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(n + 1)-tensor norms of Lapresté’s type

J. A. López Molina

Abstract

We study an (n + 1)-tensor norm αr extending to (n + 1)-fold tensor
products the classical one of Lapresté in the case n = 1. We characterize the
maps of the minimal and the maximal multilinear operator ideals related to
αr in the sense of Defant and Floret. As an application we give a complete
description of the reflexivity of the αr-tensor product (⊗n+1

j=1 ℓ
uj , αr).

1 Introduction

In [14] Pietsch proposed building a systematic theory of ideals of multilinear
mappings between Banach spaces, similar to the already well-developed one regard-
ing linear maps, as a first step to study ideals of more general non linear operators.
Since then several classes of multilinear operators more or less related to classical
absolutely p-summing operators has been studied although without to deal with
aspects derived from a general organized theory.

Having in mind the close connection existing in linear case between problems of
this kind and tensor products (see [2] for a systematic survey of the actual state of
the art), in the present setting it is expected an analogous connection with multiple
tensor products. However a systematic study of this approach has not been initiated
until the works [4] and [5] of Floret, mainly motivated by the potential applications
of the new theory to infinite holomorphy. In this way, classical notions of maximal
operator ideals and its associated α-tensor norm, dual tensor norm α′ and the related
α-nuclear and α-integral operators can be extended to the framework of multilinear
operator ideals and multiple tensor products.

However, there are few concrete examples of multi-tensor norms to whose the
general concepts of the theory have been applied and checked. The purpose of this
paper is to study an (n + 1)-tensor norm αr on tensor products

⊗n+1
j=1 Ej, 1 ≤ n,

1AMS Math. Sub. Class.: Primary 46M05, 46A32.
2Key words: (n + 1)-fold tensor products, αr-nuclear and αr-integral n-linear operators, r-

dominated n-linear operators, ultraproducts.
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of n + 1 Banach spaces Ej, extending the classical one of Lapresté for n = 1, as
well its associated αr-nuclear and αr-integral multilinear operators. Knowledge of
such operators allows us to characterize the reflexivity of the corresponding tensor

product
(⊗̂n+1

j=1 ℓ
uj , αr

)
of spaces ℓuj .

The paper is organized as follows. First we introduce the notation and some
general facts to be used. In section 2 we define the (n + 1)-fold tensor product⊗

αr

(
E1, E2, ..., En, F

)
, n ∈ N of type αr of Banach spaces Ej, 1 ≤ j ≤ n and F.

We find its topological dual introducing the so called r-dominated maps and we
obtain multilinear extensions of the classical theorems of Grothendieck-Pietsch and
Kwapien (theorem 3). The latter one is the key to approximate r-dominated maps
by multilinear maps of finite rank in many usual cases (theorem 7) and to compare
different tensor norms αr, a tool which will be very useful in our applications in the
final section of the paper.

The elements of a completed αr-tensor product canonically lead to multilinear
r-nuclear operators from

∏n
j=1Ej into F, which are considered in section 3 and char-

acterized by means of suitable factorizations in theorem 9. According the pattern
of the general theory of multi-tensor norms, the next step must be the study of the
so called r-integral multilinear maps, i. e. the maps in the ideal associated to the
αr-tensor norm in the sense of Defant-Floret [2]. To do this we need a technical
result about the structure of some ultraproducts which follows easily from the work
of Raynaud [15]. It will be presented in section 4 just before its use.

In section 4 we characterize the r-integral operators, obtaining as main result the
”continuous” version of the previous factorizations of r-nuclear operators. Finally in
section 5 we apply the characterizations of sections 3 and 4 to study the reflexivity of
αr-tensor products and, more particulary, to characterize the reflexivity of αr-tensor
products of ℓu spaces, a result that, as far as we know, is new indeed for classical
Lapresté’s tensor norms.

We shall deal always with vector spaces defined over the field R of real numbers.
Notation of the paper is standard in general. Some not so usual notations are settled
now.

Given a normed space E, we shall denote by BE its closed unit ball and JE :
E −→ E ′′ will be the canonical isometric inclusion of E into the bidual space E ′′.
BE′ will be considered as a compact topological space (BE′ , σ(E ′, E)) when provided
with the topology induced by the weak∗-topology σ(E ′, E). For every x ∈ E, we shall
denote by fx the continuous function defined on (BE′ , σ(E ′, E)) as fx(x

′) = ⟨x, x′⟩ for
every x′ ∈ BE′ . The symbol E ≈ F will mean that E and F are isomorphic normed
spaces. The closed linear span in a Banach space E of a sequence {xm}∞m=1 ⊂ E
(respectively of a single vector x) will be represented by

[
xn
]∞
m=1

(resp.
[
x
]
).

As usual, ek denotes the k-th standard unit vector in every ℓp, 1 ≤ p ≤ ∞.
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ℓph, h ∈ N will be the ℓp-space defined over the set {1, 2, .., h} with the standard
measure.

Given a normed space E, a sequence {xm}km=1 ⊂ E, k ∈ N∪{∞}, and 1 ≤ p ≤ ∞,
we define in the case p <∞

πp
(
(xm)kj=1

)
:=

(
k∑

m=1

∥xm∥p
) 1

p

, εp
(
(xm)km=1

)
:= sup

x′∈BE′

(
k∑

m=1

∣∣∣⟨xm, x′⟩∣∣∣p)
1
p

and when p = ∞

π∞
(
(xm)km=1

)
:= ε∞

(
(xm)km=1

)
= sup

1≤m≤k
∥xm∥.

A sequence {xm}∞m=1 ⊂ E is called weakly p-absolutely summable, notation (xm)∞m=1 ∈
ℓp(E), (resp. p-absolutely summable ), if εp

(
(xm)∞m=1

)
< ∞ (resp. πp

(
(xm)∞m=1

)
<

∞). Given Banach spaces E and F, an operator or linear map T ∈ L(E,F ) is said
to be p-absolutely summing if there exists C ≥ 0 such that

(xm)∞m=1 ∈ ℓp(E) =⇒ πp

((
T (xm)

)∞
m=1

)
≤ C εp

(
(xm)∞m=1

)
. (1)

The linear space Pp(E,F ) of all p-absolutely summing operators from E into F
becomes a Banach space under the norm Pp(T ) := inf

{
C ≥ 0

∣∣ (1) holds
}

for
every T ∈ Pp(E,F ).

We consider always a finite cartesian product
∏h

m=1Em of normed spaces Em, 1 ≤
m ≤ h ∈ N as a normed space provided with the ℓ∞-norm

∥∥(xm)hm=1

∥∥ = suphm=1

∥∥xm∥∥.
If F is a Banach space we shall denote by Lh

(∏h
m=1Em, F

)
the Banach space of all

h-linear continuous maps from
∏h

m=1Em into F. Given T ∈ Lh
(∏h

m=1Em, F
)

we

can define in a natural way the transposed linear map T ′ : F ′ −→ Lh
(∏h

m=1Em,R
)

putting

∀ y′ ∈ F ′ ∀ (xm)hm=1 ∈
h∏

m=1

Em

⟨
T ′(y′), (xm)hm=1

⟩
=
⟨
T
((
xm)hm=1

)
, y′
⟩
.

Given maps Aj ∈ L(Ej, Fj) between normed spaces Ej and Fj, 1 ≤ j ≤ n we
write

(Aj)
n
j=1 := (A1, A2, ..., An) :

n∏
j=1

Ej −→
n∏
j=1

Fj

to denote the continuous linear map defined by

∀ (xj)
n
j=1 ∈

n∏
j=1

Ej (Aj)
n
j=1

(
(x1, x2, ..., xn)

)
=
(
A1(x1), A2(x2), ..., An(xn)

)
.
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Some times we will write (Aj) instead of (Aj)
n
j=1. Concerning (n+ 1)-tensor norms,

n ≥ 1 (or multi-tensor norms) we refer the reader to the pioneer works [4] and [5]. If

it is needed to emphasize, α
(
z;
⊗n+1

j=1 Mj

)
or similar notations will denote the value

of the multi-tensor norm α of z ∈ ⊗n+1
j=1Mj.

As customary, for p ∈ [1,∞], p′ will be the conjugate extended real number such
that 1/p + 1/p′ = 1. Given n ≥ 1, in all the paper we denote by r an (n + 2)-
pla of extended real numbers r = (r0, r1, r2, ..., rn, rn+1) such that 1 < r0 ≤ ∞,
1 < rj <∞, 1 ≤ j ≤ n+ 1, and

1 =
1

r0
+

1

r′1
+

1

r′2
+ ...+

1

r′n+1

. (2)

Such r will be called an admissible (n+ 2)-pla. Moreover, we define w such that

1

w
:=

1

r′1
+

1

r′2
+ ...+

1

r′n
(3)

which gives the equality

n =
1

w
+

n∑
j=1

1

rj
. (4)

For later use we note that (2) implies

1 =
r′0
r′1

+
r′0
r′2

+ ...+
r′0
r′n

+
r′0
r′n+1

and
1

rn+1

=
1

r0
+

1

r′1
+

1

r′2
+ ...+

1

r′n
(5)

as well
1

w
=

1

r′0
− 1

r′n+1

=
1

rn+1

− 1

r0
=⇒ 1 =

1

w
+

1

r0
+

1

r′n+1

. (6)

and moreover,
∀ 1 ≤ j ≤ n rn+1 < w < r′j, (7)

and
∀ 1 ≤ j ≤ n+ 1 rj < r0. (8)

To finish this introduction we consider the following construction which will be
of fundamental importance in all the paper. Given any measure space (Ω,A, µ)
and an admissible (n + 2)−pla r, as a direct consequence of generalized Hölder’s
inequality and (2), we have a canonical (n + 1)-linear map Mµ : Lr0(Ω,A, µ) ×∏n

j=1 L
r′j(Ω,A, µ) −→ Lrn+1(Ω,A, µ) defined by the rule

∀ (fj)
n
j=0 ∈ Lr0(Ω, µ) ×

n∏
j=1

Lr
′
j(Ω, µ) Mµ

(
(fj)

)
=

n∏
j=0

fj
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verifying
∥∥Mµ

(
(fj)

)∥∥ ≤
∥∥g∥∥

Lr0 (Ω)

∏n
j=1

∥∥fj∥∥
L
r′
j (Ω)

. If (Ω,A, µ) is N with the count-

ing measure we will write simply M instead of Mµ. Moreover, given g ∈ Lr0(Ω, µ)

we shall write Dg to denote the n-linear map from
∏n

j=1 L
r′j(Ω, µ) into Lrn+1(Ω, µ)

such that

∀ (fj)
n
j=1 ∈

n∏
j=1

Lr
′
j(Ω, µ) Dg

(
(fj)

n
j=1

)
= Mµ

(
(g, f1, ..., fn)

)
. (9)

It will be important for later applications to remark that Mµ induces a linearization

map M̃µ :
(
Lr0(Ω, µ)

⊗̂(⊗̂n

j=1L
r′j(Ω, µ)

)
, π
)
−→ Lrn+1(Ω, µ) and a canonical map

M̂µ :
(
Lr0(Ω, µ)

⊗̂(⊗̂n

j=1
Lr

′
j(Ω, µ)

)
, π
)
/Ker(M̃µ) −→ Lrn+1(Ω, µ)

such that
∥∥M̂µ

∥∥ ≤ 1. Moreover, by (5) we obtain f = f
rn+1
r0

∏n
j=1 f

rn+1
r′
j for every

f ≥ 0 in Lrn+1(Ω, µ). As f = f+ − f− for every f ∈ Lrn+1(Ω, µ) it turns out that

M̃µ is a surjective map and M̂µ becomes an isomorphism such that
∥∥M̂−1

µ

∥∥ ≤ 2.

2 αr-tensor products and r-dominated multilinear

maps

Let Ej, 1 ≤ j ≤ n + 1 be normed spaces. Using classical methods we can show
that

αr

(
z;

n+1⊗
j=1

Ej

)
:= inf πr0

(
(λm)hm=1

) n+1∏
j=1

εr′j

(
(xjm)hm=1

)
, (10)

taking the infimum over all representations of z of type

z =
h∑

m=1

λm
(
⊗n+1
j=1xjm

)
, xjm ∈ Ej 1 ≤ j ≤ n+ 1, 1 ≤ m ≤ h, h ∈ N,

is a norm on
⊗n+1

j=1 Ej which defines an (n+ 1)-tensor norm in the class of normed
spaces. It is interesting to note that if n = 1 we obtain the classical tensor norm
αr2r1 of Lapresté (see

[
[2]
]

for details).

