Document downloaded from:
http://hdl.handle.net/10251/80552
This paper must be cited as:
López Molina, JA. (2012). (n+1)-Tensor norms of lapresté type. Glasgow Mathematical Journal. 54(3):665-692. http://hdl.handle.net/10251/80552.

The final publication is available at
http://doi.org/10.1017/S0017089512000286

Copyright Cambridge University Press (CUP)

Additional Information

($n+1$)-tensor norms of Laprestés type

J. A. López Molina

Abstract

We study an $(n+1)$-tensor norm $\alpha_{\mathbf{r}}$ extending to $(n+1)$-fold tensor products the classical one of Lapresté in the case $n=1$. We characterize the maps of the minimal and the maximal multilinear operator ideals related to $\alpha_{\mathbf{r}}$ in the sense of Defant and Floret. As an application we give a complete description of the reflexivity of the $\alpha_{\mathbf{r}}$-tensor product $\left(\otimes_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right)$.

1 Introduction

In [14] Pietsch proposed building a systematic theory of ideals of multilinear mappings between Banach spaces, similar to the already well-developed one regarding linear maps, as a first step to study ideals of more general non linear operators. Since then several classes of multilinear operators more or less related to classical absolutely p-summing operators has been studied although without to deal with aspects derived from a general organized theory.

Having in mind the close connection existing in linear case between problems of this kind and tensor products (see [2] for a systematic survey of the actual state of the art), in the present setting it is expected an analogous connection with multiple tensor products. However a systematic study of this approach has not been initiated until the works [4] and [5] of Floret, mainly motivated by the potential applications of the new theory to infinite holomorphy. In this way, classical notions of maximal operator ideals and its associated α-tensor norm, dual tensor norm α^{\prime} and the related α-nuclear and α-integral operators can be extended to the framework of multilinear operator ideals and multiple tensor products.

However, there are few concrete examples of multi-tensor norms to whose the general concepts of the theory have been applied and checked. The purpose of this paper is to study an $(n+1)$-tensor norm $\alpha_{\mathbf{r}}$ on tensor products $\bigotimes_{j=1}^{n+1} E_{j}, 1 \leq n$,

[^0]of $n+1$ Banach spaces E_{j}, extending the classical one of Lapresté for $n=1$, as well its associated $\alpha_{\mathbf{r}}$-nuclear and $\alpha_{\mathbf{r}}$-integral multilinear operators. Knowledge of such operators allows us to characterize the reflexivity of the corresponding tensor product $\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right)$ of spaces $\ell^{u_{j}}$.

The paper is organized as follows. First we introduce the notation and some general facts to be used. In section 2 we define the $(n+1)$-fold tensor product $\bigotimes_{\alpha_{\mathbf{r}}}\left(E_{1}, E_{2}, \ldots, E_{n}, F\right), \quad n \in \mathbb{N}$ of type $\alpha_{\mathbf{r}}$ of Banach spaces $E_{j}, 1 \leq j \leq n$ and F. We find its topological dual introducing the so called \mathbf{r}-dominated maps and we obtain multilinear extensions of the classical theorems of Grothendieck-Pietsch and Kwapien (theorem 3). The latter one is the key to approximate \mathbf{r}-dominated maps by multilinear maps of finite rank in many usual cases (theorem 7) and to compare different tensor norms $\alpha_{\mathbf{r}}$, a tool which will be very useful in our applications in the final section of the paper.

The elements of a completed $\alpha_{\mathbf{r}}$-tensor product canonically lead to multilinear r-nuclear operators from $\prod_{j=1}^{n} E_{j}$ into F, which are considered in section 3 and characterized by means of suitable factorizations in theorem 9 . According the pattern of the general theory of multi-tensor norms, the next step must be the study of the so called \mathbf{r}-integral multilinear maps, i. e. the maps in the ideal associated to the $\alpha_{\mathbf{r}}$-tensor norm in the sense of Defant-Floret [2]. To do this we need a technical result about the structure of some ultraproducts which follows easily from the work of Raynaud [15]. It will be presented in section 4 just before its use.

In section 4 we characterize the \mathbf{r}-integral operators, obtaining as main result the "continuous" version of the previous factorizations of \mathbf{r}-nuclear operators. Finally in section 5 we apply the characterizations of sections 3 and 4 to study the reflexivity of $\alpha_{\mathbf{r}}$-tensor products and, more particulary, to characterize the reflexivity of $\alpha_{\mathbf{r}}$-tensor products of ℓ^{u} spaces, a result that, as far as we know, is new indeed for classical Lapresté's tensor norms.

We shall deal always with vector spaces defined over the field \mathbb{R} of real numbers. Notation of the paper is standard in general. Some not so usual notations are settled now.

Given a normed space E, we shall denote by B_{E} its closed unit ball and J_{E} : $E \longrightarrow E^{\prime \prime}$ will be the canonical isometric inclusion of E into the bidual space $E^{\prime \prime}$. $B_{E^{\prime}}$ will be considered as a compact topological space ($B_{E^{\prime}}, \sigma\left(E^{\prime}, E\right)$) when provided with the topology induced by the weak*-topology $\sigma\left(E^{\prime}, E\right)$. For every $x \in E$, we shall denote by f_{x} the continuous function defined on $\left(B_{E^{\prime}}, \sigma\left(E^{\prime}, E\right)\right)$ as $f_{x}\left(x^{\prime}\right)=\left\langle x, x^{\prime}\right\rangle$ for every $x^{\prime} \in B_{E^{\prime}}$. The symbol $E \approx F$ will mean that E and F are isomorphic normed spaces. The closed linear span in a Banach space E of a sequence $\left\{x_{m}\right\}_{m=1}^{\infty} \subset E$ (respectively of a single vector x) will be represented by $\left[x_{n}\right]_{m=1}^{\infty}$ (resp. $[x]$).

As usual, \mathbf{e}_{k} denotes the k-th standard unit vector in every $\ell^{p}, 1 \leq p \leq \infty$.
$\ell_{h}^{p}, h \in \mathbb{N}$ will be the ℓ^{p}-space defined over the set $\{1,2, . ., h\}$ with the standard measure.

Given a normed space E, a sequence $\left\{x_{m}\right\}_{m=1}^{k} \subset E, k \in \mathbb{N} \cup\{\infty\}$, and $1 \leq p \leq \infty$, we define in the case $p<\infty$

$$
\pi_{p}\left(\left(x_{m}\right)_{j=1}^{k}\right):=\left(\sum_{m=1}^{k}\left\|x_{m}\right\|^{p}\right)^{\frac{1}{p}}, \quad \varepsilon_{p}\left(\left(x_{m}\right)_{m=1}^{k}\right):=\sup _{x^{\prime} \in B_{E^{\prime}}}\left(\sum_{m=1}^{k}\left|\left\langle x_{m}, x^{\prime}\right\rangle\right|^{p}\right)^{\frac{1}{p}}
$$

and when $p=\infty$

$$
\pi_{\infty}\left(\left(x_{m}\right)_{m=1}^{k}\right):=\varepsilon_{\infty}\left(\left(x_{m}\right)_{m=1}^{k}\right)=\sup _{1 \leq m \leq k}\left\|x_{m}\right\| .
$$

A sequence $\left\{x_{m}\right\}_{m=1}^{\infty} \subset E$ is called weakly p-absolutely summable, notation $\left(x_{m}\right)_{m=1}^{\infty} \in$ $\ell^{p}(E)$, (resp. p-absolutely summable), if $\varepsilon_{p}\left(\left(x_{m}\right)_{m=1}^{\infty}\right)<\infty\left(\right.$ resp. $\pi_{p}\left(\left(x_{m}\right)_{m=1}^{\infty}\right)<$ $\infty)$. Given Banach spaces E and F, an operator or linear map $T \in \mathcal{L}(E, F)$ is said to be p-absolutely summing if there exists $C \geq 0$ such that

$$
\begin{equation*}
\left(x_{m}\right)_{m=1}^{\infty} \in \ell^{p}(E) \Longrightarrow \pi_{p}\left(\left(T\left(x_{m}\right)\right)_{m=1}^{\infty}\right) \leq C \varepsilon_{p}\left(\left(x_{m}\right)_{m=1}^{\infty}\right) \tag{1}
\end{equation*}
$$

The linear space $\mathfrak{P}_{p}(E, F)$ of all p-absolutely summing operators from E into F becomes a Banach space under the norm $\mathbf{P}_{p}(T):=\inf \{C \geq 0 \quad$ (1) holds $\}$ for every $T \in \mathfrak{P}_{p}(E, F)$.

We consider always a finite cartesian product $\prod_{m=1}^{h} E_{m}$ of normed spaces $E_{m}, 1 \leq$ $m \leq h \in \mathbb{N}$ as a normed space provided with the ℓ^{∞}-norm $\left\|\left(x_{m}\right)_{m=1}^{h}\right\|=\sup _{m=1}^{h} \| x_{m} \overline{\|}$. If F is a Banach space we shall denote by $\mathcal{L}^{h}\left(\prod_{m=1}^{h} E_{m}, F\right)$ the Banach space of all h-linear continuous maps from $\prod_{m=1}^{h} E_{m}$ into F. Given $T \in \mathcal{L}^{h}\left(\prod_{m=1}^{h} E_{m}, F\right)$ we can define in a natural way the transposed linear map $T^{\prime}: F^{\prime} \longrightarrow \mathcal{L}^{h}\left(\prod_{m=1}^{h} E_{m}, \mathbb{R}\right)$ putting

$$
\forall y^{\prime} \in F^{\prime} \quad \forall\left(x_{m}\right)_{m=1}^{h} \in \prod_{m=1}^{h} E_{m} \quad\left\langle T^{\prime}\left(y^{\prime}\right),\left(x_{m}\right)_{m=1}^{h}\right\rangle=\left\langle T\left(\left(x_{m}\right)_{m=1}^{h}\right), y^{\prime}\right\rangle
$$

Given maps $A_{j} \in \mathcal{L}\left(E_{j}, F_{j}\right)$ between normed spaces E_{j} and $F_{j}, 1 \leq j \leq n$ we write

$$
\left(A_{j}\right)_{j=1}^{n}:=\left(A_{1}, A_{2}, \ldots, A_{n}\right): \prod_{j=1}^{n} E_{j} \longrightarrow \prod_{j=1}^{n} F_{j}
$$

to denote the continuous linear map defined by

$$
\forall\left(x_{j}\right)_{j=1}^{n} \in \prod_{j=1}^{n} E_{j} \quad\left(A_{j}\right)_{j=1}^{n}\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=\left(A_{1}\left(x_{1}\right), A_{2}\left(x_{2}\right), \ldots, A_{n}\left(x_{n}\right)\right) .
$$

Some times we will write $\left(A_{j}\right)$ instead of $\left(A_{j}\right)_{j=1}^{n}$. Concerning $(n+1)$-tensor norms, $n \geq 1$ (or multi-tensor norms) we refer the reader to the pioneer works [4] and [5]. If it is needed to emphasize, $\alpha\left(z ; \bigotimes_{j=1}^{n+1} M_{j}\right)$ or similar notations will denote the value of the multi-tensor norm α of $z \in \otimes_{j=1}^{n+1} M_{j}$.

As customary, for $p \in[1, \infty], p^{\prime}$ will be the conjugate extended real number such that $1 / p+1 / p^{\prime}=1$. Given $n \geq 1$, in all the paper we denote by \mathbf{r} an $(n+2)$ pla of extended real numbers $\mathbf{r}=\left(r_{0}, r_{1}, r_{2}, \ldots, r_{n}, r_{n+1}\right)$ such that $1<r_{0} \leq \infty$, $1<r_{j}<\infty, 1 \leq j \leq n+1$, and

$$
\begin{equation*}
1=\frac{1}{r_{0}}+\frac{1}{r_{1}^{\prime}}+\frac{1}{r_{2}^{\prime}}+\ldots+\frac{1}{r_{n+1}^{\prime}} . \tag{2}
\end{equation*}
$$

Such \mathbf{r} will be called an admissible $(n+2)$-pla. Moreover, we define w such that

$$
\begin{equation*}
\frac{1}{w}:=\frac{1}{r_{1}^{\prime}}+\frac{1}{r_{2}^{\prime}}+\ldots+\frac{1}{r_{n}^{\prime}} \tag{3}
\end{equation*}
$$

which gives the equality

$$
\begin{equation*}
n=\frac{1}{w}+\sum_{j=1}^{n} \frac{1}{r_{j}} . \tag{4}
\end{equation*}
$$

For later use we note that (2) implies

$$
\begin{equation*}
1=\frac{r_{0}^{\prime}}{r_{1}^{\prime}}+\frac{r_{0}^{\prime}}{r_{2}^{\prime}}+\ldots+\frac{r_{0}^{\prime}}{r_{n}^{\prime}}+\frac{r_{0}^{\prime}}{r_{n+1}^{\prime}} \quad \text { and } \quad \frac{1}{r_{n+1}}=\frac{1}{r_{0}}+\frac{1}{r_{1}^{\prime}}+\frac{1}{r_{2}^{\prime}}+\ldots+\frac{1}{r_{n}^{\prime}} \tag{5}
\end{equation*}
$$

as well

$$
\begin{equation*}
\frac{1}{w}=\frac{1}{r_{0}^{\prime}}-\frac{1}{r_{n+1}^{\prime}}=\frac{1}{r_{n+1}}-\frac{1}{r_{0}} \quad \Longrightarrow 1=\frac{1}{w}+\frac{1}{r_{0}}+\frac{1}{r_{n+1}^{\prime}} \tag{6}
\end{equation*}
$$

and moreover,

$$
\begin{equation*}
\forall 1 \leq j \leq n \quad r_{n+1}<w<r_{j}^{\prime} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall 1 \leq j \leq n+1 \quad r_{j}<r_{0} . \tag{8}
\end{equation*}
$$

To finish this introduction we consider the following construction which will be of fundamental importance in all the paper. Given any measure space $(\Omega, \mathcal{A}, \mu)$ and an admissible $(n+2)$-pla \mathbf{r}, as a direct consequence of generalized Hölder's inequality and (2), we have a canonical ($n+1$)-linear map $\mathfrak{M}_{\mu}: L^{r_{0}}(\Omega, \mathcal{A}, \mu) \times$ $\prod_{j=1}^{n} L^{r_{j}^{\prime}}(\Omega, \mathcal{A}, \mu) \longrightarrow L^{r_{n+1}}(\Omega, \mathcal{A}, \mu)$ defined by the rule

$$
\forall\left(f_{j}\right)_{j=0}^{n} \in L^{r_{0}}(\Omega, \mu) \times \prod_{j=1}^{n} L^{r_{j}^{\prime}}(\Omega, \mu) \quad \mathfrak{M}_{\mu}\left(\left(f_{j}\right)\right)=\prod_{j=0}^{n} f_{j}
$$

verifying $\left\|\mathfrak{M}_{\mu}\left(\left(f_{j}\right)\right)\right\| \leq\|g\|_{L^{r_{0}(\Omega)}} \prod_{j=1}^{n}\left\|f_{j}\right\|_{L^{r_{j}^{\prime}(\Omega)}}$. If $(\Omega, \mathcal{A}, \mu)$ is \mathbb{N} with the counting measure we will write simply \mathfrak{M} instead of \mathfrak{M}_{μ}. Moreover, given $g \in L^{r_{0}}(\Omega, \mu)$ we shall write D_{g} to denote the n-linear map from $\prod_{j=1}^{n} L^{r_{j}^{\prime}}(\Omega, \mu)$ into $L^{r_{n+1}}(\Omega, \mu)$ such that

$$
\begin{equation*}
\forall\left(f_{j}\right)_{j=1}^{n} \in \prod_{j=1}^{n} L^{r_{j}^{\prime}}(\Omega, \mu) \quad D_{g}\left(\left(f_{j}\right)_{j=1}^{n}\right)=\mathfrak{M}_{\mu}\left(\left(g, f_{1}, \ldots, f_{n}\right)\right) . \tag{9}
\end{equation*}
$$

It will be important for later applications to remark that \mathfrak{M}_{μ} induces a linearization $\operatorname{map} \widetilde{\mathfrak{M}}_{\mu}:\left(L^{r_{0}}(\Omega, \mu) \widehat{\bigotimes}\left(\widehat{\bigotimes}_{j=1}^{n} L^{r_{j}^{\prime}}(\Omega, \mu)\right), \pi\right) \longrightarrow L^{r_{n+1}}(\Omega, \mu)$ and a canonical map

$$
\widehat{\mathfrak{M}}_{\mu}:\left(L^{r_{0}}(\Omega, \mu) \widehat{\bigotimes}\left(\widehat{\bigotimes}_{j=1}^{n} L^{r_{j}^{\prime}}(\Omega, \mu)\right), \pi\right) / \operatorname{Ker}\left(\widetilde{\mathfrak{M}}_{\mu}\right) \longrightarrow L^{r_{n+1}}(\Omega, \mu)
$$

such that $\left\|\widehat{\mathfrak{M}}_{\mu}\right\| \leq 1$. Moreover, by (5) we obtain $f=f^{\frac{r_{n+1}}{r_{0}}} \prod_{j=1}^{n} f^{\frac{r_{n+1}}{r_{j}^{\prime}}}$ for every $f \geq 0$ in $L^{r_{n+1}}(\Omega, \mu)$. As $f=f^{+}-f^{-}$for every $f \in L^{r_{n+1}}(\Omega, \mu)$ it turns out that $\widetilde{\mathfrak{M}}_{\mu}$ is a surjective map and $\widehat{\mathfrak{M}}_{\mu}$ becomes an isomorphism such that $\left\|\widehat{\mathfrak{M}}_{\mu}^{-1}\right\| \leq 2$.

$2 \alpha_{r}$-tensor products and r-dominated multilinear maps

Let $E_{j}, 1 \leq j \leq n+1$ be normed spaces. Using classical methods we can show that

$$
\begin{equation*}
\alpha_{\mathbf{r}}\left(z ; \bigotimes_{j=1}^{n+1} E_{j}\right):=\inf \pi_{r_{0}}\left(\left(\lambda_{m}\right)_{m=1}^{h}\right) \prod_{j=1}^{n+1} \varepsilon_{r_{j}^{\prime}}\left(\left(x_{m}^{j}\right)_{m=1}^{h}\right) \tag{10}
\end{equation*}
$$

taking the infimum over all representations of z of type

$$
z=\sum_{m=1}^{h} \lambda_{m}\left(\otimes_{j=1}^{n+1} x_{j m}\right), \quad x_{j m} \in E_{j} 1 \leq j \leq n+1,1 \leq m \leq h, \quad h \in \mathbb{N}
$$

is a norm on $\bigotimes_{j=1}^{n+1} E_{j}$ which defines an $(n+1)$-tensor norm in the class of normed spaces. It is interesting to note that if $n=1$ we obtain the classical tensor norm $\alpha_{r_{2} r_{1}}$ of Lapresté (see [[2]] for details).

The just defined normed tensor product space will be denoted by $\left(\bigotimes_{j=1}^{n+1} E_{j}, \alpha_{\mathbf{r}}\right)$ or $\bigotimes_{\alpha_{\mathbf{r}}}\left(E_{1}, E_{2}, \ldots, E_{n+1}\right)$ and its completion by $\widehat{\bigotimes}_{\alpha_{\mathbf{r}}}\left(E_{1}, E_{2}, \ldots, E_{n+1}\right)$. It is clear that for every permutation σ on the set $\{1,2, \ldots, n+1\}$ the map

$$
I_{\sigma}: \sum_{i=1}^{m} \lambda_{m} \otimes_{j=1}^{n+1} x_{j m} \in\left(\otimes_{j=1}^{n+1} E_{j}, \alpha_{r}\right) \longrightarrow \sum_{i=1}^{m} \lambda_{m} \otimes_{j=1}^{n+1} x_{\sigma(j) m} \in\left(\bigotimes_{j=1}^{n+1} E_{\sigma(j)}, \alpha_{\mathbf{s}}\right)
$$

where \mathbf{s} is the admissible $(n+2)$-pla $s_{0}:=r_{0}$ and $s_{j}=r_{\sigma(j)}, 1 \leq j \leq n+1$, is an isometry from $\left(\bigotimes_{j=1}^{n+1} E_{j}, \alpha_{\mathbf{r}}\right)$ onto $\left(\bigotimes_{j=1}^{n+1} E_{j}, \alpha_{\mathbf{s}}\right)$. We shall use this type of isomorphism in section 5 in the particular case of transpositions σ simply indicating the transposed indexes $\sigma\left(j_{0}\right)=j_{1}, \sigma\left(j_{1}\right)=j_{0}$ in the way $j_{0} \rightarrow j_{1}, j_{1} \rightarrow j_{0}$.

