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Abstract:  

The ability of High Dynamic Range (HDR) imaging to capture the full range of lighting in a scene has prompted an 
increase in its use for Cultural Heritage (CH) applications. Photogrammetric techniques allow the semi-automatic 
production of three-dimensional (3D) models from a sequence of images. Current photogrammetric methods are not 
always effective in reconstructing images under harsh lighting conditions, as significant geometric details may not have 
been captured accurately within under- and over-exposed regions of the image. HDR imaging offers the possibility to 
overcome this limitation, however the HDR images need to be tone-mapped before they can be used within existing 
photogrammetric algorithms. In this paper we evaluate four different HDR tone-mapping operators (TMOs) that have 
been used to convert raw HDR images into a format suitable for state-of-the-art algorithms, and in particular keypoint 
detection techniques. The evaluation criteria used are the number of keypoints, the number of valid matches achieved 
and the repeatability rate. The comparison considers two local and two global TMOs. HDR data from four CH sites were 
used: Kaisariani Monastery (Greece), Asinou Church (Cyprus), Château des Baux (France) and Buonconsiglio Castle 
(Italy). 

Key words: high dynamic range (HDR) imaging, HDR tone-mapping, keypoint detection, image-based 3D reconstruction 

Resumen:  

Las posibilidades que ofrecen las imágenes de alto rango dinámico (HDR) para registrar la totalidad del rango de 
iluminación de una escena han propiciado su creciente uso en aplicaciones de patrimonio cultural. Los métodos 
fotogramétricos actuales permiten la producción semi-automática de modelos tridimensionales (3D) a partir de una 
secuencia de imágenes. Sin embargo, éstos presentan serias limitaciones en escenas con iluminación dura, resultando 
en consecuencia la aparición de zonas expuestas o sobreexpuestas. En este tipo de condiciones, el uso de imágenes 
HDR ofrece la posibilidad de superar este problema. Para evaluar su potencialidad, se presentan en este artículo cuatro 
operadores diferentes de mapeado tonal (tone-mapping) en imágenes HDR, conocidos como TMOs, cuya misión es 
convertir las imágenes HDR crudas en un formato adecuado para su uso en algoritmos de vanguardia, y en particular en 
técnicas de detección de entidades. Los criterios de evaluación que se utilizan para analizar su potencialidad son: el 
número de entidades detectadas, el número de correspondencias válidas y su índice de repetibilidad. En la comparación 
se incluyen TMOs, dos locales y dos globales. Se utilizan datos HDR tomados en cuatro sitios patrimoniales: el 
monasterio de Kaisariani (Grecia), la iglesia de Asinou (Chipre), el castillo de los Baux (Francia) y el castillo de 
Buonconsiglio (Italia). 

Palabras clave: toma de imágenes de alto rango dinámico (HDR), mapeado tonal HDR, detección de entidades, 

reconstrucción 3D basada en imágenes 

 

1. Introduction 

High Dynamic Range Imaging (HDRi) is a technique that 
enables the acquisition, storage and display of a wider 
range of luminance values than normal (or Low Dynamic 
Range (LDR)) cameras allow (Banterle, Artusi, 

Debattista, & Chalmers, 2011). The ability of HDR to 
capture all the detail in a scene even under harsh 
lighting conditions makes it a valuable method for 
providing robust data for photogrammetric reconstruction 
and photorealistic texturing (Fig. 1). This is especially 
true for Cultural Heritage (CH) environments, which are 
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(a)                             (b)                               (c)                              (d)                               (e)                               (f) 

Figure 2: Asinou Church fresco captured with the bracketing technique. The exposures are: a) -2 EV; b) -1 EV; c) 0 EV; d) +1EV; e) 
+2EV. The last image f) is the result of the merged luminance values represented in false colours, the false colours technique allows the 

range of lighting in an HDR image to be visualised on a non HDR display. 

 

often characterised by highly reflective or shiny materials 
and the presence of shadows and bright areas. 

Although HDR video cameras exist (Chalmers et al., 
2009), their cost is prohibitive. A less expensive 
alternative is to use exposure bracketing, as described 
by Debevec & Malik (1997). The technique involves 
capturing a sequence of pictures with varying exposure 
times from a fixed camera position (Fig. 2). 

After acquisition, each image in the sequence has well-
exposed, under-exposed and over-exposed pixels. The 
HDR image can then be created by fusing the images 
together into a single file, selecting only the best 
exposed pixels. This is achieved by deriving the camera 
response function and then weighting each pixel’s 
contribution to the final HDR image. Prior to this process 
it is necessary to align the images and eliminate flares 
and ghosting effects. HDR images use 32 bits IEEE 
floating point values to represent each colour channel in 
order to fully record all the visual data in a scene. 
Photogrammetric techniques, on the other hand, have 
been designed to work with traditional 8-bit LDR images, 
although some recent proprietary solutions of dealing 
directly with HDR exist, for example Agisoft PhotoScan.  

