStack
memory allocation takes place.

Main Loop The main loop is the code that will run until the board is powered off and it
implements a status machine that handles incoming events. This machine has four states:

1. Engage In this state we will wait until a packet of type INIT is received. Any other
packet will be discarded

2. User Input In this state we will attend the commands sent by the computer.
We will leave this state when a STARTMEASUREMENT packet arrives or then a
RESTART packet arrives.

3. Pre Init In this state we prepare the ADPD registers to start measurement. We
also call the ADPD Library function that starts the measurement process. As soon
as this is done we move to the Sampling state.

4. Sampling This is the main state. In this one we will obtain samples from the ADPD
sensor and send them to the computer. At the same time we will attend incoming
packets from the computer.

As we can see in all the states we attend the user input. This status machine has been
represented in Figure 32. This is achieved with the code summarized in Code 7. Here we
can see the structure of the status machine. There is a while loop and in each iteration
the status of the machine is checked. We can also appreciate in line 27 that whichever
state we are in, we will always attend the user input.

1 // Status machine enum

2 typedef enum {

3 ENGAGE ,

4 USERINPUT ,

45

5 PREINIT ,

6 SAMPLING ,

7 } programSTATUS;

8
9 while (1)

10 {

11 /* STATUS MACHINE */

12 switch(MSMStatus)

13 {

14 case ENGAGE:

15 ...

16 break;

17 case USERINPUT:

18 ...

19 break;

20 case PREINIT:

21 ...

22 break;

23 case SAMPLING:

24 ...

25 break;

26 }

27 attendCommand ();

28 }

Code 7: Status machine simplified code

As we have commented before, the Sampling state is the most important one. In each
iteration of the loop we check if the interruption flag has raised. If so, we ask the ADPD
Sensor how many samples are available in its FIFO. Then, we read them all and reset
the interruption flag. Before sending this information to the computer we have to
normalize the samples. As we will modifying the number of pulses, we need to normalize
the signal to a certain number of pulses so that when we change the number of pulses
the signal does not have abrupt changes. As the maximum number of pulses of the
ADPD is 256 we will normalize the samples so that the amplitude is the same as if we
had 256 pulses10. To perform the normalization we have to multiply the samples by
256/ActualNumberOfPulses.

All this process is carried out by the readFIFOandPreparePacket function. Once the
outgoing buffer is filled with the new normalized samples, the packet heading is added
and they are sent to the computer within the Sampling state.

5.1.6 Adding bluetooth connection

At some point of the evaluation procedure we thought that the USB port supply lines
were too noisy and that this affected the performance of the ADPD sensor. PSRR of the
TIA amplifier is not infinite, and therefore the output signal sampled is influenced by the
supply.

As the board can run with a battery we proposed to establish the connection with the
computer using a bluetooth dongle. This way the board would be isolated from the noisy
computer supply. To do so we took the module driver developed by Analog Devices and
we configured the UART interface to work with it.

10Actually this is not strictly true, as with more pulses we would have less noise

46

Integrating this bluetooth communication in our code was not complicated. The fact that
both the FTDI and the bluetooth use UART interfaces helped, as the only thing we had to
change in order to send or receive data through one or another interface was the handler.
This way we can declare a pointer of type UART HandleTypeDef that points to the UART
handle we want to use(bluetooth or FTDI) in order to use it whenever we read or write.
With this setup, changing the pointer means changing the communication path.

The only thing we have to do is detect whether the computer is connected through the
USB cable or linked through bluetooth. To detect it one possible approach is to listen to
both UART interfaces until we receive a INIT packet from one of them. We implemented
this on the Engage status. Here we first check if there is any device linked to the bluetooth,
if so we wait for an INIT command. If there is not a device connected then we use the
FTDI UART. In Code 8 we can see a simplified code that shows how it is implemented.
In line 2 we check if we have connected devices, and in lines 4 and 9 we set the UART
pointer depending on which interface we connect to.

1 case ENGAGE:

2 if(checkConnectedDevices ()==1)

3 {

4 huartOut = &huart2;

5 HAL_UART_Receive_IT(huartOut ,response ,7);

6 }

7 else

8 {

9 huartOut = &huart1;

10 HAL_UART_Receive_IT(huartOut ,response ,7);

11 }

12 HAL_UART_Transmit_IT(huartOut ,prueba ,sizeof(prueba));

13 break;

Code 8: Bluetooth / FTDI engaging state

5.1.7 Matlab application

Matlab is a useful tool when developing graphical applications in research projects. It
has some limitations and is not as flexible as other programming languages, however it
provides a wide variety of functions that can be easily used and easy function plotting.
Moreover it has libraries and functions to communicate with external devices that come
in very handy in projects such as this one.

With GUIDE (GUI Development Environment)[14] you can create graphical interfaces
that run Matlab code. Different elements can be added to the window, each one can have
different callbacks that will run when a certain event related to the element triggers. This
way the user can interact with the created environment.

Our goal is to create a graphical environment with different purposes. The application
must display the PPG signal in real time, as well as the sensors registers. It also has to
display the most representative configuration as text, so that at any point the user can
quickly know which is the active configuration. This application should also allow the user
to freely change the register values of the sensor.

However the final objective of our GUI is to obtain the SpO2 value applying the power
reduction techniques explained in Section 3.5. For this reason these algorithms will have
to be implemented in this GUI. The user should be able to choose the algorithms as well
as their most important parameters.

47

Figure 33: Matlab GUI for the research measuring system

Moreover the application should have a vital constant information area in which the SpO2

and the HR values would be represented.

All these features have been implemented in the Matlab GUI as shown in Figure 33.
At the top of the figure we can see the connection configuration as well as a debugger
information box. On the right hand side we have the register list with their values as well
as the most important configuration written in text. In the center of the screen we have
the PPG signal plot and the channel display selection. We also have in the middle section
the consumption information. At the bottom side we can find the algorithm control boxes
and on the bottom right hand we have the statistics and vital constant values. We will
explain in this section a brief idea on how it has been done.

The application has a main while loop that runs as soon as the user pushes the Start
Button. In the callback of this button we carry out several tasks: First we clean the
variables of the Matlab GUI, then we set the ADPD initial configuration for the
measurement, then we send the start measurement command, and finally we enter the
while loop as we can see in Code 9. This while loop runs until the user hits the stop
button. Inside the main loop we call several functions. Lets give a brief explanation of
what do they do:

- readUartIntoBuffer This function reads the UART and stores the content in a
temporal buffer.

- parseBufferIntoCommandStack This function takes the UART buffer and divides
it into commands that are stored in the Matlab’s command stack. This command
stack is similar to the microcontroller’s command stack. It is a matrix with 16 rows
ready to receive 16 commands and 128 columns that will store the content of the
commands.

- processADPDData This function is the one that processes the raw bytes of the

48

commands and stores each channel information of each time slot in buffers inside a
struct.

- plotADPDData This function plots the ADPD data. It reads the previously created
struct and draws the PPG Signal. It will show the channels specified by the user
with the GUI. It is also possible to plot the summation of the 4 photodiode channels.

- rangingStatusMachine This function obtains the peaks and estimates the next peak
location. Then it runs the power reduction algorithms thanks to the status machine.

- plotStatistics Plots statistical information such as the SpO2 value, the HR value, the
average peak to peak period, the average min peak to max peak time, or the peak
estimation error.

- plotPeaksData Plots the obtained peaks as well as the estimation peaks.