To compute the topological dual of an $\alpha_{\mathbf{r}}$-tensor product we set a new definition:
Definition 1 Let F and $E_{j}, 1 \leq j \leq n$ be normed spaces. A map $T \in \mathcal{L}^{n}\left(\prod_{j=1}^{n} E_{j}, F\right)$ is said to be \mathbf{r}-dominated if there is $C \geq 0$ such that for every $h \in \mathbb{N}$ and every set of finite sequences $\left\{x_{j k}\right\}_{k=1}^{h} \subset E_{j}, 1 \leq j \leq n$ and $\left\{y_{k}^{\prime}\right\}_{k=1}^{h} \subset F^{\prime}$ the inequality

$$
\begin{equation*}
\pi_{r_{0}^{\prime}}\left(\left(\left|\left\langle T\left(x_{1 k}, x_{2 k}, \ldots, x_{n k}\right), y_{k}^{\prime}\right\rangle\right|\right)_{k=1}^{m}\right) \leq C\left(\prod_{j=1}^{n} \varepsilon_{r_{j}^{\prime}}\left(\left(x_{j k}\right)_{k=1}^{m}\right)\right) \varepsilon_{r_{n+1}^{\prime}}\left(\left(y_{k}^{\prime}\right)_{k=1}^{h}\right) \tag{11}
\end{equation*}
$$

holds.
It is easy to see that the linear space $\mathfrak{P}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}, F\right)$ of \mathbf{r}-dominated n-linear maps from $\prod_{j=1}^{n} E_{j}$ into F is normed setting $\mathbf{P}_{\mathbf{r}}(T):=\inf \{C \geq 0 \mid$ (11) holds $\}$ for every $T \in \mathfrak{P}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}, F\right)$, becoming a Banach space when F does. The interest on \mathbf{r}-dominated multilinear maps follows from the next result:

Theorem $2\left(\bigotimes_{\alpha_{\mathbf{r}}}\left(E_{1}, E_{2}, \ldots, E_{n}, F\right)\right)^{\prime}=\mathfrak{P}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}, F^{\prime}\right)$ for all normed spaces F and $E_{j}, 1 \leq j \leq n$.

Proof. 1). Given $T \in \mathfrak{P}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}, F^{\prime}\right)$ and $z=\sum_{k=1}^{h} \lambda_{k}\left(\otimes_{j=1}^{n} x_{j k}\right) \otimes y_{k}$ in $\left(\bigotimes_{j=1}^{n} E_{j}\right) \otimes F$ we define $\varphi_{T}(z)=\sum_{k=1}^{h} \lambda_{k}\left\langle T\left(\left(x_{1 k}, x_{2 k}, \ldots, x_{n k}\right)\right), y_{k}\right\rangle$. It follows directly from Hölder's inequality, definition 1 and (10)

$$
\begin{equation*}
\left|\varphi_{T}(z)\right| \leq \mathbf{P}_{\mathbf{r}}(T) \alpha_{\mathbf{r}}(z) \Longrightarrow\left\|\varphi_{T}\right\| \leq \mathbf{P}_{\mathbf{r}}(T) \tag{12}
\end{equation*}
$$

2) Conversely, let $\psi \in\left(\bigotimes_{\alpha_{\mathrm{r}}}\left(E_{1}, E_{2}, \ldots, E_{n}, F\right)\right)^{\prime}$. We define $T_{\psi} \in \mathcal{L}^{n}\left(\prod_{j=1}^{n} E_{j}, F^{\prime}\right)$ as

$$
\forall\left(x_{j}\right)_{j=1}^{n} \in \prod_{j=1}^{n} E_{j}, \forall y \in F \quad\left\langle T_{\psi}\left(\left(x_{j}\right)_{j=1}^{n}\right), y\right\rangle=\psi\left(x_{1} \otimes x_{2} \otimes \ldots x_{n} \otimes y\right) .
$$

Given $\left\{x_{j k}\right\}_{k=1}^{h} \subset E_{j}, 1 \leq j \leq n$ and $\left\{y_{k}\right\}_{k=1}^{h} \subset F, h \in \mathbb{N}$ we have

$$
\left.\pi_{r_{0}^{\prime}}\left(\left(\left\langle T_{\psi}\left(\left(x_{j k}\right)_{j=1}^{n}\right), y_{k}\right\rangle\right)_{k=1}^{h}\right)=\sup _{\left(\alpha_{k}\right) \in B_{\ell_{h}^{r}}^{r_{n}}} \mid \sum_{k=1}^{h} \alpha_{k} \psi\left(\left(\otimes_{j=1}^{n} x_{j k}\right) \otimes y_{k}\right)\right) \mid=
$$

$$
\begin{gathered}
=\sup _{\left(\alpha_{k}\right) \in B_{e_{h}^{r_{n}^{\prime}}}}\left|\psi\left(\sum_{k=1}^{h} \alpha_{k}\left(\otimes_{j=1}^{n} x_{j k}\right) \otimes y_{k}\right)\right| \leq \\
\leq \sup _{\left(\alpha_{k}\right) \in B_{e_{h}^{r o}}^{r}}\|\psi\| \pi_{r_{0}}\left(\left(\alpha_{k}\right)_{k=1}^{h}\right)\left(\prod_{j=1}^{n} \varepsilon_{r_{j}^{\prime}}\left(\left(x_{j k}\right)_{k=1}^{h}\right)\right) \varepsilon_{r_{n+1}^{\prime}}\left(\left(y_{k}\right)_{k=1}^{h}\right) \leq \\
\leq\|\psi\|\left(\prod_{j=1}^{n} \varepsilon_{r_{j}^{\prime}}\left(\left(x_{j k}\right)_{k=1}^{h}\right)\right) \varepsilon_{r_{n+1}^{\prime}}\left(\left(y_{k}\right)_{k=1}^{h}\right) .
\end{gathered}
$$

By $\sigma\left(F^{\prime \prime}, F^{\prime}\right)$-density of F in $F^{\prime \prime}$ the latter inequality also holds when $y_{k} \in F^{\prime \prime}, 1 \leq$ $k \leq h$. Hence $\mathbf{P}_{\mathbf{r}}\left(T_{\psi}\right) \leq\|\psi\|$ and clearly $\varphi_{T_{\psi}}=\psi$, giving by 1) $\mathbf{P}_{\mathbf{r}}\left(T_{\psi}\right)=\|\psi\|$.

The name of \mathbf{r}-dominated multilinear maps is suggested by the following characterization.

Theorem 3 Given Banach spaces $E_{j}, 1 \leq j \leq n$ and F and $T \in \mathcal{L}^{n}\left(\prod_{j=1}^{n} E_{j}, F\right)$, the following assertions are equivalent:

1) $T \in \mathfrak{P}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}, F\right)$.
2) (Pietsch-Grothendieck's domination theorem) There are Radon probability measures $\mu_{j}, 1 \leq j \leq n$ (resp. ν) in the unit balls $B_{E_{j}^{\prime}}$, (resp. in $B_{F^{\prime \prime}}$) and $C \geq 0$ such that, \mathcal{B}_{j} (resp. \mathcal{B}_{n+1}) being the σ-algebra of Borel sets in $B_{E_{j}^{\prime}}$ (resp. $\left.B_{F^{\prime \prime}}\right)$, for every $\left(x_{j}\right)_{j=1}^{n} \in \prod_{j=1}^{n} E_{j}$ and every $y^{\prime} \in F^{\prime}$ one has

$$
\begin{equation*}
\left|\left\langle T\left(\left(x_{j}\right)_{j=1}^{n}\right), y^{\prime}\right\rangle\right| \leq C\left\|f_{y^{\prime}}\right\|_{L^{r_{n+1}^{\prime}\left(B_{F^{\prime \prime}}, \mathcal{B}_{n+1}, \nu\right)}} \prod_{j=1}^{n}\left\|f_{x_{j}}\right\|_{L^{r_{j}^{\prime}}\left(B_{E_{j}^{\prime}}, \mathcal{B}_{j}, \mu_{j}\right)} \tag{13}
\end{equation*}
$$

Moreover, $\mathbf{P}_{\mathbf{r}}(T)=\inf C$ taking the infimum over all $C \geq 0$ and $\mu_{j}, 1 \leq j \leq n$ and ν verifying (13).
3) (Generalized Kwapien's factorization theorem). There exist Banach spaces M_{j} and linear maps $A_{j} \in \mathfrak{P}_{r_{j}^{\prime}}\left(E_{j}, M_{j}\right), 1 \leq j \leq n$ and an n-linear map S : $\prod_{j=1}^{n} M_{j} \longrightarrow F$ such that $T=S \circ\left(\left(A_{1}, A_{2}, \ldots, A_{n}\right)\right)$ and the adjoint map $S^{\prime} \in$ $\mathfrak{P}_{r_{n+1}^{\prime}}\left(F^{\prime}, \mathcal{L}^{n}\left(\prod_{j=1}^{n} M_{j}, \mathbb{R}\right)\right)$.

Proof. 1) $\Longrightarrow 2)$. Clearly, the restriction to $\mathcal{C}\left(\left(B_{E^{\prime}}, \sigma\left(E^{\prime}, E\right)\right)\right)$ of each $\Psi \in$ $\left(L^{\infty}\left(B_{E^{\prime}}\right)\right)^{\prime}$ is a Radon measure. Then condition 2) follows from 1) directly by definition of \mathbf{r}-dominated maps and the very general result of Defant [[3], theorem 1]. Moreover, the proof of that result allow us to obtain

$$
\begin{equation*}
\inf \{C \geq 0 \mid(13) \text { holds }\} \leq \mathbf{P}_{\mathbf{r}}(T) \tag{14}
\end{equation*}
$$

2) $\Longrightarrow 3)$. Let $\mu_{j}, 1 \leq j \leq n$ and ν be probability Radon measures in the unit balls $B_{E_{j}^{\prime}}$ and $B_{F^{\prime \prime}}$ respectively (with corresponding σ-algebras \mathcal{B}_{j} and \mathcal{B}_{n+1} of measurable sets) such that (13) holds.

Put $\Omega:=\prod_{j=1}^{n} B_{E_{j}^{\prime}}$ provided with the product measure $\mu:=\otimes_{j=1}^{n} \mu_{j}$ and its corresponding σ-algebra \mathcal{B} of measurable sets. For every $x_{j} \in E_{j}, 1 \leq j \leq n$, we define the map $G_{x_{j}}: \Omega \longrightarrow \mathbb{R}$ given by $G_{x_{j}}\left(\mathbf{x}^{\prime}\right)=\left\langle x_{j}, x_{j}^{\prime}\right\rangle$ for every $\mathbf{x}^{\prime}=$ $\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right) \in \Omega$. Clearly, as a consequence of Fubini's theorem, we have $G_{x_{j}} \in$ $L^{r_{j}^{\prime}}(\Omega, \mathcal{B}, \mu)$ and moreover, for each $y^{\prime} \in F^{\prime}$ the inequality

$$
\begin{equation*}
\left|\left\langle T\left(\left(x_{j}\right)_{j=1}^{n}\right), y^{\prime}\right\rangle\right| \leq C\left\|f_{y^{\prime}}\right\|_{L^{r_{n+1}^{\prime}\left(B_{F^{\prime \prime}}, \mathcal{B}_{n+1}, \nu\right)}} \prod_{j=1}^{n}\left\|G_{x_{j}}\right\|_{L^{r_{j}^{\prime}}(\Omega, \mathcal{B}, \mu)} \tag{15}
\end{equation*}
$$

holds still.
Define $A_{j} \in \mathcal{L}\left(E_{j}, L^{r_{j}^{\prime}}(\Omega, \mathcal{B}, \mu)\right)$, as $A_{j}\left(x_{j}\right)=G_{x_{j}}$ for every $x_{j} \in E_{j}$ and $M_{j}:=$ $\overline{A_{j}\left(E_{j}\right)}$, taking the closure in $L^{r_{j}^{\prime}}(\Omega, \mathcal{B}, \mu)$ and providing it with the induced topology. It is easy to check (classical Pietsch-Grothendieck's domination theorem) that

$$
\begin{equation*}
\forall 1 \leq j \leq n \quad A_{j} \in \mathfrak{P}_{r_{j}^{\prime}}\left(E_{j}, M_{j}\right) \quad \text { and } \quad \mathbf{P}_{r_{j}^{\prime}}\left(A_{j}\right) \leq 1 \tag{16}
\end{equation*}
$$

Now we define the multilinear map $S: \prod_{j=1}^{n} A_{j}\left(E_{j}\right) \longrightarrow F$ as

$$
\forall\left(x_{j}\right)_{j=1}^{n} \in \prod_{j=1}^{n} E_{j} \quad S\left(\left(G_{x_{j}}\right)_{j=1}^{n}\right)=T\left(\left(x_{j}\right)_{j=1}^{n}\right) .
$$

S is well defined because $\left(G_{x_{j}}\right)_{j=1}^{n}=\left(G_{\bar{x}_{j}}\right)_{j=1}^{n}$ implies $G_{x_{j}}=G_{\bar{x}_{j}} \in L^{r_{j}^{\prime}}(\Omega, \mathcal{B}, \mu), 1 \leq$ $j \leq n$ and

$$
T\left(\left(x_{j}\right)_{j=1}^{n}\right)-T\left(\left(\bar{x}_{j}\right)_{j=1}^{n}\right)=\sum_{j=1}^{n} T\left(\bar{x}_{1}, \ldots, \bar{x}_{j-1}, x_{j}-\bar{x}_{j}, x_{j+1}, \ldots, x_{n}\right)
$$

and by (15) we obtain $\left\|T\left(\left(x_{j}\right)_{j=1}^{n}\right)-T\left(\left(\bar{x}_{j}\right)_{j=1}^{n}\right)\right\|=0$. (15) gives too the continuity of S and hence it can be continuously extended to a map (still denoted by S) in $\mathcal{L}^{n}\left(\prod_{j=1}^{n} M_{j}, F\right)$. To finish the proof we only need to see that $S^{\prime} \in$ $\mathfrak{P}_{r_{n+1}^{\prime}}\left(F^{\prime}, \mathcal{L}^{n}\left(\prod_{j=1}^{n} M_{j}, \mathbb{R}\right)\right)$.

Given $\left\{y_{k}^{\prime}\right\}_{k=1}^{h} \subset F^{\prime}, h \in \mathbb{N}$, fix a finite sequence $\left\{\alpha_{k}\right\}_{k=1}^{h}$ verifying $\left\|\left(\alpha_{k}\right)_{k=1}^{h}\right\|_{e_{h}^{r_{n+1}^{\prime}}}=$ 1. For every $\varepsilon>0$, there are $G_{x_{j k}} \in B_{M_{j}}, 1 \leq k \leq h, 1 \leq j \leq n$ such that

$$
\forall 1 \leq k \leq h \quad\left\|S^{\prime}\left(y_{k}^{\prime}\right)\right\|_{\mathcal{L}^{n}\left(\prod_{j=1}^{n} M_{j}, \mathbb{R}\right)} \leq\left|\left\langle S^{\prime}\left(y_{k}^{\prime}\right),\left(G_{x_{j k}}\right)_{j=1}^{n}\right\rangle\right|+\varepsilon\left|\alpha_{k}\right| .
$$

Hence, from Hölder's inequality and (13) we obtain

$$
\begin{aligned}
& \pi_{r_{n+1}^{\prime}}\left(\left(S^{\prime}\left(y_{k}^{\prime}\right)\right)_{k=1}^{h}\right)=\sup _{\left(\beta_{k}\right) \in B_{\ell_{h}^{r_{n+1}}}}\left|\sum_{k=1}^{h} \beta_{k}\left\|S^{\prime}\left(y_{k}^{\prime}\right)\right\|_{\mathcal{L}^{n}\left(\prod_{j=1}^{n} M_{j}, \mathbb{R}\right)}\right| \leq \\
& \leq \sup _{\left(\beta_{k}\right) \in B_{e_{h}^{r_{n+1}}}}\left|\sum_{k=1}^{h} \beta_{k}\left(\left|\left\langle S^{\prime}\left(y_{k}^{\prime}\right),\left(G_{x_{j k}}\right)_{k=1}^{n}\right\rangle\right|+\varepsilon\left|\alpha_{k}\right|\right)\right| \leq \\
& \leq \sup _{\left(\beta_{k}\right) \in B_{e_{h}^{r_{n+1}}}}\left\|\left(\beta_{k}\right)\right\|_{\ell_{h}^{r_{n+1}}}\left(\sum_{k=1}^{h}\left|\left\langle y_{k}^{\prime}, T\left(x_{j k}\right)_{j=1}^{n}\right\rangle\right|^{r_{n+1}^{\prime}}\right)^{\frac{1}{r_{n+1}^{\prime}}}+ \\
& +\varepsilon \sup _{\left(\beta_{k}\right) \in B_{e_{h}^{r_{n+1}}}}\left\|\left(\beta_{k}\right)_{k=1}^{h}\right\|_{e_{h}^{r_{n+1}}}\left\|\left(\alpha_{k}\right)_{k=1}^{h}\right\|_{e_{h}^{r_{n+1}^{\prime}}} \leq \\
& \leq C\left(\sum_{k=1}^{h}\left(\left\|f_{y_{k}^{\prime}}\right\|_{L^{r_{n+1}^{\prime}\left(B_{F^{\prime \prime}}, \mathcal{B}_{n+1}, \nu\right)}}^{r_{n+1}^{r_{1}^{\prime}}} \prod_{j=1}^{n}\left\|G_{x_{j k}}\right\|_{L^{r_{j}^{\prime}}(\Omega, \mathcal{B}, \mu)}^{r_{n+1}^{\prime}}\right)\right)^{\frac{1}{r_{n+1}^{\prime}}}+\varepsilon \leq \\
& \leq C\left(\sum_{k=1}^{h}\left(\int_{B_{F^{\prime \prime}}}\left|\left\langle y_{k}^{\prime}, y^{\prime \prime}\right\rangle\right|^{r_{n+1}^{\prime}} d \nu\left(y^{\prime \prime}\right)\right)\right)^{\frac{1}{r_{n+1}^{\prime}}}+\varepsilon= \\
& =C\left(\int_{B_{F^{\prime \prime}}} \sum_{k=1}^{h}\left|\left\langle y_{k}^{\prime}, y^{\prime \prime}\right\rangle\right|^{r_{n+1}^{\prime}} d \nu\left(y^{\prime \prime}\right)\right)^{\frac{1}{r_{n+1}^{\prime}}}+\varepsilon= \\
& =C \varepsilon_{r_{n+1}^{\prime}}\left(\left(y_{k}^{\prime}\right)_{k=1}^{h}\right) \nu\left(B_{F^{\prime \prime}}\right)^{\frac{1}{r_{n+1}^{\prime}}}+\varepsilon=C \varepsilon_{r_{n+1}^{\prime}}\left(\left(y_{k}^{\prime}\right)_{k=1}^{h}\right)+\varepsilon
\end{aligned}
$$

and $\varepsilon>0$ being arbitrary, the result follows. Moreover, by (16) and the definition of $\mathbf{P}_{r_{n+1}^{\prime}}\left(S^{\prime}\right)$ we obtain

$$
\begin{equation*}
\mathbf{P}_{r_{n+1}^{\prime}}\left(S^{\prime}\right) \prod_{j=1}^{n} \mathbf{P}_{r_{j}^{\prime}}\left(A_{j}\right) \leq C \tag{17}
\end{equation*}
$$