The just defined normed tensor product space will be denoted by
(⊗n+1

j=1 Ej, αr

)
or
⊗

αr

(
E1, E2, ..., En+1

)
and its completion by

⊗̂
αr

(
E1, E2, ..., En+1

)
. It is clear

that for every permutation σ on the set {1, 2, ..., n+ 1} the map

Iσ :
m∑
i=1

λm ⊗n+1
j=1 xjm ∈

(
⊗n+1
j=1Ej, αr

)
−→

m∑
i=1

λm ⊗n+1
j=1 xσ(j)m ∈

(
n+1⊗
j=1

Eσ(j), αs

)
,
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where s is the admissible (n + 2)-pla s0 := r0 and sj = rσ(j), 1 ≤ j ≤ n + 1,

is an isometry from
(⊗n+1

j=1 Ej, αr

)
onto

(⊗n+1
j=1 Ej, αs

)
. We shall use this type of

isomorphism in section 5 in the particular case of transpositions σ simply indicating
the transposed indexes σ(j0) = j1, σ(j1) = j0 in the way j0 → j1, j1 → j0.

To compute the topological dual of an αr-tensor product we set a new definition:

Definition 1 Let F and Ej, 1 ≤ j ≤ n be normed spaces. A map T ∈ Ln
(∏n

j=1Ej, F
)

is said to be r-dominated if there is C ≥ 0 such that for every h ∈ N and every set
of finite sequences {xjk}hk=1 ⊂ Ej, 1 ≤ j ≤ n and {y′k}hk=1 ⊂ F ′ the inequality

πr′0

((∣∣∣⟨T (x1k, x2k, ..., xnk), y
′
k

⟩∣∣∣)m
k=1

)
≤ C

(
n∏
j=1

εr′j

((
xjk
)m
k=1

))
εr′n+1

((
y′k
)h
k=1

)
(11)

holds.

It is easy to see that the linear space Pr

(∏n
j=1Ej, F

)
of r-dominated n-linear

maps from
∏n

j=1Ej into F is normed setting Pr(T ) := inf
{
C ≥ 0

∣∣ (11) holds
}

for

every T ∈ Pr

(∏n
j=1Ej, F

)
, becoming a Banach space when F does. The interest

on r-dominated multilinear maps follows from the next result:

Theorem 2
(⊗

αr

(
E1, E2, ..., En, F

))′
= Pr

(∏n
j=1Ej, F

′
)

for all normed spaces

F and Ej, 1 ≤ j ≤ n.

Proof. 1). Given T ∈ Pr

(∏n
j=1Ej, F

′
)

and z =
∑h

k=1 λk (⊗n
j=1xjk) ⊗ yk in(⊗n

j=1Ej
)⊗

F we define φ
T
(z) =

∑h
k=1 λk

⟨
T
(
(x1k, x2k, ..., xnk)

)
, yk

⟩
. It follows

directly from Hölder’s inequality, definition 1 and (10)∣∣φ
T
(z)
∣∣ ≤ Pr(T ) αr(z) =⇒

∥∥φ
T

∥∥ ≤ Pr(T ). (12)

2) Conversely, let ψ ∈
(⊗

αr

(
E1, E2, ..., En, F

))′
.We define Tψ ∈ Ln(

∏n
j=1Ej, F

′)
as

∀ (xj)
n
j=1 ∈

n∏
j=1

Ej, ∀ y ∈ F
⟨
Tψ

(
(xj)

n
j=1

)
, y
⟩

= ψ
(
x1 ⊗ x2 ⊗ ...xn ⊗ y

)
.

Given {xjk}hk=1 ⊂ Ej, 1 ≤ j ≤ n and {yk}hk=1 ⊂ F, h ∈ N we have

πr′0

((⟨
Tψ

((
xjk
)n
j=1

)
, yk

⟩)h
k=1

)
= sup

(αk)∈Bℓr0
h

∣∣∣∣∣
h∑
k=1

αk ψ
((

⊗n
j=1xjk

)
⊗ yk

))∣∣∣∣∣ =

6



= sup
(αk)∈Bℓr0

h

∣∣∣∣∣ψ
(

h∑
k=1

αk
(
⊗n
j=1xjk

)
⊗ yk

)∣∣∣∣∣ ≤
≤ sup

(αk)∈Bℓr0
h

∥∥ψ∥∥ πr0((αk)
h
k=1

)( n∏
j=1

εr′j

(
(xjk)

h
k=1

))
εr′n+1

(
(yk)

h
k=1

)
≤

≤
∥∥ψ∥∥( n∏

j=1

εr′j

(
(xjk)

h
k=1

))
εr′n+1

(
(yk)

h
k=1

)
.

By σ(F ′′, F ′)-density of F in F ′′ the latter inequality also holds when yk ∈ F ′′, 1 ≤
k ≤ h. Hence Pr(Tψ) ≤

∥∥ψ∥∥ and clearly φ
Tψ

= ψ, giving by 1) Pr(Tψ) =
∥∥ψ∥∥. �

The name of r-dominated multilinear maps is suggested by the following char-
acterization.

Theorem 3 Given Banach spaces Ej, 1 ≤ j ≤ n and F and T ∈ Ln(
∏n

j=1Ej, F ),
the following assertions are equivalent:

1) T ∈ Pr(
∏n

j=1Ej, F ).
2) (Pietsch-Grothendieck’s domination theorem) There are Radon probability

measures µj, 1 ≤ j ≤ n (resp. ν) in the unit balls BE′
j
, (resp. in BF ′′) and C ≥ 0

such that, Bj (resp. Bn+1) being the σ-algebra of Borel sets in BE′
j
(resp. BF ′′), for

every (xj)
n
j=1 ∈

∏n
j=1Ej and every y′ ∈ F ′ one has

∣∣∣⟨T((xj)
n
j=1

)
, y′
⟩∣∣∣ ≤ C

∥∥∥fy′∥∥∥
L
r′n+1 (BF ′′ , Bn+1, ν)

n∏
j=1

∥∥∥fxj∥∥∥
L
r′
j (BE′

j
, Bj , µj)

(13)

Moreover, Pr(T ) = inf C taking the infimum over all C ≥ 0 and µj, 1 ≤ j ≤ n and
ν verifying (13).

3) (Generalized Kwapien’s factorization theorem). There exist Banach spaces
Mj and linear maps Aj ∈ Pr′j

(Ej,Mj), 1 ≤ j ≤ n and an n-linear map S :∏n
j=1Mj −→ F such that T = S ◦ ((A1, A2, ..., An)) and the adjoint map S ′ ∈

Pr′n+1

(
F ′,Ln

(∏n
j=1Mj,R

))
.

Proof. 1) =⇒ 2). Clearly, the restriction to C
((
BE′ , σ(E ′, E)

))
of each Ψ ∈(

L∞(BE′)
)′

is a Radon measure. Then condition 2) follows from 1) directly by
definition of r-dominated maps and the very general result of Defant

[
[3], theorem

1
]
. Moreover, the proof of that result allow us to obtain

inf
{
C ≥ 0

∣∣∣ (13) holds
}
≤ Pr(T ). (14)
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2) =⇒ 3). Let µj, 1 ≤ j ≤ n and ν be probability Radon measures in the
unit balls BE′

j
and BF ′′ respectively (with corresponding σ-algebras Bj and Bn+1 of

measurable sets) such that (13) holds.
Put Ω :=

∏n
j=1BE′

j
provided with the product measure µ := ⊗n

j=1µj and its
corresponding σ-algebra B of measurable sets. For every xj ∈ Ej, 1 ≤ j ≤ n,
we define the map Gxj : Ω −→ R given by Gxj(x

′) = ⟨xj, x′j⟩ for every x′ =
(x′1, x

′
2, ..., x

′
n) ∈ Ω. Clearly, as a consequence of Fubini’s theorem, we have Gxj ∈

Lr
′
j
(
Ω,B, µ

)
and moreover, for each y′ ∈ F ′ the inequality

∣∣∣⟨T((xj)
n
j=1

)
, y′
⟩∣∣∣ ≤ C

∥∥∥fy′∥∥∥
L
r′n+1 (BF ′′ , Bn+1, ν)

n∏
j=1

∥∥∥Gxj

∥∥∥
L
r′
j (Ω, B, µ)

(15)

holds still.
Define Aj ∈ L

(
Ej, L

r′j(Ω,B, µ)
)
, as Aj(xj) = Gxj for every xj ∈ Ej and Mj :=

Aj(Ej), taking the closure in Lr
′
j(Ω,B, µ) and providing it with the induced topology.

It is easy to check (classical Pietsch-Grothendieck’s domination theorem) that

∀ 1 ≤ j ≤ n Aj ∈ Pr′j
(Ej,Mj) and Pr′j

(Aj) ≤ 1. (16)

Now we define the multilinear map S :
∏n

j=1Aj(Ej) −→ F as

∀ (xj)
n
j=1 ∈

n∏
j=1

Ej S
(
(Gxj)

n
j=1

)
= T

(
(xj)

n
j=1

)
.

S is well defined because
(
Gxj

)n
j=1

=
(
Gxj

)n
j=1

implies Gxj = Gxj ∈ Lr
′
j(Ω,B, µ), 1 ≤

j ≤ n and

T
(
(xj)

n
j=1

)
− T

(
(xj)

n
j=1

)
=

n∑
j=1

T
(
x1, ..., xj−1, xj − xj, xj+1, ..., xn

)
and by (15) we obtain

∥∥T((xj)nj=1

)
− T

(
(xj)

n
j=1

)∥∥ = 0. (15) gives too the con-
tinuity of S and hence it can be continuously extended to a map (still denoted

by S) in Ln
(∏n

j=1Mj, F
)

. To finish the proof we only need to see that S ′ ∈
Pr′n+1

(
F ′,Ln

(∏n
j=1Mj,R

))
.

Given {y′k}hk=1 ⊂ F ′, h ∈ N, fix a finite sequence {αk}hk=1 verifying
∥∥∥(αk)

h
k=1

∥∥∥
ℓ
r′n+1
h

=

1. For every ε > 0, there are Gxjk ∈ BMj
, 1 ≤ k ≤ h, 1 ≤ j ≤ n such that

∀ 1 ≤ k ≤ h
∥∥∥S ′(y′k)

∥∥∥
Ln(

∏n
j=1Mj ,R)

≤
∣∣∣⟨S ′(y′k), (Gxjk)

n
j=1

⟩∣∣∣+ ε |αk|.
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Hence, from Hölder’s inequality and (13) we obtain

πr′n+1

((
S ′(y′k)

)h
k=1

)
= sup

(βk)∈B
ℓ
rn+1
h

∣∣∣∣∣
h∑
k=1

βk

∥∥∥S ′(y′k)
∥∥∥
Ln(

∏n
j=1Mj ,R)

∣∣∣∣∣ ≤
≤ sup

(βk)∈B
ℓ
rn+1
h

∣∣∣∣∣
h∑
k=1

βk

(∣∣∣⟨S ′(y′k), (Gxjk)
n
k=1

⟩∣∣∣+ ε|αk|
)∣∣∣∣∣ ≤

≤ sup
(βk)∈B

ℓ
rn+1
h

∥∥∥(βk)
∥∥∥
ℓ
rn+1
h

(
h∑
k=1

∣∣∣⟨y′k, T (xjk)
n
j=1

⟩∣∣∣r′n+1

) 1
r′n+1

+

+ ε sup
(βk)∈B

ℓ
rn+1
h

∥∥∥(βk)
h
k=1

∥∥∥
ℓ
rn+1
h

∥∥∥(αk)
h
k=1

∥∥∥
ℓ
r′n+1
h

≤

≤ C

(
h∑
k=1

(∥∥∥fy′k∥∥∥r′n+1

L
r′n+1 (BF ′′ , Bn+1, ν)

n∏
j=1

∥∥∥Gxjk

∥∥∥r′n+1

L
r′
j (Ω, B, µ)

)) 1
r′n+1

+ ε ≤

≤ C

(
h∑
k=1

(∫
BF ′′

∣∣∣⟨y′k, y′′⟩∣∣∣r′n+1

dν(y′′)

) ) 1
r′n+1

+ ε =

= C

(∫
BF ′′

h∑
k=1

∣∣∣⟨y′k, y′′⟩∣∣∣r′n+1

dν(y′′)

