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In this paper we present a new view of the PageRank algorithm inspired by multiplex networks.
This new approach allows to introduce a new centrality measure for classic complex networks and
a new proposal to extend the usual PageRank algorithm to multiplex networks. We give some
analytical relations between these new approaches and the classic PageRank centrality measure and
we illustrate the new parameters presented by computing them on real underground networks.

One major issue in science, from biological sys-
tems to information networks and many other
fields, is determining the most relevant elements
in a given complex system. Centrality measures
help spotting the most important nodes of a com-
plex networks by giving a value to each vertex
in the system. There are many different cen-
trality measures in Networks Science, including
local parameter (such as the in-degree), metric
parameters (such as the betweenness centrality)
and spectral centralities (such as the eigenvector
centrality), but the PageRank centrality plays a
relevant role, since it has many relevant applica-
tions. This measure is the basic ingredient of the
(probably) most famous web searcher (Google),
but it also has many applications to different real-
life problems, ranging from biological systems to
cibersecurity (hacking detection). In this paper
we discuss about a biplex approach to the clas-
sic PageRank algorithm and how this new insight
allows to introduce new centrality measures on
complex and multiplex networks that can be use-
ful for ranking the elements of a complex system
according to their relevance.

I. INTRODUCTION AND NOTATION

Understanding the specific role of each element in a
complex system and its relevance in the whole structure
is the first step to understand the behaviour of the sys-
tem. There are many functions in the Network’s Science
literature that try to give a precise and quantitative mea-
sure of the relevance of the nodes in a network [2]. Social
Network Analysis has a long tradition in measuring the
importance of each actor in a social system by means
of the so called centrality measures [26], but the range
and applications of these measures go beyond Social Net-
works and it can be successfully applied to any complex
network. Centrality measures are designed to rank nodes
based on their structural position inside the network, but
there is no big consensus about the best centrality mea-
sure, since different measures must be considered in order
to analyse different contexts [2]. From degree based to

spectral measures going through metric-based measures
and others, there are plenty of different approaches to
the analysis of relevance in a network, but the PageRank
centrality [19] is a highlight since it is the basic ingre-
dient in web information in general and in Google’s web
searcher in particular.

The main goal of this paper is introducing a new ap-
proach to the PageRank analysis that can be used to
define new centrality measures on complex networks and
multiplex networks. During the last years the Network’s
Science scientific community has realized that many real-
life systems must be modelled by taking into account the
fact that the interrelations between nodes are heteroge-
neous [1, 15]. This heterogeneity makes that some struc-
tural and dynamical properties emerge from the distinc-
tion between different kinds of links and the new mod-
els of multilayer and multiplex networks have been in-
troduced [1, 6, 15, 23]. The introduction of this new
multilayer paradigm requires a revision of all the struc-
tural techniques and tools previously developed for (clas-
sic) complex network (also called monoplex network in
this new language), and therefore the centrality measures
must be revisited from this new point of view [9, 14, 22].

This paper presents a new proposal that starts by
defining an approximation of usual PageRank in graphs
considered as a two-layer approach. It is shown that
this approximation, that we call π̂A, is exact in some
instances and is a very good approximation in same test
examples. Furthermore, this new approach can be used
for introduting a new model for PageRank of a multiplex
network that uses the underlying ideas in π̂A. There are
some different extensions of the PageRank for multiplex
networks [1, 9, 14], but the key point of the new approach
presented is that we can associate two layers to each real
layer of the multiplex and by using this approach we are
capable of defining a PageRank-like model to the whole
multiplex. It is shown that some different approaches
can be defined, and a simplified mathematical formalism
is included that allows extending the model for multiplex
networks with any number of layers.

Let us introduce the basic notation used. Along the
paper we will recall some notation from [13]. Let G =
(N , E) be a directed graph where N = {1, 2, . . . , n} and
n ∈ N. The link (i, j) belongs to the set E if and only
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if there exists a link connecting node i to node j. The
adjacency matrix of G is an n× n-matrix

A = (aij) where aij =

{

1, if (i, j) is a link of G
0, otherwise.

A link (i, j) is said to be an outlink for node i and an in-
link for node j. We denote kout(i) the outdegree of node
i, i.e., the number of outlinks of a node i. Notice that
kout(i) =

∑

k aik. The graph G = (N , E) may have dan-
gling nodes, which are nodes i ∈ N with zero outdegree.
Let PA = (pij) ∈ Rn×n be the row stochastic matrix

associated to G defined in the following way:

• if i is a dangling node, pij = 0 for all j = 1, . . . , n,

• otherwise, pij =
aij

kout(i)
=

aij∑
k
aik

.

Vectors of Rn will be denoted by column matrices. In
particular, e = (1, · · · , 1)T .
The Google matrix G = G(α,u,v), α ∈ (0, 1) (called

damping factor), with dangling nodes and personalized
vector v is defined as

G = α(PA + duT ) + (1 − α)evT ∈ R
n×n (1)

(this matrix G is row-stochastic, i.e., Ge = e). We recall
that the distribution of dangling nodes is given by u ∈ R

n

such that u > 0 and uT e = 1. The dangling nodes will
be characterized by a vector d ∈ Rn defined as d =
(d1, . . . , dn)

T , where

di =

{

1, if i is a dangling node of G
0, otherwise.