1 %Clear the application variables

2 handles = clearVariables(handles);

3
4 %Configure the registers

5 firstTimeBootRegisterConfig(handles);

6
7 %Send command to start measuring:

8 packet = hex2dec ([’53’;’F0’;’0C’;’00’;’00’;’00’;’C0’]) ’;

9 fwrite(handles.s,packet);

10
11 while(strcmp(get(hObject ,’String ’),’Stop’))

12 %Lee datos y los deja en handles.rawUartBuffer

13 handles = readUartIntoBuffer(handles);

14
15 %Read handles.rawUartBuffer and store it in the commandStack

16 handles = parseBufferIntoCommandStack(handles);

17
18 %Read commandStack and store the data in the struct

19 handles = processADPDData(handles);

20
21 %Plot ADPD Data

22 plotADPDData(handles);

23 hold on

24
25 %Obtain the peaks and store them in handles.peaks

26 handles = rangingStatusMachine(handles);

27
28 %Plot graphical statistics

29 handles = plotStatistics(handles);

30
31 %Plot the peaks

32 plotPeaksData(handles);

33
34 hold off

35
36 %Force to draw

37 drawnow;

38 end

Code 9: Matlab main loop

49

These functions carry out the necessary tasks to accomplish the specifications that the
Matlab GUI needs to have. Now we will go through how some of the most interesting task
have been implemented:

Communication with the microcontroller In order to communicate with the
microcontroller we use serial, fopen, fread and fwrite functions. With the first one we
will set the com port object settings, and then we will stablish the interface
communication with the second command. To do so we will need the number of the
COM port associated with the device as well as the configured bit rate. As we know we
configured this value to 921600 bauds for the USB. In case we want to use the bluetooth
communication the procedure is similar. The only difference is that we will use the COM
port of the bluetooth dongle. We use command fread to obtain data from the
microcontroller. In every main loop iteration, we call function readUartIntoBuffer, which
reads all the available bytes in the COM port’s FIFO. Finally, we use fwrite function to
send bytes to the device. These bytes are packets that the microcontroller will interpret.
A sample code with the basic initialization and usage of these commands can be seen in
Code 10

1 %Stablish the connection with the device

2 handles.s = serial(’COM5’,’BaudRate ’ ,460800,’DataBits ’ ,8);

3 fopen(handles.s);

4
5 %Write the initialization packet

6 packet = hex2dec ([’53’;’F0’;’0C’;’00’;’00’;’00’;’E1’]) ’;

7 fwrite(handles.s,packet);

8
9 %Read all the bytes in the COM port ’s FIFO

10 newData = handles.s.BytesAvailable;

11 handles.rawUartBuffer = [handles.rawUartBuffer , fread(handles.s,

newData) ’];

Code 10: Communication example with the microcontroller

Signal filtering In order to obtain the peaks we have to filter the signal as specified in
section 3.4. To do so in Matlab we will use the filter function to filter the signal along with
the conv function to convolute the filtering coefficients of the Comb filter and the LPF to
obtain the total filter as shown in Code 11. After filtering the signal we look for the zeros
with another function that takes into account the group delay and finds the peak in the
original signal[12].

1 notch =5;

2
3 %Create the comb filter coefficients for a notch frequency of 5

Hz

4 K = round(fs/(notch));

5 BcoefsComb = [1 zeros(1,K-1) -1];

6 AcoefsComb = 1;

7
8 %Create the LPF coefficients for a notch frequency of 5Hz

9 BcoefsLPF = ones(1,floor(fs/notch));

10 AcoefsLPF = length(BcoefsLPF);

11
12 %Lets convolute the coefficients to obtain the total filter

coefficients

13 BcoefsTotal = conv(BcoefsComb ,BcoefsLPF);

14 AcoefsTotal = conv(AcoefsComb ,AcoefsLPF);

15

50

16 %Number of invalid samples due to filtering

17 notValidData =length(BcoefsTotal);

18
19 %Fitler the signal

20 signalInAFilt = filter(BcoefsTotal ,AcoefsTotal ,signalInA);

Code 11: Matlab signal filtering

Implementing the power reduction state machine Once we detect the peaks in the
original signal we estimate where the next peak will take place. To do so we take into
account the last 10 peak-to-peak periods and we weigh them in such a way that the newest
period is the most representative one and the oldest one does not affect the estimation
noticeably. The formula used to estimate the next peak is:

Peaki+1 = Peaki +

∑9
j=0(10− j) (Peaki−j − Peaki−j−1)

45
(37)

We tried other different estimators such as exponential weighting ones or EMA among
others, however the average estimation error was greater with these methods. Had it not
been for this fact, we could have used 2n weighting to reduce the computation time.

Once we have this estimation, we can enter the power reduction status machine. This is
the portion of code where the algorithms will be implemented. Lets recall that the aim of
these algorithms is to sample the PPG signal with more precision in those zones we are
interested in, which are the peaks, while the rest of the signal does not give us information
to obtain the SpO2 value and therefore we can sample with less precision.

At first several approaches were thought, and the most suitable solution was to create
some sort of status machine to manage the algorithms. This state machine is executed
once per main while loop. This way the normal main loop flow can continue. For this
reason it is not strictly a status machine on its own, however it is part of the main loop.
In the Figure 34 we can see the state machine diagram.

Check Qualstart Set Algo Check ADC Conf regs

Retake

end
Good

Bad

Figure 34: Matlab status machine

These are the five status the machine has:

1. Check Quality In this state we check the quality of the received signal. To do
so we look at the standard deviation of the peak to peak periods. If the standard

51

deviation is high compared to a normal value defined for a subject at rest, then the
signal quality is bad.

2. Check ADC One of the most important configurations to set is the amount of light
that goes through the LEDs. This value is set so that the received amplitude of
the PPG signal is in a certain range of the ADC range. This is because the ADC
is not linear in all of its range. Therefore we adjust the current that goes through
the LEDs so that the amplitude of the PPG signal reaches a value between 60%
and 80% of the ADC range. For this reason when the signal goes beyond these
limits the registers of the ADPD are reconfigured to return to a normal situation.
To reconfigure it we do not write the register in the same state. Instead we wait for
the register configuration state to do so. This is achieved with a buffer in which we
store the actions we want to be taken once we reach the register configuration state.

3. Set Algorithm Within this state we set the registers that will be written at a
certain estimated heart rate period percentage to the sensor. This time is calculated
based on the chosen algorithm, the next peak estimation and the Low and High
current consumption starting percentages. However these registers are not written
in this state. Instead we store these write requests in a buffer and later on we write
them all in the reconfiguration state.

4. Configure Regs This is the state in which all the registers are written. As explained
before, we have a buffer in which we tell this state which actions it should take at
a certain heart rate period percentage. This way we can for example tell this state
to enter the low power mode of the Pulses algorithm at the 30% of the estimated
period and go back to the high power mode at the 80%. In order to specify which
action to take we have a number that references a case of a switch structure. Along
with this number we also have to specify the percentage of the estimated period at
which the state should run the code.

5. Retake This state sets the necessary configuration to try to obtain a signal with
good quality. This state is used when the peak estimation is not accurate and as a
result the algorithms do not work properly. Once the signal has been retaken the
algorithm can run again.

Variable handling To handle all the variables in the application we will use the handles
object. This object is created by the GUIDE matlab tool. It contains the properties of all
the elements of the GUI. It can also be used to store the user variables. The good thing
about using this object is that every time a callback is run, it is possible to access to it.
However using this object has some drawbacks. The main problem he had to face is that
once we are running the main while loop, if the handles is updated externally by another
callback this object does not get updated within the while loop. For this reason for certain
variables we had to use global variables, as these can be accessed in real time from any
part of the code. It is said that having global variables is not a good idea as having the
control of where each variable is modified is complicated. However in this situation we
had no choice and we used them.

This gives us a brief idea on how the Matlab application for the research measuring system
was developed.

5.2 End-user measuring system

The End-user measuring system was developed to implement the algorithms in the
microcontroller that had already been evaluated in the Research measuring system. As

52

implementing the algorithms directly in the microcontroller is much harder than in
Matlab we wanted to make sure that the algorithms worked before porting them on the
microcontroller. This is why we created two measuring systems.

This second system has many things in common with the first system. Both the I2C and
the UART communication are designed almost the same way. There are some differences
we will explain in the following sections.

In this measuring system not only we had to develop the microcontroller code but a Matlab
GUI as well. The purpose of this Matlab GUI is just to plot graphs and information, no
processing is done within this application. Again, the Matlab GUI design has many things
in common.

5.2.1 Microcontroller project setup

The microcontroller project was thought to be end-user code. This means that once
finished, a developer should be able to take the code and include it in his code. For this
reason a flexible setup was created. Instead of hard-coding the algorithms in a single c
IAR project, we created two different projects within the same workspace. One project
will be designed as a library, and it will process everything related to SpO2 and SpO2

algorithms. The other project will wrap the first one and will interact with it. We will
call this last one the wrapping project.

With this configuration the wrapping code will just acquire the samples from the sensor
and send them to the SpO2 Library and will handle the communication with the computer.
It will also configure and initialize the HAL libraries as well as the clock so that the code
can run properly.

