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ABSTRACT 

 Poly(3-hydroxybutyrate) is a biodegradable aliphatic polyester obtained through 

bacterial fermentation that has gained attention in the last few years; nevertheless, its industrial 

applications are restricted because of some drawbacks related to its high stiffness and fragility 

which is associated to its high crystallinity. In this work, poly(3-hydroxybutyrate) (P3HB) was 

melt blended with poly(ε-caprolactone) (PCL) at a constant weight ratio of 75/25 (P3HB/PCL) 

by reactive extrusion with different contents of dicumyl peroxide (DCP) in the 0 – 1 wt% range. 

The effects of the DCP load on mechanical, thermal and morphology of the P3HB/PCL blend 

were studied. Results showed a positive increase in the elongation at break and the impact-

absorbed energy of 91% and 231% respectively with regard the uncompatibilized P3HB/PCL 

blend by the addition of 1 wt% DCP, being this a clear evidenced of the improved compatibility 

between these polymers. Moreover, morphology of DCP-compatibilized P3HB/PCL blend 

obtained by field emission electron microscopy (FESEM) and atomic force microscopy (AFM) 

showed a remarkable decrease in the particle size of poly(ε-caprolactone)-rich domains 

randomly dispersed in the poly(3-hydroxybutyrate). In addition, both FESEM and AFM also 

revealed improved interfacial adhesion between P3HB- and PCL-rich phases with a noticeable 

decrease in the gap between them. Addition of 1 wt% DCP also contributes to lowering the 

degree of crystallinity of PHB by 14% in the blend and other thermal properties are not highly 

affected by the reactive extrusion with DCP.  

 

Keywords: Poly(3-hydroxybutyrate); poly(ε-caprolactone); dicumyl peroxide; reactive 

compatibilization; blends. 

 

  



INTRODUCTION 

 During the last years, a global marked driven by consumerism along with the relatively 

low price of plastic materials has led to a remarkable growth in the plastic production and 

consumption. Only in Europe the plastic production in 2014 was estimated to 59 million tons 

whilst the global plastic production was of about 299 million tons. The packaging industry is the 

biggest consumer which accounts for 39.5% with a wide variety of products characterized by a 

very short life cycle [1]. One of the main problems related to the massive use of plastics is the 

huge amounts of wastes that are generated after the end of their life cycled as only a small 

amount is recycled, upgraded or incinerated for energy production. The most common situation 

is that huge amounts of plastic wastes are continuously deposited into controlled landfills with a 

marked negative effect on environment. It has been estimated that in 2014 the total amount of 

plastic wastes poured into European’s landfills accounts to 8 million tons [1]. The use of 

biodegradable plastics is an environmentally friendly solution to the abovementioned problems. 

There is a wide variety of biodegradable plastics that are compostable in certain conditions. 

Among this, it is possible to find biodegradable polymers from both petroleum and renewable 

resources. Nevertheless, most of them are currently expensive and this restricts their use at 

industrial scale. On the other hand, biodegradable plastics have to face an important technical 

challenge as currently, most of them offer inferior properties to conventional commodity and 

engineering plastics from petroleum origin [2]. During the last years, a remarkable increase in 

the research and development of industrial formulations based on biodegradable plastics has 

been detected with the main aim of obtaining a set of environmentally friendly materials that are 

capable to compete with conventional petroleum-derived plastics in terms of technical features 

and costs [3]. 

 Poly(3-hydroxybutyrate) (P3HB) is one of the most promising biopolymers. It is an 

aliphatic polyester that is synthesized through bacterial fermentation and it is characterized by 

its biocompatibility and biodegradability [4]. Despite these interesting features, P3HB polymer 

chains are highly stereoregular and this gives highly crystalline polymers (with a degree of 

crystallinity over 55%). On the other hand, as its glass transition temperature (Tg) is located 
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below the room temperature (typically around 0-2 ºC), P3HB undergoes physical aging related 

to secondary crystallization [5, 6]. For this reason, P3HB is a highly fragile polymer with very 

low plastic deformation [7]. Another important drawback is its relatively narrow processing 

window in terms of temperature as it degradation occurs close to its melting [8]. All these 

technical drawbacks, together with its high price compared to conventional commodity plastics, 

restrict its use at industrial scale [9].  

 There have been many attempts to overcome the intrinsic fragility of P3HB polymers by 

different approaches: internal copolymerization with other flexible monomers [10-12], external 

plasticization [13-15] or melt blending with different polymers and/or copolymers [16-19]. 

External mixing of P3HB with several polymers is an effective method, from both technical and 

economical points of view, to overcome all the abovementioned drawbacks. In a previous work 

[20], P3HB was melt blended with poly(ε-caprolactone) (PCL) and as per the results, 

P3HB/PCL blends with 25 wt% PCL led to materials with improved toughness with a slight 

increase in both elongation at break and impact-absorbed energy by 38% and 30% respectively. 

Nevertheless, P3HB and PCL polymers are immiscible (or very low miscible) polymers and 

phase separation occurs when melt-blended leading to a typical droplet structure with a PH3B-

rich matrix phase in which PCL-rich domains are embedded [21]. For this reason, 

compatibilization of P3HB/PCL blends is a critical issue to be addressed as the overall 

mechanical properties of a multiphase system are directly related to the ability of its components 

to transfer stresses [22]. One interesting method to improve compatibility is by reactive 

extrusion during compounding; this method is technologically preferable to addition of tailored 

copolymers [23]. Reactive extrusion is a simple and cost effective technique for polymer 

processing. In this, the extruder plays the role of a continuous chemical reactor in which, two 

different operations occur simultaneously. Melt extrusion and chemical reaction (polymer 

synthesis and/or modification or in situ compatibilization of polymer blends) are carried out in 

just one stage [24, 25]. Reactive extrusion offers some advantages such as it is not necessary to 

use solvents, allows a full control of the residence times, it is an online process and the technical 

equipment and accessories are relatively cheap [25, 26]. Dicumyl peroxide (DCP) is a free 
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radical initiator widely used in polymerization processes, natural rubber vulcanization and as 

crosslinker [23]. It has been used to promote compatibilization of immiscible polymers in 

different binary blends. W. Dong et al. [27] observed an increase in tensile strength of 5 MPa 

and a remarkable improvement of the energy absorption of about 30% by the only addition of 

0.5 wt% DCP to binary blends of PHB and PDLLA (70/30). They also reported a noticeable 

decrease in the PDLLA domain size dispersed in the PHB matrix which is representative for 

somewhat partial reticulation between these two polymers. P. Ma et al. [21] also observed an 

increase in the elongation at break and the impact-absorbed energy after addition of 0.5 wt% 

DCP in a PHB/PBS (70/30) blend with regard to the same uncompatibilized system. In fact, the 

elongation at break changed from 2% to 11% and the impact-absorbed energy increased from 9 

kJ m-2 to 54 kJ m-2. 