) 1
r′n+1

+ ε =

= C εr′n+1

((
y′k
)h
k=1

)
ν
(
BF ′′

) 1
r′n+1 + ε = C εr′n+1

((
y′k
)h
k=1

)
+ ε

and ε > 0 being arbitrary, the result follows. Moreover, by (16) and the definition
of Pr′n+1

(S ′) we obtain

Pr′n+1
(S ′)

n∏
j=1

Pr′j
(Aj) ≤ C. (17)

3) =⇒ 1). Assume there there are Banach spaces Mj and maps Aj ∈ Pr′j
(Ej,Mj),

1 ≤ j ≤ n and S ∈ Ln
(∏n

j=1Mj, F
)

such that S ′ ∈ Pr′n+1

(
F ′,Ln

(∏n
j=1Mj, R

))
and

T = S ◦
(
(Aj)

n
j=1

)
. Given finite sequences {xjk}hk=1 ⊂ Ej and {y′k}hk=1 ⊂ F ′, h ∈ N,

using (2) and Hölder’s inequality we have

πr′0

((⟨
T
(

(xjk)
n
j=1

)
, y′k

⟩)n
k=1

)
= sup

(αk)∈Bℓr0
h

∣∣∣∣∣
h∑
k=1

αk

⟨(
Aj(xjk)

)n
j=1

)
, S ′(y′k)

⟩∣∣∣∣∣ ≤
9



≤ sup
(αk)∈Bℓr0

h

h∑
k=1

∣∣αk∣∣ ∥∥∥S ′(y′k)
∥∥∥
Ln(

∏n
j=1Mj ,R)

n∏
j=1

∥∥∥Aj(xjk)∥∥∥ ≤

≤ sup
(αk)∈Bℓr0

h

∥∥∥(αk)
h
k=1

∥∥∥
ℓ
r0
h

(
n∏
j=1

πr′j

((
Aj(xjk)

)h
k=1

))
πr′n+1

((
S ′(y′k)

)h
k=1

)
≤

≤ Pr′n+1
(S ′)

(
n∏
j=1

Pr′j
(Aj)

)
εr′n+1

((
y′k
)h
k=1

) ( n∏
j=1

εr′j

((
xjk
)h
k=1

))

and hence T ∈ Pr

(∏n
j=1Ej, F

)
and

Pr(T ) ≤ Pr′n+1
(S ′)

n∏
j=1

Pr′j
(Aj). (18)

The assertions about Pr(T ) follow from (14), (17) and (18). �
Theorem 3 can be used to find some equivalences between some tensor norms αr

and αs derived from different admissible (n + 2)-plas r and s on certain classes of
Banach spaces. We present some results of this type which will be of fundamental
importance in the final section of the paper.

Corollary 4 Let r = (rj)
n+1
j=0 be such that r′n+1 ≤ 2 and let s = (sj)

n+1
j=0 be an

admissible (n+2)-pla such that s′n+1 ≤ 2, and s′j = r′j, 1 ≤ j ≤ n. If Ej, 1 ≤ j ≤ n+1

are Banach spaces and E ′′
n+1 has cotype 2, one has

(⊗̂n+1

j=1Ej, αr

)
≈
(⊗̂n+1

j=1Ej, αs

)
.

Proof. By theorem 2 and the open mapping theorem it is enough to see that
Ps

(∏n
j=1Ej, E

′
n+1

)
= Pr

(∏n
j=1Ej, E

′
n+1

)
. Given T ∈ Ps

(∏n
j=1Ej, E

′
n+1

)
and us-

ing Kwapien’s generalized theorem, we choose a factorization T = C ◦ (Aj)
n
j=1

throughout some product
∏n

j=1Mj of Banach spaces in such a way that Aj ∈
Ps′j

(
Ej,Mj

)
, 1 ≤ j ≤ n and C ′ ∈ Ps′n+1

(
E ′′
n+1,Ln(

∏n
j=1M

′
j,R)

)
. Being E ′′

n+1 of co-

type 2 and r′n+1 ≤ 2, Maurey’s theorem
[

[2], corollary 3, §31.6
]

and Pietsch’s inclu-
sion theorem for absolutely p-summing maps give C ′ ∈ P1

(
E ′′
n+1,Ln(

∏n
j=1M

′
j,R)

)
⊂

Pr′n+1

(
E ′′
n+1,Ln(

∏n
j=1M

′
j,R)

)
. As r′j = s′j, 1 ≤ j ≤ n, by the sufficient part of

Kwapien’s generalized theorem we obtain T ∈ Pr

(∏n
j=1Ej, E

′
n+1

)
. In the same way

we show Pr

(∏n
j=1Ej, E

′
n+1

)
⊂ Ps

(∏n
j=1Ej, E

′
n+1

)
and the proof is complete. �

Corollary 5 Let Ej, 1 ≤ j ≤ n + 1 be Banach spaces and let r = (rj)
n+1
j=0 be an

admissible (n + 2)-pla such that r′j ≥ 2 for every 1 ≤ j ≤ n + 1. Let s = (sj)
n+1
j=0 be

another admissible (n+2)-pla such that 2 ≤ s′j for every 1 ≤ j ≤ n and sn+1 = rn+1.

Then
(⊗̂n+1

j=1Ej, αr

)
≈
(⊗̂n+1

j=1Ej, αs

)
.
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Proof. Arguing as above, we only need to show that Ps

(∏n
j=1Ej, E

′
n+1

)
=

Pr

(∏n
j=1Ej, E

′
n+1

)
. The crucial step is the proof of the inclusion Pr

(∏n
j=1Ej, E

′
n+1

)
⊂ Ps

(∏n
j=1Ej, E

′
n+1

)
since the proof of the converse inclusion can be made exactly

in the same way.
Let T ∈ Pr

(∏n
j=1Ej, E

′
n+1

)
. By the proof of 2) =⇒ 3) in theorem 3 there are

a probability space (Ω,B, µ), maps Aj ∈ Pr′j

(
Ej, L

r′j(Ω;µ)
)
, 1 ≤ j ≤ n and a map

S ∈ Ln
(∏n

j=1Aj(Ej), E
′
n+1

)
such that S ′ ∈ Pr′n+1

(
E ′′
n+1,Ln

(∏
j=1Aj(Ej),R

))
and

T = S ◦
(
(Aj)

n
j=1

)
. Consider the tensor products Tπ :=

(⊗̂n

j=1L
r′j(Ω, µ)

)
, π
)

and

Hπ := Lr0(Ω, µ)
⊗̂

πTπ. The canonical linear map M̃µ from Hπ onto Lrn+1(Ω, µ),

(recall the notation of introductory section) induces an isomorphism M̂µ from the

quotient space K1 := Hπ/Ker(M̃µ) onto Lrn+1(Ω, µ). As rn+1 ≤ 2, K1 has cotype 2.
Let Ψ1 : Hπ −→ K1 be the canonical quotient map. For every 1 ≤ j ≤ n we

consider the map ψj ∈ L
(
Lr

′
j(Ω),Hπ

)
defined by

ψj : z ∈ Lr
′
j(Ω) −→

[
χ

Ω

]
⊗
[
χ

Ω

]
⊗ ...⊗

[
χ

Ω

]
⊗ z ⊗

[
χ

Ω

]
⊗ ...⊗

[
χ

Ω

]
(z in the position j + 1) and define Tj := ψj

(
Lr

′
j(Ω)

)
.
[
χ

Ω

]
being of dimension 1 is

complemented in each Lp(Ω, µ), p ≥ 1. It follows that Tj is a complemented (and

hence closed) subspace of Hπ. Define Fj := Aj(Ej). Clearly Hj := ψj(Fj) is a closed
subspace of Tj.

Claim. For every 1 ≤ j ≤ n, Ψ1(Tj) is closed in K1.
Proof of the claim. Fix 1 ≤ j ≤ n. Let Pj ∈ L(Hπ,Tj) be a projection and

let Wj := Ker(Pj) ⊕ (Ker(M̃µ) ∩ Tj). The quotient space K2j := Hπ/Wj is well
defined. Let Ψ2j ∈ L

(
Hπ, K2j

)
be the canonical quotient map. The map

∀ z ∈ Hπ Lj : Ψ2j(z) ∈ K2j −→ Ψ1 ◦ Pj(z) ∈ Ψ1(Tj) ⊂ K1

is well defined and continuous. In fact, given z1 = Pj(z1) + (Iπ − Pj)(z1) ∈ Hπ and
z2 = Pj(z2) + (Iπ − Pj)(z2) ∈ Hπ (Iπ denotes the identity map on Hπ) such that
Ψ2j(z1) = Ψ2j(z2), as (Iπ − Pj)(z1) ∈ Ker(Pj) ⊂W and (Iπ − Pj)(z2) ∈ Ker(Pj) ⊂
W, we obtain Ψ2j ◦ Pj(z1) = Ψ2j ◦ Pj(z2), i. e.

Pj(z1) − Pj(z2) ∈ W =⇒ Pj(z1) − Pj(z2) ∈ Ker(M̃µ) ∩ Tj ⊂ Ker(M̃µ)

and hence Lj(z1) = Ψ1 ◦ Pj(z1) = Ψ1 ◦ Pj(z2) = Lj(z2) and Lj is well defined. On
the other hand, given Ψ2j(z) ∈ K2j there is w ∈ Tπ such that Ψ2j(w) = Ψ2j(z) and∥∥w∥∥

Tπ
≤ 2

∥∥Ψ2j(z)
∥∥
K2j
. Then∥∥Lj ◦ Ψ2j(z)
∥∥
K1

=
∥∥Lj ◦ Ψ2j(w)

∥∥
K1

=
∥∥Ψ1 ◦ Pj(w)

∥∥
K1

≤

11



≤
∥∥Ψ1

∥∥ ∥∥Pj∥∥ ∥∥w∥∥Hπ ≤ 2
∥∥Pj∥∥ ∥∥Ψ2j(z)

∥∥
K2j

and Lj turns out to be continuous. But, clearly, Lj is surjective. Then the canonical

induced map L̃j ∈ L(K3j, K1) from the quotient space K3j := K2j/Ker(Lj) onto
K1 is an isomorphism. Let Ψ3j ∈ L(K2j, K3j) be the canonical quotient map. Note
that we have

Ψ1 ◦ Pj = Lj ◦ Ψ2j = L̃j ◦ Ψ3j ◦ Ψ2j. (19)

Next take z ∈ Ψ1(Tj). There is a sequence {zm}∞m=1 ⊂ Tj such that z =

limm→∞ Ψ1(zm) in K1. Then {L̃−1
j (zm)}∞m=1 is a Cauchy sequence in K3j. By a stan-

dard procedure (see
[

[8], §14,4. (3)
]

for instance) and switching to a suitable
subsequence if necessary, we can assume that there is a sequence {wm}∞m=1 ⊂ Hπ

such that
∀ m ∈ N Ψ3j ◦ Ψ2j(wm) = L̃−1

j (zm) = Ψ3j ◦ Ψ2j(zm) (20)

and

∀ m, k ∈ N
∥∥wm−wk

∥∥
Hπ

≤ 2
∥∥Ψ2j(wm)−Ψ2j(wk)

∥∥
K2j

≤ 4
∥∥L̃−1

j (zm)−L̃−1
j (zk)

∥∥
K3j
.

Then {wm}∞m=1 is a Cauchy sequence in Tπ and there exists w = limm→∞wm ∈ Hπ.
By (20) we obtain

Ψ3j◦Ψ2j(zm) = Ψ3j◦Ψ2j(wm) = Ψ3j◦Ψ2j

(
Pj(wm)−(Iπ−Pj)(wm)

)
= Ψ3j◦Ψ2j◦Pj(wm)

and since Pj is a projection and Pj(zm) = zm, by the definitions of Ψ3j and Lj

Ψ1(zm) = Ψ1 ◦ Pj(zm) = Lj ◦ Ψ2j(zm) = Lj ◦ Ψ2j ◦ Pj(wm) = Ψ1 ◦ Pj(wm)

and Ψ1 ◦ Pj(w) = limm→∞ Ψ1 ◦ Pj(wm) = limm→∞ Ψ1(zm) = z. As Pj(w) ∈ Tj we
obtain z ∈ Ψ1(Tj) and Ψ1(Tj) is closed. �

End of the proof of corollary 5. Let Φj be the restriction to Tj of Ψ1.
Let Ψ4j be the canonical quotient map from Tj onto the quotient space K4j :=

Tj/
(
Tj ∩Ker(Mµ)

)
. The map Φ̃j : Ψ4j ◦ψj(zj) ∈ K4j −→ Φj ◦ψj(zj) ∈ Φj(Tj), zj ∈

Fj is well defined. In fact, if zj ∈ Fj and Ψ4j ◦ ψj(zj − zj) = 0, we will have

ψj(zj − zj) ∈ Ker(M̃µ) and hence, by definition of M̃µ and ψj, one has zj = zj and

Φj ◦ ψj(zj) = Φj ◦ ψj(zj), turning Φ̃j well defined. The same argument shows that

Φ̃j is injective. By the claim Φj(Tj) is closed in K1. As Φ̃j is clearly surjective by

the open map theorem it turns out that Φ̃j is an isomorphism from K4j onto Φj(Tj).