This way anyone will be able to take the SpO2 Library and include it in his own wrapping
code. The only thing it would have to know to work with this library is the function
names, their parameters, and the returning values.

This has some other advantages. In case we wanted to sell this SpO2 Library, we could
just sell the compiled Library. This way the client would not be able to access the code,
preventing them to know how the processing is carried out, and protecting this way the
intellectual work behind it.

5.2.2 Wrapping project

The wrapping project is very similar to the Research measuring system microcontroller
code. This is because the tasks of these projects are almost the same. It has to
communicate with the ADPD144 sensor and with the computer. The difference now is
that this project has to send the received samples from the ADPD144 sensor to the SpO2

library and call the necessary functions to obtain the SpO2 value to send it to the
computer.

For this reason the project has only a few files apart from the HAL files and the modules
and sensor libraries. We will focus on the main.c and communication.c files.

The main.c file implements the main status machine as in the other measuring system.
The configuration of this status machine has changed slightly as we can see in Figure 35.
Two more states have been added: The Stop and the Reset. The main reason is that this
way the machine is more organized, and moreover if we need to reset any variable when
stopping/resetting we can do it directly within the status machine.

53

Engagestart

User input Pre Init

Sampling

StopReset

Figure 35: Matlab status machine

One more difference we can appreciate in the status machine is the Sampling state. As
we can see in Code 12, apart from reading the ADPD144 FIFO(line 5) and sending those
samples to the PC(line 16) we interact with the SPO2Library. First we send the received
samples to the Library as shown in line 13, then we call the library update function
SPO2Lib Tick. Then we obtain the SpO2, HR and HRV values with the Library function
SPO2Lib getSPO2Value and finally we send the rest of the information to the PC. This
is a summarized code, some bits of code have been omitted.

1 case MSM_SAMPLE:

2 if(adpdNewDataAvailable ==1)

3 {

4 //Read ADPD Data

5 readAdpdFifoData ();

6 if(nAdpdFifoLevelSize ==0)

7 errorHandler (11);

8
9 // Convert the raw bytes into uin32 arrays

10 parseBuffer(ADPDProjectFifo ,slotAData ,slotBData ,

nAdpdFifoLevelSize ,& outSize);

11
12 //Send the library the ADPD Values

13 SPO2Lib_updateNewSamples(slotAData ,slotBData ,sampleTime ,

outSize);

14
15 //Send the ADPD data to the computer

16 sendAdpdData(modifiedSlotAPtr ,modifiedSlotBPtr ,

modifiedSlotSize);

17 }

18 //Call the Library update function

19 SPO2Lib_Tick ();

20
21 // Obtain the SPO2 Value

22 SPO2Lib_getSPO2Value (&SPO2Val ,&MIVal ,&HRVal ,&HRVVal ,&

signalQuality);

23
24 //Send information to the computer

25 sendPeaksData(minPos ,maxPos ,minValA ,maxValA ,minValB ,maxValB ,

54

newMinPeak ,newMaxPeak ,minNum ,maxNum);

26 sendSPO2MIData(SPO2Val ,MIVal ,HRVal ,HRVVal ,signalQuality);

27 sendEstimatedData(estimatedDiference);

28
29 // Attend incoming commands from the computer

30 attendCommand ();

31 break;

Code 12: Sampling state of the state machine

However the main.c file has some other differences. In the initialization routine we setup
the SpO2 Library we have created. To do so what we have to do is to call the
SPO2Lib Open and the SPO2Lib setErrorFunction functions. The first one allocates the
necessary memory and the second one sets the error handling function pointer as we will
see later. This piece of code is shown in Code 13

1 //Open SPO2 Lib

2 SPO2Lib_Open (200);

3
4 //Set the SPO2Library errorHandler function

5 SPO2Lib_setErrorFunction (& errorHandler);

Code 13: SpO2 Library initialization

The last difference we will comment of the main.c is a new function called parseBuffer.
This function reads the ADPD144 FIFO from the buffer and converts it into 32 bits
unsigned int samples. In the Research measuring system we used to send the raw bytes
to the computer, where these bytes were arranged. In this case the conversion is done
within this function in the microcontroller. We are using 32 unsigned integers because
we configure the ADPD sensor to return the summation of the four channels instead of
returning each channel on its own. This is because in this project we do not take advantage
of multiple channels.

The communication.c file implements the communication with the PC. It has the
UART callback as well as several functions that send different information to the computer.
The UART communication is quite similar to the one described in the Research measuring
system. The main difference is that in this new project we have optimized the command
stack and the way memory is managed.

In the previous system we were not worried about optimization because we knew that that
system was not the end-user solution. However now optimization is rather important. The
command stack of the old system was a matrix of 16 rows and 128 columns where up to
16 commands could fit. Now, the command stack is a 384 byte vector. This means that
now the minimum amount of packets that can fit is 3. Moreover in the old solution we
used to copy the new incoming bytes from the temporal buffer to the matrix, however this
was really inefficient and we solved that by using memory pointers to the new command
stack. Lets explain more in detail how it works:

In first place we setup the UART interruption. To do so we have to specify how many
bytes should arrive in order to rise the interruption and where to store these bytes. In our
case we will wait for 7 bytes and we will store them directly in the location pointed by a
variable. This variable will be automatically incremented when the full packet is received,
so that when we configure the UART interruption again, the buffer is not overwritten and
we can attend the command. The main idea is represented in Figure 36. In this figure, we
see in the first state the pointer pointing at the first slot of the buffer. Then, in the second
state, a packet has arrived and it has been directly written in the buffer. Then, the buffer

55

Figure 36: Optimized UART buffer

pointer is moved to the next available buffer slot. Then, a new command arrives, and the
previous command is attended. Again the pointer is pointing to the next free slot. This is
a circular buffer, and therefore the buffer pointer is also circular. This means that when
there is not enough space at the end of the buffer the pointer will return to its beginning.
We have to take care in order to prevent commands overwriting. All this job is managed
by the functions getNewPointer, putNewPointer and getNextPacketPtr.

As commented before, the communication.c file has some other functions. Most of them,
such as sendAdpdData or sendSPO2MIData send information to the computer. They
basically prepare a packet and call the HAL function to send them in a non-blocking way.

Last but not least, the have a small c file called Common.c. It has one interesting
function that handles errors. Whenever we code something and we think in a situation
in which the code can run unexpectedly we add a call to this function. For example, if
we detect a UART buffer overrun (when we run out of memory to store new packets) we
call it. This function toggles a board LED to notify the event. To do so we configured
TIMER3 with a prescaler of 16800 and a count period of 100. This way, as the main clock
works at 168MHz, the TIMER3 callback will be called every 100 ms. In the TIMER3
callback we placed a piece of code that toggles the LED. In Code 14 there is an example
of the declaration of the error function and the Timer callback.

1 /*

2 function: Blinks the LED and stops the execution

3 input: CODE = Error code

4 output: -

5 */

6 void errorHandler(uint8_t CODE)

7 {

8 HAL_TIM_Base_Start_IT (&htim3);

9 printf("CODE: %i\n",CODE);

10 while (1);

11 }

12
13 /* Timer3 Callback */

14 void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {

15 if(htim ->Instance == htim3.Instance) {

16 HAL_GPIO_TogglePin(GPIOD , LED_DS2_Pin);

17 }

18
19 }

56

Code 14: Error function handler and timer callback

5.2.3 SpO2 Library

The SpO2 Library has been designed to be able to work in any workspace as long as it is
configured properly. There are only a few end user functions that can be understood with
ease. This library has to meet some requirements in order to work properly:

1. Fast processing In most cases the library will be called between sensor samples.
This means that the processing has to be performed as fast as possible. Sometimes
we do not have as much time as desired. This is due among other things to the fact
that reading the ADPD samples and sending them to the computer takes time.

2. Reduced memory size Ideally the Library size should be small. This is thought
to fit in most of nowadays microcontrollers, and memory size should be optimized.
Sometimes we cannot avoid allocating memory but most of the times some techniques
can be applied to reduce the size i.e. using circular buffers.

3. Few functions We should try to reduce as much as possible the functions a
developer has to call in order to make it work properly. This way it will be much
easier to include it in any workspace.

4. Understandable code The code written should be easily understandable.
Commentaries are appreciated in these type of libraries.