 The present work is focused on the evaluation of the effects of DCP on final 

performance of binary blends from poly(3-hydroxybutyrate) (P3HB) and poly(ε-caprolactone) 

(PCL) processed by in situ reactive compatibilization extrusion. The effects of different DCP 

loads (0, 0.25, 0.50, 0.75 and 1 wt%) is evaluated in terms of mechanical and thermal properties 

of the P3HB/PCL (75/25) blend as well as its morphology.  

 

EXPERIMENTAL 

Materials 

 Poly(3-hydroxybutyrate) P3HB pellets (P226, Mw = 426,000 Da) were supplied by 

Biomer (Krailling, Germany). Poly(ε-caprolactone) (PCL) (CAPA 6500, Mw = 50,000 Da) was 

provided by Perstorp Holding AB (Malmö, Sweden). Dicumyl peroxide (DCP) (98% purity) 

was supplied from Sigma Aldrich (Madrid, Spain). 

 

Sample processing 

 P3HB and PCL were dried in a vacuum oven at 70 ºC and 40 ºC for 24 h respectively to 

remove residual moisture. P3HB/PCL (75/25) blends with different DCP (0, 0.25, 0.50, 0.75 

and 1 wt%) were melt-blended in a twin-screw co-rotating extruder (L/D= 24, D= 25 mm) from 
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DUPRA S.L. (Castalla, Spain) at a rotating speed of 40 rpm. Under these conditions, the 

residence time for the in situ compatibilization of P3HB/PCL blends by reactive extrusion 

process was about 55 s. The temperature profile of the extrusion barrel was set to 165 ºC 

(hopper), 170 ºC, 175 ºC and 180 ºC (die). Before the in situ compatibilization extrusion 

process, all three components (P3HB, PCL and DCP) were mechanically mixed in a zipper bag 

to obtain homogeneous pre-mixing. After extrusion, the material was cooled to room 

temperature and subsequently, it was pelletized. Standard samples for tensile, flexural and 

impact tests were obtained by injection moulding in a Meteor 270/75 from Mateu & Solé 

(Barcelona, Spain) with a temperature profile of 165 ºC, 165 ºC, 170 ºC, 175 ºC and 180 ºC 

from the hopper to the injection nozzle. Table 1 summarizes the compositions and labelling of 

the different formulations. 

  

Table 1. Composition and labelling of binary poly(3-hydroxybutyrate) (P3HB) and poly(ε-

caprolactone) (PCL) blends in situ compatibilized by reactive extrusion with different amounts 

of dicumyl peroxide (DCP).  

Coding P3HB (wt%) PCL (wt%) DCP (wt%) 

PHB 100 0 0 

PHB/PCL 75 25 0 

PHB/PCL/DCP/25 75 25 0.25 

PHB/PCL/DCP/50 75 25 0.50 

PHB/PCL/DCP/75 75 25 0.75 

PHB/PCL/DCP/100 75 25 1 

 

Characterization techniques 

Gel fraction 

 The gel fraction of the P3HB/PCL blends in situ compatibilized with different DCP 

amount was determined by soxhlet extraction in boiling chloroform for 72 h. The extracted 



samples were dried in an air circulating oven at 40 ºC until a constant weight was obtained. The 

gel fraction was calculated using the following equation (1): 

 

𝑔𝑔𝑔𝑔𝑔𝑔 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑤𝑤𝑓𝑓%) =  𝑚𝑚1
𝑚𝑚0

× 100    Eq.1 

 

Where m0 and m1 represent the weight of the dry samples before and after the extraction 

process, respectively. 

 

Mechanical properties 

 The glass transition temperature of P3HB is located below room temperature, typically 

in the 0-2 ºC range. When P3HB is stored at room temperature, secondary crystallization occurs 

which has a marked effect on physical aging as it has been reported [28]. This process causes a 

remarkable decrease in the elongation at break while the elastic modulus and tensile strength are 

not highly affected. The most important changes take place in the first two weeks and tend to 

stabilize at an aging time of 21 days. For this reason, mechanical properties of the P3HB/PCL 

blend compatibilized with different DCP loads were obtained by standard tensile, flexural an 

impact tests after 22 days of the injection moulding. 

 Tensile and flexural properties were obtained according to ISO 527 and ISO 178 

standards respectively, using a universal test machine Ibertest ELIB 30 from SAE Ibertest 

(Madrid, Spain) at room temperature. Both tests were carried out with a 5 kN load cell and a 

crosshead speed of 5 mm min−1. At least five different specimens were tested and average values 

of the main mechanical parameters were calculated. In addition, the elastic modulus was 

accurately determined using an axial extensometer IB/MFQ-R2 from Ibertest (Madrid, Spain) 

coupled to the universal test machine.  

 A 1 J Charpy impact pendulum from Metrotec SA (San Sebastian, Spain) was used to 

obtain the impact-absorbed energy of the P3HB/PCL blend compatibilized with different DCP 

loads. Standard notched samples (“V” notch type at 45º with a notch radius of 0.25 mm) were 
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tested following the guidelines of the ISO 179 international standard. The values of the impact-

absorbed energy were calculated as the average of the energies obtained for five different 

samples.  

 

Thermal properties 

 Thermal degradation at elevated temperatures of P3HB/PCL blend compatibilized with 

different DCP loads was analysed by thermogravimetry (TGA) in a TGA/SDT 851 

thermobalance from Mettler-Toledo Inc. (Schwerzenbach, Switzerland) Samples with an 

average size ranging from 7 to 9 mg were placed in standard alumina pans and were subjected 

to a heating program from 30 ºC up to 600 ºC at a constant heating rate of 10 ºC min-1 under 

nitrogen atmosphere with a flow rate of 66 mL min-1. The onset degradation temperature (T0) 

was determined as the temperature corresponding to a weight loss of 5% and the maximum 

degradation rate temperature for each stage was obtained as the corresponding peak in the 

derivative TGA curve (DTG). 

