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ABSTRACT 
Objective 
To assess the variability in data distributions among data sources and over time through a case 
study of a large multi-site repository as a systematic approach to data quality (DQ). 
Materials and methods 
Novel probabilistic DQ control methods based on information theory and geometry are applied 
to the Public Health Mortality Registry of the Region of Valencia, Spain, with 512 143 entries 
from 2000 to 2012, disaggregated into 24 health departments. The methods provide DQ 
metrics and exploratory visualizations for (1) assessing the variability among multiple sources 
and (2) monitoring and exploring changes with time. The methods are suited to big data and 
multi-type, multivariate, and multi-modal data. 
Results 
The repository was partitioned into two probabilistically separated temporal subgroups 
following a change in the Spanish National Death Certificate in 2009. Punctual temporal 
anomalies were noticed, due to a punctual increment in the missing data, along with outlying 
and clustered health departments due to differences in populations or in practices. 
Discussion 
Changes in protocols, differences in populations, biased practices, or other systematic DQ 
problems affected data variability. Even if semantic and integration aspects are addressed in 
data sharing infrastructure, probabilistic variability may still be present. Solutions include fixing 
or excluding data and analyzing different sites or time periods separately. A systematic 
approach to assessing temporal and multi-site variability is proposed. 
Conclusion 
Multi-site and temporal variability in data distributions affects DQ, hindering data reuse, and 
an assessment of such variability should be a part of systematic DQ procedures. 
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BACKGROUND AND SIGNIFICANCE  

Data sharing among multiple sites is gaining importance,[1] and multi-institutional data-

sharing infrastructure has been successfully developed in many cases.[2-6] However, the value 

of such multi-site repositories depends greatly on the quality of their data.[6-14] 

Data quality (DQ) in multi-site repositories continues to pose a challenge to health 

practitioners and researchers,[9] who demand increasing access to complete and accurate 

data as well as evaluation tools and metrics.[10] Therefore, multi-institutional platforms such 

as the US Clinical Effectiveness Research Hub now incorporate specific DQ assurance 

processes.[6] In fact, DQ is even considered one of the main components of any integrated 

data repository.[9]  

Several systematic reviews have been carried out seeking agreement on different dimensions 

of DQ to be assessed in data repositories.[12-14] Despite the different approaches found in 

recent literature reviews[12,13], the methods and the dimensions aimed at similar 

fundamental DQ problems such as missing information, inconsistency among individual 

observations, and incorrect or outdated information. In the case of multi-site repositories, 

semantic and integration aspects are generally the first DQ problems to be addressed.[3,15] 

However, two more DQ problems that can be particularly serious for large multi-site 

repositories have, in our opinion, received insufficient attention or lack appropriate methods 

for their assessment. These problems are caused by possible differences, or variability, in the 

probability distributions of data (1) among different sources of data (different sites or different 

practitioners, for example) and (2) with time. 

Variability in data distributions can have several causes: differences in data acquisition 

methods, protocols or health care policies; systematic or random errors during data input and 

management (e.g., errors related to other intrinsic DQ dimensions such as changes in data 

completeness or consistency); geographic and demographic differences in populations;[16] or 

even falsified data.[17] These differences, if found among different data sources, constitute 

multi-source variability, and if found over time, either through a single source or multiple 

sources, constitute temporal variability. 

Multi-source or temporal variability, if unmanaged, may lead to inaccurate or irreproducible 

results[3,18,19] or even to invalid results.[11] The reuse of data in multi-site repositories for 

population studies, clinical trials, or data mining rests on the assumption that the data 

distributions are to some degree concordant irrespective of the source of data or of the time 

over which the data have been collected and therefore allows generalizable conclusions to be 

drawn from the data. Differences in data distributions, by making the above assumption 

questionable, may hinder the reuse of repository data and may complicate data analyses, bias 

the results, or weaken the generalizations based on the data. 

Common methods of assessing multi-source variability consist of comparing statistics of 

populations such as the mean[8,11], describing the distributions of variables[6], or comparing 

the data to a reference dataset.[12] Besides, methods for assessing temporal variability, 
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originally based on quality control of industrial processes, include statistical monitoring used in 

clinical contexts like Shewart charts[20] or, in laboratory systems, Levey–Jennings charts and 

Westgard rules.[21] Most of these methods are based on classical statistical approaches, which 

may face two main problems. First, classical statistical tests may not be suitable for multi-type 

data (e.g., numerical and categorical variables), multivariate data (several variables that 

change simultaneously), and multi-modal data (distributions generated by more than one 

component, e.g., data from several disease profiles)—the very characteristics of biomedical 

data.[18,22] Second, classical statistical methods may not prove adequate for big data.[23-25] 

Besides, specific DQ metrics or visual methods for variability are not generally provided. 