$3) \Longrightarrow 1)$. Assume there there are Banach spaces M_{j} and maps $A_{j} \in \mathfrak{P}_{r_{j}^{\prime}}\left(E_{j}, M_{j}\right)$, $1 \leq j \leq n$ and $S \in \mathcal{L}^{n}\left(\prod_{j=1}^{n} M_{j}, F\right)$ such that $S^{\prime} \in \mathfrak{P}_{r_{n+1}^{\prime}}\left(F^{\prime}, \mathcal{L}^{n}\left(\prod_{j=1}^{n} M_{j}, \mathbb{R}\right)\right)$ and $T=S \circ\left(\left(A_{j}\right)_{j=1}^{n}\right)$. Given finite sequences $\left\{x_{j k}\right\}_{k=1}^{h} \subset E_{j}$ and $\left\{y_{k}^{\prime}\right\}_{k=1}^{h} \subset F^{\prime}, h \in \mathbb{N}$, using (2) and Hölder's inequality we have

$$
\pi_{r_{0}^{\prime}}\left(\left(\left\langle T\left(\left(x_{j k}\right)_{j=1}^{n}\right), y_{k}^{\prime}\right\rangle\right)_{k=1}^{n}\right)=\sup _{\left(\alpha_{k}\right) \in B_{e_{h}^{r}}^{r}}\left|\sum_{k=1}^{h} \alpha_{k}\left\langle\left(A_{j}\left(x_{j k}\right)\right)_{j=1}^{n}\right), S^{\prime}\left(y_{k}^{\prime}\right)\right\rangle \mid \leq
$$

$$
\begin{gathered}
\leq \sup _{\left(\alpha_{k}\right) \in B_{e_{h}^{r}}^{r_{0}}} \sum_{k=1}^{h}\left|\alpha_{k}\right|\left\|S^{\prime}\left(y_{k}^{\prime}\right)\right\|_{\mathcal{L}^{n}\left(\prod_{j=1}^{n} M_{j}, \mathbb{R}\right)} \prod_{j=1}^{n}\left\|A_{j}\left(x_{j k}\right)\right\| \leq \\
\leq \sup _{\left(\alpha_{k}\right) \in B_{e_{h}^{r_{0}^{\prime}}}}\left\|\left(\alpha_{k}\right)_{k=1}^{h}\right\|_{e_{h}^{r_{0}}}\left(\prod_{j=1}^{n} \pi_{r_{j}^{\prime}}\left(\left(A_{j}\left(x_{j k}\right)\right)_{k=1}^{h}\right)\right) \pi_{r_{n+1}^{\prime}}\left(\left(S^{\prime}\left(y_{k}^{\prime}\right)\right)_{k=1}^{h}\right) \leq \\
\leq \mathbf{P}_{r_{n+1}^{\prime}}\left(S^{\prime}\right)\left(\prod_{j=1}^{n} \mathbf{P}_{r_{j}^{\prime}}\left(A_{j}\right)\right) \varepsilon_{r_{n+1}^{\prime}}\left(\left(y_{k}^{\prime}\right)_{k=1}^{h}\right)\left(\prod_{j=1}^{n} \varepsilon_{r_{j}^{\prime}}\left(\left(x_{j k}\right)_{k=1}^{h}\right)\right)
\end{gathered}
$$

and hence $T \in \mathfrak{P r}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}, F\right)$ and

$$
\begin{equation*}
\mathbf{P}_{\mathbf{r}}(T) \leq \mathbf{P}_{r_{n+1}^{\prime}}\left(S^{\prime}\right) \prod_{j=1}^{n} \mathbf{P}_{r_{j}^{\prime}}\left(A_{j}\right) \tag{18}
\end{equation*}
$$

The assertions about $\mathbf{P}_{\mathbf{r}}(T)$ follow from (14), (17) and (18).
Theorem 3 can be used to find some equivalences between some tensor norms $\alpha_{\mathbf{r}}$ and $\alpha_{\mathbf{s}}$ derived from different admissible $(n+2)$-plas \mathbf{r} and \mathbf{s} on certain classes of Banach spaces. We present some results of this type which will be of fundamental importance in the final section of the paper.

Corollary 4 Let $\mathbf{r}=\left(r_{j}\right)_{j=0}^{n+1}$ be such that $r_{n+1}^{\prime} \leq 2$ and let $\mathbf{s}=\left(s_{j}\right)_{j=0}^{n+1}$ be an admissible $(n+2)$-pla such that $s_{n+1}^{\prime} \leq 2$, and $s_{j}^{\prime}=r_{j}^{\prime}, 1 \leq j \leq n$. If $E_{j}, 1 \leq j \leq n+1$ are Banach spaces and $E_{n+1}^{\prime \prime}$ has cotype 2, one has $\left(\widehat{\bigotimes}_{j=1}^{n+1} E_{j}, \alpha_{\mathbf{r}}\right) \approx\left(\widehat{\bigotimes}_{j=1}^{n+1} E_{j}, \alpha_{\mathbf{s}}\right)$.

Proof. By theorem 2 and the open mapping theorem it is enough to see that $\mathfrak{P}_{\mathbf{s}}\left(\prod_{j=1}^{n} E_{j}, E_{n+1}^{\prime}\right)=\mathfrak{P}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}, E_{n+1}^{\prime}\right)$. Given $T \in \mathfrak{P}_{\mathbf{s}}\left(\prod_{j=1}^{n} E_{j}, E_{n+1}^{\prime}\right)$ and using Kwapien's generalized theorem, we choose a factorization $T=C \circ\left(A_{j}\right)_{j=1}^{n}$ throughout some product $\prod_{j=1}^{n} M_{j}$ of Banach spaces in such a way that $A_{j} \in$ $\mathfrak{P}_{s_{j}^{\prime}}\left(E_{j}, M_{j}\right), 1 \leq j \leq n$ and $C^{\prime} \in \mathfrak{P}_{s_{n+1}^{\prime}}\left(E_{n+1}^{\prime \prime}, \mathcal{L}^{n}\left(\prod_{j=1}^{n} M_{j}^{\prime}, \mathbb{R}\right)\right)$. Being $E_{n+1}^{\prime \prime}$ of cotype 2 and $r_{n+1}^{\prime} \leq 2$, Maurey's theorem [[2], corollary 3, §31.6] and Pietsch's inclusion theorem for absolutely p-summing maps give $C^{\prime} \in \mathfrak{P}_{1}\left(E_{n+1}^{\prime \prime}, \mathcal{L}^{n}\left(\prod_{j=1}^{n} M_{j}^{\prime}, \mathbb{R}\right)\right) \subset$ $\mathfrak{P}_{r_{n+1}^{\prime}}\left(E_{n+1}^{\prime \prime}, \mathcal{L}^{n}\left(\prod_{j=1}^{n} M_{j}^{\prime}, \mathbb{R}\right)\right)$. As $r_{j}^{\prime}=s_{j}^{\prime}, 1 \leq j \leq n$, by the sufficient part of Kwapien's generalized theorem we obtain $T \in \mathfrak{P}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}, E_{n+1}^{\prime}\right)$. In the same way we show $\mathfrak{P}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}, E_{n+1}^{\prime}\right) \subset \mathfrak{P}_{\mathrm{s}}\left(\prod_{j=1}^{n} E_{j}, E_{n+1}^{\prime}\right)$ and the proof is complete.

Corollary 5 Let $E_{j}, 1 \leq j \leq n+1$ be Banach spaces and let $\mathbf{r}=\left(r_{j}\right)_{j=0}^{n+1}$ be an admissible $(n+2)$-pla such that $r_{j}^{\prime} \geq 2$ for every $1 \leq j \leq n+1$. Let $\mathbf{s}=\left(s_{j}\right)_{j=0}^{n+1}$ be another admissible $(n+2)$-pla such that $2 \leq s_{j}^{\prime}$ for every $1 \leq j \leq n$ and $s_{n+1}=r_{n+1}$. Then $\left(\widehat{\bigotimes}_{j=1}^{n+1} E_{j}, \alpha_{\mathbf{r}}\right) \approx\left(\widehat{\bigotimes}_{j=1}^{n+1} E_{j}, \alpha_{\mathbf{s}}\right)$.

Proof. Arguing as above, we only need to show that $\mathfrak{P}_{\mathbf{s}}\left(\prod_{j=1}^{n} E_{j}, E_{n+1}^{\prime}\right)=$ $\mathfrak{P}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}, E_{n+1}^{\prime}\right)$. The crucial step is the proof of the inclusion $\mathfrak{P}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}, E_{n+1}^{\prime}\right)$ $\subset \mathfrak{P}_{\mathbf{s}}\left(\prod_{j=1}^{n} E_{j}, E_{n+1}^{\prime}\right)$ since the proof of the converse inclusion can be made exactly in the same way.

Let $T \in \mathfrak{P}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}, E_{n+1}^{\prime}\right)$. By the proof of 2$) \Longrightarrow 3$) in theorem 3 there are a probability space $(\Omega, \mathcal{B}, \mu)$, maps $A_{j} \in \mathfrak{P}_{r_{j}^{\prime}}\left(E_{j}, L^{r_{j}^{\prime}}(\Omega ; \mu)\right), 1 \leq j \leq n$ and a map $S \in \mathcal{L}^{n}\left(\prod_{j=1}^{n} \overline{A_{j}\left(E_{j}\right)}, E_{n+1}^{\prime}\right)$ such that $S^{\prime} \in \mathfrak{P}_{r_{n+1}^{\prime}}\left(E_{n+1}^{\prime \prime}, \mathcal{L}^{n}\left(\prod_{j=1} \overline{A_{j}\left(E_{j}\right)}, \mathbb{R}\right)\right)$ and $T=S \circ\left(\left(A_{j}\right)_{j=1}^{n}\right)$. Consider the tensor products $\left.\mathfrak{T}_{\pi}:=\left(\widehat{\bigotimes}_{j=1}^{n} L^{r_{j}^{\prime}}(\Omega, \mu)\right), \pi\right)$ and $\mathfrak{H}_{\pi}:=L^{r_{0}}(\Omega, \mu) \widehat{\bigotimes}_{\pi} \mathfrak{T}_{\pi}$. The canonical linear map $\widetilde{\mathfrak{M}}_{\mu}$ from \mathfrak{H}_{π} onto $L^{r_{n+1}}(\Omega, \mu)$, (recall the notation of introductory section) induces an isomorphism $\widehat{\mathfrak{M}}_{\mu}$ from the quotient space $K_{1}:=\mathfrak{H}_{\pi} / \operatorname{Ker}\left(\widetilde{\mathfrak{M}}_{\mu}\right)$ onto $L^{r_{n+1}}(\Omega, \mu)$. As $r_{n+1} \leq 2, K_{1}$ has cotype 2 .

Let $\Psi_{1}: \mathfrak{H}_{\pi} \longrightarrow K_{1}$ be the canonical quotient map. For every $1 \leq j \leq n$ we consider the map $\psi_{j} \in \mathcal{L}\left(L^{r_{j}^{\prime}}(\Omega), \mathfrak{H}_{\pi}\right)$ defined by

$$
\psi_{j}: z \in L^{r_{j}^{\prime}}(\Omega) \longrightarrow\left[\chi_{\Omega}\right] \otimes\left[\chi_{\Omega}\right] \otimes \ldots \otimes\left[\chi_{\Omega}\right] \otimes z \otimes\left[\chi_{\Omega}\right] \otimes \ldots \otimes\left[\chi_{\Omega}\right]
$$

(z in the position $j+1$) and define $\mathfrak{T}_{j}:=\psi_{j}\left(L^{r_{j}^{\prime}}(\Omega)\right.$). [$\left.\chi_{\Omega}\right]$ being of dimension 1 is complemented in each $L^{p}(\Omega, \mu), p \geq 1$. It follows that \mathfrak{T}_{j} is a complemented (and hence closed) subspace of \mathfrak{H}_{π}. Define $F_{j}:=\overline{A_{j}\left(E_{j}\right)}$. Clearly $H_{j}:=\psi_{j}\left(F_{j}\right)$ is a closed subspace of \mathfrak{T}_{j}.

Claim. For every $1 \leq j \leq n, \Psi_{1}\left(\mathfrak{T}_{j}\right)$ is closed in K_{1}.
Proof of the claim. Fix $1 \leq j \leq n$. Let $P_{j} \in \mathcal{L}\left(\mathfrak{H}_{\pi}, \mathfrak{T}_{j}\right)$ be a projection and let $W_{j}:=\operatorname{Ker}\left(P_{j}\right) \oplus\left(\operatorname{Ker}\left(\widetilde{\mathfrak{M}}_{\mu}\right) \cap \mathfrak{T}_{j}\right)$. The quotient space $K_{2 j}:=\mathfrak{H}_{\pi} / W_{j}$ is well defined. Let $\Psi_{2 j} \in \mathcal{L}\left(\mathfrak{H}_{\pi}, K_{2 j}\right)$ be the canonical quotient map. The map

$$
\forall z \in \mathfrak{H}_{\pi} \quad L_{j}: \Psi_{2 j}(z) \in K_{2 j} \longrightarrow \Psi_{1} \circ P_{j}(z) \in \Psi_{1}\left(\mathfrak{T}_{j}\right) \subset K_{1}
$$

is well defined and continuous. In fact, given $z_{1}=P_{j}\left(z_{1}\right)+\left(I_{\pi}-P_{j}\right)\left(z_{1}\right) \in \mathfrak{H}_{\pi}$ and $z_{2}=P_{j}\left(z_{2}\right)+\left(I_{\pi}-P_{j}\right)\left(z_{2}\right) \in \mathfrak{H}_{\pi}\left(I_{\pi}\right.$ denotes the identity map on $\left.\mathfrak{H}_{\pi}\right)$ such that $\Psi_{2 j}\left(z_{1}\right)=\Psi_{2 j}\left(z_{2}\right)$, as $\left(I_{\pi}-P_{j}\right)\left(z_{1}\right) \in \operatorname{Ker}\left(P_{j}\right) \subset W$ and $\left(I_{\pi}-P_{j}\right)\left(z_{2}\right) \in \operatorname{Ker}\left(P_{j}\right) \subset$ W, we obtain $\Psi_{2 j} \circ P_{j}\left(z_{1}\right)=\Psi_{2 j} \circ P_{j}\left(z_{2}\right)$, i. e.

$$
P_{j}\left(z_{1}\right)-P_{j}\left(z_{2}\right) \in W \Longrightarrow P_{j}\left(z_{1}\right)-P_{j}\left(z_{2}\right) \in \operatorname{Ker}\left(\widetilde{\mathfrak{M}}_{\mu}\right) \cap \mathfrak{T}_{j} \subset \operatorname{Ker}\left(\widetilde{\mathfrak{M}}_{\mu}\right)
$$

and hence $L_{j}\left(z_{1}\right)=\Psi_{1} \circ P_{j}\left(z_{1}\right)=\Psi_{1} \circ P_{j}\left(z_{2}\right)=L_{j}\left(z_{2}\right)$ and L_{j} is well defined. On the other hand, given $\Psi_{2 j}(z) \in K_{2 j}$ there is $w \in \mathfrak{T}_{\pi}$ such that $\Psi_{2 j}(w)=\Psi_{2 j}(z)$ and $\|w\|_{\mathfrak{I}_{\pi}} \leq 2\left\|\Psi_{2 j}(z)\right\|_{K_{2 j}}$. Then

$$
\left\|L_{j} \circ \Psi_{2 j}(z)\right\|_{K_{1}}=\left\|L_{j} \circ \Psi_{2 j}(w)\right\|_{K_{1}}=\left\|\Psi_{1} \circ P_{j}(w)\right\|_{K_{1}} \leq
$$

$$
\leq\left\|\Psi_{1}\right\|\left\|P_{j}\right\|\|w\|_{\mathfrak{H}_{\pi}} \leq 2\left\|P_{j}\right\|\left\|\Psi_{2 j}(z)\right\|_{K_{2 j}}
$$

and L_{j} turns out to be continuous. But, clearly, L_{j} is surjective. Then the canonical induced map $\widetilde{L}_{j} \in \mathcal{L}\left(K_{3 j}, K_{1}\right)$ from the quotient space $K_{3 j}:=K_{2 j} / \operatorname{Ker}\left(L_{j}\right)$ onto K_{1} is an isomorphism. Let $\Psi_{3 j} \in \mathcal{L}\left(K_{2 j}, K_{3 j}\right)$ be the canonical quotient map. Note that we have

$$
\begin{equation*}
\Psi_{1} \circ P_{j}=L_{j} \circ \Psi_{2 j}=\widetilde{L}_{j} \circ \Psi_{3 j} \circ \Psi_{2 j} . \tag{19}
\end{equation*}
$$

Next take $z \in \overline{\Psi_{1}\left(\mathfrak{T}_{j}\right)}$. There is a sequence $\left\{z_{m}\right\}_{m=1}^{\infty} \subset \mathfrak{T}_{j}$ such that $z=$ $\lim _{m \rightarrow \infty} \Psi_{1}\left(z_{m}\right)$ in K_{1}. Then $\left\{\widetilde{L}_{j}^{-1}\left(z_{m}\right)\right\}_{m=1}^{\infty}$ is a Cauchy sequence in $K_{3 j}$. By a standard procedure (see [[8], §14,4. (3)] for instance) and switching to a suitable subsequence if necessary, we can assume that there is a sequence $\left\{w_{m}\right\}_{m=1}^{\infty} \subset \mathfrak{H}_{\pi}$ such that

$$
\begin{equation*}
\forall m \in \mathbb{N} \quad \Psi_{3 j} \circ \Psi_{2 j}\left(w_{m}\right)=\widetilde{L}_{j}^{-1}\left(z_{m}\right)=\Psi_{3 j} \circ \Psi_{2 j}\left(z_{m}\right) \tag{20}
\end{equation*}
$$

and
$\forall m, k \in \mathbb{N}\left\|w_{m}-w_{k}\right\|_{\mathfrak{H}_{\pi}} \leq 2\left\|\Psi_{2 j}\left(w_{m}\right)-\Psi_{2 j}\left(w_{k}\right)\right\|_{K_{2 j}} \leq 4\left\|\widetilde{L}_{j}^{-1}\left(z_{m}\right)-\widetilde{L}_{j}^{-1}\left(z_{k}\right)\right\|_{K_{3 j}}$.
Then $\left\{w_{m}\right\}_{m=1}^{\infty}$ is a Cauchy sequence in \mathfrak{T}_{π} and there exists $w=\lim _{m \rightarrow \infty} w_{m} \in \mathfrak{H}_{\pi}$. By (20) we obtain
$\Psi_{3 j} \circ \Psi_{2 j}\left(z_{m}\right)=\Psi_{3 j} \circ \Psi_{2 j}\left(w_{m}\right)=\Psi_{3 j} \circ \Psi_{2 j}\left(P_{j}\left(w_{m}\right)-\left(I_{\pi}-P_{j}\right)\left(w_{m}\right)\right)=\Psi_{3 j} \circ \Psi_{2 j} \circ P_{j}\left(w_{m}\right)$ and since P_{j} is a projection and $P_{j}\left(z_{m}\right)=z_{m}$, by the definitions of $\Psi_{3 j}$ and L_{j}

$$
\Psi_{1}\left(z_{m}\right)=\Psi_{1} \circ P_{j}\left(z_{m}\right)=L_{j} \circ \Psi_{2 j}\left(z_{m}\right)=L_{j} \circ \Psi_{2 j} \circ P_{j}\left(w_{m}\right)=\Psi_{1} \circ P_{j}\left(w_{m}\right)
$$

and $\Psi_{1} \circ P_{j}(w)=\lim _{m \rightarrow \infty} \Psi_{1} \circ P_{j}\left(w_{m}\right)=\lim _{m \rightarrow \infty} \Psi_{1}\left(z_{m}\right)=z$. As $P_{j}(w) \in \mathfrak{T}_{j}$ we obtain $z \in \Psi_{1}\left(\mathfrak{T}_{j}\right)$ and $\Psi_{1}\left(\mathfrak{T}_{j}\right)$ is closed.