 Differential scanning calorimetry (DSC) experiments were carried out in a DSC 

Mettler-Toledo 821 calorimeter from Mettler-Toledo Inc. (Schwerzenbach, Switzerland). The 

heating and cooling rates for the all the scans were set to 10 ºC min-1 under nitrogen atmosphere 

(flow rate 66 mL min-1). 7-10 mg of the corresponding material were placed in standard 40 µL 

aluminium pans. The thermal program consisted on a first heating cycle from -50 ºC to 180 ºC, 

a second stage consisting on an isothermal cycle at 180 ºC for 2 min. Then a cooling process 

down to -50 ºC was applied and, finally, a heating cycle up to 300 ºC was applied. The melting 

temperature (Tm) was obtained from the second heating cycle and the degree of crystallinity of 

P3HB (Xc, P3HB) and PCL (Xc, PCL) was calculated by the following equation: 

 

𝑋𝑋𝑐𝑐 (%) = 100 ×  � ∆𝐻𝐻𝑚𝑚
∆𝐻𝐻0∙𝑤𝑤

�     Eq. 2 

 



Where ∆Hm is the thermodynamic melt enthalpy per gram, ∆H0 is the theoretical melt enthalpy 

associated to the corresponding 100% crystalline polymer (these values were assumed to be 146 

J g-1 [29] for P3HB and 156.8 J g-1 [30] for PCL), and w is the weight fraction of the 

corresponding polymer (P3HB or PCL) in the blend. 

 

Dynamic Mechanical Analysis (DMA) 

 The evolution of the storage modulus (G’) and the damping factor (tan δ) of P3HB/PCL 

blend compatibilized with different DCP loads as a function of temperature was obtained by an 

oscillatory rheometer AR GS from TA Instruments (New Castle, USA) equipped with a special 

clamp system for solid samples. Samples with a size of 40x10x4 mm3 were subjected to a 

temperature program from -100 ºC up to 100 ºC at a constant heating rate of 2 ºC min-1, a 

frequency of 1 Hz and a maximum shear strain (γ) of 0.1%. The glass transition temperature 

(Tg) was assumed as the peak maximum of the damping factor curve. 

 

Field emission scanning electron microscopy (FESEM) 

 Fractured surfaces from impact tests were coated with a thin layer of platinum in a high 

vacuum sputter coater EM MED20 from Leica Microsystem (Milton Keynes, United Kingdom) 

prior to be observed the phase morphology in a field emission scanning electron microscopy 

(FESEM) ZEISS ULTRA55 (Oxford instruments) operated at a voltage of 2 kV. Micrographs 

were registered at 2500x and 10000x magnification.  

 

Atomic Force Microscopy (AFM) and Peak Force QNM 

 Young´s modulus of each individual phase in the P3HB/PCL and P3HB/PCL 

compatibilized with 1 wt% DCP blends was obtained using an atomic force microscope, AFM 

model Nanoscop II from Veeco National Instrument (Santa Barbara, California, USA) working 

in peak force tapping mode by the quantitative nanomechanical measurement, QNM method 

[31, 32]. With this analysis the height map, deformation and adhesion of each area was 

obtained. By using this method it is possible the acquisition of force-penetration curves by 
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indenting the material, at a high speed (2 kHz) under very low penetration depths [33, 34]. By 

using these indentation curves, the software generates different image maps with z-heights, 

elastic modulus (E), adhesion and elastic deformation. The Derjaguin-Muller-Toporov (DMT) 

model was selected to calculate the elastic modulus as it has given good results for soft 

materials, nanocomposites, fibrils, live cells and very thin layers from the data provided by 

instrumented indentation techniques [35-39]. The DMT model alloys calculation of the elastic 

modulus by analysing the unload stage using the following expression [40]. 

 

𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐹𝐹 − 𝐹𝐹𝑎𝑎𝑎𝑎ℎ = 4
3
𝐸𝐸𝑟𝑟�𝑅𝑅(𝑑𝑑 − 𝑑𝑑0)3   Eq. 3 

 

Where F-Fadh is the force on the cantilever relative to the adhesion force, R is the tip radius, and 

d-d0 is the deformation of the sample. In this study, the region comprised between 10% and 70% 

of the unload curve was fitted by DMT model calculations. The contact radius, R, was 

determined for a fixed working z-displacement of 5-10 nm. Calibration was carried out by the 

relative calibration method which uses a sample of known modulus to obtain the ratio of the 

spring constant to the square root of the tip end radius. In this study a polystyrene (PS) pattern 

with a nominal elastic modulus, E, of 2.7 GPa was used as the reference material and the 

obtained R5-10 nm value was 9 nm. Calibration of the tip radius was done before and after 

finishing the study to guarantee negligible changes due to wear. The spring constant was 

calibrated, reporting a stiffness of 5 N m-1. The applied force during the scanning was the 

required to keep a contact depth in the 5-10 nm range. The scan frequency was 0.75 Hz, 0.5 Hz 

and 0.3 Hz on squared areas sizing 3x3 µm2, 10x10 µm2 and 20x20 µm2. All tests were 

conducted on 500 µm thick films obtained by environmental ultramicrotomy.  

 

Nanomechanical properties 

 Nanoindentation tests were carried out in a Nanoindenter G-200 from Agilent 

Nanotechnology (Santa Clara, California, USA). A Berkovich tip was calibrated with Pyrex as 
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reference material. An array of 75 indentations with a depth of 150 nm with a separation of 3 

µm between them was programmed. Calculation of the stiffness was done by using the 

Continuous Stiffness Measurement method [41] with an oscillation of 2 nm at a frequency of 70 

Hz. Calculation of hardness (H) and the elastic modulus (E) was done using the Oliver&Pharr 

method [42] by averaging the values in a depth range between 100 and 150 nm. All the depth 

values were corrected by taking into account the adjustment proposed by Loubet [43, 44] for 

polymeric materials with adhesive contact and assuming a Poisson ratio, υ, of 0.3 to calculate 

the elastic modulus, E.  