Finally, for data from multiple sources, a gold-standard reference dataset may not be available. 

These reasons support the current need for generalizable, systematic, empirically driven, 

statistics-based, and validated DQ assessment methods for the reuse of electronic health 

records.[12] 

Meeting the requirements mentioned above, we developed two sets of methods for both 

multi-source and temporal variability assessment.[18,19] These methods allow variability to be 

measured and visually explored, by comparing the probability distributions of the data using 

information-theoretic metrics. These methods have been evaluated earlier using simulated 

problems as well as real registries, including the UCI Heart Disease public dataset[26] and the 

US NHDS data.[27]  

In the present study, we systematically apply these methods to a large, multi-departmental, 

Public Health Mortality Registry, aiming to (1) emphasize the importance of systematic 

assessment of multi-source and temporal variability in multi-site biomedical data repositories, 

(2) propose that such variability be considered an aspect of DQ, and (3) highlight the novel 

possibilities opened up by these state-of-the-art methods. 

MATERIALS AND METHODS 

Methods 

The methods used in the present study fall into two groups, namely those for assessing multi-

source variability[18] and those for assessing temporal variability.[19] The methods are based 

on the comparison of probability distributions of the variables among different sources or over 

different periods of time. The comparisons are made by calculating the information-theoretic 

probabilistic distances between pairs of distributions, in concrete terms, we use the Jensen-

Shannon distance (JSD), a symmetrized and smoothed version of the Kullback-Leibler 

divergence.[28,29]. The JSD permits measuring differences either in univariate and 

multivariate data including numerical data, such as ages, categorical data, such as ICD codes, 

or a combination of them. The assumption is that in a repository with low variability, JSDs 

among distributions would be small whereas different or anomalous data distributions would 

mean higher variability. Additionally, the JSD is bounded between zero and one, making it 

comparable among studies: a value of one indicates that the compared distributions are 

disjoint, i.e., they do not share common values. Further, the JSD measurements are not 
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affected by large sample sizes. These properties offer a robust alternative to classical statistical 

tests where they may not be appropriate.[22] 

 

The multi-source variability methods include two metrics. The first measures the dissimilarity 

of a data source to a global central tendency of sources, namely the Source Probabilistic 

Outlyingness (SPO) metric. The second measures the global variability among all the data 

sources in a repository, namely the Global Probabilistic Deviation (GPD) metric. The metrics 

are complemented with an exploratory visualization of the variability among data sources, 

namely the Multi-Source Variability (MSV) plot. These methods serve to highlight anomalous 

behaviors in the data of specific sources, detect groups of sources with similar data, or provide 

an indicator of concordance among data sources. 

The temporal variability is assessed by means of two methods. The first is an exploratory 

visualization for the variability among temporal batches of data, namely the Information-

Geometric Temporal (IGT) plot. It helps in uncovering temporal trends in the data, abrupt or 

recurrent changes in distributions, conceptually-related time periods (periods with similar data 

distributions), and punctual anomalies in the data of batches. The second method is an 

automated Statistical Process Control (SPC) algorithm to monitor changes in data distributions, 

namely the PDF-SPC. It permits controlling the degree of current variability to a reference state 

supported by a control chart.   

The present study also includes a new method for monitoring multi-source variability over 

time, which involves calculating the SPO and GPD metrics, or the MSV plot, through 

continuous temporal batches. 

An extended description of the methods is provided in Table 1. Additionally, sections 1 and 2 

of Appendix A provide basic, illustrative examples of the methods, and section 3 describes the 

main equations. 

Table 1 Description of the methods for multi-source and temporal variability assessment applied in this study. 

Note Meaning of the symbols:  Purpose of the method  How it works. 

Multi-Source Variability 

 

Common 
basis 

A geometric simplex the points of which represent data sources and the lengths of the lines that join 
the points represent the JSDs between the distributions of those sources. The centroid of the simplex 
represents the latent average distribution of the sources in the repository. The derived metrics are 
normalized by their maximum possible value given the number of sources to be [0-1]-bounded and 
consistent with the JSD. 
 