End of the proof of corollary 5. Let Φ_{j} be the restriction to \mathfrak{T}_{j} of Ψ_{1}. Let $\Psi_{4 j}$ be the canonical quotient map from \mathfrak{T}_{j} onto the quotient space $K_{4 j}:=$ $\mathfrak{T}_{j} /\left(\mathfrak{T}_{j} \cap \operatorname{Ker}\left(\mathfrak{M}_{\mu}\right)\right)$. The map $\widetilde{\Phi}_{j}: \Psi_{4 j} \circ \psi_{j}\left(z_{j}\right) \in K_{4 j} \longrightarrow \Phi_{j} \circ \psi_{j}\left(z_{j}\right) \in \Phi_{j}\left(\mathfrak{T}_{j}\right), z_{j} \in$ F_{j} is well defined. In fact, if $\bar{z}_{j} \in F_{j}$ and $\Psi_{4 j} \circ \psi_{j}\left(z_{j}-\bar{z}_{j}\right)=0$, we will have $\psi_{j}\left(z_{j}-\bar{z}_{j}\right) \in \operatorname{Ker}\left(\widetilde{\mathfrak{M}}_{\mu}\right)$ and hence, by definition of $\widetilde{\mathfrak{M}}_{\mu}$ and ψ_{j}, one has $z_{j}=\bar{z}_{j}$ and $\Phi_{j} \circ \psi_{j}\left(z_{j}\right)=\Phi_{j} \circ \psi_{j}\left(\bar{z}_{j}\right)$, turning $\widetilde{\Phi_{j}}$ well defined. The same argument shows that $\widetilde{\Phi_{j}}$ is injective. By the claim $\Phi_{j}\left(\mathfrak{T}_{j}\right)$ is closed in K_{1}. As $\widetilde{\Phi_{j}}$ is clearly surjective by the open map theorem it turns out that $\widetilde{\Phi}_{j}$ is an isomorphism from $K_{4 j}$ onto $\Phi_{j}\left(\mathbb{T}_{j}\right)$.

Next, remark that given $z_{j} \in L^{r_{j}^{\prime}}(\Omega, \mu)$ and $\varepsilon>0$, there is $\bar{z}_{j} \in L^{r_{j}^{\prime}}(\Omega, \mu)$ such that $\Psi_{4 j} \circ \psi_{j}\left(z_{j}\right)=\Psi_{4 j} \circ \psi_{j}\left(\bar{z}_{j}\right)$ and

$$
\left\|\psi_{j}\left(\bar{z}_{j}\right)\right\|_{\mathfrak{T}_{j}} \leq\left\|\Psi_{4 j} \circ \psi_{j}\left(z_{j}\right)\right\|_{K_{4 j}}+\varepsilon \leq\left\|\widetilde{\Phi}_{j}^{-1}\right\|\left\|\widetilde{\Phi_{j}} \circ \Psi_{4 j} \circ \psi_{j}\left(z_{j}\right)\right\|_{K_{1}}+\varepsilon=
$$

$$
=\left\|\widetilde{\Phi}_{j}^{-1}\right\|\left\|\Phi_{j} \circ \psi_{j}\left(z_{j}\right)\right\|_{K_{1}}+\varepsilon \leq\left\|\widetilde{\Phi}_{j}^{-1}\right\|\left\|\psi_{j}\left(z_{j}\right)\right\|_{\mathfrak{x}_{j}}+\varepsilon
$$

But, as we have shown previously, $\Psi_{4 j} \circ \psi_{j}\left(z_{j}\right)=\Psi_{4 j} \circ \psi_{j}\left(\bar{z}_{j}\right)$ implies $z_{j}=\bar{z}_{j}$ and so $\psi_{j}\left(z_{j}\right)=\psi_{j}\left(\bar{z}_{j}\right)$. Then $\varepsilon>0$ being arbitrary we obtain

$$
\left\|\psi_{j}\left(z_{j}\right)\right\|_{\mathfrak{T}_{j}} \leq\left\|\widetilde{\Phi}_{j}^{-1}\right\|\left\|\Phi_{j} \circ \psi_{j}\left(z_{j}\right)\right\|_{K_{1}} \leq\left\|\widetilde{\Phi}_{j}^{-1}\right\|\left\|\psi_{j}\left(z_{j}\right)\right\|_{\mathfrak{T}_{j}}
$$

which means that Φ_{j} is an isomorphism from \mathfrak{T}_{j} onto $\Phi_{j}\left(\mathfrak{T}_{j}\right)$.
As a consequence the isomorphisms $F_{j} \approx H_{j} \approx \Phi_{j}\left(H_{j}\right)$ hold and F_{j} has cotype 2 because $\Phi_{j}\left(H_{j}\right)$ is a closed subspace of K_{1} which has cotype 2. As $A_{j} \in$ $\mathfrak{P}_{r_{j}^{\prime}}\left(E_{j}, F_{j}\right)$, by Maurey's theorem [[2], corollary $\left.3, \S 31.6\right]$ and Pietsch's inclusion theorem for p-absolutely summing maps, we obtain $A_{j} \in \mathfrak{P}_{2}\left(E_{j}, F_{j}\right) \subset \mathfrak{P}_{s_{j}^{\prime}}\left(E_{j}, F_{j}\right)$. It follow from the properties of S and from Kwapien's generalized theorem that $T \in \mathfrak{P}_{\mathbf{s}}\left(\prod_{j=1}^{n} E_{j}, E_{n+1}^{\prime}\right)$ as desired.

Corollary 6 Let $E_{j}, 1 \leq j \leq n+1$ be Banach spaces and let $\mathbf{r}=\left(r_{j}\right)_{j=0}^{n+1}$ be an admissible $(n+2)$-pla such that $r_{j_{0}} \leq 2$ for some $1 \leq j_{0} \leq n+1$ and $r_{j_{1}}^{\prime} \geq 2$ for some $1 \leq j_{1} \neq j_{0} \leq n+1$. Choose $s_{j_{0}}<r_{j_{0}}$ and define $\frac{1}{s_{0}}:=\frac{1}{r_{0}}+\frac{1}{r_{j_{0}}^{\prime}}-\frac{1}{s_{j_{0}}^{\prime}}$ and $s_{j}:=r_{j}, 1 \leq j \neq j_{0} \leq n+1$. Then $\mathbf{s}=\left(s_{j}\right)_{j=0}^{n+1}$ is an admissible $(n+2)$-pla such that $s_{0}<\infty$ and $\left(\bigotimes_{j=1}^{n+1} E_{j}, \alpha_{\mathbf{r}}\right) \approx\left(\bigotimes_{j=1}^{n+1} E_{j}, \alpha_{\mathbf{s}}\right)$.

Proof. After the eventual transposition $j_{1} \rightarrow n+1, n+1 \rightarrow j_{1}$ we can assume that $j_{1}=n+1$. Then the proof is essentially the same of corollary 5 because we have $r_{n+1} \leq 2$ and Maurey's theorem will be applicable still in the "axis" j_{0}.

Another application of theorem 3 concerns to the approximation of \mathbf{r}-dominated maps by finite rank maps.

Theorem 7 Let $E_{j}, 1 \leq j \leq n+1$, be Banach spaces with duals E_{j}^{\prime} having the metric approximation property and such that each $E_{j}^{\prime}, 1 \leq j \leq n$ has the Radon-Nikodym property. Then $\mathfrak{P}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}, E_{n+1}^{\prime}\right)=\left(\widehat{\bigotimes}_{j=1}^{n+1} E_{j}^{\prime}, \alpha_{\mathbf{r}}^{\prime}\right)$.

Proof. Let $T \in \mathfrak{P}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}, E_{n+1}^{\prime}\right)$. By Kwapien's theorem (theorem 3) there are Banach spaces M_{j} and operators $A_{j} \in \mathfrak{P}_{r_{j}^{\prime}}\left(E_{j}, M_{j}\right), 1 \leq j \leq n$ and $S \in$ $\mathcal{L}^{n}\left(\prod_{j=1}^{n} M_{j}, E_{n+1}^{\prime}\right)$ such that $T=S \circ\left(A_{1}, A_{2}, \ldots, A_{n}\right)$. Since every E_{j}^{\prime} has the Radon-Nikodym property, by the result [[11], page 228] of Makarov and Samarskii, each A_{j} is a quasi r_{j}^{\prime}-nuclear operator. By [[13], theorems 26 and 43] there is a sequence

$$
\left\{B_{j h}=\sum_{s_{j}=1}^{t_{j h}} x_{j h s_{j}}^{\prime} \otimes m_{j h s_{j}}\right\}_{h=1}^{\infty} \subset E_{j}^{\prime} \otimes M_{j}
$$

of finite rank operators such that

$$
\begin{equation*}
\forall 1 \leq j \leq n \quad \lim _{h \rightarrow \infty} \mathbf{P}_{r_{j}^{\prime}}\left(A_{j}-B_{j h}\right)=0 . \tag{21}
\end{equation*}
$$

In particular, every sequence $\left\{B_{j h}\right\}_{h=1}^{\infty}$ is a Cauchy sequence (and so bounded) in $\mathfrak{P}_{r_{j}^{\prime}}\left(E_{j}, M_{j}\right), 1 \leq j \leq n$.

Since for every $\left(x_{j}\right)_{j=1}^{n} \in \prod_{j=1}^{n} E_{j}$ and $h \in \mathbb{N}$ we have

$$
\begin{gathered}
\left(S \circ\left(\left(B_{j h}\right)_{j=1}^{n}\right)\left(\left(x_{j}\right)_{j=1}^{n}\right)=S\left(\left(\sum_{s_{j}=1}^{t_{j h}}\left\langle x_{j h s_{j}}^{\prime}, x_{j}\right\rangle m_{j h s_{j}}\right)_{j=1}^{n}\right)=\right. \\
=\sum_{s_{1}=1}^{t_{1 h}} \ldots \sum_{s_{n}=1}^{t_{n h}}\left(\prod_{j=1}^{n}\left\langle x_{j h s_{j}}^{\prime}, x_{j}\right\rangle\right) S\left(\left(m_{j h s_{j}}\right)_{j=1}^{n}\right),
\end{gathered}
$$

it turns out that $S \circ\left(\left(B_{j h}\right)_{j=1}^{n}\right) \in \mathcal{L}^{n}\left(\prod_{j=1}^{n} E_{j}, E_{n+1}^{\prime}\right)$ has finite dimensional range and

$$
S \circ\left(\left(B_{j h}\right)_{j=1}^{n}\right)=\sum_{s_{1}=1}^{t_{1 h}} \ldots \sum_{s_{n}=1}^{t_{n h}}\left(\otimes_{j=1}^{n} x_{j h s_{j}}^{\prime}\right) \otimes S\left(\left(m_{j h s_{j}}\right)_{j=1}^{n}\right) \in \bigotimes_{j=1}^{n+1} E_{j}^{\prime} .
$$

With a similar proof to the one given in [2] it can be seen that $\left(\widehat{\bigotimes}_{j=1}^{n+1} E_{j}^{\prime}, \alpha_{\mathbf{r}}^{\prime}\right)$ is a topological subspace of $\mathfrak{P}_{\mathrm{r}}\left(\prod_{j=1}^{n} E_{j}, E_{n+1}^{\prime}\right)$. Hence by theorem 3, (18) and (21)

$$
\begin{gathered}
\alpha_{\mathbf{r}}^{\prime}\left(S \circ\left(B_{1 h}, B_{2 h}, \ldots, B_{n h}\right)-S \circ\left(B_{1 k}, B_{2 k}, \ldots, B_{n k}\right)\right)= \\
=\mathbf{P}_{\mathbf{r}}\left(\sum_{j=1}^{n}\left(S \circ B_{1 k}, \ldots, B_{j-1, k}, B_{j h}-B_{j k}, B_{j+1, h}, \ldots, B_{n h}\right)\right) \leq \\
\leq \mathbf{P}_{r_{n+1}^{\prime}}\left(S^{\prime}\right) \sum_{j=1}^{n} \mathbf{P}_{r_{j}^{\prime}}\left(B_{j h}-B_{j k}\right)\left(\prod_{1 \leq s<j} \mathbf{P}_{r_{s}^{\prime}}\left(B_{s k}\right)\right)\left(\prod_{j<s \leq n} \mathbf{P}_{r_{s}^{\prime}}\left(B_{s h}\right)\right)
\end{gathered}
$$

is arbitrarily small when h and k lets to infinity and so there exists $z:=\lim _{h \rightarrow \infty} S \circ$ $\left(B_{1 h}, B_{2 h}, \ldots, B_{n h}\right) \in\left(\widehat{\bigotimes}_{j=1}^{n+1} E_{j}^{\prime}, \alpha_{\mathbf{r}}^{\prime}\right)$. On the other hand, it can be shown in an analogous way that

$$
\lim _{h \rightarrow \infty} \mathbf{P}_{\mathbf{r}}\left(T-S \circ\left(\left(B_{j h}\right)_{j=1}^{n}\right)\right)=\lim _{h \rightarrow \infty} \mathbf{P}_{\mathbf{r}}\left(S \circ\left(\left(A_{j}\right)_{j=1}^{n}\right)-S \circ\left(\left(B_{j h}\right)_{j=1}^{n}\right)\right)=0
$$

and hence $T=z$.

3 r-nuclear multilinear maps

With the same methods used in the classical case of Lapresté's tensor topologies, it can be shown that every element $z \in \widehat{\bigotimes}_{\alpha_{\mathbf{r}}}\left(E_{1}, E_{2}, \ldots, E_{n}, F\right)$ can be represented as a convergent series

$$
\begin{equation*}
z=\sum_{m=1}^{\infty} \lambda_{m}\left(\otimes_{j=1}^{n} x_{j m}\right) \otimes z_{m} \tag{22}
\end{equation*}
$$

where $\left(\lambda_{m}\right) \in \ell^{r_{0}},\left(x_{j m}\right)_{m=1}^{\infty} \in \ell^{r_{j}^{\prime}}\left(E_{j}\right), j=1,2, \ldots, n$ and $\left(z_{m}\right)_{m=1}^{\infty} \in \ell^{r_{n+1}^{\prime}}(F)$. Moreover, the norm of such elements z can be computed as in (10) but using representations (22) and $h=\infty$.

If F is a Banach space every $z \in \widehat{\bigotimes}_{\alpha_{\mathrm{r}}}\left(E_{1}, E_{2}, \ldots, E_{n}, F\right)$ defines canonically a multilinear map $T_{z} \in \mathcal{L}^{n}\left(\prod_{j=1}^{n} E_{j}^{\prime}, F\right)$ by the rule

$$
\begin{equation*}
\forall\left(x_{j}^{\prime}\right)_{j=1}^{n} \in \prod_{j=1}^{n} E_{j}^{\prime} \quad T_{z}\left(\left(x_{j}^{\prime}\right)_{j=1}^{n}\right)=\sum_{m=1}^{\infty} \lambda_{m}\left(\prod_{j=1}^{n}\left\langle x_{m}^{j}, x_{m}^{\prime}\right\rangle\right) z_{m} \tag{23}
\end{equation*}
$$

Remark that T_{z} is independent on the representing series (22) for z as a consequence of theorem 2 and the easy fact that $\left(\bigotimes_{j=1}^{n} E_{j}^{\prime}\right) \otimes F^{\prime} \subset \mathfrak{P}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}, F^{\prime}\right)$ canonically. In this way we have defined a canonical linear map

$$
\begin{equation*}
\Phi: z \in \widehat{\bigotimes}_{\alpha_{\mathbf{r}}}\left(E_{1}, E_{2}, \ldots, E_{n}, F\right) \longrightarrow T_{z} \in \mathcal{L}^{n}\left(\prod_{j=1}^{n} E_{j}^{\prime}, F\right) \tag{24}
\end{equation*}
$$

which suggest the next definition:
Definition 8 A multilinear map $A \in \mathcal{L}^{n}\left(\prod_{j=1}^{n} E_{j}, F\right)$ is said to be \mathbf{r}-nuclear if it is the restriction $R\left(T_{z}\right)$ to $\prod_{j=1}^{n} E_{j}$ of a map T_{z} for some $z \in \widehat{\bigotimes}_{\alpha_{\mathrm{r}}}\left(E_{1}^{\prime}, E_{2}^{\prime}, \ldots, E_{n}^{\prime}, F\right)$.

It can be shown that the set $\mathfrak{N}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}, F\right)$ of all n-linear \mathbf{r}-nuclear maps from $\prod_{j=1}^{n} E_{j}$ into F becomes a Banach space under the \mathbf{r}-nuclear norm

$$
\mathbf{N}_{\mathbf{r}}(A)=\inf \left\{\alpha_{\mathbf{r}}(z) \mid A=R\left(T_{z}\right), z \in \widehat{\otimes}_{\alpha_{\mathbf{r}}}\left(E_{1}^{\prime}, E_{2}^{\prime}, \ldots, E_{n}^{\prime}, F\right)\right\}
$$

if all $E_{j}, 1 \leq j \leq n$ and F are Banach spaces. r-nuclear maps can be characterized by means of suitable factorizations as follows.

Theorem 9 Let F and $E_{j}, 1 \leq j \leq n$ be Banach spaces and $T \in \mathcal{L}^{n}\left(\prod_{i=1}^{n} E_{j}, F\right)$. T is \mathbf{r}-nuclear if and only if there are maps $A_{j} \in \mathcal{L}\left(E_{j}, \ell^{r_{j}^{\prime}}\right), 1 \leq j \leq n, C \in \mathcal{L}\left(\ell^{r_{n+1}}, F\right)$ and $\lambda:=\left(\lambda_{m}\right) \in \ell^{r_{0}}$ such that T factorizes in the way

Moreover $\mathbf{N}_{\mathbf{r}}(T)=\inf \left(\prod_{j=1}^{n}\left\|A_{j}\right\|\right)\left\|D_{\lambda}\right\|\|C\|$ taking the infimum over all factorizations as above.

Proof. The proof being quite standard (compare with [10]) is omitted.
Remark. By theorem 9, (2) and the compactness result ([[1], theorem 4.2]) of Alencar and Floret, if $r_{0}<\infty$, every \mathbf{r}-nuclear mapping is compact.

As an application of theorem 7 we can obtain a sufficient condition in order that the map Φ be injective. Although the formulation of this condition is far to be optimal, it will be enough for our applications in the sequel.

Corollary 10 Let $E_{j}, 1 \leq j \leq n$ be reflexive Banach spaces having the approximation property. Then, for every Banach space E_{n+1} such that E_{n+1}^{\prime} has the metric approximation property, the map Φ in (24) is injective and so $\left(\widehat{\bigotimes}_{j=1}^{n+1} E_{j}, \alpha_{\mathbf{r}}\right)=$ $\mathfrak{N}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}^{\prime}, E_{n+1}\right)$.

Proof. Since we have actually $\Phi \in \mathcal{L}\left(\left(\widehat{\bigotimes}_{j=1}^{n+1} E_{j}, \alpha_{\mathbf{r}}\right), \mathfrak{N}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}^{\prime}, E_{n+1}\right)\right)$, it is enough to show that this map is injective. Is easy to see that $\bigotimes_{j=1}^{n+1} E_{j}^{\prime} \subset$ $\left(\mathfrak{N}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}^{\prime}, E_{n+1}\right)\right)^{\prime}$. Now theorem 7 implies that the transposed map

$$
\Phi^{\prime}:\left(\mathfrak{N}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}^{\prime}, E_{n+1}\right)\right)^{\prime} \longrightarrow \mathfrak{P}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}, E_{n+1}^{\prime}\right)
$$

has dense range, getting the injectivity of Φ.

4 r-integral multilinear maps

Definition 11 Let $E_{j}, 1 \leq j \leq n$, and F be Banach spaces. A continuous n-linear map T from $\prod_{j=1}^{n} E_{j}$ into F is called \mathbf{r}-integral if $J_{F} T \in\left(\widehat{\bigotimes}_{\alpha_{\mathbf{r}}^{\prime}}\left(E_{1}, E_{2}, \ldots, E_{n}, F^{\prime}\right)\right)^{\prime}$.