Tone-mapping is a technique that converts HDR images 
to perceptually similar LDR images and has been an 
active research field for more than 20 years. Tone-
mapping operators (TMOs) can be broadly divided in two 
categories depending on their working principle: global 
and local. Global TMOs process the image as a whole, 
applying the same computation to every pixel. Local 
TMOs, on the other hand, process the image pixel by 
pixel taking into account adjacent pixels. An important 
aspect of this research field is that not all tone-mapping 
techniques have been developed for the same purpose. 
Within the aim of documenting, reusing and processing 
by means of photogrammetry and computer vision 
techniques, it is important that the TMO preserves the 
original appearance, while also being efficient for the 
applications. 

The basic idea behind 3D reconstruction with Structure 
from Motion (SfM) techniques is to take multiple images 

of a certain object from varying viewpoints and then 
reconstruct the object in a 3D space by triangulating the 
image sequence matching features (Hartley & 
Zisserman, 2003). More specifically, the steps to obtain 
a 3D object starting from images can be categorised as: 
keypoint detection, description and extraction, image 
matching and camera pose estimation using bundle 
adjustment. The outcome of this process is a sparse 3D 
point cloud, which can then be further densified using 
Multi-View Stereo (MVS) techniques. 

In cases of harsh lighting conditions, the keypoints tend 
to cluster only in the well-exposed areas of the LDR 
images, whereas in strongly shadowed or very bright 
areas there is a lack of texture and subsequently a lack 
of keypoints. This non-uniform spatial distribution of 
points, can, as a result, increase the image registration 
error and potentially compromise the stability of the 
reconstructed geometry. HDR imaging is, however, 
capable of overcoming these limitations and therefore 
presents a more reliable input for the SfM pipeline. 

In this paper we address the problems related to the 
initial steps of SfM with an in depth analysis on how 
feature detection is affected when applied on images 
that have been tone-mapped with four different TMOs: 
the Gradient Domain HDR Compression (Fattal, 
Lischinski, & Werman, 2002), the local and global 
version of Reinhard, Stark, Shirley, & Ferwerda (2002) 
and a video Tone Mapping Operator called Display 
Adaptive Tone Mapping (Mantiuk, Daly, & Kerofsky, 
2008). Regarding the detection, three of the most 
popular feature detectors were used: Difference of 
Gaussians (DoG), a keypoint detection method used by 
SIFT (Lowe, 1999; Lowe, 2004); Fast Hessian 
approximation, a process integrated in the SURF 
(Speeded Up Robust Features) package (Bay, 
Tuytelaars, & Van Gool, 2006); and, finally, FAST 
(Features from Accelerated Segment Test), that is based 
on Accelerated Segment Test (AST) (Rosten & 
Drummond, 2006). The evaluation in this paper takes 
into account the number of detected feature points, the 
number of good matches as well as the repeatability 
rate.  

   (a) EV -2                           (b) EV 0                    (c) EV +2      (d) Merged HDR   

Figure 1: Example of extreme lighting conditions: a, b, c) 3 different exposures of the inside of Asinou church; and d) HDR tone mapped 
version. With such a great dynamic range no traditional camera can capture the walls and the shape of the windows and the frescoes 

that characterise the arch. 
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The case studies used for our experiments are four 
archaeological sites in different locations across Europe. 
Buonconsiglio Castle is the biggest and amongst the 
most important monuments of Trentino Alto Adige. It is 
composed of a sequence of different buildings from 
different periods. The building complex has been the 
permanent residence of the archbishops of Trento from 
medieval times until the 18th century. The oldest building 
Castelvecchio is characterised by an imposing tower 
Torre Aquila, where the famous Cycle of the Months, 
one of the most fascinating secular pictorial cycles of the 
late Middle Ages, is situated. Amongst the most 
imposing rooms is Loggia Romanina, located in the 
central part of the castle. The particular fresco selected 
as dataset for this work is situated on the ceiling of 
Loggia Romanina. 

The Church of Asinou in Cyprus has been a listed 
UNESCO monument since 1985. This modest church is 
located in the Troodos mountain region and it is part of a 
group of 10 different Byzantine churches all richly 
decorated with murals. The complex attests the variety 
of artistic influences affecting Cyprus over a period of 
500 years. The fresco under examination in particular is 
a representation of St. George located in the 14th century 
apse. 

The site where Kaisariani Monastery is located was 
probably dedicated to Aphrodite in Antiquity, before 
being transformed by Christians in the 5th and 6th 
centuries. The present katholikon was built in the late 
11th century and was dedicated to the Presentation of 
the Virgin to the Temple. It is a cross-in-square, four-
column church. The interior is decorated with wall 
paintings dated around 1700, while those in the narthex 
are a little earlier, dated to 1682 and made by Ioannes 
Hypatios, according to an inscription. 

Finally, the last case study is Château des Baux 

(France), which has been a military bastion since the 
Middle Age (built from the 11th to the 13th century), 
because of its location. Amongst one of the most ancient 
feuds the fortress was the residence of the lords of 
Baux, which controlled Provence until 1633 over a 
period of almost five hundred years. 