The PageRank vector π = π(α,u,v) is the unique eigen-
vector of GT associated to eigenvalue 1 such that πT e =
1, i.e., π > 0, πTe = 1 and πTG = πT (see [19]). Recall
also that

πT = απT (PA + duT ) + (1− α)vT (2)

We will write πT
A when needed. We shall assume that

there are no dangling nodes in the rest of the paper, that
is d = 0, and therefore PA is row stochastic, but if there
were dangling nodes we would work with PA + duT and
it is easy to check that the results throughout the paper
also will hold with some straightforward modifications.
The structure of the paper is the following: After this

introduction, Section II is devoted to present the Biplex
approach for the usual PageRank of a complex (mono-
plex) network. By using this approach, a new centrality
measure is given for complex (monoplex) networks and
the relationship between this new measure and the usual
PageRank is analysed theoretically (with some analytical
results) and through some real examples (by computing
some linear correlations). Section III includes the use of
the Biplex approach for giving a PageRank centrality for
multiplex networks. For the sake of clarity, the case of
multiplex networks with two layers (biplex networks) is

developed, giving later the model for general multiplex
network. Some analytical results are included that relate
this new centrality measures with the usual PageRank.
In order to illustrate the use, similarities and differences
of this new multiplex PageRank with the usual one, Sec-
tion IV considers the Madrid underground transportation
system (Metro of Madrid) as a multiplex network with as
many layers as lines this underground system has (12).
In this Section several numerical computations are pre-
sented in order to highlight the fact that the new multi-
plex PageRank is a new centrality measure for multiplex
networks.

II. BIPLEX APPROACHES FOR CLASSIC
PAGERANK

Roughly speaking, the (classic) PageRank of a complex
network G is the frequency vector of a random walker that
can jump between nodes following to basic principles: on
the one hand, the walker can use the local links given by
the network G (that we call a physical walk) and, on the
other hand, the walker can jump to any other node in the
network according to the personalized vector v (called a
teleportation). Hence, the PageRank of G with person-
alized vector v and damping factor α ∈ (0, 1) can be un-
derstood as the stationary distribution of a Markov chain
that occurs in a (weighted) multilayer network B(G) with
the same set of nodes of G and two layers ℓ1 and ℓ2 (biplex
network) such that:

• ℓ1 (that we call the physical layer) is exactly the
network G,

• ℓ2 (that we call the teleportation layer) is a all-to-
all network, with weights given by the personalized
vector v = (v1, · · · , vn)T , that is the adjacency ma-
trix of ℓ2 is evT .

Once we have defined B(G), the (classic) PageRank of G
is the stationary distribution of a Markov chain on B(G)
modeled as follows:

1. We choose a node x0 of ℓ1 and the walker starts the
stochastic process at this node.

2. At the beginning of each round t, with probabil-
ity α the walker will move on layer ℓ1 and with
probability 1 − α the walker will move on layer ℓ2
according to the following rules:

• If the walker moves on the physical layer ℓ1, it
follows the usual rules for a (uniform) random
walker on ℓ1.

• If the walker moves on the teleportation layer
ℓ2, it follows the rules for a biased random
walker on a complete graph with transition
matrix evT .
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FIG. 1. The (classic) PageRank of a network as a random walker on a biplex multilayer network.

The mathematical model for this multiplex stochas-
tic process can be written in terms of (block) supra-
adjacency matrices (see, for example, the supplementary
material in [7] or [21]) such that the (classic) PageRank
of G is obtained from the unique, positive and normalized
eigenvector of the block matrix

MPR =

(

αPA (1− α)evT

αPA (1− α)evT

)

∈ R
2n×2n. (3)

As we stated in the Introduction, we shall assume that
there are no dangling nodes, that is d = 0, and therefore
PA is row stochastic, but if there were dangling nodes we
would work with PA + duT and the results throughout
the paper also will hold. It is straightforward to check
that there is a unique normalized and positive eigenvector
π̃T = [πT

1 πT
2 ] ∈ R2n of MPR. Furthermore, it is easy to

show that the (classic) PageRank π of G can be written
as π = π1 + π2.
By using this multilayer approach of the PageRank,

matrix MPR corresponds to the supra-adjacency matrix
of a multilayer network with two layer that have cross-
layer connections [1]. Figure 1 presents the multilayer
network associated to a four-noded complex network.
The main advantage of this model is the fact that the
(classic) PageRank of a complex network is obtained as
the stationary distribution of a random walker in a multi-
layer network with two layers (one corresponding to the
physical walker and other to the teleportation walker,
following the two basic principles of the PageRank), but
this approach has two main drawbacks: on the one hand,
MPR corresponds to the supra-adjacency matrix of a
multilayer network with non-trivial cross-layer connec-
tions, which makes that it is not a multiplex network
if PA 6= I 6= evT . On the other hand, since the non-
diagonal blocks are different in general, the transitions
between the two layers are non-symmetric.
In order to avoid these drawbacks, if we take the block

matrix

MA =

(

αPA (1 − α)I
αI (1− α)evT

)

∈ R
2n×2n (4)

with I the identity matrix of size n, then MA defines a
Markov chain in a multiplex network with two layers and

therefore there always exists a unique vector π̂M ∈ R2n

such that:

(i) π̂T
M = π̂T

M MA with π̂T
Me = 1.