 

 

RESULTS AND DISCUSSION 

Gel fraction of P3HB/PCL blends compatibilized by reactive extrusion with DCP 

 Fig. 1 shows the plot evolution of the gel fraction with increasing DCP content during 

the in situ compatibilization by reactive extrusion of P3HB and PCL blends. As it can be seen, 

the gel content increases with the DCP content with a maximum of 18.8% for a DCP content of 

1 wt%. DCP decomposes and acts as a free radical initiator. These free radicals promote the 

formation of P3HB and PCL macroradicals by hydrogen abstraction. Then, the combination of 

these macroradicals leads to formation of P3HB-co-PCL copolymers that positively contribute 

to compatibilization and formation of partially crosslinked networks in the blends. Nevertheless, 

not only P3HB and PCL reactions occur but also PCL-rich domains can establish stronger 

interactions with the P3HB polymer matrix. Hence, the use of DCP during the reactive 

extrusion process gives a series of products such as grafted/branched/crosslinked P3HB and 

PCL chains, P3HB-co-PCL copolymers and partially crosslinked P3HB/PCL networks [21, 45]. 

Furthermore, the melting process also promotes chain scission due to the high thermal 

instability of P3HB together with the high thermal stability of the free radicals, thus leading to 

formation of more complex products. These reactions can be observed in Fig. 2. [46, 47]. 
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Figure 1. Plot evolution of the gel fraction obtained by soxhlet extraction of the P3HB/PCL 

(75/25) blend as a function of DCP content used for reactive extrusion 

 

 

 

 

 

 
 

 



Figure 2. Schematic representation of free radical formation on poly(3-hydroxybutyrate) and 

poly(ε-caprolactone) polymer chains by reaction with peroxide free radicals 

 

Mechanical properties of P3HB/PCL blends compatibilized by reactive extrusion with DCP 

 

 



 

Figure 3. Mechanical properties of the P3HB/PCL (75/25) blend as a function of DCP content 

used for reactive extrusion: a) tensile properties, b) flexural properties and c) impact properties 

 

 The only addition of 25 wt% PCL to P3HB leads improved toughness. These 

uncompatibilized blends, are characterized by a droplet structure in which, PCL-rich domains a 

finely dispersed into the P3HB matrix. Although a slight increase in ductile properties are 

achieved, this improvement is not so high as we report in a previous work [20]. Fig. 3 gathers 

the main results corresponding to mechanical characterization of P3HB/PCL (75/25) blends 

with different DCP used for the reactive extrusion process. With regard to tensile properties, it 

is clear to see that the only addition of 0.25 wt% DCP during the reactive extrusion leads to 

increased compatibility. In fact, the tensile strength is slightly increased from 23.1 MPa 

(uncompatibilized P3HB/PCL) up to 24 MPa. DCP content over 0.25 wt% leads to slightly 

lower tensile strength values of 22.5 MPa for the compatibilized blend with 1 wt% DCP. So 

that, it is worthy to note that reactive extrusion with different DCP loads does not affect in a 

noticeable way to tensile strength. On the other hand, the elongation at break is remarkably 

improved as the DCP load for reactive extrusion increases. As it can be seen in Fig. 3a, 

uncompatibilized P3HB/PCL (75/25) blend is characterized by a relatively low elongation at 

break value of 11.1%. In fact, the elongation at break for compatibilized P3HB/PCL blend with 

0.75 wt% DCP and 1.0 wt% DCP changes up to values close to 21.3% which represents a 

percentage increase of almost 91%, thus giving clear evidences of improved ductile properties 

after the reactive extrusion. This could be related to improved interactions between the P3HB-

rich phase and the PCL-rich phase. Regarding the tensile modulus, as it is defined as the ratio of 

stress to elongation in the linear region, it is expectable a decrease. As it has been stated 

previously, the tensile strength does not change in a noticeable way whilst the elongation at 

break increases in a remarkable way. For this reason, the ratio stress to elongation decreases. In 

fact, the tensile modulus changes from 1649 MPa (uncompatibilized P3HB/PCL blend) down to 
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1104 MPa for the blend compatibilized with 1 wt% DCP during the reactive extrusion process 

which represents a percentage decrease of about 33%. 

 Similar tendency can be observed for flexural properties. The flexural strength remains 

almost constant at values of 37 MPa for DCP content in the 0-0.25 wt% range while a slight 

decrease is detected over 0.25 wt% DCP with minimum values of 33.2 MPa for the P3HB/PCL 

blend compatibilized with 1 wt% DCP during the reactive extrusion. The flexural modulus 

offers identical tendency as that observed for the tensile modulus with a decrease from 1606 

MPa for the uncompatibilized blend down to 1170 MPa for the blend compatibilized by reactive 

extrusion with 1 wt% DCP. 

 The impact-absorbed energy is, as other ductile properties in a polymer blend such as 

the elongation at break, highly sensitive to compatibility between components as it is related to 

material cohesion and the typical droplet structure of an immiscible blend negatively contributes 

to cohesion. Fig. 3c shows the evolution of the impact-absorbed energy with increasing DCP 

content during the reactive extrusion. It is worthy to note the remarkable increase in the impact-

absorbed energy from values of about 2 kJ m-2 (uncompatibilized blend) up to values of 6.3 kJ 

m-2 that represents a percentage increase of 231%. This noticeable increase indicates a clear 

improvement of the cohesion and this indicates that interactions between P3HB-rich phase and 

PCL-rich phase have improved as a consequence of the use of the peroxide as in situ 

compatibilizer by reactive extrusion. In the case of the uncompatibilized P3HB/PCL (75/25) 

blend, the lack of interactions between both polymers promotes phase separation and this leads 

to interface failure when an external stress is applied; then, microcrack formation and 

subsequent growth is very fast and this has a negative effect on the total impact-absorbed energy 

with a pronounced fragile behaviour. Reactive extrusion with DCP increases interactions 

between the P3HB-rich phase and the PCL-rich phase and this has a positive effect on load 

transfer due to improved phase-continuity. Hence, it is possible to conclude that reactive 

extrusion with DCP has a positive effect on compatibilizing P3HB and PCL in their blends with 

a remarkable improvement of ductile properties such as elongation at break and impact-

absorbed energy due to increased material cohesion. 



 

Thermal properties of P3HB/PCL blends compatibilized by reactive extrusion with DCP 

 DSC curves of the second heating cycle of P3HB/PCL (75/25) blend are shown in Fig. 