2. Related Work 

Digital cultural heritage reconstructions are often created 
with 3D modelling software such as Autodesk Maya or 
Blender. Although such reconstructions might serve 
educational and visualisation purposes, they are usually 
not suited for geometric and colourimetric 
documentation. In this type of reconstruction it is quite 
common to apply textures obtained elsewhere on a 
simple, manually modelled geometry, as illustrated in 
Dylla, Frischer, Müller, Ulmer, & Haegler (2008). 
However, state-of-the-art 3D reconstruction techniques 
using HDR images have the potential to produce, not 
only visually pleasing, but also geometrically accurate 
models. 

A number of previous researchers have suggested that 
the incorporation of HDR images in the photogrammetric 
pipeline would be advantageous for archaeological 
applications and would be worth more investigation 
(Wheatley, 2011; Ntregka, Georgopoulos, & Quintero, 
2014; Guidi, Gonizzi, & Micoli, 2014). However, HDR 

imaging has not been frequently used in CH and in 
photogrammetry. 

In Kontogianni, Stathopoulou, Georgopoulos, & 
Doulamis (2015) a comparative study of keypoint 
detectors on tone-mapped images with respect to the 
number of detected points is presented, although only 
one tone-mapper was considered. Přibyl, Chalmers, 
Zemčík, Hooberman, & Čadík (2016) performed an 
evaluation of the suitability of original LDR, native HDR 
and tone-mapped HDR images with keypoint detectors. 
According to their work, the TMO elaborated by Fattal et 
al. (2002), seems to be the most effective method, but 
we argue that the method is not entirely adequate to give 
good results if the main purpose is cultural heritage 
documentation. The colour rendition is not sufficiently 
accurate and each image has to be tone-mapped 
individually and independently from the other images 
taken in the same set, loosing coherence in terms of 
both brightness and hue. 

The TMO proposed by Fattal et al. (2002) is a very 

effective and quick method to compress the dynamic 
range of an image, preserving edges and fine details, 
while maintaining local contrast with very few artefacts 
such as haloes. The basic idea behind this method is to 
compress the luminance values by measuring its 
gradient and working at different scales. On the one 
hand, the TMO attenuates dramatic luminance changes 
preserving the gradient direction and, on the other hand, 
it preserves small changes in the gradient in order to 
maintain small details as much as possible. This 
operator is often classified as a local operator (Banterle 
et al., 2011), because the value of a single pixel will 

depend on its neighbourhood. The major issue with local 
operators is that the value of the pixel under study is 
altered based on the kernel size and the intensity values 
of its neighbourhood, therefore they can potentially alter 
the geometry, thus making the SfM reconstruction less 
reliable.   

The display adaptive operator proposed by Mantiuk et al. 
(2008) works in two different stages. Firstly, being a 
global TMO, it applies a monotonically increasing curve, 
piecewise defined and, secondly, a temporal filter is 
applied to these tone-mapping curves in order to avoid 
flickering. This results in a higher homogeneity of the 
overall brightness. Mantiuk et al. (2008) observed that 
tone-mapping without knowledge of the target display is 
not a fully defined problem. This is true in our case, 
since there is no target display. We thus selected as 
target display parameter required as an input by this 
method, a LCD TV seen in dark environment, as this, 
according to the Recommendation ITU-RBT.2022, is the 
best viewing condition for LDR displays in a laboratory 
environment. 

Reinhard et al. (2002) is a fairly simple but effective 
TMO. Inspired by the “dodge and burn” photographic 
techniques, it has two implementations, one global and 
one local. The global version uses a log-average 
luminance evaluation for the scene, and then applies a 
function which scales high luminance values more 
heavily than lower low luminance values. In many cases 
the compression provided is sufficient to preserve detail 
in low contrast areas, while compressing high luminance 
pixels. The local tone-mapping version of Reinhard et al. 
(2002) subdivides the picture into regions sharing a large 
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contrast. For example, the silhouette of a human 
standing in front of a bright window would constitute a 
single region. For each pixel a measure of locality is 
defined considering the largest circular area surrounding 
it where no large contrast change occurs. 

In this paper we have compared these four TMOs on 
HDR images from real CH case studies, as previously 
mentioned. To see how effective these TMOs are for 
photogrammetric applications, we applied three popular 
feature detectors: Difference of Gaussians, (Lowe, 1999; 
Lowe, 2004), Fast Hessian (Bay et al., 2006) and FAST 

(Rosten & Drummond, 2006). The comparison was 
conducted between the combinations of TMOs and 
feature detectors, using the number of keypoints, the 
number of matches and the repeatability rate as criteria 
(Schmid, Mohr, & Bauckhage, 2000). Additionally, visual 

inspection was performed by plotting the points on the 
images and assessing their density and distribution in 
the image space. 

3. Feature Points Detectors 

3D object reconstruction relies on accurate detection, 
description and matching of keypoints. Therefore, local 
features that will constitute stable and well-localised 
anchor points need to be identified. According to 
Tuytelaars & Mikolajczyk (2008) repeatability, 
distinctiveness, locality, quantity, accuracy and efficiency 
are the most important properties for local feature 
descriptors. In this study we have focused on feature 
detectors that have been built for computational 
efficiency, since complex mathematical operations need 
to be executed for every location in the feature 
coordinate space (Tuytelaars & Mikolajczyk, 2008). 