It features two c files along with their header files. The main one is called SPO2Lib.c.
Most of its functions can be accessed from the outside. The developer who includes the
library in his code will have to interact with these functions. The other c file is called
signalProcessing.c and it contains functions that carry out all the processing, filtering and
convolving tasks. None of these functions can be accessed externally and they are called
from the SPO2Lib.c file.

Lets review briefly the necessary functions to interact with in order to include the
SP2 Library properly in a workspace:

1. SPO2Lib Open This function takes as the argument the sampling frequency of the
high precision sampling zones. With this information it creates the filter coefficients
and allocates the necessary memory for the arrays of the library. Moreover it sets
the variables to its default values.

2. SPO2Lib Open This function frees the memory allocated during the
SPO2Lib Open function.

3. SPO2Lib Reset This function sets the variables to its default values. This function
is internal and should only be called within the library code.

4. SPO2Lib setErrorFunction This function takes as argument the pointer to a
function that will be called whenever we run into a unexpected state.

5. SPO2Lib updateNewSamples This is one of the most important functions of
the library. It takes as arguments the pointers to the buffers where the ADPD144
FIFO have been read, as well as the number of samples. In the first place the

57

signal is filtered with the filter described in Section 3.4 with function filterSignal.
Then, we look for the zeros in the filtered signal with function findZeros, and finally,
thanks to these zeros we look for the peaks in the original signal with function
findMaxAndMinInOriginalSignal. Once the signal has been processed, we save the
last sample for the next iteration. This is because the filter has a certain length, and
we need to recall as many samples as the filter’s length so that in the next iteration
we have enough information to obtain the filtered signal properly.

6. SPO2Lib Tick This is the function that handles the next peak estimation and the
state machine.

7. SPO2Lib getSPO2Value This function obtains the SpO2, the HR and the HRV
values. To obtain the SpO2 value the ratio R is obtained and then we apply the
calibration curve of Equation 11. In the following sections we will review in depth
how the SpO2 value is obtained.

8. SPO2Lib getSignalQuality This function returns the quality of the signal. It
returns a value between 0 (Bad signal) and 10 (Good signal). It computes the
standard deviation of the peak to peak mean value. The higher the value the better
the signal quality.

9. SPO2Lib setAlgorithm This function is used to set the active algorithm. The
algorithm change will take place in the next heart period.

Apart from these functions there are some others that the user does not interact with.
Most of them are called by the main function and their job is to process the information
and filter the signal to obtain the SpO2 value. We will not get into detail of these functions.
However we will comment later on some characteristics that affect the SpO2 calculation.

The state machine is a simplified version of the one implemented in Matlab (Figure 34).
Some of its states are implemented outside of the machine, however the main states such
as the Set Algo and Conf regs are still in the state machine.

There are also some functions the library needs in order to work properly. These are
functions that the user has to define. They are not defined within the library because it
is thought to work under different circumstances. The most important external functions
required are:

1. AdpdDrvRegWrite The function that handles the write of a register given the
register number and its value.

2. AdpdDrvRegRead The function that handles the read of a register given the
register number.

3. AdpdDrvSetOperationMode This function has to be able to change the
operation mode of the ADPD. The argument is a unsigned int that defines the
operation mode.

4. clearFIFOSamples. This function will flush the content of the FIFO. In order to
avoid loosing FIFO samples this is done out of the Library.

5. getCurrentMs This function has to return a millisecond time stamp when called.

Some of these functions (the first three ones) are declared in the ADPD144 driver, whereas
the last two ones are declared in the wrapping project.

58

Peak filtering When obtaining the SpO2 we realized that finding the peak in the original
signal was not the most accurate way of getting a peak. This is because the gathered
PPG signal has noise, and therefore most of the times the peak of this signal turns out
to be ill defined. For this reason we determined that an extra filtering had to be applied
before locating the peak in order to get a more robust peak amplitude and location. We
studied which type of filter would fit the best to our signal. We tested several filters with
a maximum and a minimum peak of a measured PPG signal and saw the results. This
piece of code was written in a Matlab script that generates 8 subplots that gives a visual
idea of which filter is the most adequate one. This plot can be seen in Figure 37. In this
plot, on the left hand side we have the maximum peaks and on the right hand side we
have the minimums. In each row we have a different filter type. We studied these four
ones:

1. EMA with fixed length Exponential Moving average filters have a faster response
compared to the simple average filters. This is because newer values are weighted
more than the oldest ones. A variable called α determines how aggressive this
weighting is. This variable is a function of the filter length. The filter itself has this
formula:

y[n] = (1− α) · y[n− 1] + α · x[n] (38)

We can rewrite it this way in the z domain:

Y (z) = (1− α)Y (z)z−1 + αX(z)

Y (z)− (1− α)z−1Y (z) = αX(z)

Y (z)

X(z)
= H(z) =

α

1− (1− α)z−1

(39)

Once we have the filter coefficients given by the numerator and the denominator of
H(z) we can apply the Matlab filter.

We tried different lengths for a fixed alpha in order to see the behaviour of the filter.
The drawback of this filtering method is its non-linear phase as we can see using the
freqz function in Matlab. This means that the group delay will not be constant as
we can appreciate with the grpdelay function of Matlab.

2. Normal EMA Although in the last approach we changed the length independently
of the alpha, the alpha value is normally dependent on the length of the filter. The
formula is the following:

α =
2

avgNum+ 1
(40)

Where avgNum is the length of the filter. We tried to filter the signal for different
filter filter lengths, now obtaining the adequate α. The results can be seen in the
second row of Figure 37

3. Moving average This is the most common filter when it comes to signal smoothing.
It just averages the last N samples. This filter was applied and can be seen in the
third row of Figure 37.

4. Median filter Median average is often used to reduce noise. We also applied it to
out signal to see the result. It can be appreciated in the forth row of Figure 37.

After having looked at these filters we determined that the one that smooths the signal
in a better way is the simple moving average filter with a size of 4. We have to take into
account that the signal plotted has a Fs of 200 Hz. This means that when applying this

59

Figure 37: Peak filtering approaches

filter we will have to filter the signal with a moving average filter with a size of 200/50 = 4.
This filter has a notch in 50Hz. This fact made us think that the noise could be debt to
the mains electricity as it also runs at 50Hz.

We normally sample the signal at sampling frequencies higher than 50Hz. We have
programmed the microcontroller so that it applies this filtering if the Fs we are running
at is greater than 50Hz. It is of great importance to notice that if we sample the PPG
signal at 50Hz, the mains noise will disappear in our sampled signal, it will be
transformed into a DC constant that does not distort the signal. This can be easily
understood if we think in a 50Hz sinusoidal wave being sampled at 50Hz. The values of
the sampled signal will have the same amplitude, and it will be a constant function. This
could be another shortcut to the problem, however we would have less precision in the
peaks. If we wanted to take advantage of this phenomenon in USA we would have to
sample the signal at 60Hz, as this is the mains frequency.

Anyway, for higher frequencies the advantage of this filter is that it can be implemented
easily in the microcontroller. Moreover its phase is linear, which means that the group
delay will be a constant. The median filter for example has a non-linear phase and therefore
the group delay is not a constant.

The moving average filter is applied just before looking for the peaks. We do not filter
all the signal, just a zone of the peaks where we have detected it. This way it does not
take too long to calculate it. Moreover optimization techniques have been applied in order
to reduce computation time. Theoretically for each sample, as the size of the filter is
fs/50, we would need to do fs/50− 1 sums. However this can be reduced to a mean of 3
operations. This can be achieved if for each new sample, instead of averaging the signal,
we take the last averaged value and we add the new sample and subtract the one that has
left the averaging window. This technique is graphically explained in Figure 38 using an

60

Figure 38: Optimized average filtering techniques

Figure 39: SpO2 interpolation

averaging size of 4. As we can see each new filtered signal but the first one is obtained
by adding the previous output the new sample and subtracting the oldest one. It is not
really necessary to divide by the averaging value since the R value we are looking forward
to obtain is a ratio.