Methods  Source probabilistic outlyingness (SPO) metric 
 Measures the dissimilarity of the distribution of a single data source to the global average 

distribution 
 It is calculated as the distance between the point that represents a given source and the 

simplex centroid. 

 Global probabilistic deviation (GPD) metric 
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 Measures the degree of global variability among the distributions of sources in a repository. 
 It is calculated as the mean of the distances between each point that represents a source 

and the simplex centroid. 

 Multi-source variability (MSV) plot 
 Visualizes the variability among data sources in a two-dimensional (2D) plot. 
 The two components with largest variance of the simplex (which we named D1-simplex and 

D2-simplex) are projected using Multi-Dimensional Scaling (MDS)[30]. In the resultant 2D 
plot data sources are shown as circles in which the distance between two circles represents 
theJSD between their distributions, the radius of a given circle is proportional to the number 
of cases in the data source and its color indicates the SPO of the source. 

Temporal Variability 

 

Common 
basis 

Comparison of distributions through different batches of data in the repository, each batch 
representing a user-specified interval (weeks, months, years, etc.). 
 

Methods  Information geometric temporal (IGT) plot 
 Visualizes the variability among time batches in a repository in a 2D plot. 
 Time batches are positioned as points where the distance between them represents the JSD 

between their distributions, analogously to the MSV plot. To track the temporal evolution, 
temporal batches are labeled to show their date, supported by a smoothed timeline path, 
and colored according to their season 

 Probability distribution function statistical process control (PDF-SPC) algorithm 
 Monitors changes in data distributions through an automated statistical process control 

(SPC), visualized in a control chart. 
 Monitoring an upper confidence interval (e.g., one standard deviation) of the accumulated 

JSDs of time batches to a reference distribution (initially the first batch). The degree of 
change of the repository is classified into three states: in-control (distributions are stable), 
warning (distributions are changing), and out-of-control (recent distributions are 
significantly dissimilar to the reference). Warning states can be false alarms if the JSDs get 
closer to the reference once again, thus going back to the in-control state. However, when 
an out-of-control state is reached, a significant change is confirmed and the reference 
distribution is set to the current. 

 Temporal heat maps 
 Facilitates a rapid and broad visualization of how the values of a variable evolve over time. 
 These are 2D maps where the color of the pixel at a given (X,Y) position indicates the 

frequency (either absolute or relative) at which value Y was observed on date X. 

Combined methods 

 

  To monitor the multi-source variability over time 
 Calculating the SPO and GPD metrics, or the MSV plot through continuous temporal batches. 

 

Systematic approach 

Based on our experience of applying the described methods we propose a systematic 

approach to assessing multi-source and temporal variability in repositories (Figure 1). In a top-

down approach, one starts by analyzing the temporal or multi-site variability of the complete 

data set and then, based on the results of the analysis and prior knowledge of the repository, 

drills down to specific variables or groups of variables. The process can be cyclic, similar to an 

On-Line Analytical Processing (OLAP) exploratory analysis, navigating through different levels 

of granularity; for example, a temporal change found in the complete repository could be 

caused by a sudden bias within a single site. Such an anomalous site may require a specific 

temporal analysis, and excluding it may facilitate the discovery of other patterns or sources of 

variability. 
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Figure 1: Proposed Systematic Approach to Assessing the Temporal, Multi-Site Variability of Repositories of 

Biomedical Data Using Probabilistic Data Quality Control Methods. 

 

 

Materials 

The above approach was applied to the Public Health Mortality Registry of the Region of 

Valencia (MRRV), an autonomous region of Spain. The repository comprises the records 

related to a total of 512,143 deaths that occurred between 2000 and 2012 (inclusive), 

disaggregated by 24 health departments covering 542 cities and towns with a total of 4.7 

million inhabitants on average, representing 11% of the population of Spain. The repository 

includes the variables that make up the Spanish National Medical Death Certificate, an official 

paper document completed by a physician after the death of a person, according to the 

recommendations of the World Health Organization (WHO).[31] Any information that may 

disclose the identity of the person was removed before the analysis. 

The studied variables are listed in Table 2. The initial, intermediate, immediate and 

contributive causes are the sequential causes leading to death, known as `multiple causes’, for 

which up to three values are entered depending on the case. Further on, empty values up to 

the three possibilities will be labeled as `not applicable (NA)´. The basic cause of death is the 

official cause taken into account for national and international mortality statistics and is 

generally coded afterwards by specialist staff based on the multiple causes. 