(ii) If π̂T
M = [πT

u πT
d ] ∈ R

2n with πu, πd ∈ R
n, then

πT
u e = α and πT

d e = 1− α.

It is important to remark that either MPR and MA

correspond to the supra-adjacency matrices of two mul-
tilayer networks with the same two layers, but they differ
in the cross-connections between the layers. In fact, while
the multilayer network associated to MA is a multiplex
network, this is not the case of the multilayer network
associated to MPR.
Note that (i) is consequence of the fact that MA is ir-

reducible since evT is a positive matrix and MA is also
primitive since MA has some non-zero diagonal elements
(by using [25]). Hence, by using Perron-Frobenius the-
orem, π̂T

M is the only eigenvector associated to the unit
eigenvalue, which is the spectral radius, and there is no
other eigenvalue with absolute value 1.
Since π̂T

M is unique we get that πT
u and πT

d are unique
vectors and therefore if we want to show (ii), we only
have to prove that πT

u e = α. Note that

π̂T
M =[πT

u πT
d ] = [πT

u πT
d ]

(

αPA (1− α)I
αI (1− α)evT

)

=[πT
u αPA + πT

d α | (1− α)πT
u + (1− α)πT

d ev
T ],

that is

πT
u = πT

uαPA + πT
d α

πT
d = (1− α)πT

u + (1− α)πT
d ev

T

}

. (5)

Now, if we assume that πT
u e = µ, then πT

d e = 1− µ and
hence

πT
u = πT

u αPA + πT
d α

πT
d = (1− α)πT

u + (1− α)(1 − µ)vT

}

. (6)

Finally, by multiplying the first equation of this system
by e we get that

πT
u e = πT

uαPAe+ πT
d eα,

so µ = αµ+ (1 − µ)α and we conclude that µ = α.
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Properties (i) and (ii) stated before suggest consider-
ing a new PageRank-like centrality of a complex network
by using this new biplex approach as the following defi-
nition states:

Definition 2.1 Given a complex network G with n ∈ N

nodes and whose adjacency matrix is A, the two-layer
approach PageRank of A is the vector

π̂A = πu + πd ∈ R
n, (7)

where [πT
u πT

d ]
T ∈ R2n is the unique normalized and pos-

itive eigenvector of matrix MA given in (4).

The existence and uniqueness of this new centrality
measure is always guaranteed by Perron-Frobenius’ the-
orem (as we pointed out before), but it is natural to ask
if it is correlated with the classic PageRank, since both
measures comes from two similar block matrices. The
following results states that if we consider undirected reg-
ular graphs, both measures coincide.

Theorem 2.2 Let G = (N , E) be an undirected network
with n ∈ N nodes. if we take d = 0, v = e/n ∈ Rn and
kout(i) = kout(j) for all i, j ∈ N (i.e. G is regular), then
π̂A = πA.

Proof:
Let us begin by showing that πA = e/n. Note first that
since kout(i) = kout(j), ∀i, j ∈ N and A = AT , we have
that PA is symmetric and therefore column stochastic.
By plugging πA = e/n, v = e/n and d = 0, into equation
(2), we get that

1

n
eT =

α

n
eTPA +

1− α

n
eT ,

which holds since PA is column stochastic, that makes
that eTPA = eT . Finally, in order to show that π̂A =
e/n, if we take πu = αe/n and πd = (1−α)e/n, then by
using the same argument as above it is easy to see that
equation (5) holds and therefore π̂A = πu + πd = e/n.

�

Note that the last theorem covers a large quantity
of situations, including the extreme case of complete
graphs. Furthermore, taking into account that for large
networks a good correlation usually exists between in-
degree and PageRank (see [12]) one expects the two-
layer approach PageRank to be a good approximation
to PageRank in most instances. In order to numerically
confirm this idea, Table I shows some linear regression
results for the two-layer approach PageRank versus the
usual PageRank in some real networks. In particular the
network of Facebook’s users from the California Institute
of Technology [24] (denoted as FB), the giant compo-
nent of the network of users of the Pretty-Good-Privacy

algorithm for secure information interchange [3] (denoted
as PGP) and the Stanford’s network [4, 16] (denoted as
Stanford) has been considered. The numerical correla-
tion between π̂A and πA for those real networks presented
in Table I supports that these measures are strongly cor-
related but different in general for a non-regular complex
network.

Network n r
2

FB 769 0.99

PGP 10680 0.92

Stanford 50000 0.93

TABLE I. Linear correlation coefficient r
2 for π̂A versus πA

in some numerical tests for complex networks with n nodes.