The norm of $J_{F} T$ in that dual space is taken as definition of the \mathbf{r}-integral norm $\mathbf{I}_{\mathbf{r}}(T)$ of a map $T \in \mathfrak{I}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}, F\right)$, the set of \mathbf{r}-integral multilinear maps from $\prod_{j=1}^{n} E_{j}$
into F. $\left(\mathfrak{I}_{\mathbf{r}}, \mathbf{I}_{\mathbf{r}}\right)$ turns out to be the maximal ideal of multilinear maps associated to the ($n+1$)-tensor norm $\alpha_{\mathbf{r}}$ in the sense of Defant and Floret (see [2] and theorem 4.5 in [5]). The next theorem gives the prototype of \mathbf{r}-integral maps.

Theorem 12 Given a measure space $(\Omega, \mathcal{A}, \mu)$ and $g \in L^{r_{0}}(\Omega, \mathcal{A}, \mu)$, the canonical multilinear map $D_{g}: \prod_{j=1}^{n} L^{r_{j}^{\prime}}(\Omega, \mathcal{A}, \mu) \longrightarrow L^{r_{n+1}}(\Omega, \mathcal{A}, \mu)$ is \mathbf{r}-integral.

Proof. Let $\mathcal{S}_{j}, 1 \leq j \leq n$ be the subspace of $L^{r_{j}^{\prime}}(\Omega, \mu)$ of simple functions with support of finite measure. Every \mathcal{S}_{j} being dense in $L^{r_{j}^{\prime}}(\Omega, \mu)$, it is enough so see that $D_{g} \in\left(\bigotimes_{\alpha_{\mathrm{r}}^{\prime}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots, \mathcal{S}_{n}, L^{r_{n+1}^{\prime}}(\Omega, \mu)\right)\right)^{\prime}$ (density lemma for ($n+1$)-tensor norms).

Fix $z \in \bigotimes_{\alpha_{r}^{\prime}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots, \mathcal{S}_{n}, L^{r_{n+1}^{\prime}}(\Omega, \mu)\right)$. There exist finite dimensional subspaces $M_{j} \subset \mathcal{S}_{j}, 1 \leq j \leq n$ generated by the characteristic functions $\left\{\chi_{B_{k}}\right\}_{k=1}^{h}$ of a finite family of pairwise disjoints sets of finite measure $\left\{B_{k}\right\}_{k=1}^{h} \subset \mathcal{A}$ and there exists a finite dimensional subspace $N \subset L^{r_{n+1}^{\prime}}(\Omega, \mu)$ such that $z \in \otimes\left(M_{1}, M_{2}, \ldots, M_{n}, N\right)$. Then for every $f_{j} \in M_{j}, 1 \leq j \leq n$ and $f_{n+1} \in N$, using (4)

$$
\begin{aligned}
& \left\langle\otimes_{j=1}^{n+1} f_{j}, D_{g}\right\rangle=\left\langle\left(\otimes_{j=1}^{n} \sum_{k=1}^{h} \alpha_{j k} \chi_{B_{k}}\right) \otimes f_{n+1}, D_{g}\right\rangle=\sum_{k=1}^{h}\left(\prod_{j=1}^{n} \alpha_{j k}\right)\left\langle\chi_{B_{k}} g, f_{n+1}\right\rangle= \\
& =\sum_{k=1}^{h} \frac{1}{\mu\left(B_{k}\right)^{n}}\left(\prod_{j=1}^{n}\left(\int_{B_{k}} f_{j} d \mu\right)\right)\left\langle\chi_{B_{k}} g, f_{n+1}\right\rangle= \\
& =\sum_{k=1}^{h}\left(\int_{B_{k}}|g|^{r_{0}} d \mu\right)^{\frac{1}{r_{0}}}\left(\prod_{j=1}^{n}\left(\frac{1}{\mu\left(B_{k}\right)^{\frac{1}{r_{j}}}} \int_{B_{k}} f_{j} d \mu\right)\right)\left\langle\frac{\left(\int_{B_{k}}|g|^{r_{0}} d \mu\right)^{-\frac{1}{r_{0}}}}{\mu\left(B_{k}\right)^{\frac{1}{w}}} \chi_{B_{k}} g, f_{n+1}\right\rangle .
\end{aligned}
$$

As a consequence

$$
\begin{equation*}
\forall z \in \bigotimes\left(M_{1}, M_{2}, \ldots, M_{n}, N\right) \quad\left\langle z, D_{g}\right\rangle=\langle z, V\rangle \tag{25}
\end{equation*}
$$

where we have defined

$$
V:=\sum_{k=1}^{h}\left(\int_{B_{k}}|g|^{r_{0}} d \mu\right)^{\frac{1}{r_{0}}}\left(\otimes_{j=1}^{n} \varphi_{j k}\right) \otimes \frac{\left(\int_{B_{k}}|g|^{r_{0}} d \mu\right)^{-\frac{1}{r_{0}}}}{\mu\left(B_{k}\right)^{\frac{1}{w}}} \chi_{B_{k}} g
$$

and where $\varphi_{j k}$ is the class in $L^{r_{j}}(\Omega, \mu) / M_{j}^{\perp}=M_{j}^{\prime}$ of the function $\mu\left(B_{k}\right)^{-\frac{1}{r_{j}}} \chi_{B_{k}}$ for every $\forall 1 \leq j \leq n, \quad 1 \leq k \leq h$. Moreover, (the class of) $\chi_{B_{k}} g \in N^{\prime}$ for every $1 \leq k \leq h$ since $\chi_{B_{k}} g \in L^{r_{0}}(\Omega, \mu)$ and by (7) we obtain $\chi_{B_{k}} g \in L^{r_{n+1}}(\Omega, \mu), B_{k}$ being of finite measure.

Note that, by finite dimensionality

$$
\begin{equation*}
V \in \bigotimes_{\alpha_{\mathbf{r}}}\left(M_{1}^{\prime}, M_{2}^{\prime}, \ldots, M_{n}^{\prime}, N^{\prime}\right)=\left(\bigotimes_{\alpha_{\mathbf{r}}^{\prime}}\left(M_{1}, M_{2}, \ldots, M_{m}, N\right)\right)^{\prime} . \tag{26}
\end{equation*}
$$

Now we perform some computations. The first one is

$$
\begin{equation*}
\pi_{r_{0}}\left(\left(\left(\int_{B_{k}}|g|^{r_{0}} d \mu\right)^{\frac{1}{r_{0}}}\right)_{k=1}^{h}\right)=\left(\sum_{k=1}^{h} \int_{B_{k}}|g|^{r_{0}} d \mu\right)^{\frac{1}{r_{0}}}=\|g\|_{L^{r_{0}}(\Omega)} \tag{27}
\end{equation*}
$$

In second time, for every $1 \leq j \leq n$, using (4) and Hölder's inequality, we obtain

$$
\begin{align*}
& \varepsilon_{r_{j}^{\prime}}\left(\left(\varphi_{j, k}\right)_{k=1}^{h}\right)=\sup _{\|f\|_{L^{r_{j}^{\prime}(\Omega)}} \leq 1}\left(\sum_{k=1}^{h} \frac{1}{\mu\left(B_{k}\right)^{\frac{r_{j}^{\prime}}{r_{j}}}}\left(\int_{B_{k}} f d \mu\right)^{r^{r_{j}^{\prime}}}\right)^{\frac{1}{r_{j}^{\prime}}} \leq \\
& \quad \leq \sup _{\|f\|_{L^{r_{j}^{\prime}}}}\left(\sum_{k=1}^{h} \frac{1}{\mu\left(B_{k}\right)^{\frac{r_{j}^{\prime}}{r_{j}}}}\left(\int_{B_{k}}|f|^{r_{j}^{\prime}} d \mu\right) \mu\left(B_{k}\right)^{\frac{r_{j}^{\prime}}{r_{j}}}\right)^{\frac{1}{r_{j}^{\prime}}} \leq \\
& \leq \sup _{\|f\|_{L^{r_{j}^{\prime}}(\Omega)} \leq 1}\left(\sum_{k=1}^{h} \int_{B_{k}}|f|^{r_{j}^{\prime}} d \mu\right)^{\frac{1}{r_{j}^{\prime}}}=\sup _{\|f\|_{L^{\prime}}^{r_{j}} \leq 1} \leq 1\| \|_{L^{r_{j}^{\prime}}}=1 . \tag{28}
\end{align*}
$$

Finally, by Hölder's inequality and (6) we have

$$
\begin{gather*}
\varepsilon_{r_{n+1}^{\prime}}\left(\left(\mu\left(B_{k}\right)^{-\frac{1}{w}}\left(\int_{B_{k}}|g|^{r_{0}} d \mu\right)^{-\frac{1}{r_{0}}} \chi_{B_{k}} g\right)_{k=1}^{h}\right)= \\
=\sup _{\|f\|_{L^{r_{n+1}(\Omega)}} \leq 1}\left(\sum_{k=1}^{h} \mu\left(B_{k}\right)^{-\frac{r_{n+1}^{\prime}}{w}}\left(\int_{B_{k}}|g|^{r_{0}} d \mu\right)^{-\frac{r_{n+1}^{\prime}}{r_{0}}}\left(\int_{B_{k}} g f d \mu\right)^{r_{n+1}^{\prime}}\right)^{\frac{1}{r_{n+1}^{\prime}}} \leq \\
\leq \sup _{\|f\|_{L^{r_{n+1}^{\prime}(\Omega)}} \leq 1}\left(\sum_{k=1}^{h} \int_{B_{k}}|f|^{r_{n+1}^{\prime}} d \mu\right)^{\frac{1}{r_{n+1}^{\prime}}}=\sup _{\|f\|_{L^{r_{n+1}^{\prime}(\Omega)}}^{\prime} \leq 1}\left(\int_{\Omega}|f|^{r_{n+1}^{\prime}} d \mu\right)^{\frac{1}{r_{n+1}^{\prime}}}=1 . \tag{29}
\end{gather*}
$$

Then, by (25), (26), (27), (28) and (29)

$$
\left|\left\langle z, D_{g}\right\rangle\right| \leq \alpha_{\mathbf{r}}^{\prime}\left(z ; \bigotimes\left(M_{1}, M_{2}, \ldots, M_{n}, N\right)\right) \alpha_{\mathbf{r}}\left(V ; \bigotimes\left(M_{1}^{\prime}, M_{2}^{\prime}, \ldots, M_{n}^{\prime}, N^{\prime}\right)\right) \leq
$$

$$
\leq \alpha_{\mathbf{r}}^{\prime}\left(z ; \bigotimes\left(M_{1}, M_{2}, \ldots, M_{n}, N\right)\right)\|g\|_{L^{r_{0}(\Omega)}}
$$

and, $\alpha_{\mathbf{r}}^{\prime}$ being a finite generated $(n+1)$-tensor norm,

$$
\left|\left\langle z, D_{g}\right\rangle\right| \leq \alpha_{\mathbf{r}}^{\prime}\left(z ; \bigotimes\left(\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots, \mathcal{S}_{n}, L^{r_{n+1}}(\Omega, \mu)\right)\|g\|_{L^{r_{0}(\Omega)}}\right.
$$

which means $\mathbf{I}_{\mathbf{r}}\left(D_{g}\right) \leq\|g\|_{L^{r_{0}(\Omega)}}$.
To find a characterization of \mathbf{r}-integral maps we need to use ultraproducts $\left(E_{\gamma}\right)_{\mathcal{U}}$ of a given family $\left\{E_{\gamma}, \gamma \in \mathfrak{G}\right\}$ of Banach spaces over an ultrafilter \mathcal{U} on the index set \mathfrak{G}. For this topic our main reference is [17]. We use the natural notation $\left(x_{\gamma}\right)_{\mathcal{U}}$ for every element in $\left(E_{\gamma}\right)_{\mathcal{U}}$.

Given a family $\left\{T_{\gamma} \in \mathcal{L}^{n}\left(\prod_{j=1}^{n} E_{\gamma}^{j}, F_{\gamma}\right), \mid \gamma \in \mathfrak{G}\right\}$ of maps between the cartesian product $\prod_{j=1}^{n} E_{\gamma}^{j}$ of Banach spaces E_{γ}^{j} and $F_{\gamma}, 1 \leq j \leq n, \gamma \in \mathfrak{G}$, such that $\sup _{\gamma \in \mathfrak{G}}\left\|T_{\gamma}\right\|<\infty$, there is a canonical n-linear continuous ultraproduct map $\left(T_{\gamma}\right)_{\mathcal{U}}$ from the ultraproduct $\left(\prod_{j=1}^{n} E_{\gamma}^{j}\right)_{\mathcal{U}}$ into the ultraproduct $\left(F_{\gamma}\right)_{\mathcal{U}}$ such that for every $\mathbf{x}:=\left(\left(x_{\gamma}^{j}\right)_{j=1}^{n}\right)_{\mathcal{U}} \in\left(\prod_{j=1}^{n} E_{\gamma}^{j}\right)_{\mathcal{U}}$ we have $\left(T_{\gamma}\right)_{\mathcal{U}}(\mathbf{x})=\left(T_{\gamma}\left(\left(x_{\gamma}^{j}\right)_{j=1}^{n}\right)\right)_{\mathcal{U}}$. The main result we shall need is the following factorization theorem:

Lemma 13 Consider a family of canonical maps $D_{g_{\gamma}}: \prod_{j=1}^{n} \ell^{r_{j}^{\prime}} \longrightarrow \ell^{r_{n+1}}, \gamma \in \mathfrak{G} \neq$ \emptyset defined by a family of elements $\left\{g_{\gamma} \mid \gamma \in \mathfrak{G}\right\} \subset \ell^{r_{0}}$ such that $0<\sup _{\gamma \in \mathfrak{G}}\left\|D_{g_{\gamma}}\right\|<$ ∞. There exist a decomposable measure space $(\Omega, \mathcal{M}, \mu)$, a function $g \in L^{r_{0}}(\Omega, \mathcal{M}, \mu)$ and order onto isometries $\mathfrak{X}_{j}:\left(\ell^{r_{j}^{\prime}}\right)_{\mathcal{U}} \longrightarrow L^{r_{j}^{\prime}}(\Omega, \mathcal{M}, \mu), 1 \leq j \leq n, \mathfrak{X}_{0}:\left(\ell^{r_{0}}\right)_{\mathcal{U}} \longrightarrow$ $L^{r_{0}}(\Omega, \mathcal{M}, \mu)$ and $\mathfrak{X}_{n+1}:\left(\ell^{r_{n+1}}\right)_{\mathcal{U}} \longrightarrow L^{r_{n+1}}(\Omega, \mathcal{M}, \mu)$ such that the diagram

$$
\begin{aligned}
&\left(\prod_{j=1}^{n} \ell^{r_{j}^{\prime}}\right)_{\mathcal{U}} \longrightarrow \\
&\left.\left.\left(\mathfrak{X}_{j}\right)_{j=1}^{n}\right|_{g_{\gamma}}\right)_{\mathcal{U}}\left(\ell^{r_{n+1}}\right)_{\mathcal{U}} \\
& \prod_{j=1}^{n} L^{r_{j}^{\prime}}(\Omega) \longrightarrow \mathfrak{X}_{n+1}^{-1} \\
& D_{g} L^{r_{n+1}}(\Omega) .
\end{aligned}
$$

is commutative. Moreover, $\left\|D_{g}\right\|=\left\|\left(D_{g_{\gamma}}\right) \mathcal{U}\right\|$.
Proof. By (5) and a factorization result of Raynaud, [[15], theorem 5.1] there are a decomposable measure space $(\Omega, \mathcal{M}, \mu)$ and isometric order isomorphisms

$$
\mathfrak{X}_{0}:\left(\ell^{r_{0}}\right)_{\mathcal{U}} \longrightarrow L^{r_{0}}(\Omega, \mathcal{M}, \mu), \quad \mathfrak{X}_{j}:\left(\ell^{r_{j}^{\prime}}\right)_{\mathcal{U}} \longrightarrow L^{r_{j}^{\prime}}(\Omega, \mathcal{M}, \mu), 1 \leq j \leq n,
$$

and $\mathfrak{X}_{n+1}:\left(\ell^{r_{n+1}}\right)_{\mathcal{U}} \longrightarrow L^{r_{n+1}}(\Omega, \mathcal{M}, \mu)$ such that, \mathfrak{M}_{γ} being the map corresponding to $\gamma \in \mathfrak{G}$ (recall the notations introduced in section 1), we have $\left(\mathfrak{M}_{\gamma}\right)_{\mathcal{U}}=\mathfrak{X}_{n+1}^{-1} \circ$ $\mathfrak{M}_{\mu} \circ\left(\left(\mathfrak{X}_{j}\right)_{j=1}^{n}\right)$. The lemma follows taking $g=\mathfrak{X}_{0}\left(\left(g_{\gamma}\right) \mathcal{U}\right)$.

Now we can obtain the following characterization:

Theorem 14 Let $E_{j}, 1 \leq j \leq n$ and F be Banach spaces and $T \in \mathcal{L}^{n}\left(\prod_{j=1}^{n} E_{j}, F\right)$. The following are equivalent:

1) T is \mathbf{r}-integral.
2) $J_{F} T$ can be factorized as

where $A_{j} \in \mathcal{L}\left(E_{j}, L^{r_{j}^{\prime}}(\Omega, \mathcal{M}, \mu)\right), 1 \leq j \leq n, C \in \mathcal{L}\left(L^{r_{n+1}}(\Omega, \mathcal{M}, \mu), F^{\prime \prime}\right)$ and D_{g} is the multilinear diagonal operator corresponding to some $g \in L^{r_{0}}(\Omega, \mathcal{M}, \mu)$. Moreover

$$
\begin{equation*}
\mathbf{I}_{\mathbf{r}}(T)=\inf \left\|D_{g}\right\|\|C\| \prod_{j=1}^{n}\left\|A_{j}\right\| \tag{31}
\end{equation*}
$$

taking the infimum over all factorizations as in the previous diagram.
3) $J_{F} T$ can be factorized as above but $(\Omega, \mathcal{M}, \mu)$ being a finite measure space and $g=\chi_{\Omega}$. Formula (31) holds too taking the infimum over the factorizations of that type.