Next, remark that given zj ∈ Lr
′
j(Ω, µ) and ε > 0, there is zj ∈ Lr

′
j(Ω, µ) such

that Ψ4j ◦ ψj(zj) = Ψ4j ◦ ψj(zj) and∥∥ψj(zj)∥∥Tj ≤ ∥∥Ψ4j ◦ ψj(zj)
∥∥
K4j

+ ε ≤
∥∥Φ̃−1

j

∥∥ ∥∥Φ̃j ◦ Ψ4j ◦ ψj(zj)
∥∥
K1

+ ε =

12



=
∥∥Φ̃−1

j

∥∥ ∥∥Φj ◦ ψj(zj)
∥∥
K1

+ ε ≤
∥∥Φ̃−1

j

∥∥ ∥∥ψj(zj)∥∥Tj + ε.

But, as we have shown previously, Ψ4j ◦ ψj(zj) = Ψ4j ◦ ψj(zj) implies zj = zj and
so ψj(zj) = ψj(zj). Then ε > 0 being arbitrary we obtain∥∥ψj(zj)∥∥Tj ≤ ∥∥Φ̃−1

j

∥∥ ∥∥Φj ◦ ψj(zj)
∥∥
K1

≤
∥∥Φ̃−1

j

∥∥ ∥∥ψj(zj)∥∥Tj
which means that Φj is an isomorphism from Tj onto Φj(Tj).

As a consequence the isomorphisms Fj ≈ Hj ≈ Φj(Hj) hold and Fj has co-
type 2 because Φj(Hj) is a closed subspace of K1 which has cotype 2. As Aj ∈
Pr′j

(Ej, Fj), by Maurey’s theorem
[

[2], corollary 3, §31.6
]

and Pietsch’s inclusion

theorem for p-absolutely summing maps, we obtain Aj ∈ P2(Ej, Fj) ⊂ Ps′j
(Ej, Fj).

It follow from the properties of S and from Kwapien’s generalized theorem that
T ∈ Ps

(∏n
j=1Ej, E

′
n+1

)
as desired. �

Corollary 6 Let Ej, 1 ≤ j ≤ n + 1 be Banach spaces and let r = (rj)
n+1
j=0 be an

admissible (n + 2)-pla such that rj 0 ≤ 2 for some 1 ≤ j0 ≤ n + 1 and r′j1 ≥ 2 for
some 1 ≤ j1 ̸= j0 ≤ n + 1. Choose sj0 < rj0 and define 1

s0
:= 1

r0
+ 1

r′j0
− 1

s′j0
and

sj := rj, 1 ≤ j ̸= j0 ≤ n+ 1. Then s = (sj)
n+1
j=0 is an admissible (n+ 2)-pla such that

s0 <∞ and
(⊗n+1

j=1 Ej, αr

)
≈
(⊗n+1

j=1 Ej, αs

)
.

Proof. After the eventual transposition j1 → n + 1, n + 1 → j1 we can assume
that j1 = n + 1. Then the proof is essentially the same of corollary 5 because we
have rn+1 ≤ 2 and Maurey’s theorem will be applicable still in the ”axis” j0. �

Another application of theorem 3 concerns to the approximation of r-dominated
maps by finite rank maps.

Theorem 7 Let Ej, 1 ≤ j ≤ n+1, be Banach spaces with duals E ′
j having the metric

approximation property and such that each E ′
j, 1 ≤ j ≤ n has the Radon-Nikodym

property. Then Pr

(∏n
j=1Ej, E

′
n+1

)
=
(⊗̂n+1

j=1E
′
j, α

′
r

)
.

Proof. Let T ∈ Pr

(∏n
j=1Ej, E

′
n+1

)
. By Kwapien’s theorem (theorem 3) there

are Banach spaces Mj and operators Aj ∈ Pr′j
(Ej,Mj), 1 ≤ j ≤ n and S ∈

Ln
(∏n

j=1Mj, E
′
n+1

)
such that T = S ◦ (A1, A2, ..., An). Since every E ′

j has the

Radon-Nikodym property, by the result
[

[11], page 228
]

of Makarov and Samarskii,
each Aj is a quasi r′j-nuclear operator. By

[
[13], theorems 26 and 43

]
there is a

sequence {
Bjh =

tjh∑
sj=1

x′jhsj ⊗mjhsj

}∞

h=1
⊂ E ′

j ⊗Mj,
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of finite rank operators such that

∀ 1 ≤ j ≤ n lim
h→∞

Pr′j
(Aj −Bjh) = 0. (21)

In particular, every sequence {Bjh}∞h=1 is a Cauchy sequence (and so bounded) in
Pr′j

(Ej,Mj), 1 ≤ j ≤ n.

Since for every (xj)
n
j=1 ∈

∏n
j=1Ej and h ∈ N we have

(
S ◦

(
(Bjh

)n
j=1

)(
(xj)

n
j=1

)
= S

(( tjh∑
sj=1

⟨
x′jhsj , xj

⟩
mjhsj

)n
j=1

)
=

=

t1h∑
s1=1

...

tnh∑
sn=1

( n∏
j=1

⟨
x′jhsj , xj

⟩)
S
(
(mjhsj)

n
j=1

)
,

it turns out that S ◦
(
(Bjh

)n
j=1

)
∈ Ln

(∏n
j=1Ej, E

′
n+1

)
has finite dimensional range

and

S ◦
(

(Bjh

)n
j=1

)
=

t1h∑
s1=1

...

tnh∑
sn=1

(
⊗n
j=1x

′
jhsj

)
⊗ S

(
(mjhsj)

n
j=1

)
∈

n+1⊗
j=1

E ′
j.

With a similar proof to the one given in [2] it can be seen that
(⊗̂n+1

j=1E
′
j, α

′
r

)
is a

topological subspace of Pr

(∏n
j=1Ej, E

′
n+1

)
. Hence by theorem 3, (18) and (21)

α′
r

(
S ◦

(
B1h, B2h, ..., Bnh

)
− S ◦

(
B1k, B2k, ..., Bnk

))
=

= Pr

(
n∑
j=1

(
S ◦B1k, ..., Bj−1,k, Bjh −Bjk, Bj+1,h, ..., Bnh

))
≤

≤ Pr′n+1
(S ′)

n∑
j=1

Pr′j
(Bjh −Bjk)

( ∏
1≤s<j

Pr′s(Bsk)
)( ∏

j<s≤n

Pr′s(Bsh)
)

is arbitrarily small when h and k lets to infinity and so there exists z := limh→∞ S ◦(
B1h, B2h, ..., Bnh

)
∈
(⊗̂n+1

j=1E
′
j, α

′
r

)
. On the other hand, it can be shown in an

analogous way that

lim
h→∞

Pr

(
T − S ◦

(
(Bjh)

n
j=1

))
= lim

h→∞
Pr

(
S ◦

(
(Aj)

n
j=1

)
− S ◦

(
(Bjh)

n
j=1

))
= 0

and hence T = z. �
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3 r-nuclear multilinear maps

With the same methods used in the classical case of Lapresté’s tensor topologies,

it can be shown that every element z ∈
⊗̂

αr

(
E1, E2, ..., En, F

)
can be represented

as a convergent series

z =
∞∑
m=1

λm

(
⊗n
j=1xjm

)
⊗ zm (22)

where (λm) ∈ ℓr0 , (xjm)∞m=1 ∈ ℓr
′
j(Ej), j = 1, 2, ..., n and (zm)∞m=1 ∈ ℓr

′
n+1(F ).

Moreover, the norm of such elements z can be computed as in (10) but using repre-
sentations (22) and h = ∞.

If F is a Banach space every z ∈
⊗̂

αr

(
E1, E2, ..., En, F

)
defines canonically a

multilinear map Tz ∈ Ln
(∏n

j=1E
′
j, F
)

by the rule

∀
(
x′j
)n
j=1

∈
n∏
j=1

E ′
j Tz

(
(x′j)

n
j=1

)
=

∞∑
m=1

λm

(
n∏
j=1

⟨
xjm, x

′
m

⟩)
zm. (23)

Remark that Tz is independent on the representing series (22) for z as a conse-

quence of theorem 2 and the easy fact that
(⊗n

j=1E
′
j

)⊗
F ′ ⊂ Pr

(∏n
j=1Ej, F

′
)

canonically. In this way we have defined a canonical linear map

Φ : z ∈
⊗̂

αr

(
E1, E2, ..., En, F

)
−→ Tz ∈ Ln

( n∏
j=1

E ′
j, F
)

(24)

which suggest the next definition:

Definition 8 A multilinear map A ∈ Ln
(∏n

j=1Ej, F
)
is said to be r-nuclear if it is

the restriction R(Tz) to
∏n

j=1Ej of a map Tz for some z ∈
⊗̂

αr

(
E ′

1, E
′
2, ..., E

′
n, F

)
.

It can be shown that the set Nr

(∏n
j=1Ej, F

)
of all n-linear r-nuclear maps from∏n

j=1Ej into F becomes a Banach space under the r-nuclear norm

Nr(A) = inf
{
αr(z)

∣∣∣ A = R(Tz), z ∈ ⊗̂αr

(
E ′

1, E
′
2, ..., E

′
n, F

)}
if all Ej, 1 ≤ j ≤ n and F are Banach spaces. r-nuclear maps can be characterized
by means of suitable factorizations as follows.

Theorem 9 Let F and Ej, 1 ≤ j ≤ n be Banach spaces and T ∈ Ln
(∏n

i=1Ej, F
)
. T

is r-nuclear if and only if there are maps Aj ∈ L(Ej, ℓ
r′j), 1 ≤ j ≤ n, C ∈ L(ℓrn+1 , F )

and λ := (λm) ∈ ℓr0 such that T factorizes in the way

15



∏n
j=1 ℓ

r′j -
?

ℓrn+1 .

6

∏n
j=1Ej

- F
T

(Aj)
n
j=1 C

Dλ

Moreover Nr(T ) = inf
(∏n

j=1

∥∥Aj∥∥) ∥∥Dλ

∥∥ ∥∥C∥∥ taking the infimum over all

factorizations as above.

Proof. The proof being quite standard (compare with [10]) is omitted.

Remark. By theorem 9, (2) and the compactness result (
[

[1], theorem 4.2
]
)

of Alencar and Floret, if r0 <∞, every r-nuclear mapping is compact.

As an application of theorem 7 we can obtain a sufficient condition in order that
the map Φ be injective. Although the formulation of this condition is far to be
optimal, it will be enough for our applications in the sequel.

Corollary 10 Let Ej, 1 ≤ j ≤ n be reflexive Banach spaces having the approxima-
tion property. Then, for every Banach space En+1 such that E ′

n+1 has the metric

approximation property, the map Φ in (24) is injective and so
(⊗̂n+1

j=1Ej, αr

)
=

Nr

(∏n
j=1E

′
j, En+1

)
.