III. MULTILAYER APPROACH FOR
PAGERANK OF MULTIPLEX NETWORKS

The biplex approaches for complex networks presented
in the previous section allow also to define new central-
ity measures on multiplex network. There are several al-
ternative definitions of the PageRank centrality for mul-
tiplex networks [14, 23] and other spectral-based and
random-walkers based measures [9, 21, 22] but the bi-
plex approach can be extended for multiplex network in
order to give a new point of view of these measures.
Given a multiplex network M = (N , E ,S), with layers

S = {ℓ1, · · · , ℓk}, a new multiplex PageRank centrality
can be defined by using the following basic idea: asso-
ciating to each layer ℓi a two-layer random walker with
one the physical layer (with topology given by ℓi) and a
teleportation layer evT

i . In addition to this, transition
between teleportation layers of different real layers and
between physical layers must be allowed. For the sake
of clarity, we will start by defining this measure for a
multiplex network M with two layers.
If we take a multiplex network M = (N , E ,S),

with layers S = {ℓ1, ℓ2} whose adjacency matrices are
A1, A2 ∈ R

n×n respectively, the supra-adjacency matrix
associated to M [1, 15] is the block matrix

A =

(

A1 I

I A2

)

∈ R
2n×2n. (8)

Once we have fixed some personalized vectors v1,v2 ∈
Rn, we can define a new block matrix by associating to
each layer ℓi a two-layer multiplex as follows:

MA =
1

2

(

M1,1 M1,2

M2,1 M2,2

)

∈ R
4n×4n, (9)

where if i = 1, 2

Mi,i =

(

αPAi
(1− α)I

2αI (1 − α)evT
i

)

∈ R
2n×2n (10)

corresponds to the connections between the physical layer
and the teleportation layer of each ℓi, while if 1 ≤ i 6=
j ≤ 2

Mi,j =

(

I 0

0 (1− α)evT
j

)

∈ R
2n×2n (11)
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corresponds to the cross connections between the physi-
cal layer and the teleportation layer of ℓi and ℓj, since the
first diagonal block gives the links between physical nodes
of type x⊗ ℓi and x⊗ ℓj (following the notation used in
[1, 15]) while the second block matrix gives the links be-
tween the teleportation nodes by using the personalized
vector v2. Different extensions of the idea of two-layer
PageRank could be done in the multiplex settings but we
have chosen this one because, as we shall see later on, it is
guaranteed that a unique solution exists and this choice
also allows to make some natural interpretations.
From MA another block matrix can be defined by re-

ordering the blocks in such a way that all the physical
layers appear first and later all the teleportation layers
comes together as follows:

M2 =
1

2











αPA1
I (1 − α)I 0

I αPA2
0 (1− α)I

2αI 0 (1− α)evT
1 (1− α)evT

2

0 2αI (1− α)evT
1 (1− α)evT

2











.

(12)
It is straightforward to check that all the spectral proper-
ties of M2 are essentially the same as the corresponding
MA since they are the same matrices after some block-
permutation (i.e. they are similar by using a block per-
mutation matrix).
Now, by using a similar reasoning as used in the case of

the monoplex networks (see previous section), M2 defines
a Markov chain in a multiplex network with two layers
and therefore there always exists a unique vector π̂M ∈
R4n such that

(i) π̂T
M = π̂T

M M2 with π̂T
Me = 2.

(ii) If π̂T
M = [πT

u1 πT
u2 πT

d1 πT
d2] with πui, πdi ∈ Rn

for every i = 1, 2 then

πT
u1e = πT

u2e = β,

πT
d1e = πT

d2e = 1− β,

with β = 2α/(1 + α).
Note that (i) holds since M2 is row stochastic and

primitive, while (ii) can be proved in a similar fashion
as in the monoplex case shown in the previous section.
In fact, by plugging π̂T

M = [πT
u1 πT

u2 πT
d1 πT

d2] into
π̂T
M = π̂T

M M2 we get the system of equalities

2πT
u1 = πT

u1αPA1
+ πT

u2 + 2απT
d1

2πT
u2 = πT

u1 + πT
u2αPA2

+ 2απT
d2

2πT
d1 = (1− α)

(

πT
u1 + πT

d1ev1
T + πT

d2ev1
T
)

2πT
d2 = (1− α)

(

πT
u2 + πT

d1ev2
T + πT

d2ev2
T
)



















. (13)

Now, by multiplying the first equation by e we get

2πT
u1e = πT

u1αPA1
e+ πT

u2e+ 2απT
d1e,

that is

2β = αβ + β + 2α(1− β)

and this holds for

β =
2α

1 + α
.

In a similar way it is straightforward to check that the
rest of equations of (13) are satisfied for β = 2α/(1+α).
The above properties allow to define the PageRank of

a biplex in the following way.