According to the WHO recommendations for facilitating statistical analysis and comparison of 

the present work with other international studies, the causes of death were re-coded using the 

WHO International Classification of Diseases (ICD) version 10 Mortality Condensed List,[32] 
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which condenses the full range of ICD three-character categories into 103 manageable items. 

Because this list brings together both the top-level ICD chapters and their subgroups of 

diseases, the chapter-level classifications were discarded to avoid duplication and to facilitate 

proper statistical distribution. Accordingly, a total of 92 unique causes of death (plus an 

additional category, namely NA) were used in this study (section 4, Appendix A). Deaths that 

occurred outside the Region of Valencia during this period (totaling 6,816) were excluded, 

leaving us finally with 505,327 entries. The CONSORT[33] diagram of the study and tables of 

sample sizes are included Appendix A. 

Table 2: Studied Variables of the Public Health Mortality Registry of the Region of Valencia 

Variable Description Type 

Age Age in years at the time of death Numerical integer 

Sex Sex of the person  Discrete {Male, Female} 

ImmediateCause[1,2,3] Disease or condition directly leading to death 

(one to three options) 

ICD-10 List 1 code 

IntermediateCause[1,2,3] Morbid conditions, if any, giving rise to the 

above cause (one to three options) 

ICD-10 List 1 code 

InitialCause[1,2,3] Disease or lesion that initiated the process 

that eventually resulted in the death (one to 

three options) 

ICD-10 List 1 code 

ContributiveCause[1,2,3] Other significant conditions contributing to 

the death but not related to the disease or 

condition that caused death (one to three 

options) 

ICD-10 List 1 code 

BasicCause Basic cause of death ICD-10 List 1 code 

Health department Health department the person was assigned 

to (associated with the city of residence) 

Discrete code 

RESULTS  

The results of applying the proposed systematic approach to quality control of the MRRV 

repository led to the following four groups of main findings (other additional findings are 

described in Appendix A). 

Temporal Anomalies 

We first analyzed the temporal variability of the multivariate MRRV repository as a whole using 

IGT plots. To simplify the analysis, all the variables were combined using the principal 

component analysis (PCA) dimensionality reduction method. Figure 2 (a) shows the IGT plot for 

2000–2012 giving the distributions of monthly temporal batches. The distributions from 

January to March 2000 (arrows a, b, and c) are located at anomalous positions with respect to 
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the distributions for other months and according to the time flow. This indicates anomalous 

behavior of the data for these three months. Drilling down to specific variables, the anomaly 

was found in all multiple causes as well. In concrete terms, we found a punctual increment on 

unfilled data for these months, reaching almost 100% in some variables, probably because the 

entries in the paper certificates were not electronically coded during those months. 

To avoid a possible bias in the results pertaining to the year 2000, we proceeded excluding the 

entire year for subsequent analyses, given the difficulty in recovering all the missing data. 

Figure 2: IGT Plots of the Multi-Variate Repository (all variables) on Monthly Basis. Each point represents one batch 

of the repository labeled with its date in ‘YYM’ format (YY: the last two digits of the year, M: the month as given in 

the list of abbreviations at the end), and the distances among them represent the dissimilarity in their distributions. 

a) The period 2000–2012, where the months January to March 2000 (arrows a, b, and c) are at anomalous positions 

according to the time flow. b) The period 2001–2012, after discarding the data for 2000. A gradual conceptual 

change is seen from the start until 2009 (arrow d), at which point the change is abrupt (arrow e), splitting the 

repository into two temporal subgroups. The cool (blues) and warm (yellows and reds) colors indicate winter and 

summer months, respectively, indicating a seasonal effect which is specially observed in the last temporal subgroup. 

 

Figure 3: PDF-SPC Monitoring of the Variability of the Distribution of the Complete Multi-Variate Repository (all 

variables) on a Monthly Basis. The chart plots the current distance to the reference (d(Pi,Pref)), the mean 

accumulated distance (mean(Bi)), and the upper confidence interval being monitored (uz
i) and indicates the warning 

and out-of-control states as broken or continuous vertical lines, respectively. After a transient state (2001), a 

gradual change is seen, alerting two warning states around 2004, until the threshold is reached in 2008, leading to 

an out-of-control state, which re-establishes the reference distribution. The abrupt change in 2009 is captured by 

the metric and confirmed afterward. 
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Temporal Subgroups 

Figure 2 (b) shows the IGT plot of the multivariate MRRV repository in 2001–2012. The flow of 

points is continuous through the timeline (arrow d) until February 2009, indicating a gradual 

change in their distributions. An abrupt change in March 2009 (arrow e) then splits the 

repository into two temporal subgroups, i.e., conceptually-related time periods. Additionally, a 

yearly seasonal component can be observed, especially in the latter subgroup, based on the 

color temperature of the months. 

