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PARALLEL KRYLOV SOLVERS FOR THE POLYNOMIAL

EIGENVALUE PROBLEM IN SLEPc∗

CARMEN CAMPOS† AND JOSE E. ROMAN†

Abstract. Polynomial eigenvalue problems are often found in scientific computing applications.
When the coefficient matrices of the polynomial are large and sparse, usually only a few eigenpairs
are required and projection methods are the best choice. We focus on Krylov methods that operate
on the companion linearization of the polynomial, but exploit the block structure with the aim of
being memory-efficient in the representation of the Krylov subspace basis. The problem may appear
in the form of a low-degree polynomial (quartic or quintic, say) expressed in the monomial basis,
or a high-degree polynomial (coming from interpolation of a nonlinear eigenproblem) expressed in
a non-monomial basis. We have implemented a parallel solver in SLEPc covering both cases, that
is able to compute exterior as well as interior eigenvalues via spectral transformation. We discuss
important issues such as scaling and restart, and illustrate the robustness and performance of the
solver with some numerical experiments.

Key words. matrix polynomial, eigenvalues, companion linearization, Krylov subspace, non-
monomial bases, spectral transformation, parallel computing, SLEPc
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1. Introduction. Consider the matrix polynomial

(1.1) P (λ) = A0 + λA1 + λ2A2 + · · ·+ λdAd,

where Ai are n × n matrices (real or complex), and assume it is regular, that is,
detP (λ) is not identically zero. This paper is concerned with the polynomial eigen-
value problem, where the goal is to compute eigenpairs (x, λ) satisfying

(1.2) P (λ)x = 0, x 6= 0,

where λ ∈ C is the eigenvalue and x ∈ C
n is the (right) eigenvector. There is an

increasing demand for efficiently solving this kind of problems in scientific computing
applications. Some examples can be found in the NLEVP collection [8]. We are inter-
ested in the case of large-scale computations where the coefficient matrices Ai are large
and sparse, arising typically from the discretization of partial differential equations.
Second-order models are the most commonly found, leading to quadratic eigenvalue
problems [29], but higher order ones can also appear in practical applications, result-
ing in polynomials of modest degree, d ≤ 6, say. Also, matrix polynomials of arbitrary
degree are obtained when solving nonlinear eigenvalue problems via polynomial in-
terpolation, see, e.g., [11]. This latter case requires expressing the polynomial in a
non-monomial basis, as opposed to the representation in (1.1).

Projection methods for large-scale polynomial eigenvalue problems may opt to
project the problem directly by imposing a Galerkin-type condition on the residual
associated with the polynomial eigenproblem, see, e.g., [18, 19, 5]. An alternative
approach is to apply a standard projection method such as Arnoldi to the linearization
of the matrix polynomial. The main drawback of this latter approach is that the linear
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2 C. Campos and J. E. Roman

eigenproblem to be solved is much larger, increased by a factor of d, although it is
possible to exploit the block structure of the linearization resulting in memory-efficient
variants such as Q-Arnoldi [24] that do not need to explicitly store basis vectors of
length dn.

In this paper, we take the linearization route and consider Krylov-type iterations,
in particular memory-efficient variants of Krylov-Schur [26]. We present implementa-
tions in the context of SLEPc, the Scalable Library for Eigenvalue Problem Computa-
tions [16]. The structure of the polynomial eigensolver in SLEPc is very similar to the
linear eigensolver, with a lot of flexibility for the user to set various parameters and
options, even at run time. For instance, the user can choose the method to use, set the
convergence tolerance, the dimension of the Krylov subspace, or the restart parameter.
For computing interior eigenvalues, our implementation provides the shift-and-invert
spectral transformation, which has been tailored specifically to the structure of the
linearized problem, either in the monomial or non-monomial basis [21].

Compared to the linear case, implementing a robust and efficient polynomial
eigensolver is much more difficult, since issues such as conditioning may have more
importance. We provide details concerning various relevant aspects such as how to
lock converged Ritz vectors, or how to obtain eigenpairs of (1.1) from the eigenpairs
of the linearization. This latter issue is discussed by Betcke and Kressner in [9],
and we make the necessary adaptations for our specific algorithms. Furthermore,
scaling of the matrix polynomial coefficients turns out to be crucial for improving
the conditioning of the linearized problem, and several strategies have been proposed
to this end, e.g., [7]. Our solvers combine all these ingredients in a flexible way,
enabling the solution of a wide variety of polynomial eigenproblems. Moreover, all
the computations are carried out in parallel and hence very large scale problems can
be addressed.

Our software implementation is unique. No other publicly available software
provides Krylov solvers for the polynomial eigenproblem. Only some Matlab imple-
mentations for the complete solution of quadratic eigenproblems can be found [14].

The rest of the paper is organized as follows. Section 2 provides background infor-
mation on basic tools such as linearization, memory-efficient Krylov solvers, spectral
transformation, and polynomial bases. Also, a short description of SLEPc is given.
Section 3 proceeds to detail the Krylov methods that we have implemented, namely
plain Arnoldi, Q-Arnoldi and TOAR (Two-level Orthogonal Arnoldi). The descrip-
tion includes topics such as restart and locking, convergence criteria, and scaling.
In §4 we discuss the user interface for SLEPc’s polynomial eigensolvers and provide
some usage examples. Section 5 deals with numerical results for various test cases,
including the evaluation of parallel performance. We wrap up with some conclusions
in §6.

2. Preliminaries. In the methods that approximate the solution of a polynomial
eigenproblem of dimension n and degree d via linearization, the involved vectors have
length dn. We will consider that vectors v ∈ C

dn and tall-skinny matrices V ∈ C
dn×k

are divided in d blocks of n rows,

(2.1) v =







v0

...
vd−1






, V =







V 0

...
V d−1






,

where vi ∈ C
n and V i ∈ C

n×k for i = 0, . . . , d− 1. Throughout the text, we will use
superindices to denote each of the blocks of the split form (2.1).
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The identity matrix of order m will be denoted by Im. The ith canonical vector,
that is, the ith column of the identity matrix, will be denoted by ei, and its length
will be assumed to match the dimension of the expression where it appears.

The reverse of a matrix polynomial P (λ) of degree d is defined as the matrix
polynomial given by revP (λ) := λdP ( 1

λ
).

2.1. Linearization. A usual way to solve the polynomial eigenvalue problem
(1.1) is to build and solve an equivalent generalized eigenproblem, (A − λB)z = 0,
having the same spectrum as the original problem. In general, a pencil L(λ) = A−λB
is said to be a linearization of P (λ) if there exist unimodular1 matrix polynomials,
U(λ) and V (λ), such that

(2.2) U(λ)L(λ)V (λ) =

[

P (λ) 0
0 I(d−1)n

]

.

Unimodular transformations preserve the finite spectral structure (finite elementary
divisors). Strong linearizations, in which L(λ) and revL(λ) are linearizations of P (λ)
and revP (λ), respectively, preserve the spectral structure also for the ∞ eigenvalue.

For a matrix polynomial P (λ) defining a polynomial eigenproblem, there exist
many possible linearizations sharing the same spectrum. Those linearizations may
have different structural properties and conditioning. From a computational point of
view, in order to solve a polynomial eigenproblem, it would be preferable to choose a
linearization having the best possible conditioning, and with structural properties that
preserve the spectral properties of the original problem in the computed result. For
example, this is the case when using a symmetric linearization when the matrices of
the original polynomial are symmetric. For a detailed information about linearizations
and conditioning see [13, 23, 17].

Once the polynomial eigenproblem has been reduced to a linear one via lineariza-
tion, it can be solved by any method for generalized eigenproblems. The drawback of
using this approach is that the new problem to be solved has a dimension of d times
the original dimension, being d the degree of P . Hence, it is important to somehow
take advantage of the block structure of the linearization used, in order to reduce the
cost (in memory or computation) of solving the linear problem.

In this work, to linearize the polynomial eigenproblem (1.1), we use the first
companion form given by

L(λ) = A− λB, where(2.3a)

A =

















0 I 0 · · · 0
0 0 I · · · 0
...

...
. . .

. . .
...

...
...

...
. . . I

−A0 −A1 −A2 · · · −Ad−1

















, B =















I
I

. . .

I
Ad















.(2.3b)

The first companion form is a strong linearization of (1.1), implying that P and
L share the same spectral structure for finite and infinite eigenvalues. Also, the
eigenvectors can be easily recovered from those of (2.3), taking into account that each

right eigenvector, z, of (2.3) has the form z =
[

1 λ . . . λd−1
]T
⊗ x, being x a

right eigenvector of (1.1).

1A matrix polynomial U(λ) is unimodular if det(U(λ)) ≡ c for some constant c.
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Another potential advantage of the first companion form is its block structure
containing many zero blocks, which can be exploited to save memory when com-
puting a few eigenpairs, as in the methods of Q-Arnoldi or TOAR, see §2.2. Other
linearizations also share this property.

2.2. Krylov methods for linearized polynomial eigenproblems. After lin-
earizing the matrix polynomial, P (λ), the generalized eigenproblem produced is re-
duced to standard form,

(2.4) Sz = λz,

where S = B−1A, for A and B as in (2.3), and Ad is assumed to be non-singular.
Then, from an initial vector u 6= 0, the well-known Arnoldi method [4] can be used
to compute an orthonormal basis {v1, . . . , vk+1} of the Krylov subspace Kk+1 :=
span{u, Su, . . . , Sku}, and a (projected) Hessenberg matrix, Hk, satisfying Arnoldi’s
relation,

(2.5) SVk = VkHk + hk+1,kvk+1e
∗
k,

where Vk =
[

v1 · · · vk
]

.
From (2.5), eigenpairs of Hk, (y, µ), are used to compute Ritz values, µ, and

Ritz vectors, ẑ = Vky, which yield approximate eigenpairs of (2.4). The norm of the
residual, r(µ, ẑ) := Sẑ − µẑ, provides a bound of the (absolute) backward error for
these approximate eigenpairs, and the expression

(2.6) ρ(ẑ, µ) := ‖Sẑ − µẑ‖ = hk+1,k|e
∗
ky|,

can be used to determine which of them are sufficiently converged.
For a matrix polynomial of degree d, the linear eigenproblem solved is d times

larger than the original problem (of dimension n). Hence, from a computational point
of view, it is important to avoid the explicit creation of matrices (2.3) (of dimension
nd). For expanding the Krylov subspace when performing Arnoldi’s iteration, w =
Sv = B−1Av, it is possible to carry out the multiplication with matrix S, operating
directly with the polynomial coefficients, Ai. For this, considering that each vector of
C

nd is split in the form (2.1), the special structure of A and B allows the computation
of each block of w with

(2.7)

{

wi = vi+1, i = 0, . . . , d− 2,

wd−1 = −A−1
d (A0v

0 + · · ·+Ad−1v
d−1).