Definition 3.1 Given a biplex network M = (N , E ,S)
of n ∈ N, with layers S = {ℓ1, ℓ2} whose adjacency ma-
trices are A1, A2 ∈ Rn×n respectively, two personalized
vectors v1,v2 ∈ Rn and damping factor α ∈ (0, 1), the
PageRank of the biplex M is the unique vector π̂2 given
by

π̂2 =
1

2
(πu1 + πu2 + πd1 + πd2) ∈ R

n. (14)

Note that π̂T
2 e = 1.

It is remarkable the fact that when the biplex network
is defined by two equal layers ℓ1 = ℓ2 = ℓ and the con-
ditions of Theorem 2.2 are satisfied, then the PageRank
of the biplex network, given by Definition 3.1, coincides
with the two-layer approach PageRank of a network given
by ℓ obtained from Definition 2.1, as the following result
holds:

Theorem 3.2 Given a biplex network M = (N , E ,S) of
n ∈ N, with undirected layers S = {ℓ1, ℓ2} whose adja-
cency matrices are A1 = A2 = A, d = 0, v1 = v2 =
v = e/n, and kout(i) = kout(j) for all i, j ∈ N (i.e. the
layers are regular graphs), then π̂2 = π̂A.

Proof:
Note that the system of equalities (13) becomes

2πT
u1 = πT

u1αPA + πT
u2 + 2απT

d1

2πT
u2 = πT

u1 + πT
u2αPA + 2απT

d2

2πT
d1 = (1 − α)

(

πT
u1 + πT

d1ev
T + πT

d2ev
T
)

2πT
d2 = (1 − α)

(

πT
u2 + πT

d1ev
T + πT

d2ev
T
)



















. (15)

The proof consists in showing that the solution to this
system is given by

πu1 = πu2 = πu =
1

n
βe,

πd1 = πd2 = πd =
1

n
(1− β)e,

(16)

with β = 2α/(1 + α).
By plugging πu1 = πu2 = πu and πd1 = πd2 = πd into

(15) we get the equivalent system

2πT
u = πT

u αPA + πT
u + 2απT

d

2πT
d = (1 − α)πT

u + 2(1− α)πT
d ev

T

}

, (17)

that simplifies to

πT
u = πT

u αPA + 2απT
d

2πT
d = (1 − α)πT

u + 2(1− α)πT
d ev

T

}

. (18)
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It is a routine to show that πu = βe/n, and πd =
(1 − β)e/n is a solution to this system. Therefore, the
PageRank of the biplex network is given by

π̂2 =
1

2
(πu1 + πu2 + πd1 + πd2)

=
1

2n
(2βe+ 2(1− β)e)

=
1

n
e = π̂A.

�

Now if we take the general case of a multiplex network
M = (N , E ,S), with layers S = {ℓ1, · · · , ℓk} whose adja-
cency matrices are A1, · · · , Ak ∈ Rn×n respectively and
we fix some personalized vectors v1, · · · ,vk ∈ Rn, we can
define a new block matrix by associating to each layer ℓi
a two-layer multiplex as follows:

MA =
1

2











M1,1 M1,2 · · · M1,k

M2,1 M2,2 · · · M2,k

· · · · · · · · · · · ·

Mk,1 Mk,2 · · · Mk,k











∈ R
2kn×2kn, (19)

where if 1 ≤ i ≤ k

Mi,i =

(

αPAi
(1− α)I

2αI (1− α)evT
i

)

∈ R
2n×2n (20)

corresponds to the connections between the physical layer
and the teleportation layer of each ℓi, while if 1 ≤ i 6=
j ≤ k

Mi,j =

(

I 0

0 (1− α)evT
j

)

∈ R
2n×2n (21)

corresponds to the cross connections between the physical
layer and the teleportation layer of ℓi and ℓj .From MA

another block matrix can be defined by reordering the
blocks in such a way that all the physical layers appear
first and later all the teleportation layers comes together
as follows:

Mk =
1

k

(

B1,1 B1,2

B2,1 B2,2

)

∈ R
2kn×2kn, (22)

where

B1,1 =











αPA1
I · · · I

I αPA2
· · · I

· · · · · · · · · · · ·

I I · · · αPAk











, (23)

B2,2 = (1− α)







evT
1 · · · evT

k

· · · · · · · · ·

evT
1 · · · evT

k






, (24)

B1,2 = (1 − α)I ∈ Rkn×kn and B2,1 = kαI ∈ Rkn×kn.
Note that all the spectral properties of Mk are essentially
the same as the correspondingMA since they are the same
matrices after some block-permutation, similarly to the
biplex case.
The same reasoning used before proves thatMk defines

a Markov chain in a multiplex network with two layers
and therefore there always exists a unique vector π̂M ∈
R2kn such that

(i) π̂T
M = π̂T

M Mk with π̂T
Me = k.

(ii) If π̂T
M = [πT

u1 πT
u2 · · · πT

uk πT
d1 πT

d2 · · · πT
dk] with

πui, πdi ∈ Rn for all 1 ≤ i ≤ k, then

πT
uie = γ, πT

die = 1− γ,

for all i = 1, 2, . . . , k, with

γ =
kα

1 + α(k − 1)
.