Proof. Since we have actually Φ ∈ L
((⊗̂n+1

j=1Ej, αr

)
,Nr

(∏n
j=1E

′
j, En+1

))
, it

is enough to show that this map is injective. Is easy to see that
⊗n+1

j=1 E
′
j ⊂(

Nr

(∏n
j=1E

′
j, En+1

))′
. Now theorem 7 implies that the transposed map

Φ′ :
(
Nr

( n∏
j=1

E ′
j, En+1

))′
−→ Pr

( n∏
j=1

Ej, E
′
n+1

)
has dense range, getting the injectivity of Φ. �

4 r-integral multilinear maps

Definition 11 Let Ej, 1 ≤ j ≤ n, and F be Banach spaces. A continuous n-linear

map T from
∏n

j=1Ej into F is called r-integral if JFT ∈
(⊗̂

α′
r

(
E1, E2, ..., En, F

′))′.
The norm of JFT in that dual space is taken as definition of the r-integral norm Ir(T )
of a map T ∈ Ir

(∏n
j=1Ej, F

)
, the set of r-integral multilinear maps from

∏n
j=1Ej

16



into F. (Ir, Ir) turns out to be the maximal ideal of multilinear maps associated to
the (n + 1)-tensor norm αr in the sense of Defant and Floret (see [2] and theorem
4.5 in [5]). The next theorem gives the prototype of r-integral maps.

Theorem 12 Given a measure space (Ω,A, µ) and g ∈ Lr0(Ω,A, µ), the canonical
multilinear map Dg :

∏n
j=1 L

r′j(Ω,A, µ) −→ Lrn+1(Ω,A, µ) is r-integral.

Proof. Let Sj, 1 ≤ j ≤ n be the subspace of Lr
′
j(Ω, µ) of simple functions with

support of finite measure. Every Sj being dense in Lr
′
j(Ω, µ), it is enough so see that

Dg ∈
(⊗

α′
r

(
S1,S2, ...,Sn, Lr

′
n+1(Ω, µ)

))′
(density lemma for (n+ 1)-tensor norms).

Fix z ∈
⊗

α′
r

(
S1,S2, ...,Sn, Lr

′
n+1(Ω, µ)

)
. There exist finite dimensional subspaces

Mj ⊂ Sj, 1 ≤ j ≤ n generated by the characteristic functions {χ
Bk
}hk=1 of a finite

family of pairwise disjoints sets of finite measure {Bk}hk=1 ⊂ A and there exists a
finite dimensional subspace N ⊂ Lr

′
n+1(Ω, µ) such that z ∈ ⊗

(
M1,M2, ...,Mn, N

)
.

Then for every fj ∈Mj, 1 ≤ j ≤ n and fn+1 ∈ N, using (4)

⟨
⊗n+1
j=1 fj, Dg

⟩
=

⟨(
⊗n
j=1

h∑
k=1

αjkχBk

)
⊗ fn+1, Dg

⟩
=

h∑
k=1

(
n∏
j=1

αjk

) ⟨
χ
Bk
g, fn+1

⟩
=

=
h∑
k=1

1

µ(Bk)n

(
n∏
j=1

(∫
Bk

fj dµ

)) ⟨
χ
Bk
g, fn+1

⟩
=

=
h∑
k=1

(∫
Bk

|g|r0 dµ
) 1

r0

(
n∏
j=1

(
1

µ(Bk)
1
rj

∫
Bk

fj dµ

)) ⟨(∫
Bk

|g|r0 dµ
)− 1

r0

µ(Bk)
1
w

χ
Bk
g, fn+1

⟩
.

As a consequence

∀ z ∈
⊗(

M1,M2, ...,Mn, N
) ⟨

z,Dg

⟩
=
⟨
z, V

⟩
(25)

where we have defined

V :=
h∑
k=1

(∫
Bk

|g|r0 dµ
) 1

r0 (
⊗n
j=1φjk

)
⊗

(∫
Bk

|g|r0 dµ
)− 1

r0

µ(Bk)
1
w

χ
Bk
g

and where φjk is the class in Lrj(Ω, µ)/M⊥
j = M ′

j of the function µ(Bk)
− 1
rj χ

Bk
for

every ∀ 1 ≤ j ≤ n, 1 ≤ k ≤ h. Moreover, (the class of ) χ
Bk
g ∈ N ′ for every

1 ≤ k ≤ h since χ
Bk
g ∈ Lr0(Ω, µ) and by (7) we obtain χ

Bk
g ∈ Lrn+1(Ω, µ), Bk

being of finite measure.

17



Note that, by finite dimensionality

V ∈
⊗
αr

(
M ′

1,M
′
2, ...,M

′
n, N

′) =
(⊗
α′
r

(
M1,M2, ...,Mm, N

))′
. (26)

Now we perform some computations. The first one is

πr0

((∫
Bk

|g|r0 dµ
) 1

r0

)h

k=1

 =

(
h∑
k=1

∫
Bk

|g|r0 dµ

) 1
r0

=
∥∥g∥∥

Lr0(Ω)
(27)

In second time, for every 1 ≤ j ≤ n, using (4) and Hölder’s inequality, we obtain

εr′j

((
φj,k

)h
k=1

)
= sup

∥f∥
L
r′
j (Ω)

≤1

 h∑
k=1

1

µ(Bk)
r′
j
rj

(∫
Bk

f dµ

)r′j
1
r′
j

≤

≤ sup
∥f∥

L
r′
j (Ω)

≤1

 h∑
k=1

1

µ(Bk)
r′
j
rj

(∫
Bk

|f |r′j dµ
)
µ(Bk)

r′j
rj


1
r′
j

≤

≤ sup
∥f∥

L
r′
j (Ω)

≤1

(
h∑
k=1

∫
Bk

|f |r′j dµ

) 1
r′
j

= sup
∥f∥

L
r′
j (Ω)

≤1

∥∥f∥∥
L
r′
j (Ω)

= 1. (28)

Finally, by Hölder’s inequality and (6) we have

εr′n+1

(µ(Bk)
− 1
w

(∫
Bk

|g|r0 dµ
)− 1

r0

χ
Bk
g

)h

k=1

 =

= sup
∥f∥

L
r′n+1(Ω)

≤1

 h∑
k=1

µ(Bk)
−
r′n+1
w

(∫
Bk

|g|r0 dµ
)−

r′n+1
r0

(∫
Bk

g f dµ

)r′n+1


1

r′n+1

≤

≤ sup
∥f∥

L
r′n+1(Ω)

≤1

(
h∑
k=1

∫
Bk

|f |r′n+1 dµ

) 1
r′n+1

= sup
∥f∥

L
r′n+1(Ω)

≤1

(∫
Ω

|f |r′n+1 dµ

) 1
r′n+1

= 1.

(29)
Then, by (25), (26), (27), (28) and (29)∣∣⟨z,Dg

⟩∣∣ ≤ α′
r

(
z;
⊗(

M1,M2, ...,Mn, N
))
αr

(
V ;
⊗(

M ′
1,M

′
2, ...,M

′
n, N

′)) ≤
18



≤ α′
r

(
z;
⊗(

M1,M2, ...,Mn, N
)) ∥∥g∥∥

Lr0 (Ω)

and, α′
r being a finite generated (n+ 1)-tensor norm,∣∣⟨z,Dg

⟩∣∣ ≤ α′
r

(
z;
⊗(

S1,S2, ...,Sn, Lrn+1(Ω, µ)
) ∥∥g∥∥

Lr0 (Ω)
,

which means Ir(Dg) ≤
∥∥g∥∥

Lr0 (Ω)
. �

To find a characterization of r-integral maps we need to use ultraproducts (Eγ)U
of a given family {Eγ, γ ∈ G} of Banach spaces over an ultrafilter U on the index
set G. For this topic our main reference is [17]. We use the natural notation (xγ)U
for every element in (Eγ)U .

Given a family
{
Tγ ∈ Ln

(∏n
j=1E

j
γ, Fγ

)
, | γ ∈ G

}
of maps between the cartesian

product
∏n

j=1E
j
γ of Banach spaces Ej

γ and Fγ, 1 ≤ j ≤ n, γ ∈ G, such that

supγ∈G
∥∥Tγ∥∥ < ∞, there is a canonical n-linear continuous ultraproduct map (Tγ)U

from the ultraproduct
(∏n

j=1E
j
γ

)
U into the ultraproduct (Fγ)U such that for every

x :=
((
xjγ
)n
j=1

)
U ∈

(∏n
j=1E

j
γ

)
U we have

(
Tγ
)
U(x) =

(
Tγ
((
xjγ
)n
j=1

))
U . The main

result we shall need is the following factorization theorem:

Lemma 13 Consider a family of canonical maps Dgγ :
∏n

j=1 ℓ
r′j −→ ℓrn+1 , γ ∈ G ̸=

∅ defined by a family of elements {gγ
∣∣ γ ∈ G} ⊂ ℓr0 such that 0 < supγ∈G

∥∥Dgγ

∥∥ <
∞. There exist a decomposable measure space (Ω,M, µ), a function g ∈ Lr0(Ω,M, µ)
and order onto isometries Xj :

(
ℓr

′
j
)
U −→ Lr

′
j(Ω,M, µ), 1 ≤ j ≤ n, X0 :

(
ℓr0
)
U −→

Lr0(Ω,M, µ) and Xn+1 :
(
ℓrn+1

)
U −→ Lrn+1(Ω,M, µ) such that the diagram(∏n

j=1 ℓ
r′j

)
U

(Dgγ )U -

∏n
j=1 L

r′j(Ω)
Dg - Lrn+1(Ω).

?

6
X−1
n+1

(
Xj

)n
j=1

(ℓrn+1)U

is commutative. Moreover,
∥∥Dg

∥∥ =
∥∥(Dgγ )U

∥∥.
Proof. By (5) and a factorization result of Raynaud,

[
[15], theorem 5.1

]
there

are a decomposable measure space (Ω,M, µ) and isometric order isomorphisms

X0 :
(
ℓr0
)
U −→ Lr0(Ω,M, µ), Xj :

(
ℓr

′
j
)
U −→ Lr

′
j(Ω,M, µ), 1 ≤ j ≤ n,

and Xn+1 :
(
ℓrn+1

)
U −→ Lrn+1(Ω,M, µ) such that, Mγ being the map corresponding

to γ ∈ G (recall the notations introduced in section 1), we have (Mγ)U = X−1
n+1 ◦

Mµ ◦
(
(Xj)

n
j=1

)
. The lemma follows taking g = X0

(
(gγ)U

)
. �

Now we can obtain the following characterization:
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Theorem 14 Let Ej, 1 ≤ j ≤ n and F be Banach spaces and T ∈ Ln(
∏n

j=1Ej, F ).
The following are equivalent:

1) T is r−integral.
2) JFT can be factorized as

∏n
j=1 L

r′j(Ω,M, µ) -
?

Lrn+1(Ω,M, µ)

6

JF∏n
j=1Ej

- F - F ′′T

(Aj)
n
j=1 C

Dg

(30)
where Aj ∈ L

(
Ej, L

r′j(Ω,M, µ)
)
, 1 ≤ j ≤ n, C ∈ L

(
Lrn+1(Ω,M, µ), F ′′) and Dg is

the multilinear diagonal operator corresponding to some g ∈ Lr0(Ω,M, µ). Moreover

Ir(T ) = inf
∥∥Dg

∥∥ ∥∥C∥∥ n∏
j=1

∥∥Aj∥∥ (31)

taking the infimum over all factorizations as in the previous diagram.
3) JFT can be factorized as above but (Ω,M, µ) being a finite measure space and

g = χ
Ω
. Formula (31) holds too taking the infimum over the factorizations of that

type.

Proof. 1) =⇒ 2). This can be done using standard methods with help of theorem
9 and lemma 13 (see for instance [10] for a detailed development of the method, used
in a similar framework).

2) =⇒ 3). Given ε > 0, select a factorization of type (30) with g ∈ Lr0(Ω,M, µ)
and such that ∥∥g∥∥

Lr0 (Ω,µ)

∥∥C∥∥ n∏
j=1

∥∥Aj∥∥ ≤ Ir(T ) + ε. (32)

After projection onto the sectional subspaces Lr
′
j(Supp(g)), 1 ≤ j ≤ n if nec-

essary, we can assume that Ω = Supp(g). Consider the new finite measure ν on
(Ω,M) defined by

∀M ∈ M ν(M) =

∫
M

|g|r0 dµ

and the mappings

∀ 1 ≤ j ≤ n Hj : fj ∈ Lr
′
j(Ω, µ) −→ Hj(fj) = fj |g|

− r0
r′
j ∈ Lr

′
j(Ω, ν)
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and
Hn+1 : f ∈ Lrn+1(Ω, µ) −→ Hn+1(f) = f |g|−

r0
rn+1 ∈ Lrn+1(Ω, ν).