Figure 3 shows the analogous PDF-SPC chart for 2001–2012. After a transient state (2001), the 

change is gradual, alerting two warning states around 2004 (broken vertical lines) until the 

accumulated threshold is reached in 2008 leading to an out-of-control state (solid vertical 

lines). The abrupt change in 2009 was detected by the method and confirmed afterward.  

Drilling down to specific variables, we found that the change in 2009 was also present for most 

variables. For example, Figure 4 (a) shows the IGT plot of IntermediateCause1, where the 

change is observed in March 2009. 

The corresponding temporal heat maps of the variables uncovered a major change in 2009 

related to the number of causes specified in the certificate. However, even ignoring the NA 

category to check whether such an abrupt change was solely due to the number of specified 

causes, the change persisted (Figure 4, (b)), indicating that the frequencies of some causes of 

death changed abruptly as well (although to a small extent). Figure 4 (c) shows the temporal 

heat map of IntermediateCause1 without the NA category, where this finding is observed. It 

can be noted as well that in 2011 some of the affected frequencies were re-adjusted. 

This abrupt change in 2009 is probably the most important finding from this study. This change 

coincides with the redesign of the National Certificate of Death in 2009. The new certificate 

was intended to meet the WHO recommendations to a greater extent. Two modifications to 

the certificate probably account for the abrupt change in 2009, namely (1) the use of a row of 

boxes, each to be filled with one letter, instead of blank lines that allowed continuous writing, 

and (2) renaming the field `Intermediate cause´ as `Antecedent cause´ and providing one more 

line for the entry. The first modification may have reduced the chances of filling more than one 

cause and encouraged filling at least one. The second modification probably increased the 

frequency of cases in which two intermediate causes were entered but, at the same time, 

limited the entries to only two causes—the option of entering a third cause was never used 

again. Additionally, the renaming caused some physicians to misunderstand `Antecedent 

cause´ as clinical antecedents; e.g., leading to the introduction of two prevalent chronic 

diseases such as hypertensive diseases and diabetes mellitus as antecedent causes, whereas 

introducing them as contributive causes would have been more appropriate. The Spanish 

National Statistics Institute warned the national Public Health institutions about this problem 

in 2011. To correct the situation, the term `Intermediate Cause´ was re-introduced. However, 

as seen in the results for IntermediateCause1, the practice was not abandoned entirely. Finally, 
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the several changes in multiple causes in 2009 carried the problem to the basic cause. The 

three versions of the certificates are shown in Appendix B. 

The separation of the repository into two temporal subgroups, up to 2009 and from 2009 

onward, gives the first hint that statistical analyses or models that treat the entire span as one 

may not be concordant, given the abrupt differences in their data distributions. Consequently, 

in some of the further steps, the two subgroups were analyzed separately. 

 

Figure 4: IGT Plots (a, b) and Temporal Heat Map of Distribution (c) of IntermediateCause1 for Men in 2001–2012 on 

Monthly Basis. In the IGT plots, each point represents one batch of the records labeled with its date in ‘YYM’ format 

(YY: last two digits of the year, M: the month as given in the list of abbreviations at the end), and the distances 

among them represent the dissimilarity in their distributions. The IGT plots were calculated considering (a) and 

discarding (b) unfilled values (NAs). The heat map shows the evolution of the probability distribution for 21 most 

prevalent causes after discarding the NA category, where the frequencies of `hypertensive diseases´, `chronic lower 

respiratory diseases´, and `diabetes mellitus´ increased, whereas those of `symptoms, signs and abnormal clinical 

and laboratory findings, not elsewhere classified´ decreased, among others. The three main temporal subgroups 

seen in both the IGT plots (split by months, namely 09M and 11J) are associated with the changes in the patterns of 

the frequencies of causes shown in the heat map for 2009 and 2011.  