When it comes to obtaining the SpO2 having the peaks as data, we also apply some
techniques to improve the result. As we can see in Figure 39, maximum and minimum
peaks are not located in the same time instant. For this reason dividing maximums by
the minimums is not a very accurate operation. For this reason we decided to interpolate
the maximum and minimum peak points so that the interpolated ones are located in the
same time instant as shown in the figure. These interpolated points are obtained every
new peak. This means that they are calculated in real time. There is a define in the
microcontroller code with which you can specify the number of new points between two
peaks. Once we have the interpolated values, we obtain the AC and DC levels of the

61

signal. They are calculated this way:

AC = MAX +MIN

DC =
MAX +MIN

2

(41)

This is done for both Slots, the one with the red LED and the one with the infrared LED.
Then we can calculate the R ratio:

R =

(
ACR
DCR

)
(
ACIR
DCIR

) (42)

All the filtering and processing tasks within the library are carried out using circular
buffers. This is of great importance as some of the functions are called once a iteration
period. If we did not do it this way, we would end up using too much memory and
eventually we would run out of memory. Most of the time using a buffer as a circular
buffer has only two implications:

1. Declaring a size The size of the circular buffer will be fixed. When writing to it
we will only change the location.

2. Writing pointer Along with the buffer we will declare a variable that will store the
pointer that will indicate where the next byte should be written. Its value should
be between zero and the size of the buffer. Once it has reached the maximum value,
it should return to zero.

Signal conditioning When working with algorithms, sometimes we have to modify the
signal coming from the sensor before processing it. This is because the algorithms distorts
the signal in some way. The pulses algorithm for example, changes the number of pulses
pushed to the LED. This means that the number of pulses integrated by the AFE will also
change. As a result, we will have less PPG signal amplitude, which means that when we
change from the high precision sample to the low current consumption using this algorithm
the signal will experience an amplitude drop. To fix this problem, we have to normalize the
amplitude of the signal. In the code we normalized it to the number of pulses of the high
precision sample period. This way the signal will be almost continuous. However, even
normalizing the PPG signal there is still an amplitude difference. This may be caused by
the parasitic capacitance of the photodiode. To fix this small problem, after normalizing
the signal we compute the difference between the last sample of the HPAP and the first
one of the LPAP. Then, for the rest of the LPAP period we add this difference. This way
we can achieve a continuous signal. It is rather important to reduce this amplitude drop,
otherwise the filter will detect it as a peak.

When it comes to the Start/Stop algorithm, we also have to condition the signal. In this
algorithm, as in the LPAP period we are not sampling the signal we have to make up the
samples in this period so that we maintain the number of samples per second. Otherwise
the filter would not work properly. As we have to interpolate samples, we decided that the
best idea was to create a linear interpolation between the last sample of the last HPAP
period and the first sample of the new HPAP period. This way, as the created samples will
be placed along a line the filtered signal will not be affected, because the created samples
follow a monotone trend.

Finally, when using the Fs algorithm we also have to modify the incoming signal. As we
change the sampling frequency in the LPAP we have to interpolate it so that we have

62

the same fs as in the HPAP. This way the sampling frequency will be the same and the
filtering will work properly. We used a linear interpolation to create the new samples.

This signal conditioning was also done in the Research measuring system within the Matlab
application.

63

Chapter 6. Validation

Validation is one of the most important parts of the project. In this section we will
go through the setups we created to measure the current consumption of the ADPD144
and the microcontroller. Some of them did not succeed due to some problems. We also
studied the accuracy of the output SpO2 value using hospital material as explained in the
Appendix chapter.

There are mainly two chips we have to monitor in order to obtain the current consumption.
One is the ADPD144 sensor and the other the microcontroller. The ADPD144 will reduce
its consumption thanks to the algorithms, however the consumption of the microcontroller
may increase due to the extra processing tasks it will have to overcome.

When it comes to the microcontroller, we measured the average time per sample that
it takes to process the data and obtain the SpO2 value. With this value and the mean
current consumption of the microcontroller given in its datasheet we determined the mean
current consumption increment due to the SpO2 Library. We measured it this way because
the microcontroller is soldered to a board, and we cannot have access to all of its supply
sources. Therefore measuring the current as we have done with the ADPD144 was not
possible. We tried to measure the current drainage directly in the USB supply, however
the problem is that this line does not only feeds the microcontroller but the ADPD, the
bluetooth, the battery charger, and other chips as well.

6.1 ADPD144 unsuccessful validation approaches

We tried three different measuring setups. Two of them did not succeed as we will comment
in this section.

6.1.1 Measuring the ADPD144 current consumption with the Tektronix
TCPA300 current probe

The first approach was to use a Tektronix current probe. The good thing about this
solution is the implementation easiness. The probe itself can be seen in Figure 40. The
probe has a hole at the end that will hold the supply line of the ADPD144. The setup we
created to measure the current is shown in Figure 41. As we can see we removed the jumper
of the breakout board that connects the supply line from the side of the microcontroller
and the side of the ADPD sensor. Then, we connected a cable that goes through the
current probe hole and then it returns back to the breakout board. Finally, we connected
the probe to the oscilloscope and watched the result. As we can see in Figure 42 the signal
obtained has low resolution.

Theoretically we can appreciate two big hills that are caused by the two different
sampling slots. Then, in each hill we have 8 peaks modulated, that represent the current
consumption of the sampling of the 8 pulses that in this example are being pushed to the
LEDs. But as previously said, the resolution is mediocre, we should look for another way
of measuring the consumption. This is because the resolution of the device as we can
read in its datasheet is 1mA, and to obtain the current consumption we need more.

64

Figure 40: Tektronix current probe

Figure 41: Current probe setup

65

Figure 42: ADPD AFE Current consumption

6.1.2 Measuring the ADPD144 current consumption with the Keithley power
supply

The Keithley power supply is a very versatile device. It is a programmable voltage and
current supply. It can generate voltage and measure the current drained. This comes in
very handy in our project as we can connect its supply to our sensor and measure with
the same device the current usage. On its website we can find the VISA drivers. With
these drivers we can control the device from the computer. This way we can plot graphics
of the voltage or the current over time.

For this purpose we created a visual LabView application[1]. We choose LabView because
along the drivers there were simple usage examples that we could use to control laboratory
devices[9].

As we want to measure the sensors AFE and LED consumption separately, we had to
use two Keithley power supplies. For this reason in the VIs most of the elements are
duplicated. The LabView project is mainly made up by a VI in which we can find a state
machine. This state machine has four states:

1. Init This state initializes the variables for a new measurement

2. Init Sources Initialization of the Keithleys. Here we setup the current measurement
with the voltage supply. To do so we call some VISA driver VIs.

3. Acquire In this state we will remain until the user hits the stop button. Here we
call the Read single point VI and we plot it in the graph.

4. Close This state was thought to close the connection with the devices.

5. Wait for user response We will remain in this state until the user interacts with
the graphical interface. Then depending on the action the state machine will change
its state.

In Figure 44 we see the developed LabView application. However this measuring system
approach was not the one that we finally used. The LabView application worked flawlessly.

66

Figure 43: Bad PPG signal due to the sourcemeter supply

However we found a problem related with the sourcemeters. When feeding the sensor with
them, the PPG signal eventually showed some kind of strange noise and distorted signal
as shown in Figure 43. We thought that the sourcemeters were not able to face the current
peaks produced by the AFE and the LEDs, and therefore the signal was distorted.

For this reason we could not use these sourcemeters to measure the current consumption.
Before giving up, we tried putting some bulk capacitors from the supply line to the ground,
close to the ADPD sensor, so that they could feed the sensor during the peaks. However
it did not succeed. The signal had less distortion, but it was not perfect.

67

Figure 44: Keithley sourcemeter labview interface

68

6.2 ADPD144 final consumption validation approach

The previous measuring system approaches were rather easy to implement. However as
they did not work we had to struggle a little bit more to create a working measuring
system. We decided to measure the current by adding a small resistor to the supply line.
This way, by obtaining the voltage across the resistor we can get the current flowing, as
we also know the resistor value.

A low resistor value is required so that the sensor keeps working properly. If the resistor is
too big, the voltage drop across the resistor could be big enough to prevent the sensor from
working. Having a low resistor however means that the voltage across it will be rather
small as we are measuring low currents. For this reason we had to use instrumentation
amplifiers[2]. These amplifiers have a very high input impedance and a high gain. These
specifications fit our needs.