By Radon-Nikodym’s theorem∥∥∥Hn+1(f)
∥∥∥
Lrn+1 (Ω,ν)

=
∥∥∥f∥∥∥

Lrn+1 (Ω,µ)
,
∥∥∥Hj(fj)

∥∥∥
L
r′
j (Ω,ν)

=
∥∥∥fj∥∥∥

L
r′
j (Ω,µ)

, 1 ≤ j ≤ n

(33)
and for every (fj)

n
j=1 ∈

∏n
j=1 L

r′j(Ω, µ), using (2)

(
H−1
n+1◦Dχ

Ω
◦(Hj)

n
j=1

)(
(fj)

n
j=1

)
= |g|

r0
rn+1

n∏
j=1

fj |g|
− r0
r′
j = |g|

r0

(
1

rn+1
−
∑n
j=1

1
r′
j

)
n∏
j=1

fj =

= |g|
r0

(
1

rn+1
−1+ 1

r0
+ 1
r′n+1

)
n∏
j=1

fj = g
n∏
j=1

fj = Dg

((
fj)

n
j=1

)
. (34)

As χ
Ω
∈ Lr0(Ω, ν), joining the factorization (34) with the initial one we get our

goal and moreover, by (33) and (32)

Ir(T ) ≤
∥∥C ◦H−1

n+1

∥∥ ∥∥Dχ
Ω

∥∥ n∏
j=1

∥∥Hj ◦ Aj
∥∥ ≤

≤
∥∥C∥∥ ∥∥Hn+1 ◦Dg ◦H−1

j

∥∥ n∏
j=1

∥∥Aj∥∥ ≤ Ir(T ) + ε. (35)

3) =⇒ 1). It is immediate by theorem 12 and the ideal properties of multilinear
r-integral operators. �

5 Applications to reflexivity

Previous results allows us to obtain some information about the reflexivity of
completed tensor products of type αr.

Theorem 15 Let Ej, 1 ≤ j ≤ n ∈ N and F be reflexive Banach spaces such that
E ′
j, 1 ≤ j ≤ n and F ′ have the metric approximation property. Given an admissible

(n+ 2)-pla r, the space
⊗̂

αr

(
E1, E2, ..., En, F

)
is reflexive if and only if

Nr

( n∏
j=1

E ′
j, F

)
= Ir

( n∏
j=1

E ′
j, F

)
. (36)
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Proof. If (36) holds, by theorem 7 and corollary 10 we obtain(⊗̂
αr

(
E1, E2, ..., En, F

))′′
=
(
Pr

( n∏
j=1

Ej, F
′
))′

=
(⊗̂

α′
r

(
E ′

1, E
′
2, ..., E

′
n, F

′))′ =

= Ir

( n∏
j=1

E ′
j, F

)
= Nr

( n∏
j=1

E ′
j, F

)
= ⊗̂αr

(
E1, E2, ..., En, F

)
.

Conversely, if ⊗̂αr

(
E1, E2, ..., En, F

)
is reflexive, by definition of r-integral maps,

theorem 7 and corollary 10 we obtain

Ir

( n∏
j=1

E ′
j, F

)
=
(
Pr

( n∏
j=1

Ej, F
′
))′

=
⊗̂

αr

(
E1, E2, ..., En, F

)
= Nr

( n∏
j=1

E ′
j, F

)
. �

We apply theorem 15 to characterize the reflexivity of
(⊗̂n+1

j=1 ℓ
uj , αr

)
. First, we

need a lemma.

Lemma 16 Let r = (rj)
n+1
j=0 an admissible (n + 2)-pla verifying r0 = ∞ and let

1 < u′j ≤ r′j for every 1 ≤ j ≤ n + 1. Then there exists a non compact map

T ∈ Ir

(∏n
j=1 ℓ

u′j , ℓun+1
)
.

Proof. Let I1 :=
[
0, 1

2

[
and Im :=

[∑m
i=1

1
2i
,
∑m+1

i=1
1
2i

[
if m > 1. The map

Aj : (βi) ∈ ℓu
′
j −→

∑∞
m=1 βm µ(Im)

− 1
r′
j χ

Im
∈ Lr

′
j([0, 1], µ), 1 ≤ j ≤ n (µ is the

Lebesgue measure on [0, 1]), is well defined and continuous since

∥∥Aj((βm)
)∥∥ =

(
∞∑
m=1

|βm|r
′
j

µ(Im)
µ(Im)

) 1
r′
j

≤
∥∥(βm)

∥∥
ℓ
u′
j
.

Take g = χ
[0,1]

∈ L∞([0, 1], µ). Consider now the closed linear subspace F gener-
ated by the set {χ

Im
,m ∈ N} in Lrn+1([0, 1]). The map

Q : f ∈ Lrn+1([0, 1]) −→
∞∑
m=1

1

µ(Im)

(∫
Im

f dµ

)
χ
Im

∈ F

is continuous since, by Hölder’s inequality

∥∥Q(f)
∥∥
F

=

(
∞∑
m=1

(∫
Im

f dµ

)rn+1

µ(Im)1−rn+1

) 1
rn+1

≤
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≤

(
∞∑
m=1

(∫
Im

|f |rn+1 dµ

)
µ(Im)

rn+1
r′n+1

+1−rn+1

) 1
rn+1

=
∥∥f∥∥

Lrn+1 ([0,1])
.

It is immediate that Q is a projection from Lrn+1([0, 1]) onto F. Finally consider the
map

C : f =
∞∑
m=1

βm χ
Im

∈ F −→
(
βm µ(Im)

1
rn+1

)
∈ ℓun+1

is continuous since rn+1 ≤ un+1 and

∥C(f)∥ℓun+1 =

(
∞∑
m=1

|βm|un+1µ(Im)
un+1
rn+1

) 1
un+1

≤

(
∞∑
m=1

|βm|rn+1µ(Im)

) 1
rn+1

=
∥∥f∥∥

F
.

Hence T := C ◦ Q ◦ Dg ◦
(
(Aj)

n
j=1

)
∈ Ir

(∏n
j=1 ℓ

u′j , ℓun+1
)

but T is not compact
since, using (2)

∀ m ∈ N T
(
(em, em, ..., em)

)
=

1

µ(Im)
1

rn+1

µ(Im)
1

rn+1 em = em. �

We can state now the main result of this section:

Theorem 17 If 1 < uj < ∞ for every 1 ≤ j ≤ n + 1,
(⊗̂n+1

i=1 ℓ
uj , αr

)
is reflexive if

and only if at least one of the following set of conditions holds:

S1). There is 1 ≤ j0 ≤ n + 1 such that u′j > 2 and u′j > r′j for all 1 ≤ j ̸= j0 ≤
n+ 1.

S2). There exists 1 ≤ j0 ≤ n + 1 such that u′j > 2 for every 1 ≤ j ̸= j0 ≤ n + 1
and

1

rj0
>

n+1∑
1≤j ̸=j0

1

u′j
. (37)

and moreover, there exists 1 ≤ j1 ̸= j0 ≤ n + 1 such that r′j ≥ 2 for every 1 ≤ j ̸=
j1 ≤ n+ 1.

S3). We have u′j > 2 for every 1 ≤ j ≤ n + 1, and there exists 1 ≤ j0 ≤ n + 1
such that r′j0 ≤ 2 and

1

2
>

n+1∑
1≤j ̸=j0

1

u′j
. (38)

S4). There is 1 ≤ j0 ≤ n + 1 such that u′j0 = 2, r′j0 ≤ 2, u′j > 2 for every
1 ≤ j ̸= j0 ≤ n+ 1 and

1

2
>

n+1∑
1≤j ̸=j0

1

u′j
. (39)
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Proof. Sufficient conditions. Case S1). After the transposition j0 −→
n+ 1, n+ 1 −→ j0 if necessary, we can assume j0 = n+ 1 and so u′j > 2 and u′j > r′j
for every 1 ≤ j ≤ n.

By theorem 14, given T ∈ Ir

(∏n
j=1 ℓ

u′j , ℓun+1

)
there are a finite measure space

(Ω,M, µ) and mappingsAj ∈ L(ℓu
′
j , Lr

′
j(Ω, µ)), 1 ≤ j ≤ n and C ∈ L(Lrn+1(Ω, µ), ℓv)

such that T = C ◦Dχ
Ω
◦
(
Aj
)n
j=1

. By Rosenthal’s result
[

[16],theorem A.2
]

every

Aj is compact, and by the metric approximation property of ℓuj , there is a bounded
sequence Ajm =

kjm∑
k=1

xjk ⊗ fkjm


∞

m=1

⊂ ℓuj ⊗ Lr
′
j(Ω, µ) (40)

such that
∀ 1 ≤ j ≤ n lim

m→∞

∥∥∥Aj − Ajm

∥∥∥
L(ℓu

′
j , L

r′
j (Ω,µ))

= 0. (41)

Define Tm := C ◦Dχ
Ω
◦
(
(Ajm)nj=1

)
for every m ∈ N. Arguing as in theorem 7 and

using theorem 14 we obtain for every 1 ≤ j ≤ n and m ∈ N

{
C ◦Dχ

Ω
◦
(
A1m, ..., Aj−1,m, Aj − Ajm, Aj+1,m, ..., Anm

)}∞
m=1

⊂ Ir

( n∏
j=1

ℓu
′
j , ℓun+1

)
and by (41)

Ir(T − Tm) ≤
n∑
j=1

Ir
(
C ◦Dχ

Ω
◦
(
A1m, ..., Aj−1,m, Aj − Ajm, Aj+1, ..., An

))
≤

≤ µ(Ω)
1
r0

∥∥C∥∥ n∑
j=1

∥∥Aj − Ajm
∥∥( ∏

1≤s<j

∥∥Asm∥∥) ( ∏
j<s≤n

∥∥As∥∥) (42)

which approach to 0 if m −→ ∞ . But actually we have

Tm =

kjm∑
k=1

(
⊗n
j=1xjk

)
⊗
(
C ◦Dχ

Ω
◦
(
(fkjm)

))
∈ Nr

( n∏
j=1

ℓu
′
j , ℓun+1

)
.

It follows from theorem 7 that Nr(Tm − Ts) = Ir(Tm − Ts) for m, s ∈ N and using
(42), it turns out that

{
Tm
}∞
m=1

is a Cauchy sequence in Nr

(∏n
j=1 ℓ

u′j , ℓun+1
)
. Then

T ∈ Nr

(∏n
j=1 ℓ

u′j , ℓun+1
)

and by theorem 15
(⊗̂n+1

i=1 ℓ
uj , αr

)
is reflexive.

Case S2). Let 1 ≤ j0 ̸= j1 ≤ n + 1 such that u′j > 2, 1 ≤ j ̸= j0 ≤ n + 1,
r′j ≥ 2, 1 ≤ j ̸= j1 ≤ n + 1 and (37) holds. In a first step we are going to see that
we can assume r′j1 ≥ 2 too.
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Consider the case that r′j1 < 2. In such a case we have u′j1 > 2 because j0 ̸= j1. If
j1 = n+ 1, defining s′n+1 = 2, s′j := r′j, 1 ≤ j ≤ n and 1

s0
:= 1

r0
+ 1

r′n+1
− 1

2
we obtain

an admissible (n+ 2)-pla s = (sj)
n+1
j=0 verifying (37) still and such that, ℓun+1 having

cotype 2, by corollary 4, we have (
⊗̂n+1

j=1 ℓ
uj , αr) ≈ (

⊗̂n+1

j=1 ℓ
uj , αs). If 1 ≤ j1 ≤ n, a

transposition j1 → n+1, n+1 → j1 would reduce the situation to the just considered
case. So, in the formulation of S1) we can assume that r′j ≥ 2, 1 ≤ j ≤ n+ 1.