This strategy avoids storing the complete matrices (2.3) in full form, but Arnoldi
vectors (of dimension nd) are still computed and stored explicitly.

The Q-Arnoldi method [24] is a memory-efficient variant of Arnoldi, that takes
advantage of the structure of the linearization (2.3) and works storing only the first n
entries of each computed Arnoldi vector. Considering vectors split in the form (2.1),
equating the first d−1 block rows of (2.5) yields relations between blocks V i

k ,

(2.8) V i+1
k = V i

kHk + hk+1,kv
i
k+1e

∗
k, i = 0, . . . , d− 2,

that can be used to carry out Arnoldi’s iteration, storing only V 0
k and the full contin-

uation vector vk+1.
In order to illustrate the method, we now show the operations involved in one

iteration of the Q-Arnoldi method for the case of degree 2. Starting from an Arnoldi
relation (2.5) of order k in which only the first block of Vk has been explicitly stored,
a relation of order k + 1 can be obtained with the following steps:
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1. The Krylov subspace is expanded with w = Svk+1, operating with the ma-
trices of the polynomial problem as in (2.7). The stored block is updated as
V 0
k+1 ← [ V 0

k v0
k+1 ].

2. Vector w is orthogonalized against the columns of Vk+1, using (2.8),

w̃ :=w −

[

V 0
k+1

[

V 1
k v1k+1

]

]

V ∗
k+1w =(2.9)

=

[

w0

w1

]

−

[

V 0
k+1

[

V 0
k Hk + hk+1,kv

0
k+1e

∗
k v1k+1

]

]

hk+1,

where the hk+1 coefficients corresponding to the (k+1)th column of Hk+1 are

hk+1 :=

[

V 0
k+1

[

V 1
k v1k+1

]

]∗ [
w0

w1

]

=(2.10)

=(V 0
k+1)

∗w0 +

[

H∗
k(V

0
k )

∗w1 + hk+1,k(v
0
k+1)

∗w1ek
(v1k+1)

∗w1

]

.

3. The normalization of the vector w̃ results in the Arnoldi vector generated in
this iteration, vk+2 := w̃/hk+2,k+1, being hk+2,k+1 := ‖w̃‖. Vector v1k+1 is no
longer used so it can be discarded.

In analogy to Q-Arnoldi, the TOAR method [27, 22] keeps the idea of recovering
each block, V i

k , when needed, from a set of vectors in C
n. In the case of Q-Arnoldi,

these vectors are given by {V 0
k ej}

k
j=1 ∪ {v

0
k+1, . . . , v

d−1
k+1}, whereas TOAR takes these

vectors to be an orthonormal basis of the subspace

(2.11) span(∪d−1
i=0 {V

i
kej}

k
j=1 ∪ {v

i
k+1}

d−1
i=0 ) = span({V 0

k ej}
k
j=1 ∪ {v

i
k+1}

d−1
i=0 ),

where equality comes from relations (2.8) and hence k+d vectors are needed at most.
Hence, the TOAR method generates a matrix with orthonormal columns, Uk+d ∈

C
n×(k+d), matrices {Gi

k}
d−1
i=0 ⊂ C

(k+d)×k and vectors {gik+1}
d−1
i=0 ⊂ C

k+d from which
to recover Arnoldi vectors (columns of Vk),

V i
k = Uk+dG

i
k, i = 0, . . . , d− 1,(2.12a)

vik+1 = Uk+dg
i
k+1, i = 0, . . . , d− 1.(2.12b)

Continuing with the particular case of degree 2, now suppose that an Arnoldi
relation of order k (2.5) has been computed, and blocks V 0

k and V 1
k as well as the

continuation vector vk+1 are expressed with the TOAR format as in (2.12) (taking
d = 2). Then, the TOAR steps that will lead to a relation of order k+1 will be:

1. For the expansion of the Krylov subspace, the TOAR method adds a new
column to matrix Uk+2 and generates coefficients gi ∈ C

k+3 in such a way
that the two fragments of w = Svk+1 can be expressed as

(2.13) wi = Uk+3g
i, i = 0, 1,

where Uk+3 :=
[

Uk+2 uk+3

]

is the extended matrix. For this, vector w1 =

−A−1
2 (A0v

0
k+1+A1v

1
k+1) is obtained from (2.7) (reconstructing v0k+1 and v1k+1

first) and then orthogonalized against the columns of Uk+2. After normal-
ization, it results in uk+3, being g1 ∈ C

k+3 the orthogonalization coefficients
plus the normalization factor, so that (2.13) is satisfied for i = 1. Also, from

(2.7) we have that w0 = v1k+1 = Uk+2g
1
k+1, so defining g0 :=

[

g1
k+1

0

]

the

relation (2.13) is satisfied for i = 0.
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2. To orthogonalize the new vector w against the columns of Vk+1, we must
compute the orthogonalization coefficients

hk+1 :=

[

V 0
k+1

V 1
k+1

]∗ [
w0

w1

]

=(2.14)

=

[

G0
k+1

0

]∗

U∗
k+3Uk+3g

0 +

[

G1
k+1

0

]∗

U∗
k+3Uk+3g

1 =

=

[

G̃0
k+1

G̃1
k+1

]∗ [
g0

g1

]

, with G̃i
k+1 :=

[

Gi
k+1

0

]

,

and then the orthogonalized vector is

w̃ := w − Vk+1V
∗
k+1w =(2.15)

=

[

Uk+3g
0

Uk+3g
1

]

−

[

Uk+3G̃
0
k+1

Uk+3G̃
1
k+1

]

hk+1

=

[

Uk+3

Uk+3

]([

g0

g1

]

−

[

G̃0
k+1

G̃1
k+1

]

hk+1

)

.

In (2.14) and (2.15) we observe that, since the blocks V i
k are expressed in

the form (2.12), the orthogonalization can be formulated in terms of the
columns of the Gi

k matrices. That is, each TOAR iteration requires the
orthogonalization of a vector of length n (when computing uk+3) and another
one of length 2(k+3) (when orthogonalizing g against the columns of G̃k+1),
instead of one orthogonalization of length dn that would be required in the
plain Arnoldi method.

3. The normalization step can also save operations with respect to plain Arnoldi.
Define g̃ := g − G̃k+1hk+1, then it can be shown that ‖w̃‖ = ‖g̃‖, and since
w̃ is also expressed in the (2.13) form it is sufficient to normalize g̃ to ob-
tain gk+2 := g̃/hk+2,k+1, with hk+2,k+1 := ‖g̃‖, and the new Arnoldi vector
expressed in the form vik+2 = Uk+3g

i
k+2, for i = 0, 1.

Both Q-Arnoldi and TOAR were developed for quadratic eigenproblems and can
be generalized to solve polynomial eigenproblems of arbitrary degree [21]. In this
work, we present implementations of both Q-Arnoldi and TOAR, but only our TOAR
solver has been extended to degrees larger than 2, because this method has a simpler
expression for blocks V i

k when the polynomial eigenproblem is expressed in a non-
monomial basis. Also, TOAR has better stability properties because it represents the
matrix of Arnoldi vectors, Vk, as a product of 2 matrices with orthonormal columns,
and it recovers each block of Vk from a matrix whose columns form an orthonormal
basis. In §3.2 we provide details of our implementation of the TOAR method.

2.3. Spectral transformation. As the number of steps of the Arnoldi method
increases, the computed Ritz values converge to exterior eigenvalues. When interior
eigenvalues are wanted, a spectral transformation can be used, that maps desired
eigenvalues to the exterior ones. For instance, the shift-and-invert transformation for
linear eigenproblems [4] performs a trivial mapping of eigenvalues while eigenvectors
are preserved. We next show how to apply this to the polynomial eigenproblem.

In order to use the shift-and-invert transformation on a polynomial problem, the
change of variable can be done either on the parameter λ of the linearized problem
or the original polynomial eigenproblem. In the first case, the mapping λ = 1

θ
+ σ
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transforms L(λ)x = 0 as defined in (2.3) to

(2.16) L̃(θ)x = (B − θ(A− σB))x = 0.

Dominant eigenvalues θ of the pencil L̃(θ) correspond to eigenvalues of L(λ) closest to
σ. In case of performing the change of variable on the polynomial problem P (λ)x = 0
defined in (1.1), we first shift the spectrum as λ = θ+ σ, obtaining a new polynomial

P̃ (θ) := P (θ + σ) = A0 + (θ + σ)A1 + · · ·+ (θ + σ)dAd =

= A0 + (θ + σ)A1 + · · ·+

( d
∑

j=0

(

d

j

)

θjσd−j

)

Ad,

from which, after reordering and grouping the terms for different powers of θ, we
obtain the form P̃ (θ) = T0 + θT1 + · · ·+ θdTd with

(2.17) Tk =

d
∑

j=k

(

j

k

)

σj−kAj =

d−k
∑

j=0

(

j + k

k

)

σjAj+k.

The last step to obtain the shift-and-invert transformation is to operate with rev P̃ (θ).
We have implemented both options (transforming the polynomial or the lineariza-

tion), and the user can choose between them at run time as will be described in §4.