 

http://dx.doi.org/10.1093/jamia/ocw010


Author version of manuscript published in Journal of the American Medical Informatics Association 
(http://dx.doi.org/10.1093/jamia/ocw010) 

 
12 

 

Departmental anomalies 

We next assessed the variability among different health departments. Figure 5 (a) shows the 

SPO monitoring of the multivariate MRRV repository on yearly basis. The health department of 

Requena showed a large SPO, indicating an outlying distribution. Besides, the health 

department of Torrevieja also increased its SPOs during 2005–2009. 

Further scrutiny led to the splitting of the set of variables into two subgroups: one classifying 

individual deaths by {Age, Sex, BasicCause} and other representing deaths as registered in the 

Certificate due to multiple causes. The latter subgroup behaved the same way as the entire 

group, with a predominant SPO in Requena, followed by Torrevieja and Orihuela. In contrast, 

in the former subgroup we found a predominant SPO in the departments of Torrevieja and 

Valencia. Figure 5 (b) and (c) show the MSV plots of the two subgroups in 2008, showing 

interdepartmental dissimilarities. 

Drilling down to individual variables, we found Requena to be the outlier with respect to 

ContributiveCauses1–3. However, the anomaly disappeared after discarding the category NA. 

We therefore analyzed the number of filled causes by the departments and found that 

Requena was the department that had filled the maximum number of contributive causes. This 

may reflect an isolated practice in a small department composed of an older population.  

We also found that Torrevieja was the outlier with respect to the age at death, being the 

opposite of Requena. This difference may be due to the large number of deaths of young men 

in Torrevieja, which additionally counts with large settlements of immigrants from Eastern 

Europe and Russia. Other studies have noted the much greater incidence of cancer in 

Torrevieja and other places close to it probably related to immigration.[34] Lastly, the 

dissimilarity between Valencia and other departments is mainly due to its lowest proportion of 

deaths of men in Valencia. 
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Figure 5: Monitoring of the Departmental Anomalies Based on the Distribution of All Variables in the Repository 

During 2001-2012 using SPO monitoring (a). MSV plots for visualizing the variability among the distributions of the 

health departments in 2008 are shown for the multivariate combinations {Age, Sex, BasicCause} (b), and multiple 

causes {InitialCause[1,2,3], IntermediateCause[1,2,3], ImmediateCause[1,2,3], ContributiveCause[1,2,3]} (c). 

Circles represent the health departments (see the key to the names at the end), their color represents the source 

SPO, and their size reflects the sample size. 

 

Departmental Subgroups 

The existence of source subgroups, i.e., groups of sources with similar probability distributions, 

was addressed next. The MSV plots uncovered a multi-site subgroup formed by most 

departments in the province of Alicante, mainly found in ImmediateCause1, 

IntermediateCause1 (Figure 6), and InitialCause1. Discarding the category NA, the subgroup 

was not present in InitialCause1; however, it still was present in ImmediateCause1 and 

IntermediateCause1. This indicates a local variation of such departments both in terms of the 

number of filled causes and the causes of death, which may reflect an isolated practice in 

death certification (for example, we found that 27% of the records were left unfilled with 

respect to InitialCause1 in the subgroup of the province of Alicante whereas for the rest, the 

proportion was 12%). The subgroups were empirically confirmed using clustering algorithms 
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based on the dissimilarity matrix of interdepartmental distribution distances obtained from 

the method. 

Additionally, the change to the death certification in 2009 can be seen in Figure 6 as a global 

change affecting all data points in the last batch (2009-2012), but not necessarily equally. 

Figure 6: Variability of IntermediateCause1 Among the Distributions of the Health Departments over Time (4-Month 

Batches using MSV plot Monitoring). Circles represent the health departments (see the key to the names at the 

end), their color represents the source SPO, and their size reflects the sample size. A subgroup formed by most 

departments in the province of Alicante is at upper right part throughout. Besides, the change to the death 

certification in 2009 can be seen as a global change affecting all data points in the last batch (2009-2012), but not 

necessarily equally. 

 

DISCUSSION 

Table 3 summarizes the main findings and their causes. Such a table may constitute a form of 

feedback for the management of variability in repositories, either to avoid any problem or bias 

in the data to be reused, or to improve the processes of data acquisition and repository 

maintenance, as well as to prevent future problems related to DQ. 

It is important to note that in some cases, variability may be inherent to environmental or 

population differences. However, in other cases, variability may be undesired, e.g., that due to 

faulty acquisition processes, biased actuations or variations in protocols. Regardless of 

whether variability is inherent or undesired, variability findings suggest investigating such a 

lack of concordance for a proper data reuse. 