As we had to measure the AFE and the LED lines current consumption we had to use
two instrumentation amplifiers, one for each line. We had in the laboratory two different
instrumentation amplifiers along its breakout boards, perfect for our project. We used the
AD8237 for the AFE line and the AD8421 for the LED one. Lets see now how we designed
the gain of the amplifiers

- AD8237 This amplifier is the one that will feed the AFE. The AFE consumption as
we can read in the ADPD144 datasheet can reach 9.3mA. The amplifier gain as we
can read in its datasheet is given by the formula:

G = 1 +
R2

R1
(43)

With R2 and R1 we will set the gain. These resistors are located between the Vout
and FB lines, and FB and REF lines respectively as we see in Figure 45. We will
configure the gain so that the output peak amplifier voltage is 2.5V. However in
first place we will calculate the output voltage in function of the R1,R2, the sensing
resistor(Rg) and the flowing current:

I =
VRs
Rs

;VRs =
Vout
G

;VRs =
Vout

1 + R2
R1

I ·Rs =
Vout

1 + R2
R1

Vout = I ·Rs ·
(

1 +
R2

R1

) (44)

If we set Rg = 1Ω and R2 = 27kΩ, given that Vout|I=9.3mA = 2.5V , we can calculate
R1:

R1 =
R2

VoutRs
I − 1

(45)

With this formula we obtain a value of 100.81Ω. Therefore a value of 100Ω will do
the job. This means that the gain will be:

GAD8237 = 1 +
27000

100
= 271 (46)

As we can see in the specification table of the datasheet of the AD8237 the maximum
gain is 1000, therefore it will run properly.

69

Figure 45: AD8237 Simplified schematic

- AD8421 This is the instrumentation amplifier that will help us to measure the LED
current. The LEDs peak current drainage can be up to 150 mA when obtaining
the PPG signal on the finger. We will obtain the resistor value so that the peak
instrumentation amplifier output voltage to be 2.5V. The gain of this amplifier is
set with just a resistor, Rg. The gain is given by Equation 47

G =
9900

Rg
+ 1 (47)

Then, we can calculate the resistor Rg in function of the sensing resistor Rs, the
desired output voltage Vout and the input current I as we did with the AD8237.
This is shown in Equation 48

Rg =
9900

Vout
Rs·I − 1

(48)

For the indicated values we obtain an Rg of 631.91Ω. We will take a 620Ω resistor
value for Rg. With this Rg, we can obtain the gain using Equation 47, obtaining
the value shown in Equation 49.

G =
9900

620
+ 1 = 16.96 (49)

In the AD8421 datasheet we can see that the maximum gain is 10000, therefore our
configuration will run properly.

When testing our setup we faced some problems. The signal was not as sharp as it was
supposed to be. All the peaks showed smoothed, and at first we did not know why. Then
we thought this could be due to some capacities that can be found on the sensor board.
These elements could be feeding the sensor during the abrupt peaks until they discharge.
Then, they would eventually charge again to smooth the next peak. This is the aim of
bulk capacitors, they are designed to prevent excessive current drop of the supplies.

For this reason we looked for bulk capacitors in the sensor board. We found two of them,
one for the LED supply line and the other one for the AFE line as we see in Figure 47.

These capacitors do not really affect the current measurement. Their effect is that they feed
the ADPD during the abrupt current drops, and they also drain current when charging. We
tried to modify the circuit as shown in Figure 46. We removed the capacitors and located
them behind the measuring resistor. This way, the current flowing through the resistor
will be the summation of the current proportioned by the supply and the capacitor. To
organize everything properly we cut two small bakelite prototyping boards. These boards
have a resistor in the supply line, as well as the capacitors and a two-pin connector that

70

Figure 46: Modified sensor board to measure current consumption

we will connect to the differential inputs of the instrumentation amplifiers. We also have
the necessary cables to interface with the ADPD sensor. The two different measuring
circuit approaches are shown in Figure 47. As we can see the difference between them is
the location of the capacitors. As we will obtain the average value with an oscilloscope,
we ended up using the circuit on the right. This is because the capacitors filter the
consumption peaks of the LED and the AFE, and as the number of samples the oscilloscope
can take for each measurement is limited, we have to avoid short pulses. Otherwise the
measured mean consumption could be inaccurate.

Once we have the measuring circuit lets review how the mean current was calculated. We
used a Tektronix MSO4053B oscilloscope. This device can measure the area under the
gathered signals. Knowing the area and the measuring time we can calculate the mean
current by dividing the area by the measuring time. Then, we have to divide this value by
the amplifier gain. One more thing to take into account when measuring is the probes and
the amplifiers offset. This offset is present even if the differential inputs of the amplifiers
are connected together. Ideally this would have to be zero. For this reason we will have
to subtract this offset to the area obtained by the oscilloscope.

To calculate this offset we just have to connect the amplifier inputs together and see the
mean value for a 10 seconds signal sample. Once we have the mean value, in order to
obtain the real area we will subtract this offset.

All in all, the formula to obtain the mean current in function of the area given by the
oscilloscope is shown in Equation 50:

I =
Areameas −OffsetCurrent · Timemeas

G · Timemeas
(50)

In our measuring protocol we decided that we should run each algorithm for 10 seconds.
Then we measured the area of as many heart rate periods as can fit in these 10 seconds.
With this area we calculated the mean current consumption. We take an integer number
of heart pulses because this way the algorithm comparison is more fair.

This is how we measured the output signal of the instrumentation amplifier. However
we faced one more problem: the oscilloscope can take up to 20 megasamples for each

71

Figure 47: Two possible measuring alternatives. (a) with the measuring circuit between
the ADPD144 and the capacitors and (b) the capacitors between the measuring circuit
and the ADPD144.

measurement. This means that if we want to gather 10 seconds of the signal, our resolution
will be 0.5 us. This is not enough in our case as the LED pulses have a length of 3 us. For
this reason we decided to do the measurement with the bulk capacitors between the ADPD
and the measuring resistor circuit on the right of Figure 47. They help us to smooth the
signal and this way the measured area will be more accurate. Moreover the integrated
area will be the same. The difference between putting the capacitors in one location or the
other can be appreciated in Figure 48. As the probes label say, the white graphs show the
AFE and LED consumption with the capacitors between the sensor and the measuring
circuit, whereas the green and the yellow are taken with the measuring circuit between the
sensor and the capacitors. As we can appreciate the LED pulses of the first probe (yellow
one) are rather narrow compared to the R3 probe. This is the reason why we finally used
the circuit on the right of Figure 47.

72

Figure 48: Measurement with the capacitors between the ADPD and the measuring circuit
(White graphs) and with the measuring circuit between the ADPD and the capacitors
(Yellow and green graphs)

6.3 Microcontroller validation

The microcontroller current consumption measurement is rather different. The
microcontroller is embedded in the board, and it has 7 supply lines, 6 digital and one
analog. All supplies lines come from the same line that feeds the rest of the components
of the board. This makes impossible to measure the current consumption of the
microcontroller. We cannot place a resistor as we did with the sensor because the line
traces are not accessible, and if we could do so, we would be measuring the current
drainage of other components.

As we concluded that this was not possible, we found an alternative way of measuring
the consumption. We looked for the figures of current consumption of the STM32F405
microcontroller and we found an application note from the manufacturer that gives us the
information about the consumption of the STM32F4 series. In this application note we
can find the consumption for the different power modes. We found that for the Dynamic
Run mode, it drains 40mA in average, and 310uA in Stop mode.

With this information we can estimate the current consumption of the microcontroller.
We just need to know how long the microcontroller is processing the information and
how long the microcontroller is in Stop mode. We configured the microcontroller to go
to Stop mode when it finishes the processing, and to return to Dynamic mode when the
new ADPD sample interrupt rises. In order to measure precisely the timing we created
a software subsystem that manages it. It stores the clock cycles that it has taken to the
microcontroller to process the library functions and sends these data to the computer,
where it is averaged and plot at the bottom of the GUI. To obtain the timing precisely we
read a register of the microcontroller that counts the number of clock cycles. This register
is located in the 0xE0001004 address and it is an unsigned int.

Then we just add the processing times of the different library functions to obtain the
amount of time we have been in the Dynamic mode. The rest of the sampling period the
microcontroller will be in Stop mode.