 Difference of Gaussians: DoG is a feature 
enhancement method that has also been used for 
keypoint detection in the pipeline of the SIFT 
(Scale Invariant Feature Transform) descriptor 
(Lowe, 1999; Lowe, 2004). In this method, image 
pyramids are created by repeatedly convolving the 
original image with Gaussian kernels. Then, in 
each image of the pyramid, every pixel is 
compared with its 8 neighbouring pixels in the 
current image as well as with its 9 neighbours of its 
adjacent Gaussian images. The keypoints are 
detected as the extrema in the difference between 
the Gaussian images. 

 Fast Hessian: Fast Hessian is the detection 
method adopted in the SURF detector and 
descriptor algorithm (Bay et al. 2006). This method 

uses integral images through Hessian-matrix 
approximation for the detection of keypoints. Box 
type convolution filters of different sizes are used to 
approximate second order Gaussian derivatives for 
each image point. Then the algorithm searches for 
points where the determinant becomes maximal 
through non-maximal suppression. 

 FAST: FAST is a keypoint detection method 
suitable for real-time applications. It was proposed 
in 2006 (Rosten & Drummond, 2006) as a 
modification of the SUSAN corner detector (Smith 
& Brady, 1997) and outperforms previously used 
keypoint detectors in terms of speed and 
repeatability. Its performance is based on the 
accelerated segment test (AST), which is used to 
distinguish keypoints from other points by 
examining the intensity values of 16 pixels that fall 
in a circular pattern around the candidate pixel. If 
there are at least N contiguous pixels on that circle 
that have either higher or lower intensity values 
than the pixel under examination, then this is 
considered to be a possible interest point. 

In this work, we used the implementations of these 
methods that are available in the OpenCV library.  

4. Methodology 

The availability of good quality off-the-shelf DSLR 
cameras makes it easy to go on CH sites and capture 
the images needed in order to create a 3D model of the 
site. The data used for this paper are HDR images of the 
four cultural heritage sites. These HDR images were 
subsequently tone-mapped with each of the four 
considered TMOs (Fig. 3). The four case studies 
represent an assorted range of common scenarios in 
heritage documentation. 

The first image sequence presents an indoor scene of a 
side chapel from the Kaisariani Monastery. Windows at 
the back of the chapel create such variability in the light 
that a normal camera would not be able to capture. Gold 
paint or mineral pigments are difficult to fully capture in 
dim lighting conditions with LDR cameras, for example in 
an unlit church or castle. The Asinou Church fresco is a 
dark coloured painting, drawn on an arched wall and the 

                   (a)                                       (b)                                       (c)                                        (d)                                        (e) 

Figure 3: The same HDR image of Kaisariani Monastery tone-mapped with different TMOs: a) Fattal; b) Mantiuk; c) ReinhardGlobal; 
and d) ReihardLocal. The last image e) is one of the LDR image (0 EV). 
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Buonconsiglio Castle fresco is characterised by bright 
pigments and covers a rather planar part of the ceiling. 
The Château des Baux Chapel represents a case with 

harsh lighting conditions, where strong shadows and 
bright sunlight coexist in the same scene. The Kaisariani 
Monastery and the Château des Baux Chapel are non-
planar scenes, with Kaisariani containing highly detailed 
architectural objects with intense texture and Le Baux 
depicting a rather low textured wall. While the Asinou 
Church and the Buoncosiglio Castle represent a 
scenario where HDRi enables the capture of fine fresco 
details.  

4.1. HDR images creation 

The raw images were captured using DSLR cameras on 
tripods and the exposure bracketing technique. 
Depending on the dynamic range of the scene, up to 
seven different exposures were taken with a full-frame 
camera. After taking one set of exposures, the viewpoint 
was changed before taking the next set, so that strongly 
overlapping stereo pairs were created. The raw data was 
processed with the MATLAB HDR Toolbox (Banterle et 
al., 2011), which merges the different exposures using 
Debevec and Malik’s method (Debevec & Malik, 1997) 
and a single HDR image is generated. 

4.2. HDR tone-mapping 

The generated HDR images were tone-mapped with 
each of the four TMOs: Fattal et al. (2002), Reinhard et 
al. (2002) in its two variants, and Mantiuk et al. (2008), 
from now on referred to as Fattal, ReinhardGlobal, 
ReinhardLocal and Mantiuk, respectively. Tone-mapping 
was carried out using the implementations of the TMOs 
available in the last release (2.0.2) of the open source 
package pfstools first published by Mantiuk, Krawczyk, 
Mantiuk, & Seidel (2007). It should be noted that in the 
pfstools implementation of Fattal, a discrete cosine 
transform is used instead of a Full Multigrid Algorithm to 
solve a Poisson discrete equation as suggested in the 
original paper. This is because the method proposed in 
the original paper is an iterative solver which has been 
shown to lose accuracy when applied to higher 
resolution images, thereby resulting in halo effects and 
surreal looking images. The used parameters for Fattal 
are summarised in Table 1. 