2.4. Polynomial bases. Even though the matrix polynomial defining a polyno-
mial eigenproblem is most often expressed in the monomial basis, in some problems it
is more convenient to define it using other polynomial bases, for instance when solving
nonlinear eigenproblems via interpolation with a large degree polynomial [21].

With the aim of giving support to a large variety of applications, in our work we
consider that matrix polynomials can be expressed in terms of a more general set of
polynomials, {φj}

d
j=0,

(2.18) P (λ) = A0 φ0(λ) +A1 φ1(λ) + · · ·+Ad φd(λ).

We consider polynomial bases defined in [3] satisfying a three-term recurrence

(2.19) λφj(λ) = αj φj+1(λ) + βj φj(λ) + γj φj−1(λ), for j = 1, 2, . . .

where φ−1 ≡ 0, φ0 ≡ 1, and for j = 0, 1, . . . , αj , βj and γj are real, αj > 0 and
αj =

cj
cj+1

, being cj the leading coefficient of φj(λ). This type of polynomial sets

include any sequence of orthogonal polynomials with increasing degree.
Some sets of polynomial bases satisfying (2.19) are:
• Monomial. Particular case taking αj = 1 and βj = γj = 0, ∀j ≥ 0.
• Chebyshev first kind. T0(λ) = 1, T1(λ) = λ, Tj+1(λ) = 2λTj(λ)−Tj−1(λ),
with coefficients α0 = 1, αj =

1
2 , βj = 0, γj =

1
2 .

• Chebyshev second kind. U0(λ) = 1, U1(λ) = 2λ, Uj+1(λ) = 2λUj(λ) −
Uj−1(λ), with coefficients αj =

1
2 , βj = 0, γj =

1
2 .

• Legendre. P0(λ) = 1, P1(λ) = λ, (j + 1)Pj+1(λ) = (2j + 1)λPj(λ) +
jPj−1(λ), with coefficients αj = j + 1, βj = −2j, γj = j.

• Laguerre. L0(λ) = 1, L1(λ) = 1−λ, (j+1)Lj+1(λ) = (2j+1−λ)Lj(λ)−
jLj−1(λ), with α0 = −1, αj = −(j + 1), β0 = 0, βj = (2j + 1), γj = −j.

• Hermite. H0(λ) = 1, H1(λ) = 2λ, Hj + 1(λ) = 2λHj(λ) − 2jHj−1(λ),
with coefficients αj =

1
2 , βj = 0, γj = j.
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To linearize a polynomial eigenproblem defined in terms of a matrix polynomial
as in (2.18), we use a linearization, L(λ), similar to the one proposed in [3],

L(λ) = A− λB,(2.20)

A =





















β0I α0I
γ1I β1I α1I

. . .
. . .

. . .

. . .
. . .

. . .

γd−2I βd−2I αd−2I

Ã0 Ã1 Ã2 · · · Ãd−3 Ãd−2 Ãd−1





















, B =











I
. . .

I
cdAd











,

with Ãj = −cd−1Aj (j = 0, . . . , d − 3), Ãd−2 = −cd−1Ad−2 + cdγd−1Ad and Ãd−1 =
−cd−1Ad−1 + cdβd−1Ad. Note that, in the case of using the monomial basis, this
linearization coincides with the first companion form (2.3). On the other hand, also
when using the monomial basis, the linearization defined in [3] coincides with the
second companion form related to (1.1). The reason of using linearization (2.20) lies
in our interest in computing right eigenvectors of (2.18), which are easily obtained
from those of (2.20). Indeed, it can be proved, in a similar way to [3], that the
pencil (2.20) is a strong linearization of (2.18), so both eigenproblems have the same
spectrum, and on the other hand that right eigenvectors, z, of (2.20) have the form

(2.21) z =











x
φ1(λ)x

...
φd−1(λ)x











,

where x is a right eigenvector of (2.18). Thus, by using this expression, eigenvectors
of P (λ) can be recovered easily from those of L(λ).

Similarly to the expressions given in [2], it is possible to write the LU factorization
of (2.20)

(2.22) (A− λB)Π = LλUλ,

where Π =
[

0 In
I(d−1)n 0

]

is a block permutation matrix, and

Lλ =























α0I
(β1 − λ)I α1I

γ2I (β2 − λ)I
. . .

. . .
. . .

. . .

. . . (βd−2 − λ)I αd−2I

−cd−1A1 −cd−1A2 . . . Âd−2 Âd−1 −cd−1P (λ)























,(2.23)

Uλ =



















I −φ1(λ)
φ0(λ)

I

I −φ2(λ)
φ0(λ)

I

. . .
...

I −
φd−1(λ)

φ0(λ)
I

I



















,(2.24)
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with Âd−2 = −cd−1Ad−2 + cdγd−1Ad and Âd−1 = −cd−1Ad−1 + cd(βd−1 − λ)Ad.
This factorization will be used later in §3.2, when adapting TOAR to general

matrix polynomials in the form (2.18) for the shift-and-invert spectral transformation.

2.5. PETSc and SLEPc. We now briefly describe the structure and main fea-
tures of SLEPc, that will be helpful for understanding some of the design decisions
and implementation details of our polynomial eigensolvers.

SLEPc, the Scalable Library for Eigenvalue Problem Computations [16, 25], is a
software library for the parallel solution of large-scale eigenvalue problems. It started
as a collection of solvers for the linear eigenvalue problem, both standard and general-
ized, covering both the Hermitian and non-Hermitian cases in either real or complex
arithmetic. It was later extended to also provide solvers for related problems. In this
paper we discuss the solvers for the polynomial eigenproblem.

SLEPc is an extension of PETSc (Portable, Extensible Toolkit for Scientific Com-
putation [6]), a parallel framework for the numerical solution of partial differential
equations, which is based on defining abstract data objects such as vectors and ma-
trices, and building solver objects on top of them. PETSc and SLEPc are designed
to be scalable to a large number of processors, to be portable to virtually any parallel
computer, and to be flexible in terms of run-time control of the solution process (one
can for instance specify the solver at run time, or change relevant parameters such as
the tolerance or the size of the subspace basis).

PETSc follows an object-oriented design, with all the code organized in a few
data and solver classes. The application programmer interacts with objects of these
classes with a simple interface, instead of diving into the details of underlying data
structures. The basic data objects are index sets, vectors and matrices, on top of
which stand different solver classes for linear and non-linear system of equations, and
for integration of differential equations.

For the solution of linear systems, PETSc provides a number of iterative solvers
such as GMRES, together with a variety of preconditioners including Jacobi (diago-
nal) preconditioning, and block Jacobi/additive Schwarz (with a choice of incomplete
factorizations for the blocks). Complete factorizations (LU and Cholesky) are also
included in the category of preconditioners. Furthermore, it is possible to use precon-
ditioners available in third-party packages that are seamlessly integrated into PETSc.
For instance, we are able to perform parallel direct linear solves with MUMPS [1].

SLEPc provides five solver classes. The EPS class covers the linear eigenvalue
problem, while PEP contains the new solvers for polynomial eigenproblems, to be
detailed in the rest of the paper. The other solver classes (for the SVD, matrix
functions, and general nonlinear eigenproblems) will not be discussed here. Apart
from the main solver classes, there are 5 auxiliary classes, the most relevant for our
discussion being ST for specifying spectral transformations.

The EPS package provides a collection of linear eigensolvers, most of which are
based on subspace projections. In particular, it includes a parallel implementation of
Krylov-Schur [26]. In addition, other methods such as generalized Davidson, Jacobi-
Davidson, conjugate gradients, and contour integral, are also included.

Every EPS object has an ST object internally, that is used to perform the spectral
transformation discussed in §2.3. Both classes are designed in such a way that eigen-
solvers do not worry about which spectral transformation is being used. This confers
the flexibility to combine any solver with any spectral transformation, even at run
time. For instance, for a generalized problem Ax = λBx, the command line

$ ./example -eps_smallest_real -st_type shift
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will search for the smallest eigenvalues of B−1Ax = λx, while

$ ./example -eps_target_magnitude -eps_target 0 -st_type sinvert

will obtain the dominant eigenvalues θ of (A−σB)−1Bx = θx (for σ = 0 in this case),
then backtransform them as λ = θ−1 + σ.

In many cases, as illustrated above, ST needs to handle matrix inverses. This is
done implicitly via linear solves with the aid of PETSc’s KSP solvers together with
the companion class PC for preconditioners. These objects included inside ST are also
customizable, allowing, e.g., the specification of an inexact shift-and-invert strategy:

$ ./example -eps_target 0 -st_type sinvert -eps_tol 1e-7

-st_ksp_type gmres -st_ksp_rtol 1e-9 -st_pc_type ilu

We finish this section with a short description of how SLEPc eigensolvers are par-
allelized. PETSc and SLEPc are oriented to large-scale computations on distributed
memory parallel computers with a message-passing paradigm (MPI). Sparse matrices
in PETSc are stored by blocks of rows, and vectors also follow the same data distri-
bution, so every processor owns a contiguous chunk of the vector elements. So for
instance the Arnoldi relation (2.5) is stored in this way, with the exception of the
small, dense matrix Hk that is stored “sequentially” (meaning that all processes own
a copy of the full matrix). The main operations involved in the computation of the
Arnoldi relation are:

• Sparse matrix-vector product, that is implemented as usual in mesh-based
computations, with nearest neighbour communication among processes.

• Vector operations requiring global communication, such as dot products and
norms. In SLEPc, orthogonalization has been optimized to avoid global com-
munication as much as possible [15].

• Other vector operations such as addition, that are trivially parallelizable.
• Computations on the small projected matrix, Hk. These are performed re-
dundantly by all processes, since data is stored in all of them. Unless the size
of the projected problem is large, this will not hinder parallel performance.