73

The formula that we will use to obtain the current consumption for the different algorithms
is shown in Equation 51. The T stands for the heart rate period in seconds, HPp stands
for the HPAP percentage normalized to 1,LPp stands for the LPAP percentage normalized
to 1, HPfs The sampling frequency of the HPAP, LPfs The sampling frequency of the
LPAP, tsam the time that it takes for the microcontroller to read one sample of the sensor,
tlib the time consumed by the library, Hc the current consumption of the microcontroller
in dynamic mode and Lc the current consumption of the microcontroller in stop mode.
For each sampling period, we have one HPAP and one LPAP. Inside the HPAP we will
have a certain amount of time in which we will be processing HPAPproc, and another one
in which we will be in Stop mode HPAPiddle. The same thing happens with the LPAP.
For this reason in order to write the final formula we have declared in first place these
auxiliary variables. When it comes to the Start/Stop algorithm, we will take for granted
that LPAPProc = 0 and that LPAPiddle = T · LPp
The main idea of this formula is to weight the processing time by the current consumption
of the dynamic mode of the microcontroller and the idle time with the consumption of the
microcontroller in stop mode

HPAPProc = T ·HPp ·HPfs · (tsam + tlib)

HPAPIdle = T ·HPp ·HPfs ·
(

1

HPfs
− (tsam + tlib)

)
LPAPProc = T · LPp · LPfs · (tsam + tlib)

LPAPIdle = T · LPp · LPfs ·
(

1

LPfs
− (tsam + tlib)

)
TotalCurr =

(HPAPProc + LPALProc) ·Hc + (HPAPIdle + LPALIdle) · Lc
T

(51)

74

Chapter 7. Results

When talking about the consumption of the algorithms we can separate the current
consumption of the ADPD and the current consumption of the microcontroller. Our
algorithms are thought to reduce the current drained by the ADPD sensor, however
executing the algorithms means to process more information, which could increase the
microcontroller consumption.

We will study the current consumption of these two devices separately. All the
measurements shown in this chapter have been obtained as explained in the Evaluation
chapter.

7.1 ADPD144 Current consumption

The following results have been obtained as described in Section 6.2, with the configuration
shown in Figure 47 (b). To represent the current consumption of the different implemented
algorithms, we will first carry out some measurements with no algorithms running. This
way when we measure the current drained with the algorithms running, we can tell how
many times we have reduced the consumption compared to a normal situation in which the
algorithm is not running. We will measure 10 times the consumption of each algorithm.
Then we will obtain the mean consumption and then we will compare them. Our base
configuration will be the following: We will use a sampling frequency of 400Hz, with a 2
sample average. This means that the ODR11 will be 200Hz. We will use 8 pulses and the
current of the LEDs will be fixed to 115mA.

- No algorithm With no algorithms we concluded that the total average consumption
was 2.40 mA, 1.56 mA due to the AFE and 0.84mA due to the LEDs.

- Pulses Algorithm After running the 10 tests, the total average current drained was
1.57 mA, 1.08 mA due to the AFE and 0.49 mA due to the LEDs.

- START/STOP algorithm This algorithm is the one that saves more current,
however it has some drawbacks as we will comment later on. The average current
consumption was 1.16mA, 0.70mA drained by the AFE and 0.45 by the LEDs.

- Fs algorithm This algorithm drains an average amount of 1.47mA, 0.92mA of which
by the AFE and 0.55mA by the LEDs with the most conservative configuration,
however it can be configured to consume only 1.18 mA.

In Table 3 we can see the comparison between the different algorithms. We can also see the
sensor configuration for the HPAP and LPAP zones. The current reduction is referenced
to a situation in which no algorithm is running. We have also included the theoretical
current reduction obtained from the formulas given in the ADPD144 sensor datasheet as
well as the mean measured current consumption.

As we can see, the most efficient algorithm when it comes to current consumption is the
Start/Stop. However this one has some drawbacks when it is applied to a real PPG signal.
If the beat to beat period of the heart has too much variation, then the algorithm will
end up working poorly. This is because the odds are that a peak will be lost at some
point, which will lead to a bad peak estimation and so on. This could be fixed if a more
intelligent algorithm was developed that could detect outliers and ignore them or if we

11Output Data Rate

75

Algo HPAP Config LPAP Config %Reduction %Theo.reduction Mean curr(mA)

None
8 Pulses

200Hz ODR
400Hz Fs

0 0 2.40

Pulses
8 Pulses

200Hz ODR
400Hz Fs

1 Pulse
200Hz ODR

400Hz Fs
35.5 39.71 1.57

Fs
8 Pulses

200Hz ODR
400Hz Fs

8 Pulses
50Hz ODR
100Hz Fs

39 41.12 1.47

Fs
8 Pulses

200Hz ODR
400Hz Fs

8 Pulses
50Hz ODR

50Hz Fs
47.92 48.06 1.25

Fs
8 Pulses

200Hz ODR
400Hz Fs

8 Pulses
25Hz ODR

25Hz Fs
50.76 51.49 1.18

Start/
Stop

8 Pulses
200Hz ODR

400Hz Fs
- 51.9 55 1.16

Table 3: Current consumption comparison among the algorithms

changed dynamically the LPAP percentage depending on the HRV. The Fs algorithm is
quite stable, peaks cannot be lost as long as the LPAP Fs is not too low. For this reason
this algorithm is a good approach. The pulses algorithm does not save too much current.
This is why is considered the worst one. However it will not get lost either because we are
always sampling.

7.2 Microcontroller Current consumption

The microcontroller consumption evaluation procedure has been carried out as explained
in Section 6.3. As we have commented in the Validation chapter, in order to measure the
microcontroller current consumption we will use the mean current consumption given in
the microcontroller datasheet and the time that it takes to the microcontroller to process
the algorithm. As we can see in its datasheet, the consumption of the microcontroller in
Dynamic mode is 40mA, whereas its consumption in Stop mode is 390uA. When processing
the microcontroller will be in a Dynamic power mode and then it will go to Stop mode,
in which the microcontroller consumes less power. In Table 4 we can see the time that it
has taken to process the algorithms in us. As we can see, the GetSPO2 is the function
that takes most of the time. This is because it has to compute the interpolated values
and it also has to calculate the HR, HRV as well as the signal quality. We can conclude

Time(us) Pulses Fs Start/Stop

UpdateSamples 55 59 57

Tick 9 9 9

GetSPO2 311 310 309

Acconditionate 1.2 1.3 1.1

Total 376.2 379.3 376.1

Table 4: Time taken to process the library functions in us

76

that the average time that it takes to the microprocessor to process the library functions
is more less 376 us. This is the average consumption time per new sample. Then, with the
formula of Equation 51 we can calculate the current consumption for each heart rate pace.
We have created a graph in which we can see the microcontroller current consumption if
we use the SpO2 library with the three algorithms and the consumption if we just obtain
the ADPD samples. This graph can be seen in Figure 49. As we can see the pulses
algorithm always drains more power, whereas the other two algorithms can even reduce
the consumption of the microcontroller for low heart rates. This is because the pulses
algorithm keeps the same Fs in the LPAP, and therefore the microcontroller will have
to process the same number of samples as in the ’No algo’ case, with the difference that
the processing time will increase as the library will be running. On the contrary, the
Start/Stop and Fs algorithms reduce the number of samples that have to be processed in
the LPAP. For this reason they can reduce the current consumption.

However this figure does not give us representative information. We should calculate
the current consumption increment due to the algorithms, taking the SpO2 gathering as
a common factor. This way we would be comparing a device that just measures SpO2

and another one that measures SpO2 efficiently. As the parts of the code that compute
the status machine, the peak estimation, the read/write register of the ADPD and the
signal conditioning are the SPO2Lib Tick and the AcconditionateSamples functions, we
can obtain the time difference between the two situations. This difference is more less 10us
for all the algorithms as we can see in Table 4. With this information we can calculate
the consumption difference, as shown in Figure 50. As we can see, there is almost no
difference between the current consumption of the pulses algorithm and the consumption
of ’No algo’. This is because now we are considering that the ’No algo’ measurement takes
more time as it also has to obtain the SpO2. Now the differences between the ’No algo’
case and the Start/Stop or Fs algorithms are even greater. Therefore, with the Start/Stop
and the Fs algorithms, we not only reduce the current consumption of the sensor but we
reduce the current consumption of the microcontroller as well.

For this microcontroller we can see that we can even reduce the current consumption by
almost 10mA if we use the Start/Stop or the Fs algorithms. Taking into account that
in the sensor side we can save up to 1.24mA, we can say that the Start/Stop and the Fs
algorithms can save current. When it comes to the pulses algorithm, as the current savings
achieved by the sensor is greater than the current increment due to the microcontroller
extra processing, we can also say that it saves current, however the difference in this case
is rather small.