Table 1: Parameters used for Fattal TMO processing 

Parameter Value  

Threshold gradient (alpha)  0.01 

Strength of modification  0.9 

Noise floor 0.001 

Saturation  0.4 

Threshold gradient (alpha)  0.01 

 

Considering that our aim is an automated pipeline, the 
chosen parameters for threshold, strength noise and 
saturation are the ones suggested as default by the 
original paper. 

For Reinhard both the global and the local 
implementation were tested on the data and, as 

suggested by the authors, a gamma correction has been 
applied. Again, we used, the default parameters 
mentioned in the original paper (Tables 2 and 3).  

Table 2: Parameters used for ReinhardGlobal TMO 
processing 

Parameter Value 

Use scales No 

Key Value 0.18 

Phi Value 1 

Table 3: Parameters used for ReinhardLocal TMO processing 

Parameter Value  

Use scales Yes 

Key Value 0.18 

Phi Value 1 

Number of scales 8 

Lower scale size 1 

Upper scale size 43 

 

Mantiuk, which is a video TMO, was also selected for 
our test. The idea behind this choice is that 
photogrammetry requires a sequence of images and, as 
we are tone-mapping this entire sequence, we wanted to 
investigate the importance of preserving coherence in 
brightness and colour appearance for the entire 
sequence. An additional advantage is that these 
coherent images can also be used directly to texture the 
3D model that results from the SfM implementation. 
Mantiuk requires a visualisation target and, as discussed 
above, we selected the best possible condition for the 
observation of an LDR screen, as mentioned in the 
Recommendation ITU-RBT.2022. The selected 
parameters for Mantiuk are listed in Table 4. 

Table 4: Parameters used for Mantiuk TMO processing 
considering a viewing distance of 0.5 m and 30 pixel per visual 

degree angle 

Parameter Value 

Display Function Gamma-gain-black-
ambient 

Gamma 0.18 

Max Luminance of the 
display(L_max) 

500 

Black Level 0.5 

Ambient Illumination 10 Lux 

Reflectivity of the screen 1% 

Contrast adjustment 3.8 

 

This algorithm offers the possibility of adjusting the 
contrast of the input image before tone-mapping it by 
tuning the contrast adjustment parameter (e). By default 

Mantiuk will attempt to maintain the contrast of the 
original image (e = 1). In order to decide which contrast 
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value was best for our data, we tested it with increasing 
values including the default one. The relationship 
between the contrast value and the number of keypoints 
has a sigmoidal trend. The default value seems to have 
good results in most cases and has the advantage of not 
requiring human intervention while processing the 
images. On the other hand, the tuning of the contrast 
value improves the results, but it is time consuming. This 
creates a tradeoff between the time spent finding the 
perfect contrast value and the automatic tone-mapping 
with the original image contrast. In our case, a contrast 
enhancement was preferred, as it was considered more 
appropriate for our datasets. 

4.3. Evaluation Criteria 

The comparison of the TMOs was conducted for the 
purpose of evaluating their suitability for 
photogrammetric applications and more specifically for 
image-based 3D reconstructions. Since efficient 3D 
reconstruction is highly dependent on accurate keypoint 
detection and matching, the criteria under which the four 
TMOs and the respective LDR images of middle 
exposure were evaluated are the number of keypoints, 
the repeatability rate and the number of matches 
achieved between stereo pairs. 

When an HDR image is processed with a tone-mapping 
method, its radiometric quality is explicitly affected. 
Additionally, tone-mapping methods tend to reveal 
details in regions that are poorly illuminated in LDR 
images. Therefore, keypoint detectors are expected to 
perform differently, and ideally better, on tone-mapped 
images than on the LDR images; the more details are 
preserved, the more well-defined keypoints will be 
detected evenly distributed around the scene. Therefore 
the performance of keypoint detectors on different tone-
mapped images is a good initial indicator of the 
effectiveness of each TMO in preserving detail.  

The performance of the detectors on the different tone-
mapping methods was assessed first based on the 
number of keypoints detected in each image. However, 
this measure by itself may be misleading when it comes 
to photogrammetric applications, as large numbers of 
keypoints do not necessarily offer a noise-free and 
homogenous coverage of the image. It is more important 
to obtain good and sufficient matches between images in 
order to increase the robustness of the reconstruction. 
Thus, visual inspection was also performed, evaluating 
the distribution of the keypoints and their density. 

After the detection stage, feature description and 
matching were carried out in order to evaluate the TMOs 
based on the number of matches. More specifically one 
stereo pair of images was selected from each of the four 
datasets and each pair was tone-mapped with each of 
the TMOs under study. Haar wavelet-like filters were 
used as implemented in the SURF descriptor (using the 
OpenCV library). For the matching process, the Flann-
based (Muja & Lowe, 2009) matcher was applied for 
pairwise matching using a nearest neighbour search. 
The matches were then filtered in order to keep the best 
ones, by comparing the closest match to the second 
closest, based on Lowe’s ratio test criterion (Lowe, 
2004), the so-called good matches. The comparison was 
conducted between pairs of overlapping images from all 
four datasets. 