4 and the main thermal parameters obtained from DSC analysis are summarized in Table 2. As 

it can be seen the DSC thermogram of neat P3HB shows a main melting peak at 174.8 ºC and a 

small melt peak located at 52.3 ºC which could be related to the melting of some low molecular 

weight additive contained in the commercial formulation [48]. As expected, uncompatibilized 

P3HB/PCL (75/25) blend offers two clear melt processes located at 172.9 ºC and 56.3 ºC that 

correspond to the melting of P3HB and PCL individual polymers respectively. 

Compatibilization by reactive extrusion with DCP leads to some changes in the thermal 

behaviour of the blend. As it can be seen, the peak size of PCL is smaller as the DCP content in 

the reactive extrusion process increases. This fact suggests a conversion of the PCL-rich 

domains into amorphous as the DCP content increases. On the other hand, DCP does not affect 

the melting temperature of PCL but it is worthy to note a slight decrease in the P3HB melting 

temperature by almost 4 ºC with regard to the uncompatibilized blend. Regarding the degree of 

crystallinity of both P3HB and PCL in the P3HB/PCL (75/25) blend, values of 39.8% and 

45.7%, respectively, are obtained. The use of 0.25 wt% and 0.50 wt% DCP during the reactive 

extrusion process does not affect in a noticeable way to the crystallinity of both P3HB- and 

PCL-rich domains. Over 0.50 wt% DCP it is possible to observe a slight decrease in the overall 

crystallinity of both polymers in the blend. This fact also explains why both tensile and flexural 

moduli are lower with increasing DCP content during the reactive extrusion. 
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Figure 4. DSC curves of the second heating cycle of neat P3HB, neat PCL, uncompatibilized 

P3HB/PCL (75/25) blend and compatibilized blend by reactive extrusion with different DCP 

content 

 

 The main thermal parameters corresponding to the thermal degradation of P3HB/PCL 

(75/25) blend are summarized in Table 2. Thermal degradation of neat P3HB occurs in two 

separated stages which is directly related to the complex chemical composition of the 

commercial formulation with plasticizers, nucleating agents, fillers and stabilizers [48]. 

Uncompatibilized P3HB/PCL (75/25) blend also shows two degradation stages. The first one is 

characterized by a maximum degradation rate temperature of 302.3 ºC and is assigned to P3HB 

whilst the second one, at higher temperatures of 422.3 ºC corresponds to the maximum 

degradation rate temperature of PCL as this is more stable than P3HB to thermal degradation. 

Regarding the onset degradation temperature (T0) it is possible to observe that, in general, PCL 

has a positive effect on thermal stabilization with an increase from 246.7 ºC for neat P3HB up to 

282.7 ºC for its blend with 25 wt% PCL (uncompatibilized). The obtained data indicate that no 

significant change in the onset degradation temperature is obtained by reactive extrusion with 

Código de campo cambiado



different DCP loads as T0 ranges from 280 ºC to 285 ºC for all DCP contents used in the 

reactive extrusion process. 

 

Table 2. Thermal parameters of neat P3HB, neat PCL, uncompatibilized P3HB/PCL (75/25) 

blend and P3HB/PCL (75/25) blends compatibilized by reactive extrusion with different DCP 

contents 

Samples 

DSC Parameters TGA Parameters 

Tm PCL 

(ºC) 

∆Hm PCL 

(J g-1) 

Xc PCL 

(%) 

Tm PHB 

(ºC) 

∆Hm PHB 

(J g-1] 

Xc PHB 

(%) 

T0 

(ºC)[a] 

Tmax PHB 

(ºC) 

Tmax PCL 

(ºC) 

PHB - - - 174.8 -75.8 51.9 246.7 272.3 382.0 

PCL 60.0 -72.8 46.4 - - - 379.5 - 415.8 

PHB/PCL 56.3 -62.5 39.8 172.9 -66.8 45.7 282.7 302.3 422.3 

PHB/PCL/DCP/25 56.7 -61.2 39.0 171.7 -66.8 45.7 283.6 302.3 422.3 

PHB/PCL/DCP/50 55.5 -58.4 37.4 169.2 -66.3 45.4 285.4 302.3 422.3 

PHB/PCL/DCP/75 55.2 -54.8 35.0 169.1 -60.5 41.4 282.6 302.3 422.3 

PHB/PCL/DCP/100 55.5 -49.0 31.3 168.8 -57.3 39.3 279.0 302.3 422.3 

[a] T0, calculated at 5% mass loss. 

 

Dynamic mechanical thermal analysis (DMTA) of P3HB/PCL blends compatibilized by 

reactive extrusion with DCP 

 Fig. 5 shows the plot evolution of the damping factor (tan δ) and the storage modulus 

(G’) of uncompatibilized P3HB/PCL (75/25) blend and the same blend composition 

compatibilized with different DCP content by reactive extrusion. The glass transition 

temperature (Tg) was obtained through the peak maximum in the damping factor curves. As one 

can see, two different relaxation processes are present which are attributed to immiscibility 

between P3HB and PCL. Reactive extrusion with DCP leads to partially compatibilized blends 

with a slight increase in the Tg of the PCL-rich domains from -68.3 ºC (uncompatibilized blend) 

up to -65 ºC for the blend compatibilized by reactive extrusion with 0.75 wt% and 1 wt% DCP. 

This slight increase can be attributed to a restriction of the PCL segments movement along the 



interphase with increased miscibility [21]. On the other hand, the glass transition temperature of 

the P3HB-rich domains does not change in a significant way and remains at values around 1 ºC. 

By observing the evolution of the storage modulus (G’) in Fig. 5b it can be clearly seen a 

decrease of G’ for all blends compatibilized with different DCP contents. At low temperatures 

(below the Tg, PCL), all blends show high storage modulus values (more than 2000 MPa) due to 

high rigidity of the polymeric chains. After reactive extrusion with DCP, a slight decrease in G’ 

can be observed as the DCP content increases. In fact, the lowest G’ values are obtained for the 

blend compatibilized by reactive extrusion with 1 wt% DCP. The effects of this in situ 

compatibilization by reactive extrusion are more evident in the rubbery state comprised between 

the glass transition of both neat polymers, -53 ºC for PCL and 1 ºC for P3HB [20]; this is due to 

the fact that in situ compatibilization affects the overall movement of the molecular chain 

segments instead of the localized macromolecule movements [45]. This decrease is due to 

increased compatibility which is achieved by anchoring poly(ε-caprolactone) macroradicals 

(promoted by DCP at elevated temperatures) to poly(3-hydroxybutyrate) macroradicals. In 

addition, P3HB-P3HB, PCL-PCL and P3HB-PCL crosslinking can also occur as a consequence 

of the radicals formed by DCP.   