Proof. 1) $\Longrightarrow 2$). This can be done using standard methods with help of theorem 9 and lemma 13 (see for instance [10] for a detailed development of the method, used in a similar framework).
$2) \Longrightarrow 3$). Given $\varepsilon>0$, select a factorization of type (30) with $g \in L^{r_{0}}(\Omega, \mathcal{M}, \mu)$ and such that

$$
\begin{equation*}
\|g\|_{L^{r_{0}}(\Omega, \mu)}\|C\| \prod_{j=1}^{n}\left\|A_{j}\right\| \leq \mathbf{I}_{\mathbf{r}}(T)+\varepsilon \tag{32}
\end{equation*}
$$

After projection onto the sectional subspaces $L^{r_{j}^{\prime}}(\operatorname{Supp}(g)), 1 \leq j \leq n$ if necessary, we can assume that $\Omega=\operatorname{Supp}(g)$. Consider the new finite measure ν on (Ω, \mathcal{M}) defined by

$$
\forall M \in \mathcal{M} \quad \nu(M)=\int_{M}|g|^{r_{0}} d \mu
$$

and the mappings

$$
\forall 1 \leq j \leq n \quad H_{j}: f_{j} \in L^{r_{j}^{\prime}}(\Omega, \mu) \longrightarrow H_{j}\left(f_{j}\right)=f_{j}|g|^{-\frac{r_{0}}{r_{j}^{\prime}}} \in L^{r_{j}^{\prime}}(\Omega, \nu)
$$

and

$$
H_{n+1}: f \in L^{r_{n+1}}(\Omega, \mu) \longrightarrow H_{n+1}(f)=f|g|^{-\frac{r_{0}}{r_{n+1}}} \in L^{r_{n+1}}(\Omega, \nu) .
$$

By Radon-Nikodym's theorem

$$
\begin{equation*}
\left\|H_{n+1}(f)\right\|_{L^{r_{n+1}(\Omega, \nu)}}=\|f\|_{L^{r_{n+1}(\Omega, \mu)}}, \quad\left\|H_{j}\left(f_{j}\right)\right\|_{L^{r_{j}^{\prime}}(\Omega, \nu)}=\left\|f_{j}\right\|_{L^{r_{j}^{\prime}}(\Omega, \mu)}, 1 \leq j \leq n \tag{33}
\end{equation*}
$$

and for every $\left(f_{j}\right)_{j=1}^{n} \in \prod_{j=1}^{n} L^{r_{j}^{\prime}}(\Omega, \mu)$, using (2)

$$
\begin{gather*}
\left(H_{n+1}^{-1} \circ D_{\chi_{\Omega}} \circ\left(H_{j}\right)_{j=1}^{n}\right)\left(\left(f_{j}\right)_{j=1}^{n}\right)=|g|^{\frac{r_{0}}{r_{n+1}}} \prod_{j=1}^{n} f_{j}|g|^{-\frac{r_{0}}{r_{j}^{\prime}}}=|g|^{r_{0}\left(\frac{1}{r_{n+1}}-\sum_{j=1}^{n} \frac{1}{r_{j}^{\prime}}\right)} \prod_{j=1}^{n} f_{j}= \\
=|g|^{r_{0}\left(\frac{1}{r_{n+1}}-1+\frac{1}{r_{0}}+\frac{1}{r_{n+1}^{\prime}}\right)} \prod_{j=1}^{n} f_{j}=g \prod_{j=1}^{n} f_{j}=D_{g}\left(\left(f_{j}\right)_{j=1}^{n}\right) . \tag{34}
\end{gather*}
$$

As $\chi_{\Omega} \in L^{r_{0}}(\Omega, \nu)$, joining the factorization (34) with the initial one we get our goal and moreover, by (33) and (32)

$$
\begin{align*}
& \mathbf{I}_{\mathbf{r}}(T) \leq\left\|C \circ H_{n+1}^{-1}\right\|\left\|D_{\chi_{\Omega}}\right\| \prod_{j=1}^{n}\left\|H_{j} \circ A_{j}\right\| \leq \\
\leq & \|C\|\left\|H_{n+1} \circ D_{g} \circ H_{j}^{-1}\right\| \prod_{j=1}^{n}\left\|A_{j}\right\| \leq \mathbf{I}_{\mathbf{r}}(T)+\varepsilon \tag{35}
\end{align*}
$$

$3) \Longrightarrow 1$. It is immediate by theorem 12 and the ideal properties of multilinear r-integral operators.

5 Applications to reflexivity

Previous results allows us to obtain some information about the reflexivity of completed tensor products of type $\alpha_{\mathbf{r}}$.

Theorem 15 Let $E_{j}, 1 \leq j \leq n \in \mathbb{N}$ and F be reflexive Banach spaces such that $E_{j}^{\prime}, 1 \leq j \leq n$ and F^{\prime} have the metric approximation property. Given an admissible $(n+2)$-pla \mathbf{r}, the space $\widehat{\bigotimes}_{\alpha_{\mathbf{r}}}\left(E_{1}, E_{2}, \ldots, E_{n}, F\right)$ is reflexive if and only if

$$
\begin{equation*}
\mathfrak{N}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}^{\prime}, F\right)=\mathfrak{I}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}^{\prime}, F\right) \tag{36}
\end{equation*}
$$

Proof. If (36) holds, by theorem 7 and corollary 10 we obtain

$$
\begin{gathered}
\left(\widehat{\bigotimes}_{\alpha_{\mathbf{r}}}\left(E_{1}, E_{2}, \ldots, E_{n}, F\right)\right)^{\prime \prime}=\left(\mathfrak{P}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}, F^{\prime}\right)\right)^{\prime}=\left(\widehat{\bigotimes}_{\alpha_{\mathbf{r}}^{\prime}}\left(E_{1}^{\prime}, E_{2}^{\prime}, \ldots, E_{n}^{\prime}, F^{\prime}\right)\right)^{\prime}= \\
=\mathfrak{I}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}^{\prime}, F\right)=\mathfrak{N}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}^{\prime}, F\right)=\widehat{\bigotimes}_{\alpha_{\mathbf{r}}}\left(E_{1}, E_{2}, \ldots, E_{n}, F\right) .
\end{gathered}
$$

Conversely, if $\widehat{\otimes}_{\alpha_{\mathbf{r}}}\left(E_{1}, E_{2}, \ldots, E_{n}, F\right)$ is reflexive, by definition of \mathbf{r}-integral maps, theorem 7 and corollary 10 we obtain
$\mathfrak{I}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}^{\prime}, F\right)=\left(\mathfrak{P}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}, F^{\prime}\right)\right)^{\prime}=\widehat{\bigotimes}_{\alpha_{\mathbf{r}}}\left(E_{1}, E_{2}, \ldots, E_{n}, F\right)=\mathfrak{N}_{\mathbf{r}}\left(\prod_{j=1}^{n} E_{j}^{\prime}, F\right)$.
We apply theorem 15 to characterize the reflexivity of $\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right)$. First, we need a lemma.

Lemma 16 Let $\mathbf{r}=\left(r_{j}\right)_{j=0}^{n+1}$ an admissible $(n+2)$-pla verifying $r_{0}=\infty$ and let $1<u_{j}^{\prime} \leq r_{j}^{\prime}$ for every $1 \leq j \leq n+1$. Then there exists a non compact map $T \in \mathfrak{I}_{\mathbf{r}}\left(\prod_{j=1}^{n} \ell^{u_{j}^{\prime}}, \ell^{u_{n+1}}\right)$.

Proof. Let $I_{1}:=\left[0, \frac{1}{2}\left[\right.\right.$ and $I_{m}:=\left[\sum_{i=1}^{m} \frac{1}{2^{i}}, \sum_{i=1}^{m+1} \frac{1}{2^{i}}[\right.$ if $m>1$. The map $A_{j}:\left(\beta_{i}\right) \in \ell^{u_{j}^{\prime}} \longrightarrow \sum_{m=1}^{\infty} \beta_{m} \mu\left(I_{m}\right)^{-\frac{1}{r_{j}^{\prime}}} \quad \chi_{I_{m}} \in L^{r_{j}^{\prime}}([0,1], \mu), 1 \leq j \leq n(\mu$ is the Lebesgue measure on $[0,1]$), is well defined and continuous since

$$
\left\|A_{j}\left(\left(\beta_{m}\right)\right)\right\|=\left(\sum_{m=1}^{\infty} \frac{\left|\beta_{m}\right|^{r_{j}^{\prime}}}{\mu\left(I_{m}\right)} \mu\left(I_{m}\right)\right)^{\frac{1}{r_{j}^{\prime}}} \leq\left\|\left(\beta_{m}\right)\right\|_{\ell^{u_{j}^{\prime}}}
$$

Take $g=\chi_{[0,1]} \in L^{\infty}([0,1], \mu)$. Consider now the closed linear subspace F generated by the set $\left\{\chi_{I_{m}}, m \in \mathbb{N}\right\}$ in $L^{r_{n+1}}([0,1])$. The map

$$
Q: f \in L^{r_{n+1}}([0,1]) \longrightarrow \sum_{m=1}^{\infty} \frac{1}{\mu\left(I_{m}\right)}\left(\int_{I_{m}} f d \mu\right) \chi_{I_{m}} \in F
$$

is continuous since, by Hölder's inequality

$$
\|Q(f)\|_{F}=\left(\sum_{m=1}^{\infty}\left(\int_{I_{m}} f d \mu\right)^{r_{n+1}} \mu\left(I_{m}\right)^{1-r_{n+1}}\right)^{\frac{1}{r_{n+1}}} \leq
$$

$$
\leq\left(\sum_{m=1}^{\infty}\left(\int_{I_{m}}|f|^{r_{n+1}} d \mu\right) \mu\left(I_{m}\right)^{\frac{r_{n+1}}{r_{n+1}^{*}}+1-r_{n+1}}\right)^{\frac{1}{r_{n+1}}}=\|f\|_{L^{r_{n+1}([0,1])}}
$$

It is immediate that Q is a projection from $L^{r_{n+1}}([0,1])$ onto F. Finally consider the map

$$
C: f=\sum_{m=1}^{\infty} \beta_{m} \chi_{I_{m}} \in F \longrightarrow\left(\beta_{m} \mu\left(I_{m}\right)^{\frac{1}{r_{n+1}}}\right) \in \ell^{u_{n+1}}
$$

is continuous since $r_{n+1} \leq u_{n+1}$ and

$$
\|C(f)\|_{\ell^{u_{n+1}}}=\left(\sum_{m=1}^{\infty}\left|\beta_{m}\right|^{u_{n+1}} \mu\left(I_{m}\right)^{\frac{u_{n+1}}{r_{n+1}}}\right)^{\frac{1}{u_{n+1}}} \leq\left(\sum_{m=1}^{\infty}\left|\beta_{m}\right|^{r_{n+1}} \mu\left(I_{m}\right)\right)^{\frac{1}{r_{n+1}}}=\|f\|_{F}
$$

Hence $T:=C \circ Q \circ D_{g} \circ\left(\left(A_{j}\right)_{j=1}^{n}\right) \in \mathfrak{I}_{\mathbf{r}}\left(\prod_{j=1}^{n} \ell^{u_{j}^{\prime}}, \ell^{u_{n+1}}\right)$ but T is not compact since, using (2)

$$
\forall m \in \mathbb{N} \quad T\left(\left(\mathbf{e}_{m}, \mathbf{e}_{m}, \ldots, \mathbf{e}_{m}\right)\right)=\frac{1}{\mu\left(I_{m}\right)^{\frac{1}{r_{n+1}}}} \mu\left(I_{m}\right)^{\frac{1}{r_{n+1}}} \mathbf{e}_{m}=\mathbf{e}_{m}
$$

We can state now the main result of this section:
Theorem 17 If $1<u_{j}<\infty$ for every $1 \leq j \leq n+1,\left(\widehat{\bigotimes}_{i=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right)$ is reflexive if and only if at least one of the following set of conditions holds:

S1). There is $1 \leq j_{0} \leq n+1$ such that $u_{j}^{\prime}>2$ and $u_{j}^{\prime}>r_{j}^{\prime}$ for all $1 \leq j \neq j_{0} \leq$ $n+1$.

S2). There exists $1 \leq j_{0} \leq n+1$ such that $u_{j}^{\prime}>2$ for every $1 \leq j \neq j_{0} \leq n+1$ and

$$
\begin{equation*}
\frac{1}{r_{j_{0}}}>\sum_{1 \leq j \neq j_{0}}^{n+1} \frac{1}{u_{j}^{\prime}} . \tag{37}
\end{equation*}
$$

and moreover, there exists $1 \leq j_{1} \neq j_{0} \leq n+1$ such that $r_{j}^{\prime} \geq 2$ for every $1 \leq j \neq$ $j_{1} \leq n+1$.

S3). We have $u_{j}^{\prime}>2$ for every $1 \leq j \leq n+1$, and there exists $1 \leq j_{0} \leq n+1$ such that $r_{j_{0}}^{\prime} \leq 2$ and

$$
\begin{equation*}
\frac{1}{2}>\sum_{1 \leq j \neq j_{0}}^{n+1} \frac{1}{u_{j}^{\prime}} \tag{38}
\end{equation*}
$$

S4). There is $1 \leq j_{0} \leq n+1$ such that $u_{j_{0}}^{\prime}=2, r_{j_{0}}^{\prime} \leq 2, u_{j}^{\prime}>2$ for every $1 \leq j \neq j_{0} \leq n+1$ and

$$
\begin{equation*}
\frac{1}{2}>\sum_{1 \leq j \neq j_{0}}^{n+1} \frac{1}{u_{j}^{\prime}} . \tag{39}
\end{equation*}
$$

Proof. Sufficient conditions. Case S1). After the transposition $j_{0} \longrightarrow$ $n+1, n+1 \longrightarrow j_{0}$ if necessary, we can assume $j_{0}=n+1$ and so $u_{j}^{\prime}>2$ and $u_{j}^{\prime}>r_{j}^{\prime}$ for every $1 \leq j \leq n$.

By theorem 14, given $T \in \mathfrak{I}_{\mathbf{r}}\left(\prod_{j=1}^{n} \ell^{u_{j}^{\prime}}, \ell^{u_{n+1}}\right)$ there are a finite measure space $(\Omega, \mathcal{M}, \mu)$ and mappings $A_{j} \in \mathcal{L}\left(\ell^{u_{j}^{\prime}}, L^{r_{j}^{\prime}}(\Omega, \mu)\right), 1 \leq j \leq n$ and $C \in \mathcal{L}\left(L^{r_{n+1}}(\Omega, \mu), \ell^{v}\right)$ such that $T=C \circ D_{\chi_{\Omega}} \circ\left(A_{j}\right)_{j=1}^{n}$. By Rosenthal's result [[16],theorem A.2] every A_{j} is compact, and by the metric approximation property of $\ell^{u_{j}}$, there is a bounded sequence

$$
\begin{equation*}
\left\{A_{j m}=\sum_{k=1}^{k_{j m}} \mathbf{x}_{j k} \otimes f_{j m}^{k}\right\}_{m=1}^{\infty} \subset \ell^{u_{j}} \otimes L^{r_{j}^{\prime}}(\Omega, \mu) \tag{40}
\end{equation*}
$$

such that

$$
\begin{equation*}
\forall 1 \leq j \leq n \quad \lim _{m \rightarrow \infty}\left\|A_{j}-A_{j m}\right\|_{\mathcal{L}\left(e^{u_{j}^{\prime}}, L_{j}^{r_{j}^{\prime}}(\Omega, \mu)\right)}=0 . \tag{41}
\end{equation*}
$$

Define $T_{m}:=C \circ D_{\chi_{\Omega}} \circ\left(\left(A_{j m}\right)_{j=1}^{n}\right)$ for every $m \in \mathbb{N}$. Arguing as in theorem 7 and using theorem 14 we obtain for every $1 \leq j \leq n$ and $m \in \mathbb{N}$

$$
\left\{C \circ D_{\chi_{\Omega}} \circ\left(A_{1 m}, \ldots, A_{j-1, m}, A_{j}-A_{j m}, A_{j+1, m}, \ldots, A_{n m}\right)\right\}_{m=1}^{\infty} \subset \Im_{\mathbf{r}}\left(\prod_{j=1}^{n} \ell^{u_{j}^{\prime}}, \ell^{u_{n+1}}\right)
$$

and by (41)

$$
\begin{align*}
& \mathbf{I}_{\mathbf{r}}\left(T-T_{m}\right) \leq \sum_{j=1}^{n} \mathbf{I}_{\mathbf{r}}\left(C \circ D_{\chi_{\Omega}} \circ\left(A_{1 m}, \ldots, A_{j-1, m}, A_{j}-A_{j m}, A_{j+1}, \ldots, A_{n}\right)\right) \leq \\
& \quad \leq \mu(\Omega)^{\frac{1}{r_{0}}}\|C\| \sum_{j=1}^{n}\left\|A_{j}-A_{j m}\right\|\left(\prod_{1 \leq s<j}\left\|A_{s m}\right\|\right)\left(\prod_{j<s \leq n}\left\|A_{s}\right\|\right) \tag{42}
\end{align*}
$$

which approach to 0 if $m \longrightarrow \infty$. But actually we have

$$
T_{m}=\sum_{k=1}^{k_{j m}}\left(\otimes_{j=1}^{n} \mathbf{x}_{j k}\right) \otimes\left(C \circ D_{\chi_{\Omega}} \circ\left(\left(f_{j m}^{k}\right)\right)\right) \in \mathfrak{N}_{\mathbf{r}}\left(\prod_{j=1}^{n} \ell^{u_{j}^{\prime}}, \ell^{u_{n+1}}\right) .
$$

It follows from theorem 7 that $\mathbf{N}_{\mathbf{r}}\left(T_{m}-T_{s}\right)=\mathbf{I}_{\mathbf{r}}\left(T_{m}-T_{s}\right)$ for $m, s \in \mathbb{N}$ and using (42), it turns out that $\left\{T_{m}\right\}_{m=1}^{\infty}$ is a Cauchy sequence in $\mathfrak{N}_{\mathbf{r}}\left(\prod_{j=1}^{n} \ell^{u_{j}^{\prime}}, \ell^{u_{n+1}}\right)$. Then $T \in \mathfrak{N}_{\mathbf{r}}\left(\prod_{j=1}^{n} \ell^{u_{j}^{\prime}}, \ell^{u_{n+1}}\right)$ and by theorem $15\left(\widehat{\bigotimes}_{i=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right)$ is reflexive.

Case S2). Let $1 \leq j_{0} \neq j_{1} \leq n+1$ such that $u_{j}^{\prime}>2,1 \leq j \neq j_{0} \leq n+1$, $r_{j}^{\prime} \geq 2,1 \leq j \neq j_{1} \leq n+1$ and (37) holds. In a first step we are going to see that we can assume $r_{j_{1}}^{\prime} \geq 2$ too.

Consider the case that $r_{j_{1}}^{\prime}<2$. In such a case we have $u_{j_{1}}^{\prime}>2$ because $j_{0} \neq j_{1}$. If $j_{1}=n+1$, defining $s_{n+1}^{\prime}=2, s_{j}^{\prime}:=r_{j}^{\prime}, 1 \leq j \leq n$ and $\frac{1}{s_{0}}:=\frac{1}{r_{0}}+\frac{1}{r_{n+1}^{\prime}}-\frac{1}{2}$ we obtain an admissible $(n+2)$-pla $\mathbf{s}=\left(s_{j}\right)_{j=0}^{n+1}$ verifying (37) still and such that, $\ell^{u_{n+1}}$ having cotype 2 , by corollary 4, we have $\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right) \approx\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{s}}\right)$. If $1 \leq j_{1} \leq n$, a transposition $j_{1} \rightarrow n+1, n+1 \rightarrow j_{1}$ would reduce the situation to the just considered case. So, in the formulation of $S 1$) we can assume that $r_{j}^{\prime} \geq 2,1 \leq j \leq n+1$.

After the eventual transposition $j_{0} \longrightarrow n+1, n+1 \longrightarrow j_{0}$ we can assume that $u_{j}^{\prime}>2$ for every $1 \leq j \leq n, r_{j}^{\prime} \geq 2$ for every $1 \leq j \leq n+1$ and (37) holds for $j_{0}=n+1$. Using (5) this last condition can be written in the way

$$
\begin{equation*}
\frac{1}{r_{0}}+\sum_{\left\{j \mid r_{j}^{\prime}<u_{j}^{\prime}\right\}}^{n}\left(\frac{1}{r_{j}^{\prime}}-\frac{1}{u_{j}^{\prime}}\right)>\sum_{\left\{j \mid r_{j}^{\prime} \geq u_{j}^{\prime}\right\}}^{n}\left(\frac{1}{u_{j}^{\prime}}-\frac{1}{r_{j}^{\prime}}\right) . \tag{43}
\end{equation*}
$$

For every $1 \leq j \leq n$ such that $r_{j}^{\prime} \geq u_{j}^{\prime}$, choose $2 \leq t_{j}^{\prime}<u_{j}^{\prime}$ close enough to u_{j}^{\prime} in order that

$$
\begin{equation*}
\frac{1}{t_{0}}:=\frac{1}{r_{0}}+\sum_{\left\{j \mid r_{j}^{\prime}<u_{j}^{\prime}\right\}}^{n}\left(\frac{1}{r_{j}^{\prime}}-\frac{1}{u_{j}^{\prime}}\right)-\sum_{\left\{j \mid r_{j}^{\prime} \geq u_{j}^{\prime}\right\}}^{n}\left(\frac{1}{t_{j}^{\prime}}-\frac{1}{r_{j}^{\prime}}\right)>0 . \tag{44}
\end{equation*}
$$

Now define $t_{j}^{\prime}:=r_{j}^{\prime}$ if $r_{j}^{\prime}<u_{j}^{\prime}, 1 \leq j \leq n$ and $t_{n+1}:=r_{n+1}$. By (2) we have

$$
\frac{1}{t_{n+1}}=\sum_{j=1}^{n} \frac{1}{t_{j}^{\prime}}+\sum_{\left\{j \mid r_{j}^{\prime}<u_{j}^{\prime}\right\}}^{n}\left(\frac{1}{r_{j}^{\prime}}-\frac{1}{t_{j}^{\prime}}\right)+\sum_{\left\{j \mid r_{j}^{\prime} \geq u_{j}^{\prime}\right\}}^{n}\left(\frac{1}{r_{j}^{\prime}}-\frac{1}{t_{j}^{\prime}}\right)+\frac{1}{r_{0}}
$$

and it turns out that $\mathbf{t}=\left(t_{j}\right)_{j=0}^{n+1}$ is an admissible ($n+2$)-pla such that $2 \leq t_{j}^{\prime}<u_{j}^{\prime}$ and $t_{j}^{\prime} \leq r_{j}^{\prime}$ for every $1 \leq j \leq n$ and moreover, by corollary 5 we have $\left(\bigotimes_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right) \approx$ $\left(\otimes_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{t}}\right)$. Hence by case $\left.S 1\right),\left(\otimes_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right)$ is reflexive.