3. Polynomial eigensolver in SLEPc. In this section, we describe the most
relevant aspects concerning the polynomial eigenproblem solvers developed in SLEPc.
We will denote this solver class as PEP, as already mentioned in §2.5. Several methods
currently available in PEP address the polynomial problem via linearization and use
the variants of the Arnoldi iteration described in §2.2 to solve the linear eigenproblem.
The main difference between those variants lie in the way Arnoldi vectors are stored
and recovered, that is done by each variant as follows:

Plain Arnoldi stores full Arnoldi vectors of dimension d times the dimension of
the polynomial eigenproblem, n. For quadratic eigenproblems there is the
possibility of explicitly building the matrices for the linearized eigenproblem,
and then solve the linear problem by any of the linear solvers available in
SLEPc, such as Jacobi-Davidson (see §2.5). In parallel, we build the explicit
matrices by interlacing the locally stored submatrices of the parallel matrices
that compose it, with the aim of avoiding poor load balancing in the one-
dimensional partitioning of the large matrix. For instance, in the case of a
quadratic polynomial P (λ) = K + λC + λ2M with two processes, the first
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matrix of the linearization, A =
[

0 I
−K −C

]

, is stored as

(3.1) A =









0 I 0 0
−K11 −C11 −K12 −C12

0 0 0 I
−K21 −C21 −K22 −C22









,

where [K11,K12] corresponds to the part of K =
[

K11 K12

K21 K22

]

locally stored at
the first process, and similarly for C.
This option of building explicit matrices for the linearization is not available
for degrees larger than 2 because of the increase in computational cost and
memory requirements. Instead, the computations with such matrices are
done efficiently by implicitly working with the matrices of the polynomial
eigenproblem, as discussed in §3.1.

Q-Arnoldi stores only the first block (length n) of each Arnoldi vector generated, and
works rebuilding the remaining blocks when necessary. Our implementation
corresponds to the method described in [24], so it is available for quadratic
eigenproblems defined in terms of the monomial basis. We have not extended
this method for degree larger than 2 or for non-monomial bases.

TOAR reconstructs Arnoldi vectors when required, from an orthonormal basis in
C

n that grows as the Krylov subspace is expanded. The implementation we
have made is based on the description given in [22] for degree 2, and the
generalization to arbitrary degree for polynomial eigenproblems defined in
terms of Chebyshev basis described in [21].

These methods can be used together with the shift or sinvert spectral trans-
formations, as described in §2.5. For a monomial basis, the transformation on the
polynomial eigenproblem is supported for all three solvers. In this case, the ini-
tial problem is transformed according to (2.17), and the resulting problem is then
linearized. An alternative is to do the transformation on the linearization, which is
supported for any polynomial basis but only in the plain Arnoldi and TOAR methods.

3.1. Plain Arnoldi. The Q-Arnoldi and TOAR methods that try to reduce
the memory requirements introduced by the linearization may have a disadvantage in
terms of numerical error compared to plain Arnoldi. Errors present in the explicitly
stored part of the basis are propagated and possibly amplified when reconstructing
full Arnoldi vectors during the algorithm. For instance, in (2.8) a large value of ‖Hk‖
results in numerical instability [24]. The plain Arnoldi method does not suffer from
this problem since it computes and stores full Arnoldi vectors.

The plain Arnoldi solver in SLEPc behaves like the Krylov-Schur linear solver
except that the PEP implementation avoids the explicit formation of the linearization
matrices (optional for degree 2) and operates with them in an implicit form, using the
coefficient matrices of the initial problem, Ai. This computation is intimately related
to the linearization used as well as the spectral transformation possibly applied. For
instance, equation (2.7) shows how to compute the product of B−1A times a vector,
for the problem (2.3) when no spectral transformation is being used. We next discuss
how to operate implicitly with the matrices of the more general linearization (2.20),
associated with a polynomial problem (2.18), when either the shift or shift-and-invert
spectral transformation is being done on the linearization.

In the case of the shift transformation, it is immediate to derive expressions to
compute the matrix-vector product w = B−1(A − σB)v, for A and B defined as in
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(2.20) and v ∈ C
dn, referencing the matrices {Aj}

d−1
j=0 only,

(3.2)



























w0 = (β0 − σ)v0 + α0v
1,

wj = γjv
j−1 + (βj − σ)vj + αjv

j+1, j = 1, . . . , d− 2,

wd−1 = −αd−1A
−1
d

(

d−1
∑

j=0

Ajv
j
)

+ γd−1v
d−2 + (βd−1 − σ)vd−1.

To deduce similar expressions when using the shift-and-invert transformation, we
consider the block LU decomposition for (A− σB) given in (2.22). To compute

(3.3) w = (A− σB)−1Bv = ΠU−1
σ L−1

σ Bv,

first we consider t = L−1
σ Bv, which is computed using the recurrence resulting from

block forward elimination of Lσt = Bv,

(3.4)























t0 = α−1
0 v0,

t1 = α−1
1 (v1 + (σ − β1)t

0),

tj = α−1
j (vj + (σ − βj)t

j−1 − γjt
j−2), j = 2, . . . , d− 2,

td−1 = −P (σ)−1(A1t
0 + · · ·+Ad−2t

d−3 +Ad−1t
d−2 +Adt̂

d−1),

where t̂d−1 = α−1
d−1(−γd−1t

d−3 +(σ− βd−1)t
d−2 + vd−1). Then, considering the block

backward substitution of UσΠ
−1w = t, we have

(3.5)











w0 = td−1

wj =
φj(σ)

φ0(σ)
td−1 + tj−1, j = 1, . . . , d− 1,

where vectors {tj}d−1
j=0 are computed using the recurrence (3.4).

3.2. TOAR. When computing an Arnoldi relation for the matrix S := B−1A
from a linearization (2.20), we obtain equations similar to (2.8) that relate different
blocks, {V i

k}
d−1
i=0 , of the matrix representing Arnoldi vectors. These equations are

(3.6)











V 1
k =α−1

0 (−β0V
0
k + V 0

k Hk + hk+1,kv
0
k+1e

∗
k)

V i
k =α−1

i−1(−βi−1V
i−1
k − γi−1V

i−2
k +

+ V i−1
k Hk + hk+1,kv

i−1
k+1e

∗
k), i = 2, . . . , d− 1.

Relations (3.6) imply that the equality (2.11) holds, and a TOAR approach can be
used in this case to represent Arnoldi vectors in the form (2.12). This is also the case
when a spectral transformation such as shift or shift-and-invert is used. In this latter
case, for example, we can see this by equating each block row of the equation

(3.7) BVk = (A− σB)VkHk + hk+1,k(A− σB)vk+1e
∗
k,

that results from using Arnoldi on S = (A− σB)−1B.
With the TOAR method, Arnoldi vectors are represented as

(3.8) vk =







Uk+d

. . .

Uk+d













g0k
...

gd−1
k






,
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Uk+d having orthonormal columns, and the generated Arnoldi relation takes the form

(3.9) SÛk+dGk = Ûk+dGkHk + hk+1,kÛk+dgk+1e
∗
k,

where Ûk+d := Id ⊗ Uk+d.

Algorithm 1 TOAR for linearized polynomial eigenproblems

Input: Matrices {Ai}
d
i=0 ⊂ C

n×n defining the matrix polynomial, initial vectors
{wi}d−1

i=0 ⊂ C
n, number of iterations k ∈ N

Output: Hk ∈ C
k×k, hk+1,k ∈ R, Uk+d ∈ C

n×(k+d), {Gi
k}

d
i=0 ⊂ C

(k+d)×k,
{gik+1}

d−1
i=0 ⊂ C

k+d satisfying (3.9) for Gk and gk+1 split in the form (2.1)
1: G0 ← [ ], H0 ← [ ]
2: /* Orthogonalize initial vectors {wi}d−1

i=0 */
[Q,R] = qr(

[

w0 · · · wd−1
]

) /* reduced QR factorization */
Ud ← Q

3: /* Normalize first Arnoldi vector */
g1 ← vecR/‖ vecR ‖

4: for j = 1, . . . , k do

5: /* Expand Krylov subspace */
[uj+d, g] = expand({Ai}

d
i=0, Uj−1+d, gj)

Uj+d ←
[

Uj−1+d uj+d

]

6: /* Gram-Schmidt orthogonalization */

Gi
j ←

[

Gi
j−1 gi

j

0 0

]

, i = 0, . . . , d− 1

hj = G∗
jg, ĝ ← g −Gjhj

7: /* Normalize new Arnoldi vector */
hj+1,j = ‖ĝ‖, gj+1 ← ĝ/hj+1,j

8: /* Update Hessenberg matrix */
Hj ←

[

Hj−1

0
hj

]

9: end for

The main steps of the TOAR implementation in SLEPc are summarized in Al-
gorithm 1. In general, they are a direct extension, for degree larger than 2, of those
described in §2.2 for the quadratic TOAR.

For the sake of simplicity, in step 2 we suppose that a basis of d vectors (columns
of Ud) is built, and then it is extended with one vector per iteration (step 5). The
actual SLEPc implementation, however, takes into account that the matrixQ resulting
from the initial QR factorization could have less than d columns, and that the vector
generated in the jth iteration (step 5) could belong to the range of Uj−1+d, resulting
in the number of columns of this matrix not being increased.

To extend the Krylov subspace, by computing w = Svj , the TOAR method
obtains uj+d and g such that w = (Id ⊗ [ Uj−1+d uj+d ])g. In step 5, this computation
is indicated with the function [uj+d, g] = expand({Ai}

d
i=0, Uj−1+d, gj), where the last

Arnoldi vector computed is represented by the input parameters, vj = (Id⊗Uj−1+d)gj .
Once uj+d and g have been computed, the orthogonalization and normalization of w
is made implicitly by orthogonalizing and normalizing g in the same way as discussed
in §2.2 (steps 6 and 7 of Algorithm 1).

As in plain Arnoldi, the computation of the expansion vector, w, depends on the
linearization and spectral transformation used on the linearized problem. Let us see
now how to carry out this operation (step 5), when either the shift or shift-and-invert
spectral transformation is used.
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When the shift transformation is being used, from (3.2) we have that wi belongs
to the range of Uj−1+d, for i = 0, . . . , d−2, and we define

{

g0 := (β0 − σ)g0j + α0g
1
j ,

gi := γig
i−1
j + (βi − σ)gij + αig

i+1
j , i = 1, . . . , d− 2.