However this microcontroller may not be the best choice. Some Cortex-M3
microcontrollers drain less than 2mA in active mode, which means that the total current
consumption would be lower.

77

Figure 49: Microprocessor consumption using the library and without the library

Figure 50: Microprocessor current consumption. Just obtain SpO2 vs obtain SpO2

efficiently with the different algorithms

78

Chapter 8. Conclusion and future work

Along this project we have determined that some algorithms can be applied to PPG signal
gathering in order to optimize SpO2 current consumption. These algorithms as we have
seen take advantage of the fact that for the SpO2 value we only need the amplitude of the
PPG signal peaks. Therefore obtaining the PPG signal with the same accuracy all the
time is not smart, as we will only care about the peaks.

The three algorithms tested apply different techniques to test this hypothesis. At first we
did not know if these could be implemented, because the sensor we used has some
limitations, however we have seen that it is actually possible. We created two measuring
systems in which a computer interacts with the sensor through a microcontroller. These
measuring systems have helped us to confirm that they can be implemented. To develop
them we need to understand how the ADPD144 sensor works, how to program the
STM32F4 microcontroller, how the measuring boards used work, etc. We have also
created a current measuring system with which we have obtained the current reduction
that can be achieved using the algorithms.

We have also proved that all of the algorithms reduce the current consumption of the
sensor when measuring the SpO2 compared to a setup in which the algorithms are not
working. The most efficient algorithm turns out to be the Start/Stop one. This algorithm
stops sampling when the signal is not useful and starts sampling again when a peak is
approaching. However this algorithm should only be used in situations in which the heart
rate does not have too much variability. If the variability is too high and we do not
configure the LPAP and HPAP start periods properly, the algorithm could run poorly.
The Pulses algorithm is the worst one when it comes to reducing current consumption.
It changes the number of pulses in real time depending on the current position of the
PPG signal. However it will work better than the Start/Stop one, as it is continuously
sampling. The Fs algorithm is the second one when it comes to efficiency. It samples
the signal with different frequencies depending on whether we are close to a peak or not.
However it is the best algorithm in the ratio currentReduction/reliability. This one will
work fine most of the times, and the current reduction that can be achieved is almost the
same as the Start/Stop one.

Processing these algorithms carry a processing load. This means that the microcontroller
managing them will have to process a little bit more time for each sample. However we
have determined that for the Start/Stop and the Fs algorithms the consumption of the
microcontroller will be reduced for low heart rate paces. This is because it will have to
process less samples in the LPAP. The pulses algorithm will slightly increase the
consumption of the microcontroller, however the current reduction of the sensor is
greater, which means that it still reduces the overall current consumption.

All in all, these algorithms could be implemented in devices that must work for long periods
of time fed by a battery. They will reduce the current consumption and the device will last
longer with the same battery. Patient monitoring 24/7 could be a possible implementation
as long as the patient uses a finger SpO2 probe. Moreover these algorithms do not only
obtain the SpO2 signal but the HR and HRV as well. Therefore they could also be used
in smart watches to track information about the user.

There are some tasks that could be carried out in the future to continue with this project.
The developed code in the microcontroller has been optimized up to a point. However
further optimization could be done. Some signal processing techniques may be applied to
obtaining the SpO2 value faster. Some code functions that are called several times per
iteration could be implemented in assembly code.

79

Moreover the algorithms could be implemented in a future version of the ADPD144 silicon.
This would be rather easy, as the algorithm does not use floating point in any part of the
code but to obtain the final SpO2 value. This means that all the processing filters could
be implemented in hardware. This way the microprocessor would not have to deal with
the processing charge.

The designed SpO2 library can be ported to any project with the conditions commented
in the implementation chapter. However it has some drawbacks. The ADPD144 registers
are modified within the Library, which is not recommended, this should be done within
the main project so that everything is properly arranged. This could be fixed in a future.
One solution could be to define a couple of callbacks in the Library that warn the main
program about these register modifications.

SpO2 quality should be tested in other parts of the body such as the wrist or the
forehead. Some medical applications could benefit of the sensor if they can place it in a
more comfortable place than the finger.

Last but not least, in a future the current drained by the microcontroller could be measured
precisely if we isolated it in a breakout board. A breakout board would have to be designed
along with the sensing resistor to measure the current drained.

80

Chapter 9. Appendix

9.1 SpO2 value validation

Once we had the SpO2 peak algorithm running, we wonder if the output value was accurate.
We already knew it was, because the calibration formula had been obtained in a hospital
in Boston for the sensor we were using, however we just wanted to verify it.

For this reason we decided to compare the output of our system with a reliable medical
device. We asked for a pulse oximeter in a hospital to compare the results. This device
can be seen in Figure 51. This device is able to measure the SpO2 using a finger probe.

In order to compare the value with our system we run both at the same time. Then,
we hold our breath for a minute in order to reduce the oxygen saturation of the blood.
Our purpose was to sweep some SpO2 values between 90 and 100 to check the precision.
However we faced some problems along these tests. It turns out that the blood oxygenation
does not vary instantaneously with the breath. This means that even if we stop breathing,
the SpO2 will remain stable, and eventually it will fall. The delay shown here depends on
the averaging applied to the signal and the delay of the oxygenation of the blood. This
phenomenon can be seen in Figure 52. In this figure we can see the SpO2 over time. The
first and the third red lines represent the points in which we stopped breathing, and the
second and fourth ones the points in which we started breathing again. As we can see
the SpO2 peak drop is out of these bounds, which means that there is a great delay. This
delay in our system was around 30-40 seconds depending on the subject. For this reason
we could not compare the SpO2 value, because it was impossible for us to achieve stable
SpO2 values along the desirable range. Nevertheless we could check that the peak value
obtained by both systems were almost the same.

If we had wanted to do the test properly, we would have had to achieve an slow sweep
between the desired SpO2 values. This can be achieved breathing controlled variable
mixture of oxygen and nitrogen in a hospital. This is how the calibration formula was
originally obtained, and the proper way to validate it.

81

Figure 51: Medical oximeter used to compare the SpO2 Value

Figure 52: SpO2 holding breath

82

Chapter 10. References

[1] Michael Barr. LabVIEW 7.1 : programación gráfica para el control de
instrumentación. Madrid etc. : Thomson, D.L., 2005.

[2] Enrique Berjano Zanón. Amplificadores diferenciales y de instrumentación. Valencia
: Universidad Politécnica de Valencia, 2003.

[3] Leslie A. Geddes. Handbook of blood pressure measurement. Clifton New Jersey :
Humana Press, cop. 1991., 1991.

[4] Steve Heath. Embedded systems design. Oxford : Newnes, 2003.

[5] WEBSTER J.G. Design of pulse oximeters. Medical Science Series. New York, NY
10016: Taylor and Francis Group, 1997.

[6] David C. Kuncicky. Matlab programming. Upper Saddle River : Pearson Education,
cop., 2004.

[7] Sen M. Kuo. Real-time digital signal processing : implementations and applications.
Chichester, England etc. : John Wiley and Sons, 2013.

[8] Norman Maclean. Hemoglobina. Cuadernos de bioloǵıa. Barcelona : Omega, cop.,
1979.

[9] Antonio Mánuel Lázaro. LabVIEW : programación gráfica para el control de
instrumentación. Madrid : Paraninfo, 1997.

[10] Antonio Mánuel Lázaro and Joaqúın del Ŕıo Fernández. Programming embedded
systems in C and C++. Sebastopol : O’Reilly, 1999.

[11] Michael J. Pont. Embedded C. London : Addison-Wesley, 2002.

[12] Robert J. Schilling and Sandra L. Harris. Digital signal processing using MATLAB.
United States etc. : Cengage Learning, cop., 2016.

[13] David Seal. ARM architecture reference manual. Harlow : Addison-Wesley, 2001.

[14] Scott T Smith. Matlab : advanced GUI development. Indianapolis, IN : Dog Ear,
cop., 2006.

[15] Zijlstra W.G., Buursma A., and Meeuwsen van der Roest W.P. Absorption Spectra
of Human Fetal and Adult Oxyhemoglobin, De-Oxyhemoblobin, Carboxyhemoglobin,
and Methemoglobin. CLIN CHEM.37/9, 1633-1638, 1991.

83