The last criterion that was used to assess the keypoint 
detection and the tone-mapping methods was the 
Repeatability Rate (RR). First introduced by Schmid et 
al. (2000), it is considered as a standard criterion that 
describes how feature point detectors are affected by 
different image transformations, such as changes in 
rotation, scale or viewpoint. This method tests whether 
the same keypoints are detected in both views. The RR 
is considered analogous to the quality of the detector; 
the higher the RR value the more robust a detector is to 
a specific transformation. 

Given two images of the same scene under one of the 
aforementioned transformations, the number of detected 
points and the location of those points may differ 
significantly. The repeatability rate (RR) is thus 
calculated as the ratio of the total number of matches 
divided by the minimum number of keypoints detected 
between the two images (Přibyl, Chalmers, & Zemčík, 
2012). The repeatability rate 𝑟𝑖 of an image li is thus 

defined by: 

𝑟𝑖 =
|𝑅𝑖|

min(𝑛1, 𝑛𝑖)
 

where 𝑛1 and 𝑛𝑖 are the number of points detected in the 

common part of images 𝐼1 and 𝐼𝑖  , respectively, and 𝑅𝑖 is 

the number of repeated points. As mentioned by Schmid 
et al. (2000), the RR can only be defined for planar 
scenes because the relative geometry between the two 
views in each image pair can, in that case, be easily 
described through a planar homography, thus allowing 
for a simple test on the matching point’s location: 

𝑥′ = 𝐻 𝑥 

where 𝐻 is a 3 x 3 homography matrix and 𝑥′ and 𝑥 the 

homogeneous image coordinates of the same point in 
the test image and the reference image, respectively. In 
cases of 3D scenes the geometry is not that easily 
determined, as more complex relations based on 
epipolar geometry exist between views. In order to 
enable the mapping of points between the two images, a 
3D model of the scene is necessary. As suggested by 
Přibyl et al. (2016), if a 3D model is not available, then 
the problem can be solved by manually annotating a 
triangular net of the scene. However, in this paper only 
planar data were used to calculate the RR. 

As emphasised by Ehsan, Kanwal, Clark, & Mcdonald-
Maier (2010), only the points that lie in the common part 
of the two images should be taken into consideration. 
These are subsequently labelled as repeated or not. 
Additionally, in order to calculate the RR and have 
comparable results between different detectors, the 
detection should be carried out by specifying the number 
of the strongest keypoints that need to be detected, 
regardless how strong they are, as suggested by Přibyl 
et al. (2016). We consider an amount of 1000 points to 
be suitable for calculating an accurate ratio between 
repeated and total points and at the same time low 
enough so that they can be detected in all images. 
Therefore, only the best 1000 points of each image, 
which lie within the common region of the stereo pair 
were regarded in the calculation of the RR.  

In this paper, the RR is not used as a criterion to 
evaluate the different keypoint detectors but rather to 
compare different tone-mapping methods applied on the 
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same pair of HDR images. For this purpose the planar 
data from the Buonconsiglio Castle in Trento was used. 
As shown in Figure 9, the fresco has been photographed 
from different viewpoints and the two sequences have 
been processed and tone-mapped. For the detection of 
keypoints SIFT (DoG) was used. The comparison is 
conducted between pairs of tone-mapped images with 
different viewpoints and it is calculated as the ratio of 
keypoints between a given image and a reference 
image. 

As stated by Schmid et al. (2000), the repeatability 

criterion should take into consideration the uncertainty of 
the detection, since a detected point in one image might 
not appear in the exact respective position in the other 
image, but rather in the neighbourhood of this position. 

Thus a threshold ε is set which defines the radius 

around the x’ image coordinates within the matching 

point should be found. The choice of the specific 
threshold immediately affects the RR since a larger 
radius signifies a larger search area and the possibility to 
have a point repeated is higher. Thus the threshold 
should not be too high to incorrectly label neighbouring 
pixels, but neither too small so that it fails to find the 
correct points. In recent literature this threshold has 
been set as less than 1% of the total image size (Přibyl 
et al., 2012; Přibyl et al., 2016). In our case, given the 

size of the images, a value of ε =10 pixels was 

considered an appropriate but rather strict threshold –it 
is less than 0.5% of the total image size. 

5. Results 

5.1. Keypoint Detection 

Figures 4 and 5 illustrate the average number of 
keypoints and how four different TMOs and the original 
LDR image perform under the selected keypoint 
detection methods. As it can be seen (Fig. 4), Mantiuk 
performs better than ReihardLocal and ReinhardGlobal 
and the middle exposed original LDR image. 
ReinhardGlobal is marginally better than ReinhardLocal. 