Once again, previous properties allow us to define the
PageRank associated to a multiplex as follows:

Definition 3.3 Given a multiplex network M =
(N , E ,S), with layers S = {ℓ1, · · · , ℓk} whose adja-
cency matrices are A1, · · · , Ak ∈ Rn×n respectively, per-
sonalized vectors v1, · · · ,vk ∈ R

n and damping factor
α ∈ (0, 1), the PageRank of the multiplex network M is
the unique vector π̂k given by

π̂k =
1

k

k
∑

j=1

(πdj + πuj) . (25)

Note that π̂T
k e = 1.

It is remarkable to point out that Theorem 3.2 can be
extended for general multiplex networks as follows:

Theorem 3.4 Given a multiplex network M =
(N , E ,S) of n ∈ N, with undirected layers S =
{ℓ1, · · · , ℓk} whose adjacency matrices are A1 = A2 =
. . . = Ak = A , d = 0, vi = v = e/n for all i ∈ N , and
kout(i) = kout(j) for every i, j ∈ N , then π̂k = π̂A.

Proof:
The procedure is similar to that of Theorem 3.2. In the
present case, we denote

πui = πu = γe/n, πdi = πd = (1 − γ)e/n, (26)

for all i ∈ N , with γ = kα/(1 + α(k − 1)). Then, it is
easy to see that property (i) stated before is equivalent
to

kπT
u = πT

u αPA + (k − 1)πT
u + kαπT

d

kπT
d = (1− α)πT

u + k(1− α)πT
d ev

T

}

(27)

and it is a routine to check that a solution is given by

πu =
γ

n
e, πd =

1− γ

n
e.
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Therefore, the PageRank of the multiplex network is

π̂k =
1

k

(

k
∑

i=1

πui +

k
∑

i=1

πdi

)

=
1

kn
(kγe+ k(1− γ)e) =

1

n
e = π̂A.

�

Note that last Theorem states that the given definition
of PageRank for a multiplex network consisting of the
same layer A repeated k times collapses to the two-layer
approach PageRank of A when certain conditions hold
(the same conditions imposed in Theorem 2.2, i.e. it must
be an undirected network and all the nodes must have
the same number of neighbours). Thus, the PageRank of
the multiplex collapses to the usual PageRank in those
conditions.

IV. NUMERICAL COMPARISON OF
CENTRALITIES FOR THE MADRID METRO

SYSTEM

In this section we illustrate an application of the pro-
posed model by considering the multilayer network com-
posed of the lines of the Madrid metro system [18]. This
system is formed by 12 line stations each of which is
composed of a number of network stations (metro stops)
ranging from 7 to 33. The number of stations in each line
is shown in Table II. Lines 12 and 6 are cycle graphs while
the rest of the lines are linear graphs. The total number
of stations is 234. Note that some stations are shared by
different lines and this fact allows us to model the whole
system as a multiplex formed by 12 layers. We assume
that each layer is composed of 234 nodes. In each layer
we consider real nodes (corresponding to actual stations
of the line) and virtual nodes, (corresponding to stations
that do not belong to the line). These virtual nodes allow
us to model the whole system as a multiplex.

Line # 1 2 3 4 5 6 7 8 9 10 11 12

Number of stations 33 20 18 23 32 28 23 8 29 31 7 28

TABLE II. Number of stations in each line of the Madrid
metro.

In order to characterize a real node and a virtual node
we apply the two following conditions:

• A real node must have a greater value of its cor-
responding personalization vector than a virtual
node, independently of the layer: e.g., node number
1 corresponds to “Abrantes” which is a real station
in layer Line 11. This node must have a correspond-
ing component of the personalization vector that is
greater than any component of the personalization
vector of any virtual node in any layer.

Ranking degree Name of the station Lines

1 7 Avenida de América 4, 6, 7, 9

2 6 Alonso Mart́ınez 4, 5, 10

6 Vodafone Sol 1, 2, 3

4 5 Cuatro Caminos 1, 2, 6

5 Diego de León 4, 5, 6

5 Nuevos Ministerios 6, 8, 10

5 Plaza de Castilla 1, 9, 10

8 4 Argüelles 3, 4, 6

4 Bilbao 1, 4

4 Callao 3, 5

4 Canal 2, 7

4 Colombia 8, 9

4 Goya 2, 4

4 Gran Vı́a 1, 5

4 Gregorio Marañón 7, 10

TABLE III. Top 15 ranking by degree

• If we compute the usual PageRank in a layer by
using the personalization vector of that layer, then
a real node must have a greater value of the corre-
sponding component of the usual PageRank than
any virtual node in that layer. This is to assure
that a real node is ranked above a virtual node in
each layer.