Hence, before reusing the data in the MRRV repository, users should consider the problems 

the above-mentioned findings may cause. A selection of them is described in Table 4, in which 

we attempt to provide a generic list of findings related to multi-source or temporal variability 

in repositories along with their possible causes, problems in reusing the data, and solutions. 

Table 3: Variability in the Mortality Registry and its Causes. 

Note Observable causes are those intrinsic to the data and found during the assessment process. The possible 

original causes are the external factors that cause the variability. The causes are linked to generic findings in Table 4 

using the codes given in the first column. 

Finding (generic code in Table 4) Observable Cause Possible Original Cause Detected by 
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Temporal anomaly from January 
to March 2000 (F1) 

A great deal of missing data 
in temporal batches 

Lack of electronic coding 
of paper certificate 

- IGT plot (Figure 2 (a)) 

- Temporal heat map (section 8, 

Appendix A) 

Gradual change through the 
period of study (F2) 

Gradual shifts in probability 
mass of causes of death 
through time 

Increase of life 
expectancy, social and 
clinical changes in 
practice  

- IGT plot (Figure 2 (b)) 

- PDF-SPC (Figure 3) 

Abrupt change in March 2009 
dividing the repository into two 
temporal subgroups (F3) 

Abrupt change in probability 
of NAs for most variables, 
and to a small extent in 
other specific causes of 
death including the basic 
cause 

Change in the national 
certificate of death 

- IGT plot (Figure 2 (b), Figure 4 

(a,b)) 

- PDF-SPC (Figure 3) 

- Temporal heat map (Figure 4 

(c)) 

- MSV plot monitoring (Figure 6) 

Other minor abrupt changes in 
2005, 2009, and 2011 (F3) 

Abrupt changes in 
probability mass of specific 
causes of death 

National programs for 
control and prevention 
of diseases, redesign of 
certificate, change of 
disease patterns 

- IGT plot (Figure 4 (a,b)) 

- Temporal heat map (Figure 4 

(c)) 

Seasonal variations in causes of 
death (F4) 

Seasonality of diseases, 
mainly winter-specific 
respiratory diseases and 
greater incidence of heart 
diseases in summer 

Normal environmental 
and social effects 

- IGT plot (Figure 2 (b)) 

Department of Requena as an 
outlier (F5) 

Requena provides more 
number of causes, specially 
contributive causes 

Isolated certificate filling 
practice in the small 
department with older 
population 

- SPO monitoring (Figure 5 (a)) 

- MSV plot (Figure 5 (b)) 

Anomalous Department of 
Torrevieja (F5) 

Anomalous population, with 
more deaths of young men  

Different population due 
to immigration 

- SPO monitoring (Figure 5 (a)) 

- MSV plot (Figure 5 (c)) 

Subgroup composed of 
departments in the province of 
Alicante (F6) 

More intermediate and 
initial causes filled but fewer 
filled with immediate causes. 
Other differences in 
incidence of causes. 

Isolated certificate filling 
practices 

- MSV plot (Figure 6) 

 

The problems listed in Table 4 are associated with basic research uses of data, namely for 

empirical derivation of hypotheses or statistical models. The proposed solutions vary with the 

sites or time affected and include fixing or excluding data or applying specialized data analysis 

methods. For example, for statistical modeling, an abrupt temporal change may reduce the 

model’s effectiveness when using the data for the entire period, where a model with a good 

further generalization would be one giving more importance to latest data Besides, a 

probabilistically isolated site or group of sites may bias the results of a global analysis.[35] 

Excluding biased sites would improve the global results and in the case of multi-site subgroups, 

a good solution would be to analyze them separately or using a mixed-model approach.[36] An 

alternative solution which may reduce user involvement could be using incremental learning 

approaches, which rank the data in terms of importance by their age[37] or provenance.[38] 
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Fixing problematic data may also be considered when variability is associated with intrinsic 

problems with DQ such as changes in completeness or consistency of data.  