 

 

Figure 5. Dynamic mechanical thermal analysis (DMTA) of uncompatibilized P3HB/PCL 

(75/25) blend and compatibilized blends by reactive extrusion with different DCP contents as a 

function of temperature: a) damping factor, tan δ and b) storage modulus, G’ 

 



Morphology study of P3HB/PCL blends compatibilized by reactive extrusion with DCP 

 Fig. 6 shows the morphology of fractured surfaces from impact tests without 

compatibilization and with compatibilization by reactive extrusion with different DCP content. 

As it can be observed, uncompatibilized P3HB/PCL (75/25) blend (Fig. 6a and Fig. 6b) shows 

a clear phase separation with a typical droplet structure indicating immiscibility. The PCL-rich 

domains appear as randomly dispersed droplets with a particle size comprised in a wide range 

into the P3HB polymer matrix. In addition, small gaps can be detected along PCL-rich and 

P3HB-rich domains thus evidencing poor interfacial adhesion between these two polymers as 

stated by D. Garcia-Garcia et al. [20]. It is also detectable some plastic deformation of PCL-rich 

domains during the impact test. The reactive extrusion with DCP has a remarkable effect on the 

morphology of the P3HB/PCL (75/25) blend as it can be seen in Fig. 6c to Fig. 6f. As it can be 

seen, the gaps between the PCL- and P3HB-rich domains have almost disappeared and the 

interface between them is not detectable. The use of DCP as reactive compatibilizer leads to a 

decrease in size on PCL-rich domains leading to a high homogeneous fracture surface without 

the typical filament formation on PCL-rich domains. All these features are indicating that the 

reactive extrusion with DCP has a positive effect on improving the miscibility of P3HB and 

PCL polymers with the subsequent improvement on mechanical ductile properties as described 

before. 

 



 

 

Figure 6. FESEM images of impact-fractured surfaces of: (a) uncompatibilized P3HB/PCL 

(75/25) at 2500x; (b) uncompatibilized P3HB/PCL at 5000x; (c) P3HB/PCL (75/25) 

compatibilized by reactive extrusion with 0.50 wt% DCP at 2500x; (d) P3HB/PCL (75/25) 

compatibilized by reactive extrusion with 0.50 wt% DCP at 5000x; (e) P3HB/PCL (75/25) 

compatibilized by reactive extrusion with 1 wt% DCP at 2500x and (f) P3HB/PCL (75/25) 

compatibilized by reactive extrusion with 1 wt% DCP at 5000x 

 

Atomic Force Microscopy (AFM) and PeakForce QNM 

 An in-depth study of the effect of DCP on the microstructure of P3HB/PCL blends was 

carried using atomic force microscopy (AFM) working in the Quantitative Nanomechanical 

PeakForce, QNM mode. This method allows obtaining an image map not only of deformations 

and z-displacements but also of the elastic and adhesive properties of the analysed surface. 



Ultramicrotome samples of P3HB/PCL and P3HB/PCL compatibilized with 1 wt% DCP were 

analysed by the AFM technique. Some attempts did not give useful image maps due to the high 

roughness of fractured samples as reported by other authors [49]. 

 Fig. 7 shows the image maps of the abovementioned P3HB/PCL systems 

(uncompatibilized and compatibilized system by reactive extrusion with 1 wt% DCP) under 

different AFM channels. Fig. 7a shows the topographic AFM image (height channel) of the 

uncompatibilized P3HB/PCL system. This topography is similar to that observed by FESEM, 

i.e. immiscible PCL-rich domains can be clearly distinguished dispersed in the P3HB matrix. 

However, the topographic AFM image corresponding to the P3HB/PCL system compatibilized 

with 1 wt% DCP (Fig. 7b) is remarkably different. In fact, no clear evidence of dispersed PCL-

rich domains can be seen due to the compatibilization effect provided by reactive extrusion with 

DCP. This compatibilization leads to lower PCL-rich domain size as well as a more 

homogeneous PCL-rich domain dispersion. Plot of the elastic modulus image map obtained by 

the Derjaguin-Muller-Toporov model (Fig. 7c and Fig. 7d) the microstructure is clearly 

revealed. A logarithmic plot of the elastic modulus image map reveals some interesting features: 

(i) the uncompatibilized P3HB/PCL system shows a typical phase-separation morphology in 

which, spherical PCL-rich domains are uniformly dispersed in the P3HB-rich matrix. Some 

evidences of interface failure (marked with arrows in Fig. 7c) can be observed. Failure occurs 

because of the lack of cohesion among the interface between the PCL-rich phase and the P3HB-

rich phase. This could be related to a pull effect of the ultramicrotome thus supporting the lack 

(or very low) compatibility between these two polymers. PCL-rich domains possess an average 

size comprised between 1 and 5 µm. (ii) On the other hand, the morphology of the 

compatibilized P3HB/PCL system by reactive extrusion with DCP shows a PCL-rich phase 

finely dispersed in the P3HB-rich phase matrix. PCL-rich phase appears in the form of small 

filaments with a thickness of less than 1 µm. Although P3HB and PCL are not fully miscible, 

the effect of the reactive extrusion with DCP is highly positive to achieve somewhat interactions 

between them. (iii) The typical failure at the PCL-P3HB interface of the uncompatibilized 

system does not appear in a clear way in the compatibilized blend which confirms improved 



interactions among PCL-P3HB interface with the subsequent improvement of mechanical 

properties at a macro scale. (iv) both elastic modulus image maps are shown under the same 

scale depth with logarithmic values to show that the contrast between PCL-rich and P3HB rich 

phases is remarkably lower (the differences in the elastic moduli between phases is much lower) 

in the compatibilized P3HB/PCL system than the uncompatibilized one. (v) The P3HB-rich 

phase in the compatibilized blend is darker which is representative for lower elastic modulus 

values. This effect can be related to a decrease in the overall P3HB crystallinity and/or the 

formation of P3HB-PCL grafted oligomers and polymer chains. Fig. 7e and Fig. 7f show the 

elastic modulus histograms of the uncompatibilized and compatibilized P3HB/PCL systems 

respectively. Finely dispersed PCL domains possess a narrow distribution centred at 1 GPa for 

the uncompatibilized P3HB/PCL system, whilst the compatibilized systems offers a distribution 

centred at ~0.75 GPa. However, the average elastic modulus of the P3HB-rich phase changes 

from 3.5 GPa (uncompatibilized blend) to 2.7 GPa (DCP compatibilized blend). These results 

are in total agreement with the previously reported tensile and flexural moduli and similar to 

previously reported values for this material [50-52]. It is worth to note that the elastic modulus 

of the P3HB-rich phase was not constant along the whole section, with values varying from 2.5 

GPa to 4 GPa. This phenomenon can be explained by taking into account the cooling profile. 