On the other hand, vector wd−1 is computed as in (3.2), replacing each vij by Uj−1+dg
i
j ,

i = 0, . . . , d−1. This vector is used to extend the orthonormal set Uj−1+d, so we define

(3.10) uj+d :=
û

‖û‖2
, and gd−1 :=

[

ĝ
‖û‖2

]

,

being ĝ := U∗
j−1+dw

d−1 and û := wd−1 − Uj−1+dĝ.
For the shift-and-invert spectral transformation, using recurrences (3.4) and (3.5),

we first define coefficients

(3.11)











g̃0 := α−1
0 g0j ,

g̃1 := α−1
1 (g1j + (σ − β1)g̃

0),

g̃i := α−1
i (gij + (σ − βi)g̃

i−1 − γig̃
i−2), i = 2, . . . , d− 2,

that are used to compute the vector td−1 as in (3.4), replacing each ti by Uj−1+dg̃
i

for i = 0, . . . , d−2. Secondly, this vector is used to extend Uj−1+d, defining g0 :=
[

ĝ

‖û‖2

]

and uj+d := û
‖û‖2

, being ĝ := U∗
j−1+dt

d−1 and û := td−1 − Uj−1+dĝ. Finally,

coefficients gi are defined in the form gi := φi(σ)
φ0(σ)

g0 + g̃i−1, i = 1, . . . , d− 1.

3.3. Restarting the Krylov method. The default SLEPc linear eigensolver
and the methods described in this work are based on the Krylov-Schur method [26],
which is a restarted variant of Arnoldi. This variant uses Krylov relations,

(3.12) SVk = VkC + vk+1b
∗,

that are more general than Arnoldi relations (2.5), since matrix C does not necessarily
have Hessenberg form and vector b can be different from ek. Columns of Vk are
Krylov vectors, not Arnoldi vectors, and they also generate the Krylov subspace
Kk. One advantage of using Krylov relations is that they can be truncated to other
relations with smaller dimension, maintaining the most desirable directions in the
corresponding Krylov subspace while unwanted directions are filtered out.

The restart procedure uses the fact that, provided C has the form C =
[

C1 ⋆
0 C2

]

,
with C1 ∈ C

p×p and C2 ∈ C
q×q, relation (3.12) can be truncated to get another

Krylov relation of dimension p, that can later be extended again to order k. The
goal is to maintain a bounded subspace dimension while keeping the most valuable
directions. This restart can be accomplished as follows:

1. Compute the (real) Schur decomposition of C, CQk = QkT , sorted so that
the p most wanted Ritz values remain in the leading diagonal block of T .

2. Write Qk = [Qp, Q
′] and truncate the Krylov relation to order p,

(3.13) SṼp = ṼpT1 + vk+1b̃
∗,

where T1 = Q∗
pCQp, Ṽp = VkQp and b̃ = Q∗

pb.
3. Restart the Arnoldi iteration, expanding the Krylov subspace by computing

w = Svk+1 and orthogonalizing it against the columns of the transformed Ṽp.
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For Q-Arnoldi, the PEP solver also follows a Krylov-Schur restart scheme. This
is possible because after truncating the Krylov relation (3.12), producing (3.13), a
relation analog to (2.8) still holds for the updated matrix of Krylov vectors, Ṽp.

In the case of the TOAR variant, updating a Krylov relation of the type (3.9)
by multiplying on the right by a unitary matrix Qk, produces a new one in which
the updated matrix of Krylov vectors takes the form Vp = (Id ⊗ Uk+d)GkQp. This
means that only matrix Gk is updated and truncated, and the TOAR basis matrix
Uk+d remains unchanged, so the number of columns in Uk+d and rows in Gp are
still k + d, hence, something else is needed for reducing the TOAR basis size as well.
For this, we follow the procedure described in [21] that uses the fact that matrix
Ωp+1 :=

[

G0
p, g

0
k+1, . . . , G

d−1
p , gd−1

k+1

]

has the same rank as
[

V 0
p , v

0
k+1, . . . , V

d−1
p , vd−1

k+1

]

,
that is, p+d, to ensure that the compact SVD of Ωp+1,

(3.14) Ωp+1 = Ǔ Σ̌V̌ ∗,

has a matrix of singular values, Σ̌, of dimension less than or equal to p+d. Although
in our implementation we consider that this dimension can be less than p+d, for
simplicity, now we suppose that it is p+d, and that Ǔ and V̌ have dimensions (k+
d)× (p+d) and d(p+1)× (p+d), respectively.

After truncating, Krylov vectors satisfy
[

V i
p vik+1

]

= Uk+d

[

Gi
p gik+1

]

, i =
0, . . . , d−1, but each Gi

p has (k+d) rows and Uk+d (k+d) columns. Then, using

decomposition (3.14), splitting V̌ ∗ =
[

V̌ 0, . . . , V̌ d−1
]

(with V̌ i ∈ C
(p+d)×(p+1)), and

updating matrices Up+d ← Uk+dǓ and Gi
p+1 ← Σ̌V̌ i, i = 0, . . . , d−1, we obtain that

Krylov vectors can be expressed in the form (2.12), with matrices Gi
p+1 and Up+d

having p+d rows and columns, respectively.

3.4. Locking converged eigenpairs. The Krylov-Schur restart [26] imple-
mented in SLEPc’s linear eigensolvers considers the possibility of deflating converged
invariant subspaces, thus facilitating the convergence of eigenvectors outside of them.
In addition, this deflation procedure is carried out in such a way that Krylov vectors
associated with converged subspaces are locked, and are no longer modified, which
results in reduced computational cost.

After truncating an Arnoldi relation following the Krylov-Schur scheme, we obtain
a Krylov relation (3.13) where T1 is an upper (block) triangular matrix. The columns
of Ṽq, the leading q columns of Ṽp in (3.13), span an invariant subspace of S when

the first q entries of vector b̃ are zero. On the other hand, when Ṽq is an approximate

invariant subspace of S, the first q entries of b̃ are nonzero, but very small, and could
be forced to be zero. In this case, when relation (3.13) is extended to another one of
order k, the projected matrix Hk is a reduced upper Hessenberg matrix of the form

(3.15) Hk =









T11

0
T12

T22

M1

M2

0
0

b∗2
0

H









,

where b2 represents the (p−q) last positions of b̃, the matrix T1 is written as
[

T11 T12

0 T22

]

,
T11 having dimension q×q, and H is an upper Hessenberg matrix. Hence, to reduce

Hk to (block) triangular form, we can use a unitary matrix of the form Q̃ =
[

Iq 0
0 Q

]

,

Q also being a unitary matrix. In this way, the dimension of the projected problem
to be solved is reduced by q, but also the number of Arnoldi vectors to be updated is
reduced, since the first q vectors remain unchanged when using Q̃ to update Vk.
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In the case of the TOAR method, when updating Krylov vectors represented in
the TOAR way, Vk = (Id ⊗ Uk+d)Gk, making zeros in the first positions of b has the
same effect, as explained above, of reducing the dimension of the projected problem
and also leaving the leading columns of matrix Gk untouched, but in general, when
restarting at the next iteration (see §3.3), the full set of TOAR vectors Uk+d will
be updated. Thus, in order to achieve effective computational savings in the locking
variant of TOAR, the restarting procedure described in §3.3 has been modified so that
the corresponding vectors in the TOAR basis are also locked when deflating. Next we
give an explanation of this new restarting procedure included in the TOAR solver.

Proposition 3.1. Consider a Krylov relation of order k, generated using the
TOAR method on the linearization (2.20),

(3.16) SVk = VkTk + vk+1b
∗,

with Vk = (Id ⊗ Uk+d)Gk and Tk (block) upper triangular, with structure

(3.17) Tk =
q

p−q

k−p

q p−q k−p




T11 T12 T13

T22 T23

T33



.

Also, suppose that the first q entries of b are zero. Then there exist matrices Ũp+d ∈

C
n×(p+d) and G̃p+1 ∈ C

d(p+d)×(p+1) with G̃i
p+1 =

[

G̃i
11 G̃i

12

0 G̃i
22

]

and G̃i
11 ∈ C

q×q, for

i = 0, . . . , d−1, such that
[

Vp vk+1

]

= (Id ⊗ Ũp+d)G̃p+1.

Proof. Since the first q entries of b are zero, defining Tq = T11 and Gq ∈ C
d(k+d)×q

as the first q columns of Gk, relation

(3.18) S(Id ⊗ Uk+d)Gq = (Id ⊗ Uk+d)GqTq,

holds. Taking into account the block structure of S, equation (3.18) gives relations
between the block rows of Vq, V

i
q = Uk+dG

i
q, revealing that the rank of [V 0

q , . . . , V
d−1
q ],

and hence of Ω1 :=
[

G0
q, . . . , G

d−1
q

]

, is q. Thus, working as in the restart procedure

described in §3.3, using the compact SVD of Ω1 = Ǔ1Σ̌1V̌
∗
1 , and splitting V̌ ∗

1 as
V̌ ∗
1 =

[

V̌ 0
1 , . . . , V̌

d−1
1

]

, we have

(3.19) V i
q = Uk+dG

i
q = Uk+dǓ1Σ̌1V̌

i
1 , i = 0, . . . , d− 1.