After the eventual transposition j0 −→ n + 1, n + 1 −→ j0 we can assume that
u′j > 2 for every 1 ≤ j ≤ n, r′j ≥ 2 for every 1 ≤ j ≤ n + 1 and (37) holds for
j0 = n+ 1. Using (5) this last condition can be written in the way

1

r0
+

n∑
{j |r′j<u′j}

(
1

r′j
− 1

u′j

)
>

n∑
{j |r′j≥u′j}

(
1

u′j
− 1

r′j

)
. (43)

For every 1 ≤ j ≤ n such that r′j ≥ u′j, choose 2 ≤ t′j < u′j close enough to u′j in
order that

1

t0
:=

1

r0
+

n∑
{j |r′j<u′j}

(
1

r′j
− 1

u′j

)
−

n∑
{j |r′j≥u′j}

(
1

t′j
− 1

r′j

)
> 0. (44)

Now define t′j := r′j if r′j < u′j, 1 ≤ j ≤ n and tn+1 := rn+1. By (2) we have

1

tn+1

=
n∑
j=1

1

t′j
+

n∑
{j |r′j<u′j}

(
1

r′j
− 1

t′j

)
+

n∑
{j |r′j≥u′j}

(
1

r′j
− 1

t′j

)
+

1

r0

and it turns out that t = (tj)
n+1
j=0 is an admissible (n+2)-pla such that 2 ≤ t′j < u′j and

t′j ≤ r′j for every 1 ≤ j ≤ n and moreover, by corollary 5 we have
(⊗n+1

j=1 ℓ
uj , αr

)
≈(⊗n+1

j=1 ℓ
uj , αt

)
. Hence by case S1),

(⊗n+1
j=1 ℓ

uj , αr

)
is reflexive.

Case S3). Once again after the transposition j0 −→ n+ 1, n+ 1 −→ j0 we can
assume that r′n+1 ≤ 2, u′j > 2 for every 1 ≤ j ≤ n+ 1 and (38) holds for j0 = n+ 1,
or in an equivalent way (by (2)),

1

r0
+

1

r′n+1

− 1

2
+

n∑
{j |r′j<u′j}

(
1

r′j
− 1

u′j

)
>

n∑
{j |r′j≥u′j}

(
1

u′j
− 1

r′j

)
.

Remark that, by (2) we have necessarily r′j ≥ 2, 1 ≤ j ≤ n. Since ℓun+1 has cotype

2, by corollary 4 there exists an (n + 2)-pla s = (sj)
n+1
j=0 such that s′n+1 = 2, s′j :=

r′j, 1 ≤ j ≤ n and 1
s0

:= 1
r0

+ 1
r′n+1

− 1
2

and
(⊗n+1

j=1 ℓ
uj , αs

)
≈
(⊗n+1

j=1 ℓ
uj , αr

)
. Then(⊗n+1

j=1 ℓ
uj , αs

)
is reflexive by the case S2) and so

(⊗n+1
j=1 ℓ

uj , αr

)
does.
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Case S4). Assume the existence of 1 ≤ j0 ≤ n + 1 such that u′j0 = 2, r′j0 ≤ 2,
u′j > 2 for every 1 ≤ j ̸= j0 ≤ n+1 and ( 39) holds. Consider the admissible (n+2)-

pla s = (sj)
n+1
j=0 such that sj0 := 2, sj := rj for every 1 ≤ j ̸= j0 ≤ n + 1 and 1

s0
:=

1
r0

+ 1
r′j0

− 1
2
. We obtain from Kwapien’s generalized theorem and Pietsch’s inclusion

theorem that Pr

(∏n
j=1 ℓ

uj , ℓu
′
n+1

)
⊂ Ps

(∏n
j=1 ℓ

uj , ℓu
′
n+1

)
. The reverse inclusion is

true by Kwapien’s factorization theorem and Maurey’s theorem
[

[2], corollary 3,
§31.6

]
because ℓuj0 = ℓ2 has cotype 2 and r′j0 < 2 give P2(ℓ

2,M) = Pr′j0
(ℓ2,M) for

every Banach space M. Then
(⊗̂n+1

j=1 ℓ
uj , αr

)
≈
(⊗̂n+1

j=1 ℓ
uj , αs

)
and

(⊗̂n+1

j=1 ℓ
uj , αs

)
is

reflexive by (39) and the case S2).

Necessary conditions. We are going to see that
(⊗̂n+1

j=1 ℓ
uj , αr

)
is not reflexive

if none of the previous conditions holds. It is enough to consider the following cases.
Case N1). Assume there exist 1 ≤ j0 ≤ n such that u′j 0

≤ 2 and 1 ≤ j0 ̸=
j1 ≤ n + 1 such that uj1 ≥ 2. After the transposition j1 −→ n + 1, n + 1 −→ j1
on{1, 2, ..., n+ 1} if necessary, we can assume that j1 = n+ 1, i.e. un+1 ≥ 2.

For every 1 < p < ∞, let {Rp,h}∞h=1 be the sequence of Rademacher functions
in Lp([0, 1]). It is well known that the sequence {Rp,h}∞h=1 is equivalent to the stan-
dard unit basis of ℓ2 and its closed linear span Xp is complemented in Lp([0, 1])
(Khintchine’s inequality and

[
[12], proposition 5

]
).

Let Pn+1 ∈ L
(
Lrn+1([0, 1]), Xrn+1

)
be a projection. Let Sj0 : ℓu

′
j0 −→ Xr′j0

be

the continuous linear map such that Sj0(eh) = Rr′j0
,h. On the other hand, for every

1 ≤ j ̸= j0 ≤ n fix a sequence (αjh)
∞
h=1 ∈ ℓ2 such that αj1 = 1 and denote by

Sj : ℓu
′
j −→ Xr′j

the continuous linear map such that Sj(eh) = αjh Rr′j ,h
(remark

that∥∥Sj((βh))∥∥ ≤ Cj
∥∥(αjhβh)

∥∥
ℓ2
≤ Cj

∥∥(αjh)
∥∥
ℓ2

∥∥(βh)
∥∥
ℓ∞

≤ Cj
∥∥(αjh)

∥∥
ℓ2

∥∥(βh)
∥∥
ℓ
u′
j

for some Cj > 0 by Khintchine’s inequality).
Take g :=

∏n
j=1,j ̸=j 0

Rr′j ,1
∈ Lr0([0, 1]), and consider the well defined map Tn+1 ∈

L(Xrn+1 , ℓ
un+1) such that Tn+1(Rrn+1,h) = eh for h ∈ N. Then

T := Tn+1 ◦ Pn+1 ◦Dg ◦
(
Sj
)n
j=1

is r-integral by theorem 14. Let {zj0,h}∞h=1 := {(a1h, a2h, ..., anh)}∞h=1 ⊂
∏n

j=1 ℓ
u′j such

that ajh = e1 if j ̸= j0 and aj0h = eh, for every h ∈ N. We obtain T (zj0,h) = eh for
every h ∈ N and so T is not compact. If r0 ̸= ∞, by the remark after theorem 9 we

have T /∈ Nr

(∏n
j=1 ℓ

u′j , ℓun+1
)

and by theorem 15,
(⊗̂n+1

j=1 ℓ
uj , αr

)
is not reflexive.

In the case r0 = ∞ we need to consider several possibilities. First assume that
there are 1 ≤ j2 ̸= j0 ≤ n+ 1 and 1 ≤ j3 ̸= j2 ≤ n+ 1 such that r′j2 ≥ 2 and r′j3 ≥ 2.

By corollary 6 there is an admissible (n+ 2)-pla s = (sj)
n+1
j=0 such that s0 ̸= ∞ and
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(⊗̂n+1

j=1 ℓ
uj , αr

)
≈
(⊗̂n+1

j=1 ℓ
uj , αs

)
. Then by the previous case with r0 ̸= ∞, we see

that
(⊗̂n+1

j=1 ℓ
uj , αr

)
is not reflexive.

Finally, having (2) in mind, it remains to consider the case that r′j0 ≤ 2 and n = 1.

We are dealing with ℓu1
⊗̂

αr
ℓu2 where u′1 ≤ 2, r′1 ≤ 2 and u2 ≥ 2. By theorems 2 and

7 we have
(
ℓu1
⊗̂

αr
ℓu2
)′

= ℓu
′
1
⊗̂

α′
r
ℓu

′
2 . The set K :=

{
ei ⊗ ei, i ∈ N

}
⊂ ℓu

′
1
⊗

α′
r
ℓu

′
2

is bounded. If ℓu1
⊗̂

αr
ℓu2 were reflexive, ℓu

′
1
⊗̂

α′
r
ℓu

′
2 would be reflexive too and by

Smul’yan’s theorem, switching to a suitable subsequence if necessary, we would

assume that {ei ⊗ ei}∞i=1 is weakly convergent to some z ∈ ℓu
′
1
⊗̂

α′
r
ℓu

′
2 . It follows

from boundedness of K and the density of
[
eh
]∞
h=1

⊗[
eh
]∞
h=1

in ℓu1
⊗̂

αr
ℓu2 that

given T ∈ ℓu1
⊗̂

αr
ℓu2 and ρ > 0, there exist w ∈

∪∞
k=1

[
eh
]k
h=1

⊗[
eh
]k
h=1

and m0 ∈ N
such that

∀ m ≥ m0

∣∣⟨T, z⟩∣∣ ≤ ∣∣⟨T, z− em⊗ em
⟩∣∣+ ∣∣⟨T −w, em⊗ em

⟩∣∣+ ∣∣⟨w, em⊗ em
⟩∣∣ ≤

≤
∣∣⟨T, z − em ⊗ em

⟩∣∣+ sup
k∈N

∣∣⟨T − w, ek ⊗ ek
⟩∣∣+

∣∣⟨w, em ⊗ em
⟩∣∣ ≤ ρ

because ⟨w, em ⊗ em⟩ = 0 if m is large enough. Then z = 0. But we are assuming

that Ir(ℓ
u′1 , ℓu2) =

(
ℓu

′
1
⊗̂

α′
r
ℓu

′
2

)′
= ℓu1

⊗̂
αr
ℓu2 and so, by the construction made in

the case r0 ̸= ∞ there is T ∈ ℓu1
⊗̂

αr
ℓu2 such that

⟨
T (ei), ei

⟩
=
⟨
ei, ei

⟩
= 1 for

every i ∈ N, a contradiction. Then ℓu1
⊗̂

αr
ℓu2 is not reflexive.

Case N2). Assume that u′j ≥ 2 for every 1 ≤ j ≤ n, r′j ≥ 2 for every 1 ≤ j ≤
n+ 1, u′n+1 ≤ r′n+1 and 1

rn+1
≤
∑n

j=1
1
u′j
, or equivalently (by (5))

1

r0
+

n∑
{j |r′j<u′j}

(
1

r′j
− 1

u′j

)
≤

n∑
{j |r′j≥u′j}

(
1

u′j
− 1

r′j

)
. (45)

Given 1 ≤ j ≤ n, if r′j < u′j and t′j ∈
[
u′j,∞[ it turns out that we have

1

r0
+

n∑
{j |r′j<u′j}

(
1

r′j
− 1

t′j

)
∈

 1

r0
+

n∑
{j |r′j<u′j}

(
1

r′j
− 1

u′j

)
,

1

r0
+

n∑
{j |r′j<u′j}

1

r′j

 .
On the other hand, if r′j ≥ u′j and t′j ∈

[
u′j, r

′
j

]
we have

n∑
{j |r′j≥u′j}

(
1

t′j
− 1

r′j

)
∈

0,
n∑

{j |r′j≥u′j}

(
1

u′j
− 1

r′j

) .
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Then it follows from (45) that we can choose t′j ≥ u′j for every 1 ≤ j ≤ n such
that r′j < u′j and u′j ≤ t′j ≤ r′j for every 1 ≤ j ≤ n which verifies u′j ≤ r′j in order
that

1

r0
+

n∑
{j |r′j<u′j}

(
1

r′j
− 1

t′j

)
=

n∑
{j |r′j≥u′j}

(
1

t′j
− 1

r′j

)
.

By (2) we have

1

rn+1

=
n∑
j=1

1

t′j
+

n∑
{j |r′j<u′j}

(
1

r′j
− 1

t′j

)
+

n∑
{j |r′j≥u′j}

(
1

r′j
− 1

t′j

)
+

1

r0
=

n∑
j=1

1

t′j
.

Taking t0 = ∞ and tn+1 = rn+1 we obtain an admissible (n + 2)-pla t = (tj)
n+2
j=0

such that t′j ≥ u′j ≥ 2 for every 1 ≤ j ≤ n. By corollary 5 we have
(⊗̂n+1

j=1 ℓ
uj , αr

)
≈(⊗̂n+1

j=1 ℓ
uj , αt

)
and so It

(∏n
j=1 ℓ

u′j , ℓun+1
)

= Ir

(∏n
j=1 ℓ

u′j , ℓun+1
)
. But by lemma 16

there is a non compact map S ∈ It

(∏n
j=1 ℓ

u′j , ℓun+1
)
. Now we take s′j = t′j if 1 ≤

j ≤ n, s′n+1 > t′n+1 and define s0 < ∞ such that 1
s0

:= 1
t′n+1

− 1
s′n+1

. Then s =

(sj)
n+1
j=0 is another admissible (n + 2)-pla verifying

(⊗̂n+1

j=1 ℓ
uj , αs

)
≈
(⊗̂n+1

j=1 ℓ
uj , αt

)
corollary 6 and S ∈ Is

(∏n
j=1 ℓ

u′j , ℓun+1
)
. By remark after theorem 9 we have S /∈

Ns

(∏n
j=1 ℓ

u′j , ℓun+1
)

and by theorem 15
(⊗̂n+1

j=1 ℓ
uj , αr

)
≈
(⊗̂n+1

j=1 ℓ
uj , αs

)
turns out to

be not reflexive.