The highest E value was obtained far from the surface which is related to the higher crystalline 

character of the P3HB due to lower cooling rates typical of this zone. However, E values of 

about 2.5 GPa were recorded close to the topmost surface of the sample, probably due to higher 

amorphous degree of P3HB achieved by higher cooling rates expected in this zone. 



 

Figure 7. Results obtained by AFM-QNM (20x20 µm2) showing the topographic AFM image 

(height channel), the elastic modulus image map (logarithmic scale) and the frequency 

histogram of the elastic modulus for uncompatibilized P3HB/PCL blend (a, c and e) and DCP 

compatibilized P3HB/PCL blend (b, d and f) 

  

 

 



 An in-depth analysis of the elastic modulus image map at higher magnification allowed 

determining the elastic modulus of each individual phase as observed in Fig. 8. The 

uncompatibilized P3HB/PCL blend (Fig. 8a and Fig. 8c) shows a stiffness profile characterized 

by abrupt changes in the elastic modulus value from 2.5-3.0 GPa (P3HB-rich phase) down to 

0.75 GPa (PCL-rich phase). On the other hand, the stiffness profile for the DCP compatibilized 

P3HB/PCL blend is more homogenous as it can be seen in Fig. 8b and Fig. 8d. The interface 

width was measured for both uncompatibilized and DCP compatibilized P3HB/PCL blends. 

Similar values of about 350 nm were observed for both systems thus indicating that 

compatibilization by reactive extrusion with DCP does not change the mechanical properties 

profile between the phases but their cohesion. These findings corroborate the hypothesis that 

reactive extrusion with DCP contributes to improve the interfacial interaction between P3HB-

rich and PCL-rich phases, thus leading to a decrease of the elastic modulus of the P3HB-rich 

phase which seems to be chemically bonded to a PCL-rich phase. All this has a positive effect 

on mechanical ductile properties with a remarkable increase in the impact-absorbed energy and 

elongation at break. 



 

Figure 8. Results obtained by AFM-QNM (10x10 µm2) the elastic modulus image map and the 

elastic modulus profile for uncompatibilized P3HB/PCL blend (a and c) and DCP 

compatibilized P3HB/PCL blend (b and d) 

 

 If we take into account the rule of mixtures, the elastic modulus values obtained through 

the tensile and flexural tests seem to agree to the weighted average values calculated by using 

the individual elastic modulus values for each phase as obtained by AFM-QNM analysis. As it 

has been previously stated, the Derjagin-Muller-Toropov (DMT) method was selected to 

calculation of the elastic modulus versus other proposed models such as Herts, JKR, Oliver & 

Pharr or Sneddon [53]. The DMT model was selected after an in-depth observation of the force-

distance curves taken at different regions which suggested that the adhesion DMT model was 

more appropriate than the other ones. Fig. 9 shows the force-displacement curve corresponding 



to two different AFM indentations on P3HB and PCL. The cantilever translation under a 

sinusoidal movement of 500 µm amplitude (Fig. 9a) generated a clear interaction between the 

tip and the surface sample in a particular point previously programmed as the Peak Force 

SetPoint. In this moment, the force-time curve (heart-beat curve) was registered and it is shown 

in Fig. 9b and Fig. 9c for the PHB and PCL phase, respectively. Then, the registered signals 

revealed the typical approximation stage (A) until the electrostatic attraction effect and contact 

with sample (B) or SetPoint. In this moment, the indentation (BC stage) occurs, followed by 

the withdrawal process (CD). Due to short-range forces and the adhesion effect by capillarity 

between the sample and the tip, a subsequent stage was revealed. This stage (jump-off-contact) 

was characterized by a negative force to allow the tip detachment (CD). The curves obtained 

for each individual phase show that the necessary force to allow the tip detachment is higher for 

PCL as it can be seen in the corresponding force-tip sample separation curves (Fig. 9d and Fig. 

9e). The blue represents the trace direction while the red corresponds to the retrace direction. It 

is clearly deduced that PCL possesses an important adhesive component thus indicating the 

usefulness of the Derjaguin-Muller-Toporov (DMT) model. On the other hand, this fact reveals 

that PCL is chemically more active than P3HB. The same picture shows the length used for the 

DMT adjustment (70% of the unload stage). 

 



 

Figure 9. PeakForce curves obtained on P3HB and PCL individual phases, (a) cantilever 

deflection, (b and c) approach (trace) and withdrawal (retrace) curves, (d and e) force-tip simple 

separation curves 

 

 Fig. 10 shows the deformation and adhesion image maps that are in total agreement 

with those shown in Fig. 9. The adhesion image maps confirm that PCL offers a higher 

adhesion component. Furthermore, the DCP compatibilized P3HB/PCL blend shifts the 

adhesion to higher values as it can be seen in the corresponding adhesion profiles (Fig. 10d and 

Fig. 10e). the higher adhesion value observed for the DCP compatibilized P3HB/PCL blend 

could be related to presence of oxidized moieties resulting from reaction of free radicals 

achieved during the reactive extrusion with air which leads to a chemically more active surface 

[49, 54]. 

 



 

Figure 10. Results obtained by AFM-QNM (10x10 µm2). Deformation image map (tip 

penetration), adhesion image map and adhesion profile for uncompatibilized P3HB/PCL blend 

(a, c and e) and DCP compatibilized P3HB/PCL blend (b, d and f) 

 

Nanomechanical properties 

 With the aim of obtaining the hardness of the two samples analysed by AFM a 75 

indentation array (100 nm depth) was programmed on ultramicrotome samples. The elastic 

modulus (E) and the hardness values (H) were determined by the well stablished Oliver&pharr 



method with some corrections using the Loubet model to correct the adhesion component [44]. 