It can be checked that the two above conditions are
satisfied by taking the component of the personalization
vector of any real node as the constant value

vreal =
α

maxr

,

where α is the usual parameter of Google’s PageRank,
and maxr is the maximum number of real nodes over
all the layers. In this example, maxr = 33 since the
maximum is attained at line 1, as shown in Table II.
Therefore, vreal = 0.85/33 ≈ 0.0258 in the computations
presented in this paper. The rest of the components of
the personalization vector in each layer are scaled such
as all the components of the personalization vector sum
up to 1.
In order to complete the analysis the graph formed

by the union of the 12 lines should be considered. This
graph is called the projected graph of the multiplex net-
work [1] and, in this case, it has 234 nodes. In order
to serve as a basis for further comparisons we show in
Table III the top-15 ranking by using the degree of the
nodes in the projected graph. Note that nodes with de-
gree 4 are sorted alphabetically (there are 24 nodes with
degree 4). Note also that node “Avenida América” has
degree 7 (and not 8) since there is a link (Avenida de
América,Diego de León) shared between two lines.
Once this multiplex network is set, several centrality

measures could be considered: the (classic) PageRank of
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Ranking PageRank Name of the station Lines

1 0.00959250 Avenida de América 4, 6, 7, 9

2 0.00849797 Vodafone Sol 1, 2, 3

3 0.00829025 Plaza de Castilla 1, 9, 10

4 0.00787603 Alonso Mart́ınez 4, 5, 10

5 0.00724492 Cuatro Caminos 1, 2, 6

6 0.00712225 Oporto 5, 6

7 0.00707473 Mar de Cristal 4, 8

8 0.00705510 Pueblo Nuevo 5, 7

9 0.00701733 Legazpi 3, 6

10 0.00701035 Nuevos Ministerios 6, 8, 10

11 0.00690138 Paćıfico 1, 6

12 0.00670675 Diego de León 4, 5, 6

13 0.00642212 Sainz de Baranda 6, 9

14 0.00628778 Guzmán el Bueno 6, 7

15 0.00617953 Colombia 8, 9

TABLE IV. Top 15 ranking by usual PageRank of the pro-
jected graph

the projected graph (the usual analysis of centrality of a
complex monoplex network), the proposed PageRank of
the multiplex network and the aggregation of the (clas-
sic) PageRank of each layer (as an independent network).
Note that PageRank-like centralities are not usually con-
sidered for transportation networks. Traditionally, the
existence of teleportations in the PageRank model (given
by the damping factor that models the random and in-
stantaneous jump to any other node) has been consid-
ered as a drawback of these measures when transporta-
tion (or geometric) networks are analysed. Neverthe-
less, PageRank-like centralities can give valuable struc-
tural information about transportation and geometric
networks, since each teleportation could be understood
as the end/beginning of a travel along the network: In-
stead considering a unique random walker in an infinite
sequence of time, we could understand the Markon chain
as a family of a infinite number of random walkers in a fi-
nite sequence such that when a teleportation occurs, the
walker end its journey and another walker starts in the
destination of the teleportation.

If we take the projected (monoplex) graph with n =
234 nodes, we can compute the usual PageRank by con-
sidering an homogeneous distribution of the personaliza-
tion vector, that is v = e/n. Note that all the nodes in
the projected graph are real nodes and therefore we don’t
need to handle virtual nodes. In this first numerical com-
putations there is no reason for biassing the personaliza-
tion vector to any node, but this could be considered for
a more detailed analysis. The resulting top-15 ranking
is shown in Table IV. Only 103 iterations were needed
to obtain convergence with a tolerance for the stopping
criterium of tol = 10−10 (that is, the iterative method
stops when the norm of the difference of two consecutive
iterated vectors is lower than tol).

Ranking Multiplex PageRank Name of the station Lines

1 0.00584409 San Bernardo 2, 4

2 0.00570284 Diego de León 4, 5, 6

3 0.00565358 Avenida de América 4, 6, 7, 9

4 0.00560449 Canal 2, 7

5 0.00557474 Alonso Mart́ınez 4, 5, 10

6 0.00556924 Tribunal 1, 10

7 0.00551579 Bilbao 1, 4

8 0.00546684 Núñez de Balboa 5, 9

9 0.00544471 Colombia 8, 9

10 0.00544306 Gran Vı́a 1, 5

11 0.00542409 Gregorio Marañón 7, 10

12 0.00541039 Argüelles 3, 4, 6

13 0.00539591 Callao 3, 5

14 0.00535047 Plaza de España 3, 10

15 0.00528886 Vodafone Sol 1, 2, 3

TABLE V. Top 15 ranking by Multiplex PageRank

By using a linear regression we obtain that the values
of the degree of each node correlate with the usual Page-
Rank with a value of the squared coefficient of determina-
tion r2 = 0.808. Furthermore, taking into account that
both rankings have ties we also employ the Kendall coef-
ficient τ with penalty parameter (see [5, 11, 20]) to per-
form this comparison. This value results to be τ = 0.669
and hence there is a soft correlation between degree and
PageRank, as it was expected. The left panel of Figure 2
shows the PageRank of the projected graph vs the degree
of each node and it illustrates the correlation between
these two centrality measures.
By using the multilayer model proposed in this paper