On the other hand, when truncating (3.16) to another relation of order p, resulting in

(3.20) S(Id ⊗ Uk+d)Gp = (Id ⊗ Uk+d)GpTp + Uk+dgk+1b
∗
p,

where bp represents the first p elements of b, we have that
[

G0
p, g

0
k+1, . . . , G

d−1
p , gd−1

k+1

]

has rank p+d. Also, if we split Gp = [Gq, G2] and let Ω2 :=
[

G0
2, g

0
k+1, . . . , G

d−1
2 , gd−1

k+1

]

and Ω̃2 := (Ik+d−Ǔ1Ǔ
∗
1 )Ω2, it follows that Ω̃2 will be of rank (at most) (p+d−q). Thus,

considering the compact SVD of Ω̃2 = Ǔ2Σ̌2V̌
∗
2 , we have Ω2 = Ǔ2Σ̌2V̌

∗
2 + Ǔ1Ǔ

∗
1Ω2,

and splitting V̌ ∗
2 as V̌ ∗

2 =
[

V̌ 0
2 , . . . , V̌

d−1
2

]

(with V̌ i
2 ∈ C

(p+d−q)×(p+1)), we conclude

V i
p = Uk+d

[

Gi
q Gi

2

]

= Uk+d

[

Ǔ1Σ̌1V̌
i
1 Ǔ2Σ̌2V̌

i
2 + Ǔ1Ǔ

∗
1

[

Gi
2 gik+1

]]

=

= Uk+d

[

Ǔ1 Ǔ2

]

Ǧi(3.21)

where Ǧi :=

[

Σ̌1V̌
i
1 Ǔ∗

1

[

Gi
2 gik+1

]

0 Σ̌2V̌
i
2

]

. Finally, the result follows from (3.21), defining

Ũp+d := Uk+d

[

Ǔ1 Ǔ2

]

and G̃i
p+1 := Ǧi, for i = 0, . . . , d−1.
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Notes apropos of Proposition 3.1.
(i) For simplicity, we have supposed that a TOAR basis of dimension p+d is

required to express the basis [Vp, vk+1], although, as pointed out in §3.3, the actual
implementation takes into account that it could be smaller.

(ii) In finite precision arithmetic, it could happen that the computed basis
[

Ǔ1 Ǔ2

]

is not orthogonal, so the restart implementation includes another step to

compute the QR factorization
[

Ǔ1 Ǔ2

]

= Q̌Ř that is then used to define Ũp+d :=

Uk+dQ̌ and G̃i
p+1 := ŘǦi, for i = 0, . . . , d−1.

Now we suppose that with the conditions of Proposition 3.1, the Krylov relation
(3.16) is truncated and then extended anew to another one of order k, giving a similar
relation with a projected matrix as in (3.15), and Krylov vectors

[

Vk vk+1

]

= (Id ⊗

Uk+d)
[

Gk gk+1

]

in which matrices Gi
k have the form

[

Gi
11 Gi

12

0 Gi
22

]

, with Gi
11 ∈ C

q×q,

for i = 0, . . . , d−1. In this situation, when updating the basis Vk by a truncated

unitary matrix in the form Q̃t =
[

Iq 0
0 Q

]

[

Ip
0

]

=
[

Iq 0
0 Qt

]

, being Qt the first p − q

columns of Q, then the following relation holds for i = 0, . . . , d−1,

(3.22)
[

V i
k Q̃t vk+1

]

= Uk+d

[

Gi
kQ̃t gik+1

]

= Uk+d

[

Gi
11 Gi

12Qt gi1
0 Gi

22Qt gi2

]

,

where we denote gik+1 =
[

gi
1

gi
2

]

, with gi1 ∈ C
q×1, for i = 0, . . . , d−1. Thus, defining

Ω :=
[

G0
22Qt g02 · · · Gd−1

22 Qt gd−1
2

]

, which has rank (p− q+d) at most, and

considering now the SVD of Ω = Ǔ Σ̌V̌ ∗, we have

(3.23)
[

V i
k Q̃t vk+1

]

= Ũp+d

[

Gi
11

[

Gi
12Qt gi1

]

0 Σ̌V̌ i

]

,

where V̌ ∗ =
[

V̌ 0, . . . , V̌ d−1
]

, and Ũp+d := Uk+d

[

Iq 0
0 Ǔ

]

∈ C
n×(p+d).

In this way, when implicit Krylov vectors Vq are locked, also the first q TOAR
vectors, Uq, will remain locked in subsequent restarts, and will never be modified,
thus reducing the number of vectors to be updated as well as the dimension of the
SVD required in the restart procedure.

3.5. Accuracy assessment. For measuring the quality of the computed eigen-
pairs we use the relative backward error, which is defined for an approximate right
eigenpair (x, λ) of P as in (2.18) by

(3.24) ηP (x, λ) = min{ǫ : (P (λ) + ∆P (λ))x = 0, ‖∆Aj‖2 ≤ ǫ‖Aj‖2, j = 0, . . . , d}.

Tisseur [28] gives an explicit expression of the backward error for an approximate
right eigenpair (x, λ) of a polynomial eigenproblem defined in terms of the monomial
basis (1.1). In case of using other polynomial bases we use the expression given by:

Proposition 3.2. The backward error of an approximate right eigenpair (x, λ)
of P defined in (2.18) is given by the formula

(3.25) ηP (x, λ) =
‖P (λ)x‖2

(

∑d
i=0 |φi(λ)|‖Ai‖2

)

‖x‖2
.
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Proof. For ǫ and {Aj}
d
j=0 such that ‖∆Aj‖2 ≤ ǫ‖Aj‖2 and (P (λ) + ∆P (λ))x = 0,

we have that ‖P (λ)x‖2 ≤ ‖∆P (λ)‖2‖x‖2 ≤
(

∑d
i=0 |φi(λ)|‖Ai‖2

)

‖x‖2ǫ, and hence

the right-hand side of (3.25) is less than or equal to the left-hand side.
Given ∆Aj := −

1∑
d
i=0 |φi(λ)|‖Ai‖2

signφj(λ)‖Aj‖2P (λ)x x∗

‖x‖2
, where signµ := µ̄/|µ|

if µ 6= 0 and zero otherwise, the reverse inequality follows since these perturbations
∆Aj satisfy ‖∆Aj‖2 < ηP (x, λ)‖Aj‖2 and (P (λ) + ∆P (λ))x = 0.

To decide about convergence in the PEP solver we use a bound of the backward
error of the computed approximate eigenpairs for the associated linearized eigenprob-
lem. In this case, for problem (2.20) the backward error takes the form

(3.26) ηL(z, λ) =
‖L(λ)z‖2

(‖A‖2 + ‖B‖2|λ|) ‖z‖2
.

When (z, λ) represents a Ritz pair computed from a Krylov relation, the expression
(2.6) gives a cheap way for bounding the value of ηL(z, λ),

(3.27) ηL(z, λ) ≤
‖B‖2‖(B

−1A− I)z‖2
(‖A‖2 + ‖B‖2|λ|) ‖z‖2

≤
‖B‖2|hk+1,ke

∗
ky|

‖A‖2 + ‖B‖2|λ|
.

Note that in (3.27) Ritz vectors are assumed to have unit 2-norm. In the case of using
the shift-and-invert spectral transformation (λ = 1

θ
+ σ) on the linearized problem,

we have the backward error bound

(3.28) ηL(z, λ) ≤
‖A− σB‖2|hk+1,ke

∗
ky|

|θ| (‖A‖2 + ‖B‖2|λ|)
.

We use expressions (3.27) and (3.28), with ∞-norms instead of 2-norms, in the
convergence criterion to determine which of the computed Ritz pairs are good approx-
imate eigenpairs of the linearized eigenproblem, and should be accepted as converged.

In addition, other stopping criteria are also available. These consider the residual
norm associated with a Ritz pair in the Arnoldi relation, using ρ(z, λ) of (2.6). This
value, either in absolute terms or relative to |θ|, is used to decide about the convergence
of the approximate eigenpair of the linearized eigenproblem. The default in PEP solvers
is the one relative to |θ|, a cheap alternative that approximates expressions (3.27) and
(3.28) without needing to compute any matrix norms.

3.6. Scaling. We now briefly describe scaling techniques that have been incor-
porated in our PEP solver. These techniques, proposed by Betcke [7] for the monomial
case (1.1), include a diagonal scaling of the matrices defining the polynomial eigen-
problem, which affects the sensitivity of the eigenvalues, and a parameter scaling that
affects the conditioning of the linearized eigenproblem.
Diagonal scaling. The original polynomial P (λ) is transformed by multiplying it

on both sides by two nonsingular diagonal matrices, D1 and D2,

(3.29) P̃ (λ) := D1P (λ)D2.

The resulting polynomial eigenproblem has the same eigenvalues as P , whereas
eigenvectors x and x̃ of P and P̃ , respectively, are related as x̃ = D−1

2 x. The
diagonal scaling procedure described in [7] aims at minimizing the backward
error associated with a particular eigenvalue λ, so it will depend on the set
of eigenvalues to be computed. Betcke describes an algorithm for efficiently
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computing matrices D1 and D2, being one of the inputs an estimation of the
magnitude of the desired eigenvalues. Due to the extra computational cost
of obtaining D1 and D2, we have left this feature as an option for the case of
polynomial eigenproblems with foreseen conditioning difficulties.

Parameter scaling. This strategy performs a transformation on the eigenvalue pa-
rameter of the polynomial eigenproblem, λ = ρθ, taking ρ := d

√

‖A0‖2/‖Ad‖2.
This transformation yields an equivalent eigenproblem with matrix polyno-
mial P̃ (θ) := P (ρθ) =

∑d
j=0 θ

jÃj , with Ãj := ρjAj , which has the same
eigenvectors as the original polynomial eigenproblem, and related eigenvalues
θ = λ

ρ
. This parameter scaling, described in [7], is intended for polynomial

eigenproblems solved via linearization and aims at minimizing the condition
number of the computed eigenvalues in the linearization (2.3), not on the
polynomial eigenproblem (1.1). It is a generalization for polynomial eigen-
problems of the scaling proposed by Fan, Lin, and Van Dooren for quadratic
eigenproblems in [12]. This latter scheme also includes a global scaling factor,

(3.30) δ2 :=
2

‖A0‖2 + ‖A1‖2
√

‖A0‖2/‖A2‖2
,

to scale all three matrices and produce a transformed quadratic eigenproblem
whose matrix norms are close to one. The SLEPc implementation of this
scaling uses the ∞-norm instead of the 2-norm,

(3.31) ρ := d

√

‖A0‖∞
‖Ad‖∞

,

and includes, also for degree larger than 2, a global scaling factor given by

(3.32) δ :=
d

‖A0‖∞ + ‖ρA1‖∞ + · · ·+ ‖ρd−1Ad−1‖∞
,

that is, the reciprocal of the average of the norms of the scaled coefficient
matrices (except Ad), which coincides for d = 2 with the expression (3.30)
when the 2-norm is used.