It is worth to note that the results obtained by nanoindentation are not comparable to those 

obtained by AFM as the mathematical models are different and the test depths are also different 

(100 nm for Nanoindentation and 5-10 nm for AFM). Fig. 11a and Fig. 11b show the elastic 

modulus distributions are rather similar to those obtained by AFM analysis. The elastic modulus 

of the uncompatibilized P3HB/PCL blend shows two different distributions centred at ~4 GPa 

and at ~2 GPa which correspond to the P3HB-rich phase and the PCL-rich phase respectively 

(Fig. 11a). The average value of the elastic modulus for the uncompatibilized P3HB/PCL blend 

is 2.5 GPa. With regard to the DCP compatibilized P3HB/PCL blend, it is worth to note that it is 

difficult to observe the two distributions and the average elastic modulus is around 1 GPa (Fig. 

11b). These results are in total agreement with those obtained by the AFM technique. Regarding 

the hardness, it was difficult to observe the different phases but the overall hardness of the 

uncompatibilized P3HB/PCL blend was remarkably higher (83 MPa) than the DCP 

compatibilized system with a hardness value of 47 MPa which is in accordance with the 

previously reported improvement of mechanical ductile properties. 



 

Figure 11. Probability and histogram results of elastic modulus and hardness of 

uncompatibilized (a,c) and DCP compatibilized P3HB/PCL blend (b,d), obtained by 

nanoindentation 

 

 



CONCLUSIONS 

 The compatibility of binary poly(3-hydroxybutyrate) (P3HB) and poly(ε-caprolactone) 

(PCL) with a constant composition (75/25 wt/wt) was remarkably improved by reactive 

extrusion with different dicumyl peroxide (DCP) contents. The use of 1 wt% DCP during in situ 

compatibilization process by reactive extrusion led to a remarkable increase in ductile properties 

such as elongation at break and impact-absorbed energy with percentage increase of 91% and 

231% respectively while the tensile strength remains almost at constant values. FESEM study 

revealed a clear change in the morphology for in situ compatibilized P3HB/PCL (75/25) blend. 

While the uncompatibilized blend shows a clear phase separation with PCL-rich domains 

randomly embedded in the P3HB-rich domains, compatibilized blends by reactive extrusion do 

not show a clear phase separation and the gap between PCL- and P3HB-rich phases has almost 

disappeared. Results obtained by AFM confirm an increase of compatibility/miscibility between 

P3HB and PCL by using reactive extrusion with 1 wt% DCP. Although full miscibility is not 

achieved with DCP compatibilization, the size of PCL-rich domains is remarkably reduced. 

AFM also revealed a noticeable decrease in the elastic modulus of the P3HB-rich phase thus 

indicating that some PCL oligomers have been attached to its structure with the subsequent 

decrease in crystallinity and the corresponding decrease on mechanical resistant properties. 
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Table captions 

Table 1. Composition and labelling of binary poly(3-hydroxybutyrate) (P3HB) and poly(ε-

caprolactone) (PCL) blends in situ compatibilized by reactive extrusion with different amounts 

of dicumyl peroxide (DCP).  

Table 2. Thermal parameters of neat P3HB, uncompatibilized P3HB/PCL (75/25) blend and 

P3HB/PCL (75/25) blends compatibilized by reactive extrusion with different DCP contents 

 

  



Figure legends 

Figure 1. Plot evolution of the gel fraction obtained by soxhlet extraction of the P3HB/PCL 

(75/25) blend as a function of DCP content used for reactive extrusion 

Figure 2. Schematic representation of free radical formation on poly(3-hydroxybutyrate) and 

poly(ε-caprolactone) polymer chains by reaction with peroxide free radicals 

Figure 3. Mechanical properties of the P3HB/PCL (75/25) blend as a function of DCP content 

used for reactive extrusion: a) tensile properties, b) flexural properties and c) impact properties  

Figure 4. DSC curves of the second heating cycle of pure P3HB, uncompatibilized P3HB/PCL 

(75/25) blend and compatibilized blend by reactive extrusion with different DCP content 

Figure 5. Dynamic mechanical thermal analysis (DMTA) of uncompatibilized P3HB/PCL 

(75/25) blend and compatibilized blends by reactive extrusion with different DCP contents as a 

function of temperature: a) damping factor, tan δ and b) storage modulus, G’ 

Figure 6. FESEM images of impact-fractured surfaces of: (a) uncompatibilized P3HB/PCL 

(75/25) at 2500x; (b) uncompatibilized P3HB/PCL at 5000x; (c) P3HB/PCL (75/25) 

compatibilized by reactive extrusion with 0.50 wt% DCP at 2500x; (d) P3HB/PCL (75/25) 

compatibilized by reactive extrusion with 0.50 wt% DCP at 5000x; (e) P3HB/PCL (75/25) 

compatibilized by reactive extrusion with 1 wt% DCP at 2500x and (f) P3HB/PCL (75/25) 

compatibilized by reactive extrusion with 1 wt% DCP at 5000x 

Figure 7. Results obtained by AFM-QNM (20x20 µm2) showing the topographic AFM image 

(height channel), the elastic modulus image map (logarithmic scale) and the frequency 

histogram of the elastic modulus for uncompatibilized P3HB/PCL blend (a, c and e) and DCP 

compatibilized P3HB/PCL blend (b, d and f) 

Figure 8. Results obtained by AFM-QNM (10x10 µm2) the elastic modulus image map and the 

elastic modulus profile for uncompatibilized P3HB/PCL blend (a and c) and DCP 

compatibilized P3HB/PCL blend (b and d) 

Figure 9. PeakForce curves obtained on P3HB and PCL individual phases, (a) cantilever 

deflection, (b and c) approach (trace) and withdrawal (retrace) curves, (d and e) force-tip simple 

separation curves 



Figure 10. Results obtained by AFM-QNM (10x10 µm2). Deformation image map (tip 

penetration), adhesion image map and adhesion profile for uncompatibilized P3HB/PCL blend 

(a, c and e) and DCP compatibilized P3HB/PCL blend (b, d and f) 

Figure 11. Probability and histogram results of elastic modulus and hardness of 

uncompatibilized (a,c) and DCP compatibilized P3HB/PCL blend (b,d), obtained by 

nanoindentation 