and the personalization vectors explained at the begin-
ning of this section we obtain the top-15 ranking shown
in Table V. 5988 iterations are needed in order to obtain
convergence with the same stopping tolerance as before,
tol = 10−10. In this example, the test spent about 30
seconds of real clock time in a standard computer.
By using linear regression we get that the values of

the PageRank of the projected graph correlate with the
multiplex PageRank with r2 = 0.278. The value of the
Kendall coefficient results to be τ = −0.0393. The cen-
tral panel of Figure 2 shows the PageRank of the pro-
jected graph vs multiplex PageRank of each node and
it illustrates the correlation between these two centrality
measures. Therefore, there is not a remarkable correla-
tion between PageRank of the projected graph and the
new Multiplex PageRank in this underground network.
In addition to this, the usual PageRank of each layer

can be also computed. In each layer we consider the coex-
istence of real and virtual nodes and the personalization
vector explained at the beginning of the section is used.
Once the PageRank of each layer is computed, the mean
value of the 12 corresponding values of the PageRank in
each layer for each node is computed. The top-15 rank-
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FIG. 2. PageRank of the projected graph vs the degree of each node (left panel), PageRank of the projected graph vs multiplex
PageRank (central panel) and average PageRank vs multiplex PageRank(Right panel)

Ranking Average PageRank Name of the station Lines

1 0.00990651 Avenida de América 4, 6, 7, 9

2 0.00811310 Plaza de Castilla 1, 9, 10

3 0.00803240 Alonso Mart́ınez 4, 5, 10

4 0.00795143 Diego de León 4, 5, 6

5 0.00785430 Vodafone Sol 1, 2, 3

6 0.00760858 Argüelles 3, 4, 6

7 0.00751157 Cuatro Caminos 1, 2, 6

8 0.00738926 Nuevos Ministerios 6, 8, 10

9 0.00611087 Chamart́ın 1, 10

10 0.00606754 San Bernardo 2, 4

11 0.00603276 Bilbao 1, 4

12 0.00601649 Canal 2, 7

13 0.00601547 Gran Vı́a 1, 5

14 0.00600563 Tribunal 1, 10

15 0.00597868 Colombia 8, 9

TABLE VI. Top 15 ranking by average PageRank

ing of this average PageRank for each node is shown in
Table VI.

By using a linear regression we obtain that the val-
ues of the average PageRank correlate with the multi-
plex PageRank with a value of r2 = 0.540 and the value
of the Kendall coefficient results to be τ = 0.384. The
right panel of Figure 2 shows the average PageRank along
each layer vs multiplex PageRank of each node and it
illustrates the correlation between these two centrality
measures. The results obtained ensure that there is a
very low correlation between average (classic) PageRank
along each layer and the new Multiplex PageRank pro-
posed in this paper.

Previous numerical comparisons shows that the pro-
posed multiplex PageRank constitutes a new centrality
measure not strongly correlated with the classic Page-
Rank or the averaged PageRank, but some correlations
with other centrality measures could be expected. Let us
finally consider the comparison with the betweenness cen-
trality, since this is a usual parameter in transportation

networks analysis. In [10] the author carried out a com-
putation of the betweenness centrality for some Metro
systems. In particular, the top-5 ranking obtained for
Madrid metro is the following:

1. Avenida de América,

2. Vodafone-Sol,

3. Plaza de España,

4. Paćıfico,

5. Alonso Mart́ınez.

Notice that two of these stations are among the top-5
ranking given by the multiplex PageRank and 4 of these
stations are among the the top-15 ranking given by the
multiplex PageRank (see Table V). The Paćıfico station
(with stops at lines 1 and 6) is ranked with multiplex
PageRank at position 47. Once again, multiplex Page-
Rank offers a different ranking compared with rankings
obtained with known centrality measures.

V. CONCLUSIONS

Understanding the usual PageRank of a complex
(monoplex) network allows to introduce a new central-
ity measure π̂A that has several remarkable properties,
such as

• It preserves convergence properties of usual Page-
Rank.

• π̂A equals to usual PageRank for undirected regular
graphs, with no dangling nodes.

• Numerical experiments show that π̂A correlates
quite well with usual PageRank.

• Despite that the iteration matrix MA has a dense
block evT , there’s no need to compute it explic-
itly. That is, matrix MA is well suited for iterative
computations.
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In addition to this, the biplex approach to the PageRank
allows to present a proposal for calculating the PageRank
of a multiplex that is based on an original interpreta-
tion of the usual PageRank. Hence, an ad-hoc Page-
Rank adapted to the formulation of multiplex networks
has been introduced. This definition is well suited for
numerical computations and has an easy interpretation.
If this new multiplex PageRank is denoted by π̂k, some
analytical results have been proved and the most out-
standing features of this new multiplex formulation are
the following:

• Convergence is assured.

• Numerical computations can be carried out without
the use of dense matrices.

• In some limit cases the PageRank of the multiplex

coincides with the usual PageRank.

An illustration of this new model is presented by
analysing the centrality of the Madrid underground pub-
lic system that allowed to show that the multiplex Page-
Rank is a new centrality measure not significantly cor-
related with other centrality measures of multiplex net-
works.
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