The scaling procedures described above are carried out implicitly without modi-
fying the matrices of the original polynomial. The scaling is applied properly on the
vectors that participate in each multiplication made with the matrices to be scaled.

Even though our PEP solver does not compute the scaling parameters in the case
of polynomial eigenproblems defined in a non-monomial basis (2.18), it provides the
possibility of performing the two mentioned scaling procedures if the various scaling
parameters are supplied by the user. For the diagonal scaling, two vectors defining
the right and left diagonal matrices are required, and these matrices pre- and post-
multiply every matrix in (2.18) in the same way as in the monomial case.

For the case of performing a parameter scaling, λ = ρθ, the solver is applied to a
transformed problem P̃ (θ) =

∑d
j=0 φ̃j(θ)Ãj yielding eigenpairs (x, θ) of P̃ from which

we obtain pairs (x, ρθ) that are the solution of the original problem.

Proposition 3.3. The polynomial basis {φ̃j}
d
j=0 satisfying a three-term recur-

rence (2.19) defined by the sets {α̃}dj=0, {β̃}
d
j=0 and {γ̃}dj=0, with α̃j := αj, β̃j :=

βj

ρ
,

and γ̃j :=
γj

ρ2 satisfy φj(λ) = φ̃j(θ)ρ
j ∀j ∈ N.
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Proof. To prove the proposition by induction, we first see that it holds for j = 0, 1,
φ0(λ) = 1 = φ̃0(θ) and

φ1(λ) = α−1
0 (λ− β0) = α−1

0 (ρθ − β0) = α−1
0 (θ −

β0

ρ
)ρ = φ̃1(θ)ρ.

Now we assume that φj(λ) = φ̃j(θ)ρ
j ∀j ≤ k, then

φk+1(λ) = α−1
k ((λ− βk)φk(λ)− γk φk−1(λ)) =

= α−1
k

(

(θ −
βk

ρ
)φ̃k(θ)ρ

k −
γk
ρ
φ̃k−1ρ

k−1
)

ρ =

= α−1
k

(

(θ −
βk

ρ
)φ̃k(θ)−

γk
ρ2

φ̃k−1(θ)
)

ρk+1 = φ̃k+1(θ)ρ
k+1.

Using Proposition 3.3, and defining Ãj = ρjAj , we have

(3.33) P (λ) = P (ρθ) =
d

∑

j=0

φj(ρθ)Aj =
d

∑

j=0

φ̃j(θ)ρ
jAj = P̃ (θ).

To generate the transformed problem, the matrices Aj are scaled in the same way as

in the monomial case. On the other hand, Φ̃j = Φj when using the monomial basis.
Thus, provided the scaling factor is supplied, this scaling procedure generalizes for
(2.18) the one described for (1.1).

3.7. Extraction. We now discuss how to obtain eigenvectors of the polynomial
eigenproblem (2.18) from those of the linearization (2.20). Our polynomial solvers
incorporate several strategies for this, all of them being adaptations of those proposed
in [9] for polynomial eigenproblems defined in the monomial basis (1.1) in terms of
invariant pairs (a generalization of eigenpairs). Here we describe the methods in
terms of eigenpairs, although we have implemented also the invariant pair extension,
see [10].

Due to the block structure of the eigenvector of the linearization, z (2.21), every
block of the computed eigenvector zi is a candidate to be picked up as the corre-
sponding eigenvector of the polynomial problem, provided φi(λ) is not zero. Next we
describe the different extraction strategies available in the PEP solver.

None No specific strategy is performed. The first block of z is taken.
Residual This strategy picks the block zi that minimizes the residual norm ρ(zi, λ).
Norm This strategy (the default) picks the ith block for which |φi(λ)| is maximum.
Structured This strategy computes a linear combination of all the blocks of z, and

looks for x ∈ C
n that minimizes ‖Vd(x, λ)−z‖, where Vd(x, λ) := Φ(λ)⊗x and

Φ(λ) :=
[

1, φ1(λ), . . . , φd−1(λ)
]T

. It can be shown that the wanted vector is

x =
∑d−1

i=0 ziφi(λ)/‖Φ(λ)‖
2
2. In the case of TOAR, this expression simplifies

to x = U
∑d−1

i=0 giφi(λ)/‖Φ(λ)‖
2
2, allowing a considerable cost reduction.

3.8. Newton refinement. We remark that we have also implemented itera-
tive refinement for invariant pairs, as described in [20], particularized for polynomial
eigenproblems as in [9], but extended to the general non-monomial case. Details of
how this is implemented in SLEPc can be found in [10].
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1 #define NMAT 5

2 PEP pep; /* eigensolver context */

3 Mat A[NMAT]; /* coefficient matrices */

4 Vec xr, xi; /* eigenvector, x */

5 PetscScalar kr, ki; /* eigenvalue, k */

6 PetscInt j, nconv;

7 PetscReal error;

8

9 PEPCreate( PETSC_COMM_WORLD, &pep );

10 PEPSetOperators( pep, NMAT, A );

11 PEPSetFromOptions( pep );

12 PEPSolve( pep );

13 PEPGetConverged( pep, &nconv );

14 for (j=0; j<nconv; j++) {

15 PEPGetEigenpair( pep, j, &kr, &ki, xr, xi );

16 PEPComputeError( pep, j, PEP_ERROR_BACKWARD, &error );

17 }

18 PEPDestroy( &pep );

Fig. 1. Example code for basic solution with PEP.

4. User interface. As mentioned in §2.5, the PEP module in SLEPc contains
the polynomial eigensolvers presented in this paper. We now briefly discuss the user
interface and give some examples of usage.

Figure 1 provides basic code for solving a polynomial eigenproblem. The example
shows how the solver context pep is created (and destroyed at the end), passing an
MPI communicator on which parallel operations will be performed. The problem
to be solved is specified by providing the coefficient matrices with PEPSetOperators

(the code for building the matrices is omitted), and optionally indicating the type
of polynomial basis with PEPSetBasis (defaults to the monomial basis). Calling
PEPSetFromOptions allows the user to set up various options through the command
line, as illustrated below. The call to PEPSolve invokes the actual solver. Then,
the solution is retrieved with PEPGetConverged and PEPGetEigenpair. Note that
both the eigenvalue and eigenvector are defined with two variables, so that complex
eigenpairs can be returned when operating in real arithmetic; otherwise, PetscScalar
has been defined as a complex floating point type, so the result is placed in the first
variable and the second one is unused.

The eigensolver to be used can be fixed in the code by calling PEPSetType with
the solver name, e.g., PEPTOAR, or alternatively at run time as for instance:

$ ./example -pep_type toar -pep_nev 6 -pep_ncv 24 -pep_tol 1e-9

The other options indicate that 6 eigenpairs must be computed with 24 column vectors
available for the Krylov basis and a tolerance of 10−9 for the convergence criterion.
All these settings can also be given in code with the corresponding interface function,
see the details in the users guide [25] or the online documentation.

The user can specify if the wanted eigenvalues are those of largest (or small-
est) magnitude, real part, or imaginary part. Alternatively, sought-after eigenvalues
can be defined by the distance to a given target τ or by means of an inclusion (or
exclusion) region in the complex plane. In any case, interior eigenvalues are most
successfully obtained if the solver is used in combination with the shift-and-invert
spectral transformation of §2.3. In PEP, spectral transformations are managed also
via an ST object, similarly to the description in §2.5 for linear eigensolvers. There are
two ways of accomplishing the spectral transformation: (i) by explicitly computing
the transformed matrices (2.17), or (ii) by letting the linearization-aware eigensolver
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handle it implicitly via the block-LU factorization (2.22). The former approach must
be explicitly activated with STSetTransform. A command line example would be:

$ ./ex16 -pep_type toar -pep_target 0 -st_type sinvert

The example computes eigenpairs closest to the origin with TOAR and shift-and-
invert. The -st_transform could be added optionally to switch to ST being in charge
of the transformation. The same example with Q-Arnoldi would be

$ ./ex16 -pep_type qarnoldi -pep_target 0 -st_type sinvert -st_transform

where in this case -st_transform is required. Similarly, the PEPLINEAR solver would
run the plain Arnoldi method on the explicit linearization and solve linear systems
via the recurrences described in §3.1. The following example uses MUMPS for solving
the linear systems associated with the last block, with coefficient matrix P (σ):

$ ./sleeper -pep_type linear -pep_target 0 -st_type sinvert

-st_ksp_type preonly -st_pc_type lu

-st_pc_factor_mat_solver_package mumps -mat_mumps_icntl_14 100

There are other configurable settings related to topics discussed in this paper:

• PEPSetScale activates parameter or diagonal scaling. In the former case, the
user can provide the scaling factor or, alternatively, let SLEPc compute it as
explained in §3.6. In the diagonal scaling, it is necessary to provide a value
λ representing an approximation to the wanted eigenvalues (in modulus).

• The restarting strategy can be tuned with PEPTOARSetRestart, specifying
the percentage of basis vectors to be kept at restart, as well as the locking
strategy (locking or non-locking) with PEPTOARSetLocking.

• PEPSetExtract selects one of the extraction strategies described in §3.7.
• PEPSetRefine can be used to activate the iterative refinement and specify
some settings (details can be found in [10]).

5. Numerical results. The computer system used for the computational exper-
iments in this section is Tirant, an IBM cluster consisting of 512 JS21 blade computing
nodes, each of them with two 64-bit PowerPC 970MP dual core processors running at
2.2 GHz with 4 GB of memory, interconnected with a low latency Myrinet network.
All executions placed a single MPI process per node. The software consists of SLEPc
3.6 and PETSc 3.6, together with MUMPS 5.0 that is used where indicated, all of
them compiled with gcc-4.6.1 and MPICH2.