Case S3). Once again after the transposition $j_{0} \longrightarrow n+1, n+1 \longrightarrow j_{0}$ we can assume that $r_{n+1}^{\prime} \leq 2, u_{j}^{\prime}>2$ for every $1 \leq j \leq n+1$ and (38) holds for $j_{0}=n+1$, or in an equivalent way (by (2)),

$$
\frac{1}{r_{0}}+\frac{1}{r_{n+1}^{\prime}}-\frac{1}{2}+\sum_{\left\{j \mid r_{j}^{\prime}<u_{j}^{\prime}\right\}}^{n}\left(\frac{1}{r_{j}^{\prime}}-\frac{1}{u_{j}^{\prime}}\right)>\sum_{\left\{j \mid r_{j}^{\prime} \geq u_{j}^{\prime}\right\}}^{n}\left(\frac{1}{u_{j}^{\prime}}-\frac{1}{r_{j}^{\prime}}\right) .
$$

Remark that, by (2) we have necessarily $r_{j}^{\prime} \geq 2,1 \leq j \leq n$. Since $\ell^{u_{n+1}}$ has cotype 2 , by corollary 4 there exists an $(n+2)$-pla $\mathbf{s}=\left(s_{j}\right)_{j=0}^{n+1}$ such that $s_{n+1}^{\prime}=2, s_{j}^{\prime}:=$ $r_{j}^{\prime}, 1 \leq j \leq n$ and $\frac{1}{s_{0}}:=\frac{1}{r_{0}}+\frac{1}{r_{n+1}^{\prime}}-\frac{1}{2}$ and $\left(\bigotimes_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{s}}\right) \approx\left(\bigotimes_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right)$. Then $\left(\bigotimes_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{s}}\right)$ is reflexive by the case S 2$)$ and so $\left(\bigotimes_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right)$ does.

Case S4). Assume the existence of $1 \leq j_{0} \leq n+1$ such that $u_{j_{0}}^{\prime}=2, r_{j_{0}}^{\prime} \leq 2$, $u_{j}^{\prime}>2$ for every $1 \leq j \neq j_{0} \leq n+1$ and (39) holds. Consider the admissible $(n+2)$ pla $\mathbf{s}=\left(s_{j}\right)_{j=0}^{n+1}$ such that $s_{j_{0}}:=2, s_{j}:=r_{j}$ for every $1 \leq j \neq j_{0} \leq n+1$ and $\frac{1}{s_{0}}:=$ $\frac{1}{r_{0}}+\frac{1}{r_{j_{0}}^{\prime}}-\frac{1}{2}$. We obtain from Kwapien's generalized theorem and Pietsch's inclusion theorem that $\mathfrak{P}_{\mathbf{r}}\left(\prod_{j=1}^{n} \ell^{u_{j}}, \ell^{u_{n+1}^{\prime}}\right) \subset \mathfrak{P}_{\mathbf{s}}\left(\prod_{j=1}^{n} \ell^{u_{j}}, \ell^{u_{n+1}^{\prime}}\right)$. The reverse inclusion is true by Kwapien's factorization theorem and Maurey's theorem [[2], corollary 3, $\S 31.6]$ because $\ell^{u_{j}}=\ell^{2}$ has cotype 2 and $r_{j_{0}}^{\prime}<2$ give $\mathfrak{P}_{2}\left(\ell^{2}, M\right)=\mathfrak{P}_{r_{j_{0}}}\left(\ell^{2}, M\right)$ for every Banach space M. Then $\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right) \approx\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{s}}\right)$ and $\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{s}}\right)$ is reflexive by (39) and the case $S 2$).

Necessary conditions. We are going to see that $\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right)$ is not reflexive if none of the previous conditions holds. It is enough to consider the following cases.

Case N1). Assume there exist $1 \leq j_{0} \leq n$ such that $u_{j_{0}}^{\prime} \leq 2$ and $1 \leq j_{0} \neq$ $j_{1} \leq n+1$ such that $u_{j_{1}} \geq 2$. After the transposition $j_{1} \longrightarrow n+1, n+1 \longrightarrow j_{1}$ on $\{1,2, \ldots, n+1\}$ if necessary, we can assume that $j_{1}=n+1$, i.e. $u_{n+1} \geq 2$.

For every $1<p<\infty$, let $\left\{R_{p, h}\right\}_{h=1}^{\infty}$ be the sequence of Rademacher functions in $L^{p}([0,1])$. It is well known that the sequence $\left\{R_{p, h}\right\}_{h=1}^{\infty}$ is equivalent to the standard unit basis of ℓ^{2} and its closed linear span X_{p} is complemented in $L^{p}([0,1])$ (Khintchine's inequality and [[12], proposition 5]).

Let $P_{n+1} \in \mathcal{L}\left(L^{r_{n+1}}([0,1]), X_{r_{n+1}}\right)$ be a projection. Let $S_{j_{0}}: \ell^{u_{j_{0}}} \longrightarrow X_{r_{j_{0}}}$ be the continuous linear map such that $S_{j_{0}}\left(\mathbf{e}_{h}\right)=R_{r_{j_{0}}, h}$. On the other hand, for every $1 \leq j \neq j_{0} \leq n$ fix a sequence $\left(\alpha_{j h}\right)_{h=1}^{\infty} \in \ell^{2}$ such that $\alpha_{j 1}=1$ and denote by $S_{j}: \ell^{u_{j}^{\prime}} \longrightarrow X_{r_{j}^{\prime}}$ the continuous linear map such that $S_{j}\left(\mathbf{e}_{h}\right)=\alpha_{j h} R_{r_{j}^{\prime}, h}$ (remark that

$$
\left\|S_{j}\left(\left(\beta_{h}\right)\right)\right\| \leq C_{j}\left\|\left(\alpha_{j h} \beta_{h}\right)\right\|_{\ell^{2}} \leq C_{j}\left\|\left(\alpha_{j h}\right)\right\|_{\ell^{2}}\left\|\left(\beta_{h}\right)\right\|_{\ell^{\infty}} \leq C_{j}\left\|\left(\alpha_{j h}\right)\right\|_{\ell^{2}}\left\|\left(\beta_{h}\right)\right\|_{\ell^{u_{j}^{\prime}}}
$$

for some $C_{j}>0$ by Khintchine's inequality).
Take $g:=\prod_{j=1, j \neq j_{0}}^{n} R_{r_{j}^{\prime}, 1} \in L^{r_{0}}([0,1])$, and consider the well defined map $T_{n+1} \in$ $\mathcal{L}\left(X_{r_{n+1}}, \ell^{u_{n+1}}\right)$ such that $T_{n+1}\left(R_{r_{n+1}, h}\right)=\mathbf{e}_{h}$ for $h \in \mathbb{N}$. Then

$$
T:=T_{n+1} \circ P_{n+1} \circ D_{g} \circ\left(S_{j}\right)_{j=1}^{n}
$$

is \mathbf{r}-integral by theorem 14 . Let $\left\{z_{j 0}, h\right\}_{h=1}^{\infty}:=\left\{\left(a_{1 h}, a_{2 h}, \ldots, a_{n h}\right)\right\}_{h=1}^{\infty} \subset \prod_{j=1}^{n} \ell^{u_{j}^{\prime}}$ such that $a_{j h}=\mathbf{e}_{1}$ if $j \neq j_{0}$ and $a_{j_{0} h}=\mathbf{e}_{h}$, for every $h \in \mathbb{N}$. We obtain $T\left(z_{j_{0}, h}\right)=\mathbf{e}_{h}$ for every $h \in \mathbb{N}$ and so T is not compact. If $r_{0} \neq \infty$, by the remark after theorem 9 we have $T \notin \mathfrak{N}_{\mathbf{r}}\left(\prod_{j=1}^{n} \chi^{\chi_{j}^{\prime}}, \ell^{u_{n+1}}\right)$ and by theorem $15,\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right)$ is not reflexive.

In the case $r_{0}=\infty$ we need to consider several possibilities. First assume that there are $1 \leq j_{2} \neq j_{0} \leq n+1$ and $1 \leq j_{3} \neq j_{2} \leq n+1$ such that $r_{j_{2}}^{\prime} \geq 2$ and $r_{j_{3}}^{\prime} \geq 2$. By corollary 6 there is an admissible $(n+2)$-pla $\mathbf{s}=\left(s_{j}\right)_{j=0}^{n+1}$ such that $s_{0} \neq \infty$ and
$\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right) \approx\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{s}}\right)$. Then by the previous case with $r_{0} \neq \infty$, we see that $\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right)$ is not reflexive.

Finally, having (2) in mind, it remains to consider the case that $r_{j_{0}}^{\prime} \leq 2$ and $n=1$. We are dealing with $\ell^{u_{1}} \widehat{\bigotimes}_{\alpha_{\mathrm{r}}} \ell^{u_{2}}$ where $u_{1}^{\prime} \leq 2, r_{1}^{\prime} \leq 2$ and $u_{2} \geq 2$. By theorems 2 and 7 we have $\left(\ell^{u_{1}} \widehat{\bigotimes}_{\alpha_{\mathrm{r}}} u^{u_{2}}\right)^{\prime}=\ell^{u_{1}^{\prime}} \widehat{\bigotimes}_{\alpha_{\mathrm{r}}^{\prime}} \ell^{u_{2}^{\prime}}$. The set $K:=\left\{\mathbf{e}_{i} \otimes \mathbf{e}_{i}, i \in \mathbb{N}\right\} \subset \ell^{u_{1}^{\prime}} \bigotimes_{\alpha_{\mathrm{r}}^{\prime}} \ell^{u_{2}^{\prime}}$ is bounded. If $\ell^{u_{1}} \widehat{\bigotimes}_{\alpha_{\mathrm{r}}} \ell^{u_{2}}$ were reflexive, $\ell^{u_{1}^{\prime}} \widehat{\bigotimes}_{\alpha_{\mathrm{r}}^{\prime}} \ell^{\prime}{ }_{2}^{\prime}$ would be reflexive too and by Smul'yan's theorem, switching to a suitable subsequence if necessary, we would assume that $\left\{\mathbf{e}_{i} \otimes \mathbf{e}_{i}\right\}_{i=1}^{\infty}$ is weakly convergent to some $z \in \ell^{u_{1}^{\prime}} \widehat{\bigotimes}_{\alpha_{r}^{\prime}}{ }^{u^{\prime}}$. It follows from boundedness of K and the density of $\left[\mathbf{e}_{h}\right]_{h=1}^{\infty} \otimes\left[\mathbf{e}_{h}\right]_{h=1}^{\infty}$ in $\ell^{u_{1}} \widehat{\bigotimes}_{\alpha_{\mathrm{r}}} \ell^{u_{2}}$ that given $T \in \ell^{u_{1}} \widehat{\bigotimes}_{\alpha_{\mathbf{r}}} u^{u_{2}}$ and $\rho>0$, there exist $w \in \bigcup_{k=1}^{\infty}\left[\mathbf{e}_{h}\right]_{h=1}^{k} \otimes\left[\mathbf{e}_{h}\right]_{h=1}^{k}$ and $m_{0} \in \mathbb{N}$ such that

$$
\begin{gathered}
\forall m \geq m_{0} \quad|\langle T, z\rangle| \leq\left|\left\langle T, z-\mathbf{e}_{m} \otimes \mathbf{e}_{m}\right\rangle\right|+\left|\left\langle T-w, \mathbf{e}_{m} \otimes \mathbf{e}_{m}\right\rangle\right|+\left|\left\langle w, \mathbf{e}_{m} \otimes \mathbf{e}_{m}\right\rangle\right| \leq \\
\leq\left|\left\langle T, z-\mathbf{e}_{m} \otimes \mathbf{e}_{m}\right\rangle\right|+\sup _{k \in \mathbb{N}}\left|\left\langle T-w, \mathbf{e}_{k} \otimes \mathbf{e}_{k}\right\rangle\right|+\left|\left\langle w, \mathbf{e}_{m} \otimes \mathbf{e}_{m}\right\rangle\right| \leq \rho
\end{gathered}
$$

because $\left\langle w, \mathbf{e}_{m} \otimes \mathbf{e}_{m}\right\rangle=0$ if m is large enough. Then $z=0$. But we are assuming that $\Im_{\mathbf{r}}\left(\ell^{u_{1}^{\prime}}, \ell^{u_{2}}\right)=\left(\ell^{u_{1}^{\prime}} \widehat{\bigotimes}_{\alpha_{\mathbf{r}}^{\prime}} \ell^{u_{2}^{\prime}}\right)^{\prime}=\ell^{u_{1}} \widehat{\bigotimes}_{\alpha_{\mathbf{r}}} \ell^{u_{2}}$ and so, by the construction made in the case $r_{0} \neq \infty$ there is $T \in \ell^{u_{1}} \widehat{\bigotimes}_{\alpha_{\mathrm{r}}} \ell^{u_{2}}$ such that $\left\langle T\left(\mathbf{e}_{i}\right), \mathbf{e}_{i}\right\rangle=\left\langle\mathbf{e}_{i}, \mathbf{e}_{i}\right\rangle=1$ for every $i \in \mathbb{N}$, a contradiction. Then $\ell^{u_{1}} \widehat{\bigotimes}_{\alpha_{\mathrm{r}}} \ell^{u_{2}}$ is not reflexive.

Case N2). Assume that $u_{j}^{\prime} \geq 2$ for every $1 \leq j \leq n, r_{j}^{\prime} \geq 2$ for every $1 \leq j \leq$ $n+1, u_{n+1}^{\prime} \leq r_{n+1}^{\prime}$ and $\frac{1}{r_{n+1}} \leq \sum_{j=1}^{n} \frac{1}{u_{j}^{\prime}}$, or equivalently (by (5))

$$
\begin{equation*}
\frac{1}{r_{0}}+\sum_{\left\{j \mid r_{j}^{\prime}<u_{j}^{\prime}\right\}}^{n}\left(\frac{1}{r_{j}^{\prime}}-\frac{1}{u_{j}^{\prime}}\right) \leq \sum_{\left\{j \mid r_{j}^{\prime} \geq u_{j}^{\prime}\right\}}^{n}\left(\frac{1}{u_{j}^{\prime}}-\frac{1}{r_{j}^{\prime}}\right) . \tag{45}
\end{equation*}
$$

Given $1 \leq j \leq n$, if $r_{j}^{\prime}<u_{j}^{\prime}$ and $t_{j}^{\prime} \in\left[u_{j}^{\prime}, \infty[\right.$ it turns out that we have

$$
\frac{1}{r_{0}}+\sum_{\left\{j \mid r_{j}^{\prime}<u_{j}^{\prime}\right\}}^{n}\left(\frac{1}{r_{j}^{\prime}}-\frac{1}{t_{j}^{\prime}}\right) \in\left[\frac{1}{r_{0}}+\sum_{\left\{j \mid r_{j}^{\prime}<u_{j}^{\prime}\right\}}^{n}\left(\frac{1}{r_{j}^{\prime}}-\frac{1}{u_{j}^{\prime}}\right), \frac{1}{r_{0}}+\sum_{\left\{j \mid r_{j}^{\prime}<u_{j}^{\prime}\right\}}^{n} \frac{1}{r_{j}^{\prime}}[.\right.
$$

On the other hand, if $r_{j}^{\prime} \geq u_{j}^{\prime}$ and $t_{j}^{\prime} \in\left[u_{j}^{\prime}, r_{j}^{\prime}\right]$ we have

$$
\sum_{\left\{j \mid r_{j}^{\prime} \geq u_{j}^{\prime}\right\}}^{n}\left(\frac{1}{t_{j}^{\prime}}-\frac{1}{r_{j}^{\prime}}\right) \in\left[0, \sum_{\left\{j \mid r_{j}^{\prime} \geq u_{j}^{\prime}\right\}}^{n}\left(\frac{1}{u_{j}^{\prime}}-\frac{1}{r_{j}^{\prime}}\right)\right] .
$$

Then it follows from (45) that we can choose $t_{j}^{\prime} \geq u_{j}^{\prime}$ for every $1 \leq j \leq n$ such that $r_{j}^{\prime}<u_{j}^{\prime}$ and $u_{j}^{\prime} \leq t_{j}^{\prime} \leq r_{j}^{\prime}$ for every $1 \leq j \leq n$ which verifies $u_{j}^{\prime} \leq r_{j}^{\prime}$ in order that

$$
\frac{1}{r_{0}}+\sum_{\left\{j \mid r_{j}^{\prime}<u_{j}^{\prime}\right\}}^{n}\left(\frac{1}{r_{j}^{\prime}}-\frac{1}{t_{j}^{\prime}}\right)=\sum_{\left\{j \mid r_{j}^{\prime} \geq u_{j}^{\prime}\right\}}^{n}\left(\frac{1}{t_{j}^{\prime}}-\frac{1}{r_{j}^{\prime}}\right) .
$$

By (2) we have

$$
\frac{1}{r_{n+1}}=\sum_{j=1}^{n} \frac{1}{t_{j}^{\prime}}+\sum_{\left\{j \mid r_{j}^{\prime}<u_{j}^{\prime}\right\}}^{n}\left(\frac{1}{r_{j}^{\prime}}-\frac{1}{t_{j}^{\prime}}\right)+\sum_{\left\{j \mid r_{j}^{\prime} \geq u_{j}^{\prime}\right\}}^{n}\left(\frac{1}{r_{j}^{\prime}}-\frac{1}{t_{j}^{\prime}}\right)+\frac{1}{r_{0}}=\sum_{j=1}^{n} \frac{1}{t_{j}^{\prime}} .
$$

Taking $t_{0}=\infty$ and $t_{n+1}=r_{n+1}$ we obtain an admissible $(n+2)$-pla $\mathbf{t}=\left(t_{j}\right)_{j=0}^{n+2}$ such that $t_{j}^{\prime} \geq u_{j}^{\prime} \geq 2$ for every $1 \leq j \leq n$. By corollary 5 we have $\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right) \approx$ $\left(\widehat{\otimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{t}}\right)$ and so $\mathfrak{I}_{\mathbf{t}}\left(\prod_{j=1}^{n} \ell^{u_{j}^{\prime}}, \ell^{u_{n+1}}\right)=\mathfrak{I}_{\mathbf{r}}\left(\prod_{j=1}^{n} \ell^{u_{j}^{\prime}}, \ell^{u_{n+1}}\right)$. But by lemma 16 there is a non compact map $S \in \mathfrak{I}_{\mathbf{t}}\left(\prod_{j=1}^{n} \ell^{u_{j}^{\prime}}, \ell^{u_{n+1}}\right)$. Now we take $s_{j}^{\prime}=t_{j}^{\prime}$ if $1 \leq$ $j \leq n, s_{n+1}^{\prime}>t_{n+1}^{\prime}$ and define $s_{0}<\infty$ such that $\frac{1}{s_{0}}:=\frac{1}{t_{n+1}^{\prime}}-\frac{1}{s_{n+1}^{\prime}}$. Then $\mathbf{s}=$ $\left(s_{j}\right)_{j=0}^{n+1}$ is another admissible $(n+2)$-pla verifying $\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{s}}\right) \approx\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{t}}\right)$ corollary 6 and $S \in \mathfrak{I}_{\mathbf{s}}\left(\prod_{j=1}^{n} \ell^{u_{j}^{\prime}}, \ell^{u_{n+1}}\right)$. By remark after theorem 9 we have $S \notin$ $\mathfrak{N}_{\mathrm{s}}\left(\prod_{j=1}^{n} \ell^{u_{j}^{\prime}}, \ell^{u_{n+1}}\right)$ and by theorem $15\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right) \approx\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{s}}\right)$ turns out to be not reflexive.