Table 4: Generic Temporal and Multi-site Variability Findings and Possible Causes, Problems, and Solutions 

Generic Finding (code) Generic Possible Cause Possible Data Reuse Problems Possible Solutions 

Punctual temporal anomaly 
(F1) 

Biased temporal batch 

Biased container time period (a 
year given a biased month), 
inaccurate research hypotheses 
or statistical models 

Fix temporal batch; 
remove container time 
period 

Gradual change (F2) 
Normal evolution of 
population or clinical practice 

Outdated statistical models 
Incremental learning of 
models 

Abrupt change causing 
temporal subgroups (F3) 

Change of protocols, 
systematic errors, 
environmental or social effects 

Inaccurate research hypotheses 
or statistical models: results 
that are not concordant before 
or after 

Separate analyses, 
incremental learning of 
models 

Seasonality (F4) 
Normal environmental or 
social effects 

Inaccurate statistical models 
Season-specific models, 
mixed models 

Anomalous sites (F5) 
Anomalous population, biased 
clinical practice or systematic 
errors 

Biased research hypotheses or 
statistical models: incompatible 
decisions or models among 
sources 

Separate analyses or 
separate models for 
outlying sites, mixed 
models 

Multi-site subgroups (F6) 
Separate analyses or 
separate models for 
subgroups, mixed models 

 

The proposed approach does not attempt to be a general DQ assurance approach for multi-

site repositories, as shown by Kahn et al.[11] or Walker et al.[6], but to provide a 

comprehensive approach for the specific problems of multi-source and temporal variability. 

Nevertheless, we are not the first to suggest that variability needs to be managed before 

reusing data. Controlling the variability of data and outcomes to some extent is common in 

clinical trials that use classical statistical methods.[39-41] The variability among sites—mainly 

related to semantic or integration aspects—is controlled as well[6, 11, 41, 42]. However, 

semantic interoperability does not ensure that the aforementioned variability problems are 

properly managed; unfortunately, these problems will be reflected in probability distributions 

of data. Therefore, we advocate a `probabilistic interoperability´ assessment. In fact, Walker et 

al.[6] remark that statistical summaries of multi-site data are important for the shareability of 

their datasets under a centralized quality assurance assessment. Probabilistic methods such as 

those applied in the present study permit simultaneous managing of most of these biases, 

intrinsic DQ problems, and population differences in a metric and visual way. Further, in big 

data environments classic statistical methods may be inadequate. For example, analysis of 

variance (ANOVA) is aimed at testing for differences among Gaussian homoscedastic groups of 

data; however, the test is greatly affected by large sample sizes and not suited to multi-modal 

distributions. As an alternative, the GPD and SPO metrics are independent of sample size, 

useful with non-parametric continuous and categorical variables and even with a mix 

containing multiple variables of both types. 

The proposed generalizable approach may be adopted in controlling data variability in 

research projects or multi-site data-sharing infrastructure. Additionally, ensuring DQ requires 
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specific areas of research and investment in public health.[8,14] For example, the WHO 

recommends conducting regular checks to validate death certification in hospitals as well as 

investigating new technologies to understand large data sets,[30] where the multi-source and 

temporal methods presented here may prove particularly useful. 

Limitations 

Due to the high number of possible combinations of variables, the efficiency of the approach 

may be improved through automated procedures or a guided Graphical User Interface. 

Besides, although the methods permit quantitative and qualitative descriptions of variability, it 

is the duty of the investigator to look for external original causes of variability, based on the 

insights provided by these methods. 

Although the methods permit the analysis of multivariate joint distributions, we used the PCA 

dimensionality reduction method because it was simple and enabled us to find the most 

relevant problems. However, other non-linear methods may be better suited to multi-type and 

multi-modal data. We also found that the PDF-SPC algorithm may require a calibration of its 

thresholds in some situations, instead of using the classical three-sigma rule used in the 

present study. 

Future Work 

In functional terms, the next item of work is to incorporate the systematic approach into a 

general DQ assessment procedure as well to find ways of automatic monitoring and navigation 

through increasingly granular variables, data sources, and time periods. 

 
In terms of research, we need to focus more on multivariate interactions; e.g., removing 

individual variable effects using mutual information.[43,44] Finally, the applied metrics need to 

be characterized with respect to alternative statistical methods such as effect size analysis to 

facilitate practical interpretation of the metrics. 

CONCLUSION 

Undesired variability in data distributions among sites or over time can be considered a DQ 
problem, which may lead to inaccurate or irreproducible results when the data are reused. The 
present study shows that the applied probabilistic methods may be useful as a systematic and 
generalizable approach to detect and characterize multi-site and temporal variability in large 
multi-site data that need to be reused. We suggest that, in addition to integration and 
semantic aspects, the temporal and multi-site probabilistic variability of data be incorporated 
in systematic procedures of assessing DQ to help ensure that valid conclusions are drawn 
when such data are reused. 
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