Fattal is shown separately and in comparison with only 
Mantiuk (Fig. 5), since it detects significantly more 
keypoints than any of the other three TMOs. In fact, the 
number of keypoints can be considered excessive (see 
also Appendix I). Especially the combination of FAST 
and Fattal can produce a number of keypoints that is 
higher than 5% of the image pixels (around 1 out of 20 
pixels is detected as a keypoint). This can be attributed 
to Fattal’s ability to intensify the contrast in dark regions, 
enhancing poorly visible detail but also image noise. 

The results were also inspected visually by plotting all 
the detected points on the images. In Fig. 7, an image of 
a fresco in the Asinou Church is used to illustrate the 
density of the points and their distribution in the image 
area across different combinations of TMOs and 
detectors. In terms of density, as expected, the 
combination of FAST and Fattal produces an excessive 
amount of points that almost completely covers the 
image. Although the coupling of Fattal and the Fast 
Hessian or DoG detectors produces less intense results, 
the density of points is still relatively high even in regions 
where the fresco lacks in relevant details –a good 
indicator that Fattal tends to unnecessarily intensify 
contrast, due to its local action based on a small 
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Figure 5: Comparison of the average number of keypoints 

detected with FAST, SIFT and SURF for Fattal and Mantiuk 

Figure 4: Comparison of the average number of keypoints 
detected with FAST, SIFT and SURF for Mantiuk, 

ReinhardGlobal, ReinhardLocal and LDR.  
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Figure 6: The LDR has almost no keypoints in the shade. 
However, in the Mantiuk’s toned-mapped image the 

distribution of the detected keypoints is more uniform as the 
detector finds keypoints even in the darkest area. Image 

from Château des Baux case study. 
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neighborhood around each pixel. Regarding Reinhard’s 
methods, as it can be seen in Figs. 3 and 7, they 
produce images with low contrast, a fact that is also 
reflected in the density of keypoints. Regarding the 
points’ spatial distribution, apart from Fattal, the rest of 
the TMOs produce more points in highly textured areas. 
As it can be seen in Fig. 7, more points are detected on 

the halo of the Saint and on the inscription at the lower 
right corner and almost none on the blue painted wall. 
However, Figure 6 demostrates the ability of the HDR 
images to enhance poorly visible detail and subuquently 
to improve the distribution of keypoints even in dark or 
very bright areas. 

 

  

Figure 7: Part of Asinou Church fresco with keypoints for all the TMOs and LDR tested with all three detectors. 
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Figure 10: Good matches for TMO Mantiuk on Buonconsiglio 
Castle fresco (first 100 matches). 

5.2. Matches 

Keypoint matching was performed between sequential 
images of the datasets. The overall average results on 
all datasets for the number of matches and the number 
of good matches are presented in Figs 8 and 9, 
respectively. 

The average number of total matches on Fattal tone-
mapped images outperforms the other methods on all 

datasets, as many more points are detected (Appendix 
II).  

In the Mantiuk tone-mapped image sets, more points are 
detected than either of the Reinhard methods or the 
original LDR images, especially while using the FAST 
feature detector. ReinhardGlobal and ReinhardLocal 
produce a similar number of matches for FAST, DoG 
and Fast Hessian, which in both cases outperforms 
those of LDR images (Fig. 8). 

After Lowe’s criterion for discarding false matches (ratio 
test), the SURF detector (Fast Hessian) is proven to be 
more efficient than the FAST and DoG as the number of 
matches that pass the ratio test is increased significantly 
(around three times larger). Indeed, the combination of 
tone-mapped images with Mantiuk’s TMO with Fast 
Hessian gives the best percentage of good matches 
(Fig. 9). ReinhardLocal is the least robust method, while 
the number of good matches appears comparable 
between ReinhardGlobal and LDR images. Figure 10 
illustrates an example of the best 100 matches that have 
passed Lowe’s ratio test.  

5.3. Repeatability Rate 

The values in Table 5 show that Mantiuk has the highest 
repeatability rate (RR) among the TMOs, followed by 
ReinhardGlobal, Fattal and the ReinhardLocal case. RR 
values are high for LDR images as well, at the same 
level as ReinhardGlobal. However, it should be 
emphasised that the results are highly dependent on the 

threshold values ε and the number of keypoints detected 

in the images. 

One important observation that becomes evident from 
the results in Table 5 is the fact that the high number of 
keypoints is not necessarily a symptom of their quality, 
as proven in the case of Fattal. The RR for Fattal is, in 
fact, the second-lowest RR, with only 0.38.  

Figure 9: When it comes to good matches again Mantiuk 
and Fattal outperform Reinhard and LDR. The SURF 
detector however seems to produce better quality 
matches whereas the performance of the FAST descriptor 
decreases significantly. 
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Figure 8: Fattal and Mantiuk outperform the Reinhard 
methods and the LDR image in terms of number of 
matches. As expected, for all the operators the FAST 
detector has produced the highest number of matches 
since it detects more points. 
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Table 5: Repeatability rate calculated for different tone-mapping 

methods with ε=10 pixels. The number of keypoints detected in 

each images was retained in 1000 points. 