Case N3). Assume that $u_{j}^{\prime} \geq 2$ for every $1 \leq j \leq n+1, r_{n+1}^{\prime} \leq 2$ and $\frac{1}{2} \leq \sum_{j=1}^{n} \frac{1}{u_{j}^{\prime}}$, or, in an equivalent form (by (2))

$$
\frac{1}{r_{0}}+\frac{1}{r_{n+1}^{\prime}}-\frac{1}{2}+\sum_{\left\{j \mid r_{j}^{\prime}<u_{j}^{\prime}\right\}}^{n}\left(\frac{1}{r_{j}^{\prime}}-\frac{1}{u_{j}^{\prime}}\right) \leq \sum_{\left\{j \mid r_{j}^{\prime} \geq u_{j}^{\prime}\right\}}^{n}\left(\frac{1}{u_{j}^{\prime}}-\frac{1}{r_{j}^{\prime}}\right)
$$

By (2) we have $r_{j}^{\prime} \geq 2,1 \leq j \leq n$. Defining $\frac{1}{s_{0}}:=\frac{1}{r_{0}}+\frac{1}{r_{n+1}^{\prime}}-\frac{1}{2}, s_{j}^{\prime}:=r_{j}^{\prime}, 1 \leq$ $j \leq n$ and $s_{n+1}:=2$ we obtain an admissible $(n+2)$-pla $\mathbf{s}=\left(s_{j}\right)_{j=0}^{n+1}$ such that, $\ell^{u_{n+1}}$ having cotype 2 , by corollary 4 one has $\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{s}}\right) \approx\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right)$. Then $\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathrm{s}}\right)$ is not reflexive by the case $\left.N 2\right)$, obtaining the desired conclusion by isomorphism.

Case N4). Assume there are $1 \leq j_{0} \leq n$ and $1 \leq j_{1} \neq j_{0} \leq n+1$ such that $u_{j_{0}}^{\prime}<2, r_{j_{0}}^{\prime}<2$ and $r_{j_{1}} \leq u_{j_{1}}$.
a) First we consider the case that $n \geq 2$. By (2) necessarily exist $1 \leq j_{2} \neq j_{3} \leq$ $n+1$ such that $r_{j_{2}}^{\prime} \geq 2$ and $r_{j_{3}}^{\prime} \geq 2$ and so, by corollary 6 and eventually switching to an isomorphic tensor product $\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{s}}\right)$, we can suppose moreover, that $r_{0}<\infty$.

After the transposition $j_{1} \longrightarrow n+1, n+1 \longrightarrow j_{1}$ if necessary we can assume that $j_{1}=n+1$, i. e. $r_{n+1} \leq u_{n+1}$ indeed. If there exists $1 \leq j_{4} \neq j_{0} \leq n+1$ such that $u_{j_{4}}^{\prime} \leq 2$, the result follows from case $N 1$). Hence we can assume $u_{j}^{\prime}>2$ for every $1 \leq j \neq j_{0} \leq n+1$.

Fix $t<2$ such that $r_{j_{0}}^{\prime}<t, u_{j_{0}}^{\prime}<t$ and $u_{n+1}<t$. Let $\left\{\varphi_{k}\right\}_{k=1}^{\infty}$ be a sequence of standard independent identically distributed t-stable random variables in $[0,1]$. It is known that the norm $K_{t, p}:=\left\|\varphi_{k}\right\|_{L^{p}([0,1])}, k \in \mathbb{N}$ is only dependent on t and p for every $1 \leq p<2$ and that $\left\{\Phi_{k, p}:=\frac{\varphi_{k}}{K_{t, p}}\right\}_{k=1}^{\infty}$ is isometrically equivalent in $L^{p}([0,1]), 1 \leq p<t$ to the canonical basis of ℓ^{t} (see [[6], proposition IV.4.10] for example). Then $\left\{\Phi_{k, r_{n+1}}\right\}_{k=1}^{\infty}$ is a normalized basis in the reflexive subspace $\left[\Phi_{k, r_{n+1}}\right]_{k=1}^{\infty} \approx \ell^{t}$ of $L^{r_{n+1}}([0,1])$ and thus it is weakly convergent to 0 in $L^{r_{n+1}}([0,1])$ (see [[7], footnote page 169] for instance). Switching to a suitable subsequence if necessary, by [[18], chapter III, theorem 1.8], the sequence $\left\{\Phi_{k}, r_{n+1}\right\}_{k=1}^{\infty}$ can be enlarged to obtain a normalized basis $\mathcal{B}:=\left\{\Phi_{k, r_{n+1}}\right\}_{k=1}^{\infty} \cup\left\{\Psi_{m}\right\}_{m=1}^{\infty}$ in $L^{r_{n+1}}([0,1])$. By reflexivity the sequence $\left\{\Phi_{k, r_{n+1}}^{*}\right\}_{k=1}^{\infty} \cup\left\{\Psi_{m}^{*}\right\}_{m=1}^{\infty}$ of associated coefficient functionals to \mathcal{B} is a basis in $L^{r_{n+1}^{\prime}}([0,1])$. From [[18], chapter I, theorem 3.1] we find $1 \leq M \in \mathbb{R}$ such that $1 \leq\left\|\Phi_{k, r_{n+1}}^{*}\right\| \leq M$ and $1 \leq\left\|\Psi_{k}^{*}\right\| \leq M$ for every $k \in \mathbb{N}$. As above we obtain that $\left\{\Phi_{k, r_{n+1}}^{*}\right\}_{k=1}^{\infty}$ must be weakly convergent to 0 . As $r_{n+1}^{\prime}>2$, by the result [[7], corollary 5] of Kadec and Pełcińsky, switching to a subsequence again, it can be assumed that $\left\{\Phi_{k, r_{n+1}}^{*}\right\}_{k=1}^{\infty}$ is equivalent to the standard unit basis in $\ell^{r_{n+1}^{\prime}}$ or to the standard unit basis in ℓ^{2}. By [[7], corollary 1$]$, the latter possibility would imply that $\left[\Phi_{k, r_{n+1}}^{*}\right]_{k=1}^{\infty}$ would be complemented in $L^{r_{n+1}^{\prime}}([0,1])$ and by reflexivity and duality, we would have the isomorphisms $\left(\left[\Phi_{k, r_{n+1}}^{*}\right]_{k=1}^{\infty}\right)^{\prime} \approx\left[\Phi_{k, r_{n+1}}\right]_{k=1}^{\infty} \approx \ell^{t} \approx \ell^{2}$ which is not possible. Then $\left\{\Phi_{k, r_{n+1}}^{*}\right\}_{k=1}^{\infty}$ is equivalent to the standard basis of $\ell^{r_{n+1}^{\prime}}$ and so, the map $V \in \mathcal{L}\left(\ell^{u_{n+1}^{\prime}}, L^{r_{n+1}^{\prime}}([0,1])\right)$ such that $\left.V\left(\mathbf{e}_{h}\right)\right)=\Phi_{h, r_{n+1}}^{*}, h \in \mathbb{N}$ is well defined.

Let $S_{j} \in \mathcal{L}\left(\ell^{u_{j}^{\prime}}, L^{r_{j}^{\prime}}([0,1])\right), 1 \leq j \neq j_{0} \leq n$ be defined as in previous case $\left.N 1\right)$ and consider $S_{j_{0}} \in \mathcal{L}\left(\ell^{u_{j_{0}}^{\prime}}, L^{r_{j_{0}}^{\prime}}([0,1])\right)$ such that $S_{j_{0}}\left(\mathbf{e}_{k}\right)=\Phi_{k, r^{\prime}}$ for every $k \in \mathbb{N}$. Taking g as in case $N 1$), the map $T:=V^{\prime} \circ D_{g} \circ\left(\left(S_{j}\right)\right)_{j=1}^{n}$ is \mathbf{r}-integral. However, for every $k \in \mathbb{N}$ and every $\left(\gamma_{h}\right) \in \ell^{u_{n+1}^{\prime}}$ we have

$$
\left\langle T\left(z_{j_{0}, k}\right),\left(\gamma_{h}\right)\right\rangle=\left\langle\frac{K_{t, r_{n+1}}}{K_{t, r_{j_{0}}^{\prime}}} \Phi_{k, r_{n+1}}, \sum_{h=1}^{\infty} \gamma_{h} \Phi_{h, r_{n+1}}^{*}\right\rangle=\frac{K_{t, r_{n+1}}}{K_{t, r_{j_{0}}^{\prime}}} \gamma_{k}
$$

and so $T\left(z_{j_{0}, k}\right)=\frac{K_{t, r_{n+1}}}{K_{t, r_{j_{0}}^{\prime}}} \mathbf{e}_{k}$ and T is not compact. By remark after theorem 9 we obtain $T \notin \mathfrak{N}_{\mathbf{r}}\left(\prod_{j=1}^{n} \ell^{\ell_{j}^{\prime}}, \ell^{u_{n+1}}\right)$ and by theorem $15\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right)$ is not reflexive.
b) Now we consider the case $n=1$. If $r_{0} \neq \infty$ the previous argumentation can be used still and $\ell^{u_{1}} \widehat{\bigotimes}_{\alpha_{\mathrm{r}}} \ell^{u_{2}}$ is not reflexive. If $r_{0}=\infty$, after an eventual transposition, we will be dealing with the case $u_{1}^{\prime} \leq 2, r_{1}^{\prime}<2$ and $r_{2} \leq u_{2}$. If $u_{2} \geq 2$ the result follows from $N 1$). If $u_{2}<2$ and $u_{1}^{\prime}=2$ we repeat the proof given in this case for $n \geq 2$ and $\ell^{u_{1}} \widehat{\bigotimes}_{\alpha_{\mathrm{r}}} \ell^{u_{2}}$ turns out to be non reflexive. If $u_{2}<2$ and $u_{1}^{\prime}<2$ the same construction just used in the case $n \geq 2$ show the existence of a map $T \in \mathfrak{I}_{\mathbf{r}}\left(\ell^{u_{1}^{\prime}}, \ell^{u_{2}}\right)$ such that $T\left(\mathbf{e}_{i}\right)=\frac{K_{t, r_{2}}}{K_{t, r_{1}^{\prime}}} \mathbf{e}_{i}$ for every $i \in \mathbb{N}$. Then we can repeat the argumentation used in the last part of N1) with the set $K:=\left\{\mathbf{e}_{i} \otimes \mathbf{e}_{i}, i \in \mathbb{N}\right\} \subset \ell^{u_{1}^{\prime}} \otimes \ell^{u_{2}^{\prime}}$ to conclude that $\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right)$ is not reflexive.

Finally we check that the proof of theorem 17 is complete. Assume that neither condition $S 1$), $S 2$), $S 3$), $S 4$) holds.
a) First case: assume there is $1 \leq j_{0} \leq n+1$ such that $u_{j_{0}}^{\prime} \leq 2$. After an eventual transposition with any $1 \leq k \neq j_{0} \leq n+1$, we can take $j_{0} \leq n$. If there is some $1 \leq j_{1} \neq j_{0} \leq n+1$ such that $u_{j_{1}}^{\prime} \leq 2$, by $\left.N 1\right),\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right)$ is not reflexive. Then we can assume $u_{j}^{\prime}>2,1 \leq j \neq j_{0} \leq n+1$. As $S 1$) does not holds, there exists $j_{1} \neq j_{0}$ such that $r_{j_{1}} \leq u_{j_{1}}$. If it would be $u_{j_{0}}^{\prime}<2$ and $r_{j_{0}}^{\prime}<2,\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right)$ would be not reflexive by $N 4$). If $u_{j_{0}}^{\prime}=2$ and $r_{j_{0}}^{\prime}<2$, as $S 4$) does not holds, after the transposition $j_{0} \rightarrow n+1, n+1 \rightarrow j_{0}$, by $\left.N 3\right)\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right)$ is not reflexive.

In the case $r_{j_{0}}^{\prime} \geq 2$, by (2) there is at most an unique $1 \leq j_{2} \leq n+1$ such that $r_{j_{2}}^{\prime}<2$. Necessarily $j_{2} \neq j_{0}$. As $S 2$) does not holds, after an eventual transposition $j_{0} \rightarrow n+1, n+1 \rightarrow j_{0}$, we see that $u_{n+1}^{\prime} \leq 2 \leq r_{n+1}^{\prime}$ and by $\left.N 2\right)\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right)$ is not reflexive.
b) Second case: assume that $u_{j}^{\prime}>2,1 \leq j \leq n+1$. As $S 1$) does not holds, after an eventual transposition, it turns out that $u_{n+1}^{\prime} \leq r_{n+1}^{\prime}$. But $S 3$) is not verified. Then for every $1 \leq j_{0} \leq n+1$ we have $r_{j_{0}}^{\prime}>2$ or (38) does not holds. If it would be $r_{j}^{\prime}>2$ for every $1 \leq j \leq n+1$, as $\left.S 2\right)$ is not verified, $\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right)$ would be not reflexive by $N 3$). If it would exists $1 \leq j_{1} \leq n+1$ such that $r_{j_{1}}^{\prime} \leq 2$, then (38) would fails for this index j_{1}. After an evident transposition, by $\left.N 3\right)\left(\widehat{\bigotimes}_{j=1}^{n+1} \ell^{u_{j}}, \alpha_{\mathbf{r}}\right)$ would be not reflexive.

The application of theorem 17 to the case $n=1$ gives the following characterization of reflexivity of classical Lapresté's tensor products:

Corollary 18 Let $n=1$ and let $\mathbf{r}=\left(r_{0}, r_{1}, r_{2}\right)$ be an admissible triple. If $1<$ $u_{1}, u_{2}<\infty, \ell^{u_{1}} \widehat{\bigotimes}_{\alpha_{\mathrm{r}}} \ell^{u_{2}}$ is reflexive if and only if one of the following sets of conditions holds

1) $u_{1}^{\prime}>2, u_{1}^{\prime}>r_{1}^{\prime}$.
2) $u_{2}^{\prime}>2, u_{2}^{\prime}>r_{2}^{\prime}$.
3) $u_{1}^{\prime}>2, r_{2} \leq 2$.
4) $u_{2}^{\prime}>2, r_{1} \leq 2$.
5) $u_{1}^{\prime} \geq 2, u_{2}^{\prime}>2$.
6) $u_{1}^{\prime}>2, u_{2}^{\prime} \geq 2$.

Proof. By theorem 17, $\ell^{u_{1}} \widehat{\bigotimes}_{\alpha_{\mathrm{r}}} \ell^{u_{2}}$ is reflexive if and only if one of the following sets of conditions holds
a) $u_{1}^{\prime}>2, u_{1}^{\prime}>r_{1}^{\prime}$.
b) $u_{2}^{\prime}>2, u_{2}^{\prime}>r_{2}^{\prime}$.
c) $u_{1}^{\prime}>2, u_{1}^{\prime}>r_{2}, r_{1}^{\prime} \geq 2$.
d) $u_{2}^{\prime}>2, u_{2}^{\prime}>r_{1}, r_{2}^{\prime} \geq 2$.
e) $u_{1}^{\prime}>2, u_{2}^{\prime}>2, r_{1}^{\prime} \leq 2$.
f) $u_{1}^{\prime}>2, u_{2}^{\prime}>2, r_{2}^{\prime} \leq 2$.
g) $u_{1}^{\prime}=2, u_{2}^{\prime}>2, r_{1}^{\prime} \leq 2$.
h) $u_{2}^{\prime}=2, u_{1}^{\prime}>2, r_{2}^{\prime} \leq 2$.

Clearly c) and 3) (resp. d) and 4)) are equivalent. On the other hand, if 5) holds and $r_{1}^{\prime} \leq 2$ then e) or g) holds. If 5) and $r_{1}^{\prime}>2$ are true we have $r_{1}<2<u_{2}^{\prime}$ and d) is verified. The remaining of the proof is similar or trivial.

References

[1] ALENCAR, R., FLORET, K.: Weak-strong continuity of multilinear mappings and the Pelcynski-Pitt theorem, J. Math. Ann. Appl. 206, 532-546, (1997).
[2] Defant, a., Floret, K.: Tensor norms and operator ideals, North Holland Math. Studies 176, North Holland, Amsterdam (1993).
[3] Defant, A.: Variants of the Maurey-Rosenthal theorem for quasi Köthe function spaces, Positivity, 5, no. 2, 153-175, (2001).
[4] Floret, K.: Natural norms on symmetric tensor products of normed spaces, Note di Matematica 17, 153-188, (1997).
[5] FLORET, K., HUNFELD, S: Ultrastability of ideals of homogeneous polynomials and multilinear mappings on Banach spaces, Proc. Amer. Math.Soc. 130, 5, 1425-1435, (2001).
[6] Guerre-delabrière, s.: Classical sequences in Banach spaces, Marcel Dekker, Inc., New York, (1992).
[7] KADEC, M. I., PEŁCZYŃSki, A.: Bases, lacunary sequences and complemented subspaces in the spaces L_{p}, Studia Math. 21, 161-176, (1962).
[8] KÖтнE, G.: Topological vector spaces I, II, Springer Verlag, Berlin, (1969) and (1979).
[9] LÉVY, M., RAYnaud, Y.: Ultrapuissances des espaces $L^{p}\left(L^{q}\right)$ C. R. Acad. Sc. Paris 299, I, 3, 81-84, (1984).
[10] LÓPez molina, J. A.: Multilinear operator ideals associated to Saphar type ($n+1$)-tensor norms, Positivity 11, 95-117, (2007).
[11] makarov, B. M., SAmARSKiI, V. G.: Certain properties inherited by the spaces of p-kernel and quasi-p-kernel operators, Funct. Analysis Appl. 15, 227229, (1981).
[12] PeŁCzyński, A.: Projections in certain Banach spaces, Studia Math. 19, 209228, (1960).
[13] Persson, A., Pietsch, A.: p-nukleare und p-integrale Abbildungen in Banachräumen, Studia Math. 33, 19-62, (1969).
[14] PIETSCH, A.: Ideals of multilinear functionals (designs of a theory), Proceeding of the Second International Conference on Operator Algebras, Ideals and their appliccations in Theoretical Physics, Leipzig 1983. Teubner-Texte, 185199, (1983).
[15] Raynaud, y.: On ultrapowers of non commutative L_{p} spaces, J. Operator Th. 48, 41-68, (2002).
[16] ROSEnthal, h. P.: On quasi-complemented subspaces of Banach spaces with an appendix on compactness of operators from $L^{p}(\mu)$ to $L^{r}(\nu)$, J. Funct. Anal. 4, 176-214, (1969).
[17] SIMS, B.: "Ultra"-techniques in Banach space theory, Queen's Papers in Pure and Appl. Maths. 60, Ontario, Canada, (1982).
[18] Singer, I.: Bases in Banach spaces I, II, Springer Verlag, Berlin, (1970) and (1981).

Author's address:
J. A. López Molina
E. T. S. Ingeniería Agronómica y del Medio Natural

Camino de Vera
46072 Valencia
Spain
e-mail: jalopez@mat.upv.es

[^0]: ${ }^{1}$ AMS Math. Sub. Class.: Primary $46 \mathrm{M} 05,46 \mathrm{~A} 32$.
 ${ }^{2}$ Key words: $(n+1)$-fold tensor products, $\alpha_{\mathbf{r}}$-nuclear and $\alpha_{\mathbf{r}}$-integral n-linear operators, \mathbf{r} dominated n-linear operators, ultraproducts.