We have used several test problems to assess the robustness and performance of
our polynomial eigensolvers. Results are summarized in Table 1. The first problems
arise in the computation of the electronic structure of quantum dots via discretization
of the Schrödinger equation [19]. The rest belong to the NLEVP collection [8], all of
them polynomial eigenproblems except the last one (loaded string) which is a rational
eigenproblem that we have used to illustrate how general nonlinear eigenproblems
can be solved via polynomial interpolation. All computations have been carried out
in real arithmetic, except for pdde stability whose coefficient matrices are complex.
Executions use default parameters, that is, locking variants, no scaling, and norm
extraction, except planar waveguide which has been run with parameter scaling and
structured extraction. We also remark that pdde stability required a user-defined
sorting criterion in order to compute eigenvalues satisfying ‖λ‖2 = 1.

The two representative test cases from the quantum dot simulation are: qd cylinder

(cubic polynomial from a cylinder quantum dot discretized with finite differences on
a uniform mesh) and qd pyramid (quintic polynomial from a pyramid quantum dot
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Table 1

Computational results for the TOAR solver with matrix polynomials of various degrees and
matrix dimensions. The executions requested nev eigenvalues selected from different parts of the
spectrum (which), using ncv columns for the Krylov basis. Results include maximum backward
error ηP , number of restarts ( its) and running time (in seconds) with 16 MPI processes. The
tolerance used for the stopping criterion was 10−8.

name deg dim nev which ncv ηP its time

qd cylinder 3 690,718 10 close to 0.1 40 2× 10−10 9 479

qd pyramid 5 ∼12 mill 5 close to 0.4 40 2× 10−11 1 1991

sleeper 2 1 mill 40 close to -0.9 80 5× 10−12 2 82

pdde stability 2 250,000 4 ‖λ‖2 = 1 100 4× 10−11 154 582

planar waveguide 4 50,001 2 smallest real 60 6× 10−7 53 56

acoustic wave 2d 2 999,000 10 close to 0 25 1× 10−9 4 65

butterfly 4 90,000 1 close to 0.1 100 3× 10−9 183 684

loaded string 10 1 mill 7 close to 0 40 6× 10−12 1 44

1 2 4 8 16 32 64 128

102

103

104

T
im

e
[s
]

qd cylinder

TOAR

Plain

2 4 8 16 32 64 128

103

104

qd pyramid

TOAR

Plain

Fig. 2. Execution times (in seconds) with up to 128 MPI processes for the TOAR and plain
Arnoldi (implicit variant) methods with the two test problems arising in the quantum dot simulation:
cylinder (left) and pyramid (right). The parameters of the execution are shown in Table 1.

discretized with finite volumes). These problems are solved with inexact shift-and-
invert, in particular with Bi-CGStab with block Jacobi preconditioning (using ILU
for the local subdomains). Figure 2 shows parallel execution times of both TOAR
and plain Arnoldi for an increasing number of MPI processes. Due to memory re-
quirements, the quintic polynomial problem needs at least 2 processes in TOAR and
4 processes in plain Arnoldi (that uses more memory as discussed later in this sec-
tion). In both cases, parallel performance is quite good, close to linear scaling. When
analyzing in more detail the split times of different steps of the computation, we see
that the percentage of time corresponding to linear system solves in qd pyramid is
between 93% and 96% for TOAR and between 90% and 93% for plain Arnoldi (in
qd cylinder, percentages are even higher). Therefore, in these cases scalability of the
eigencomputation is about the same as that of linear solves. It also explains why the
plots for TOAR and plain Arnoldi match almost exactly, since convergence of both
methods is about the same and the relative cost of orthogonalization is practically
negligible in this case.

Figure 3 illustrates parallel performance of two problems with different behaviour.
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Fig. 3. Execution times (in seconds) with up to 128 MPI processes for TOAR, Q-Arnoldi and
plain Arnoldi (both implicit and explicit variants) with two NLEVP problems: sleeper (left) and
pdde stability (right). The parameters of the execution are shown in Table 1.

Table 2

Memory consumption (in megabytes) per MPI process (when run with 16 processes) accounting
all objects of the program, including Krylov basis vectors, coefficient matrices and factorizations.

qd cylinder qd pyramid sleeper pdde stability loaded string

TOAR 50 1275 100 39 168

Plain Arnoldi 97 2666 184 92 372

The sleeper problem (left plot) uses a parallel direct solver (MUMPS) for the linear
systems. The percentage of time for linear solves in TOAR, including symbolic and
numeric factorization, is about 44 % when using just one process, but it grows up to
as much as 98 % with 128 processes (to stress this point we also plot the time for
linear solves in the TOAR run). We remark that probably these times corresponding
to MUMPS may be improved by appropriately tuning the parameters, but we have
not investigated this. Since linear solves do not scale well in this case, this is hindering
the scalability of the whole computation. Now the amount of work associated with
orthogonalization is more significant, and hence we can appreciate that TOAR is a
bit faster than plain Arnoldi, while Q-Arnoldi is somewhere in between. We have also
included in this plot the case in which plain Arnoldi explicitly builds the matrices of
the linearization, which is slower since linear solves are then tied to the much larger
matrix A − σB of (2.16). In contrast, in the pdde stability problem (right plot) the
coefficient matrix of the linear solves is diagonal and hence this operation is trivial
compared to the high cost associated with the orthogonalization of a large Krylov
basis (ncv=100). Again, TOAR is faster than Q-Arnoldi and plain Arnoldi. As
expected, in this case the explicit matrix variant of plain Arnoldi overlaps exactly
with the non-explicit one because matrix B of (2.16) is also diagonal.

Regarding memory consumption, Table 2 compares memory requirements per
process for TOAR and plain Arnoldi in several tests problems. In all cases, there is a
significant memory savings in TOAR, as expected since the Krylov basis is stored as
a set of vectors of length n (plus other smaller matrices) as opposed to length dn in
plain Arnoldi. The benefit is more evident with larger polynomial degree, but it also
depends on how much memory is used by coefficient matrices and other objects.

Finally, we discuss a test problem that uses a polynomial representation based on
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Fig. 4. Execution times (in seconds) with up to 64 MPI processes for the TOAR and plain
Arnoldi (implicit variant) methods with the loaded string problem from the NLEVP collection, solved
via interpolation with Chebyshev polynomials of degree 10. The parameters of the execution are
shown in Table 1. The dashed line corresponds to the fraction of time in the TOAR run devoted to
linear system solves (including factorization).

non-monomial bases. The loaded string problem from the NLEVP benchmark collec-
tion is a rational eigenvalue problem that can be addressed by means of polynomial
interpolation. In this scenario, it is often recommended to use a polynomial basis
such as Chebyshev, which enables working with a relatively large polynomial degree
without having to worry about possible underflow, provided that the computation is
restricted to a certain interval, see [11, 20]. In the case of loaded string, the interval
of interest is [4, 400], where 6 eigenvalues can be found. We have solved this problem
with a Chebyshev interpolation polynomial of degree 10, as indicated in Table 1. We
remark that the coefficient matrices of the interpolation polynomial are computed au-
tomatically by SLEPc via the NEP object, but we omit these details here and discuss
only the solution of the PEP2. Figure 4 shows parallel computing times for both TOAR
and plain Arnoldi. Since in this case the orthogonalization of basis vectors in plain
Arnoldi requires about 10 times more operations than in TOAR, the performance
gain in the latter is evident (also in terms of memory savings, see Table 2). In Figure
4 we also include the time invested in the solution of linear systems with MUMPS
(including factorization), that is between 40% and 97% of total computation time in
TOAR, and between 26% and 93% in plain Arnoldi.

6. Conclusions. SLEPc provides a collection of parallel solvers for the poly-
nomial eigenvalue problem. In this paper we have focused on solvers based on the
Arnoldi iteration operating on the linearized eigenproblem, either built explicitly or
handled implicitly in various ways. Our flagship eigensolver TOAR is equipped with
many features, including support for spectral transformation, in different polynomial
bases, restarting with and without locking, scaling and extraction. We have also de-
scribed implementations of plain Arnoldi and Q-Arnoldi, emphasizing the benefits of
the TOAR solver in terms of computational and storage efficiency.

The TOAR method was proposed by other authors, initially for quadratic eigen-
problems and then extended to higher degree polynomials. In terms of the method,
we have just made minor additions to support more general polynomial bases (not
only Chebyshev as in [21]), including shift-and-invert, scaling and extraction for this

2While eigenpairs computed by PEP have ηP (x, λ) < 2 × 10−12, the relative error in NEP,
‖T (λ)x‖/|λ|, is 3× 10−5, so more accuracy would require a subsequent iterative refinement phase.
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case. Another contribution in terms of algorithms is how to perform effective locking
during the restart of TOAR.

From the user’s perspective, the solvers are very easy to use, and default param-
eters are generally good enough for solving many different kinds of problems. For
difficult problems, using the command-line interface is very convenient for parameter
tuning. In any case, it is always recommended that the user is familiar with the dif-
ferent steps of the computations that are taking place under the hood, and this paper
aims at providing the necessary details.

In terms of parallel performance, we tried to demonstrate with the experiments in
§5 that the scalability of our solvers is very good provided that the linear solver and
preconditioner scales well. PETSc provides many different scalable preconditioners,
including algebraic multigrid and domain decomposition. The good parallel perfor-
mance, together with the numerical robustness of our eigensolvers, opens the door to
cope with very large-scale, computationally challenging problems that could not be
tackled before.

When designing our solvers, we have chosen the first companion form for the
linearization, due to its interesting properties. However, other alternatives are also
possible, and as a future work we plan to extend the set of linearizations available
in SLEPc in order to broaden the possibilities of preserving spectral properties and
having a better conditioning for different polynomial eigenproblems. Also, we re-
mark that SLEPc’s PEP class is not restricted to Krylov solvers. In particular, the
development of a Jacobi-Davidson solver for polynomial eigenproblems is under way.

Acknowledgements. The authors are grateful to Daniel Kressner for insightful
comments and suggestions. The computational experiments of §5 were carried out on
the supercomputer Tirant at Universitat de València. The matrices from the quantum
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