TMO RR 

Fattal 0.38 

Mantiuk 0.5 

ReinhardGlobal 0.45 

ReinhardLocal 0.33 

LDR 0.46 

6. Conclusions 

In this paper four different tone-mapping methods were 
compared in terms of their suitability for 
photogrammetric applications. The results suggest that 
Mantiuk’s method is a more suitable TMO for such 
procedures since both the number of detected keypoints 
and the number of matches are high enough yet not 
excessive. Mantiuk also obtains the best RR score, 
demonstrating that, although it might not offer the 
highest number of points, those points are of better 
quality. In fact, in the case of Fattal TMO, the quantity of 
detected keypoints is higher, but this does not imply a 
better quality in scene reconstruction but rather 
computationally intensive, time-consuming and prone-to-
error image matching and registration. Regarding the 
Reinhard’s methods, surprisingly, they produce almost 
the same number of keypoints as the original LDR 
images. This might be attributed to the fact that 
Reinhard’s method yields poor reproduction of details in 
brightly illuminated regions as demonstrated in Ledda, 
Chalmers, Troscianko, & Seetzen (2005).  

Therefore we suggest that, out of the four TMOs 
considered, Mantiuk TMO should be chosen because: 

 it performs very well in all the performed tests; 

 offers a more natural accurate colour rendition; 

 as it is a video TMO, it offers brightness 
coherence and homogeneity throughout the 
entire sequence of the image set; 

 being a global TMO there is no risk of altering the 
geometry of the image, thereby compromising the 
geometric accuracy of the 3D model produced. 

This paper has shown that, despite the availability of a 
plethora of HDR TMOs in literature, not every one of 
them is well-suited to the specific task of cultural 
heritage site documentation and 3D reconstruction. 
Moreover, most of the tone-mapping algorithms have 
previously been evaluated in terms of appeal to the 
human observer. Our future work will continue exploring 
the potential of HDR TMOs specifically built for computer 
vision applications, in particular those that improve the 
robustness of the geometry for 3D reconstruction 
purposes.  
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Appendices 

Appendix I: Number of keypoints detected in each image for the four datasets. 

 Fattal Mantiuk 
Reinhar
d Global 

Reinhard 
Local LDR 

Kaisariani 

FAST 

Image0 

Image1 

Image2 

Image3 

Image4 

611151 

623696 

634557 

686520 

672965 

6955 
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4419 

7898 

8800 

9614 

9634 

4923 

9670 

10519 

11636 

11803 

8392 

13803 

15127 

14073 

14597 

DoG(SIFT) 

Image0 

Image1 

Image2 

Image3 

Image4 

149090 

139199 

150785 

178438 

165459 

4197 

9671 

13743 

12381 

12984 

3033 

4883 

4857 

5338 

5600 

2956 

5179 

5241 

5702 

6022 

4874 

7476 

7366 

6705 

7024 

Fast Hessian 
(SURF) 

Image0 

Image1 

Image2 

Image3 

Image4 

94694 

98830 

105924 

111896 

108050 

5540 

11934 

16241 

15244 

16166 
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6077 

6297 

6788 

7030 

3733 

6548 

6713 
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7544 

5675 
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8433 
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FAST 

Image0 

Image1 

Image2 
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919266 
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28696 

35254 
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Appendix II: Comparison between the number of matches and number of good matches after the ratio test for one image pair per 
dataset. The pairs of images tone-mapped with different methods. For the keypoint detection, three different detectors were used. 
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DoG Fattal Mantiuk ReinhardGlobal ReinhardLocal LDR 

Matches 

Good M 

194306 

7039 

23345 

1588 

9632 

1414 

8487 

1226 

13677 

1646 

FAST Fattal Mantiuk ReinhardGlobal ReinhardLocal LDR 

Matches 

Good M 

928575 

14690 

85074 

2554 

27341 

1139 

28696 

1008 

42633 

1732 

Buonconsiglio 

Fast 
Hessian 

Fattal Mantiuk ReinhardGlobal ReinhardLocal LDR 

Matches 

Good M 

91453 

30272 

34247 

16429 

15939 

6528 

1712 

713 

6696 

3035 

DoG Fattal Mantiuk ReinhardGlobal ReinhardLocal LDR 

Matches 

Good M 

145686 

7448 

27326 

4713 

11412 

2344 

1203 

258 

4917 

1001 

FAST Fattal Mantiuk ReinhardGlobal ReinhardLocal LDR 

Matches 

Good M 

476544 

12298 

93432 

4707 

27710 

1813 

1758 

193 

14822 

754 

Baux 

Fast 
Hessian 

Fattal Mantiuk ReinhardGlobal ReinhardLocal LDR 

Matches 

Good M 

168127 

9442 

75441 

6813 

58996 

4984 

47116 

4231 

30318 

4619 

DoG Fattal Mantiuk ReinhardGlobal ReinhardLocal LDR 

Matches 

Good M 

476156 

14559 

229600 

8196 

159239 

6004 

112699 

4260 

89948 

4279 

FAST Fattal Mantiuk ReinhardGlobal ReinhardLocal LDR 

Matches 

Good M 

1029501 

11585 

456123 

6146 

375534 

5329 

325444 

4650 

225484 

8359 
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