Case N3). Assume that u′j ≥ 2 for every 1 ≤ j ≤ n + 1, r′n+1 ≤ 2 and
1
2
≤
∑n

j=1
1
u′j
, or, in an equivalent form (by (2))

1

r0
+

1

r′n+1

− 1

2
+

n∑
{j |r′j<u′j}

(
1

r′j
− 1

u′j

)
≤

n∑
{j |r′j≥u′j}

(
1

u′j
− 1

r′j

)
.

By (2) we have r′j ≥ 2, 1 ≤ j ≤ n. Defining 1
s0

:= 1
r0

+ 1
r′n+1

− 1
2
, s′j := r′j, 1 ≤

j ≤ n and sn+1 := 2 we obtain an admissible (n + 2)-pla s = (sj)
n+1
j=0 such that,

ℓun+1 having cotype 2, by corollary 4 one has
(⊗̂n+1

j=1 ℓ
uj , αs

)
≈
(⊗̂n+1

j=1 ℓ
uj , αr

)
. Then(⊗̂n+1

j=1 ℓ
uj , αs

)
is not reflexive by the case N2), obtaining the desired conclusion by

isomorphism.

Case N4). Assume there are 1 ≤ j0 ≤ n and 1 ≤ j1 ̸= j0 ≤ n + 1 such that
u′j0 < 2, r′j0 < 2 and rj1 ≤ uj1 .

a) First we consider the case that n ≥ 2. By (2) necessarily exist 1 ≤ j2 ̸= j3 ≤
n+1 such that r′j2 ≥ 2 and r′j3 ≥ 2 and so, by corollary 6 and eventually switching to

an isomorphic tensor product
(⊗̂n+1

j=1 ℓ
uj , αs

)
, we can suppose moreover, that r0 <∞.
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After the transposition j1 −→ n + 1, n + 1 −→ j1 if necessary we can assume that
j1 = n + 1, i. e. rn+1 ≤ un+1 indeed. If there exists 1 ≤ j4 ̸= j0 ≤ n + 1 such that
u′j4 ≤ 2, the result follows from case N1). Hence we can assume u′j > 2 for every
1 ≤ j ̸= j0 ≤ n+ 1.

Fix t < 2 such that r′j0 < t, u′j0 < t and un+1 < t. Let {φk}∞k=1 be a sequence
of standard independent identically distributed t-stable random variables in [0, 1].
It is known that the norm Kt,p :=

∥∥φk∥∥Lp([0,1]), k ∈ N is only dependent on t and

p for every 1 ≤ p < 2 and that
{

Φk,p := φk
Kt,p

}∞
k=1

is isometrically equivalent in

Lp([0, 1]), 1 ≤ p < t to the canonical basis of ℓt (see
[

[6], proposition IV.4.10
]

for example ). Then {Φk,rn+1}∞k=1 is a normalized basis in the reflexive subspace[
Φk,rn+1

]∞
k=1

≈ ℓt of Lrn+1([0, 1]) and thus it is weakly convergent to 0 in Lrn+1([0, 1])

(see
[

[7], footnote page 169
]

for instance). Switching to a suitable subsequence if
necessary, by

[
[18], chapter III, theorem 1.8

]
, the sequence {Φk, rn+1}∞k=1 can be en-

larged to obtain a normalized basis B := {Φk,rn+1}∞k=1∪{Ψm}∞m=1 in Lrn+1([0, 1]). By
reflexivity the sequence {Φ∗

k,rn+1
}∞k=1∪{Ψ∗

m}∞m=1 of associated coefficient functionals

to B is a basis in Lr
′
n+1([0, 1]). From

[
[18], chapter I, theorem 3.1

]
we find 1 ≤M ∈ R

such that 1 ≤
∥∥Φ∗

k,rn+1

∥∥ ≤ M and 1 ≤
∥∥Ψ∗

k

∥∥ ≤ M for every k ∈ N. As above we
obtain that {Φ∗

k,rn+1
}∞k=1 must be weakly convergent to 0. As r′n+1 > 2, by the result[

[7], corollary 5
]

of Kadec and Pe lcińsky, switching to a subsequence again, it can

be assumed that {Φ∗
k,rn+1

}∞k=1 is equivalent to the standard unit basis in ℓr
′
n+1 or to

the standard unit basis in ℓ2. By
[

[7], corollary 1
]
, the latter possibility would im-

ply that
[
Φ∗
k,rn+1

]∞
k=1

would be complemented in Lr
′
n+1([0, 1]) and by reflexivity and

duality, we would have the isomorphisms
([

Φ∗
k,rn+1

]∞
k=1

)′ ≈ [
Φk,rn+1

]∞
k=1

≈ ℓt ≈ ℓ2

which is not possible. Then
{

Φ∗
k,rn+1

}∞
k=1

is equivalent to the standard basis of ℓr
′
n+1

and so, the map V ∈ L
(
ℓu

′
n+1 , Lr

′
n+1([0, 1])

)
such that V (eh)) = Φ∗

h,rn+1
, h ∈ N is

well defined.
Let Sj ∈ L

(
ℓu

′
j , Lr

′
j([0, 1])

)
, 1 ≤ j ̸= j0 ≤ n be defined as in previous case N1)

and consider Sj0 ∈ L
(
ℓu

′
j0 , Lr

′
j0 ([0, 1])

)
such that Sj0(ek) = Φk,r′j0

for every k ∈ N.
Taking g as in case N1), the map T := V ′ ◦Dg ◦

(
(Sj)

)n
j=1

is r-integral. However,

for every k ∈ N and every (γh) ∈ ℓu
′
n+1 we have⟨

T (zj0,k), (γh)
⟩

=
⟨Kt,rn+1

Kt,r′j0

Φk,rn+1 ,

∞∑
h=1

γhΦ
∗
h,rn+1

⟩
=
Kt,rn+1

Kt,r′j0

γk

and so T (zj0,k) =
Kt,rn+1

Kt,r′
j0

ek and T is not compact. By remark after theorem 9 we

obtain T /∈ Nr

(∏n
j=1 ℓ

u′j , ℓun+1
)

and by theorem 15
(⊗̂n+1

j=1 ℓ
uj , αr

)
is not reflexive.
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b) Now we consider the case n = 1. If r0 ̸= ∞ the previous argumentation can be

used still and ℓu1
⊗̂

αr
ℓu2 is not reflexive. If r0 = ∞, after an eventual transposition,

we will be dealing with the case u′1 ≤ 2, r′1 < 2 and r2 ≤ u2. If u2 ≥ 2 the result
follows from N1). If u2 < 2 and u′1 = 2 we repeat the proof given in this case for

n ≥ 2 and ℓu1
⊗̂

αr
ℓu2 turns out to be non reflexive. If u2 < 2 and u′1 < 2 the same

construction just used in the case n ≥ 2 show the existence of a map T ∈ Ir(ℓ
u′1 , ℓu2)

such that T (ei) =
Kt,r2
Kt,r′1

ei for every i ∈ N. Then we can repeat the argumentation

used in the last part of N1) with the set K :=
{
ei ⊗ ei, i ∈ N

}
⊂ ℓu

′
1
⊗

ℓu
′
2 to

conclude that
(⊗̂n+1

j=1 ℓ
uj , αr

)
is not reflexive.

Finally we check that the proof of theorem 17 is complete. Assume that neither
condition S1), S2), S3), S4) holds.

a) First case: assume there is 1 ≤ j0 ≤ n+1 such that u′j0 ≤ 2. After an eventual
transposition with any 1 ≤ k ̸= j0 ≤ n + 1, we can take j0 ≤ n. If there is some

1 ≤ j1 ̸= j0 ≤ n+ 1 such that u′j1 ≤ 2, by N1),
(⊗̂n+1

j=1 ℓ
uj , αr

)
is not reflexive. Then

we can assume u′j > 2, 1 ≤ j ̸= j0 ≤ n + 1. As S1) does not holds, there exists

j1 ̸= j0 such that rj1 ≤ uj1 . If it would be u′j0 < 2 and r′j0 < 2,
(⊗̂n+1

j=1 ℓ
uj , αr

)
would

be not reflexive by N4). If u′j0 = 2 and r′j0 < 2, as S4) does not holds, after the

transposition j0 → n+ 1, n+ 1 → j0, by N3)
(⊗̂n+1

j=1 ℓ
uj , αr

)
is not reflexive.

In the case r′j0 ≥ 2, by (2) there is at most an unique 1 ≤ j2 ≤ n + 1 such that
r′j2 < 2. Necessarily j2 ̸= j0. As S2) does not holds, after an eventual transposition

j0 → n + 1, n + 1 → j0, we see that u′n+1 ≤ 2 ≤ r′n+1 and by N2)
(⊗̂n+1

j=1 ℓ
uj , αr

)
is

not reflexive.
b) Second case: assume that u′j > 2, 1 ≤ j ≤ n+ 1. As S1) does not holds, after

an eventual transposition, it turns out that u′n+1 ≤ r′n+1. But S3) is not verified.
Then for every 1 ≤ j0 ≤ n + 1 we have r′j0 > 2 or (38) does not holds. If it would

be r′j > 2 for every 1 ≤ j ≤ n + 1, as S2) is not verified,
(⊗̂n+1

j=1 ℓ
uj , αr

)
would be

not reflexive by N3). If it would exists 1 ≤ j1 ≤ n + 1 such that r′j1 ≤ 2, then (38)

would fails for this index j1. After an evident transposition, by N3)
(⊗̂n+1

j=1 ℓ
uj , αr

)
would be not reflexive. �

The application of theorem 17 to the case n = 1 gives the following characteri-
zation of reflexivity of classical Lapresté’s tensor products:

Corollary 18 Let n = 1 and let r = (r0, r1, r2) be an admissible triple. If 1 <

u1, u2 < ∞, ℓu1
⊗̂

αr
ℓu2 is reflexive if and only if one of the following sets of condi-

tions holds
1) u′1 > 2, u′1 > r′1.
2) u′2 > 2, u′2 > r′2.
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3) u′1 > 2, r2 ≤ 2.
4) u′2 > 2, r1 ≤ 2.
5) u′1 ≥ 2, u′2 > 2.
6) u′1 > 2, u′2 ≥ 2.

Proof. By theorem 17, ℓu1
⊗̂

αr
ℓu2 is reflexive if and only if one of the following

sets of conditions holds
a) u′1 > 2, u′1 > r′1.
b) u′2 > 2, u′2 > r′2.
c) u′1 > 2, u′1 > r2, r

′
1 ≥ 2.

d) u′2 > 2, u′2 > r1, r
′
2 ≥ 2.

e) u′1 > 2, u′2 > 2, r′1 ≤ 2.
f) u′1 > 2, u′2 > 2, r′2 ≤ 2.
g) u′1 = 2, u′2 > 2, r′1 ≤ 2.
h) u′2 = 2, u′1 > 2, r′2 ≤ 2.
Clearly c) and 3) (resp. d) and 4) ) are equivalent. On the other hand, if 5)

holds and r′1 ≤ 2 then e) or g) holds. If 5) and r′1 > 2 are true we have r1 < 2 < u′2
and d) is verified. The remaining of the proof is similar or trivial. �
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tion spaces, Positivity, 5, no. 2, 153-175, (2001).

[4] floret, k.: Natural norms on symmetric tensor products of normed spaces,
Note di Matematica 17, 153-188, (1997).

[5] floret, k., hunfeld, s: Ultrastability of ideals of homogeneous polynomials
and multilinear mappings on Banach spaces, Proc. Amer. Math.Soc. 130, 5,
1425-1435, (2001).

[6] guerre-delabrière, s.: Classical sequences in Banach spaces, Marcel
Dekker, Inc., New York, (1992).
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