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Subclinical mastitis causes great economic losses in ovine dairy livestock due to the reduction 5 

of milk yield and the alteration of its chemical composition. In this paper the effect of 6 

subclinical mastitis on milk yield and composition has been quantified on the half-udder basis 7 

by a direct comparison between infected and uninfected glands. A compensation of milk loss 8 

in the infected gland by an increase of milk production in the uninfected one has been 9 

confirmed. Changes appeared in the very week of infection and remained within the current 10 

lactation.  11 
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The aim of this work was to quantify at half-udder level the changes of ewe milk yield and 25 

composition because of unilateral subclinical mastitis within the current lactation. 26 

Fluctuations due to production level, infection severity, time from the onset of infection and 27 

lactation curves were also researched. Yield and composition of milk from half-udders of 28 

unilateral infected ewes were compared between them and with a set of healthy halves using a 29 

mixed model. The experiment was completed with a whole-udder approach on the same 30 

animals. To test the effect of intramammary infection (IMI) in the following 7 weeks from the 31 

onset of infection, 20 ewes that acquired unilateral subclinical mastitis during lactation and 40 32 

healthy ones were used. Another group of 20 ewes unilaterally infected from the first lactation 33 

week and other 40 healthy ones were studied to test the effect of IMI on the lactational milk 34 

yield and composition. The individual milk loss in ewes infected along lactation was of 15% 35 

for the following 7 weeks after the onset of infection, and a 6.6% more milk production by the 36 

uninfected half to compensate milk lost by the infected one was quantified. The lactational 37 

milk yield loss in ewes infected from post-partum week was of 17%. The changes on milk 38 

yield were noticed from the very week of infection diagnosis. The production level of animals 39 

influenced the milk yield changes caused by IMI in such a way that the more productive ewes 40 

lost more milk, although these losses were proportional to their production level. On the other 41 

hand, infection severity affected milk loss between glands, being more pronounced as SCC 42 

increased. A clear decrease of lactose content and of casein/protein ratio because of 43 

subclinical IMI was obtained and this reduction was not modified along the trial.  44 

Key words: subclinical mastitis, ewe milk yield, ewe milk composition, lactation. 45 

INTRODUCTION 46 

Mastitis causes loss of milk yield and modification of main components as a result of 47 

damage in the mammary secretor tissue (Burriel, 1997; Burriel and Wagstaff, 1998). Previous 48 

studies on dairy sheep reported that subclinical intramammary infection (IMI) by CNS is the 49 
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single major factor affecting flock milk yield (Gonzalo et al., 2002; Leitner et al., 2008; 50 

Giadinis et al., 2012) and cause negative effects on milk cheese-making suitability (Leitner et 51 

al., 2004; Martí-De Olives et al. 2011). In contrast to clinical mastitis, subclinical one is 52 

imperceptible and therefore affected udders are milked into the bulk milk tank. Frequently the 53 

glands are not treated and the milk yield loss remains during the subsequent lactation 54 

(Gonzalo et al., 2004). Infection severity, type of bacteria and unilateral or bilateral character 55 

(one or two infected glands, respectively) determine the consequences of subclinical IMI on 56 

ewe milk yield (Gonzalo et al., 2002). A relationship between lactation stage and subclinical 57 

mastitis has also been reported, in such a way that milk yield is more correlated to the SCC at 58 

the end of lactation than at the beginning (Arias et al., 2012).  59 

Milk production losses as affected by subclinical IMI in sheep has been demonstrated by 60 

means of different approaches, as much at individual (Saratsis et al., 1999; Gonzalo et al., 61 

2002; Leitner et al., 2003) as at half-udder level (Leitner et al., 2004; Cuccuru et al., 2011). 62 

However, quantifying this effect with precision is difficult. The conventional whole-udder 63 

approach requires a data set of a numerous samples to take account for the large and 64 

significant individual variations (Gonzalo et al., 1994, 2002). Moreover, when only one gland 65 

is infected, the effect of mastitis can be underestimated because of a possible compensatory 66 

milk production from uninfected half (Leitner et al., 2004).  67 

Subclinical IMI also leads to a modification of main milk components. In ovine milk the 68 

content of lactose decreased with IMI (Díaz et al., 1996; Burriel, 1997; Bianchi et al., 2004) 69 

mainly because of the reduced synthesis capacity of damaged tissue (Burriel, 1997), but also 70 

because of a lesser availability of its precursor, the glucose, due to a competition for energy 71 

between secretor cells and those with phagocyte function (Rulquin, 1997). Fat and casein are 72 

modified in some way or other depending on the magnitude of milk yield reduction. 73 

Frequently, the reduction of milk volume could be greater than the decrease of fat and casein 74 
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synthesis as a result of IMI, resulting in a concentration of those components in milk (Schultz, 75 

1977; Burriel, 1997). In adition, lactose can amplify this concentration effect because it is an 76 

osmotic regulator of milk, its decrease involving itself a reduction of milk volume (Munro et 77 

al., 1984; Burriel, 1997). On the other hand, the components that come from blood, like whey 78 

proteins, normally increase because of the higher blood-milk barrier permeability during an 79 

IMI (Díaz et al., 1996; Leitner et al., 2003; Bianchi et al., 2004). 80 

With the aim of quantifying the changes in ewe milk yield and composition because of 81 

unilateral subclinical mastitis within the current lactation, two studies were developed on two 82 

groups of ewes according to the moment of first IMI diagnosis: the first study was done on 83 

ewes infected along lactation, in which there were preinfection values that corrected the 84 

postinfection ones and improved the precision (Rajala-Schultz et al., 1999). The second study 85 

was done on ewes infected from post-partum week, and its objective was to state the curves of 86 

lactation and the lactational milk yield and composition changes. To obtain a high reliable 87 

estimation, the experiment was carried out by means of both half-udder and whole-udder 88 

approaches.  89 

MATERIALS AND METHODS 90 

Animals and Experimental Design  91 

This work was carried out during two annual lactations on the experimental farm flock of 92 

Manchega ewes of the Institute for Animal Science and Technology of the Polytechnic 93 

University of Valencia (Spain). The trial was accomplished with an initial number of 145 94 

ewes without sign of clinical mastitis (76 and 69 ewes for the first and second year, 95 

respectively). Ewe parities were: first, 33; second and plus, 112. The animals were stabled 96 

throughout the lactation period and were machine milked twice daily at 08:30 and 17:30 h 97 

from third day after lambing.  98 
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In each annual lactation period the trial was developed during 16 weeks. All births 99 

occurred along 4 weeks, so all animals were checked at least 12 lactation weeks. The presence 100 

of IMI in each gland was tested by bacteriological and SCC measures twice a week during the 101 

first 15 d after lambing and then once a week for the next 14 wk. Milk yield and main 102 

components were checked once a week, both on complete udders at morning and evening 103 

machine milking and on half-udders by emptying the gland by hand after an oxytocin injection 104 

(productive potential of milk, PPM). Checking on complete udder milk was made from the 105 

first week post-partum and checking on half-udder milk was made from the second lactation 106 

week, because of the difficulty on emptying completely the glands during the first days of 107 

lactation.  108 

To increase the incidence of IMI, and consequently the number of cases to study, 2 109 

management practices were applied. The first was the immersion of all teats in a bacterial 110 

suspension of Staphylococcus simulans (5×107 cfu/mL) between wk 4 and 8 after lambing. 111 

The immersions were practised on 4 alternating days, at the morning and evening milking (8 112 

milkings) and immediately before application of the milking unit. The second practice was no 113 

dipping of teats after milking throughout the trial. 114 

Bacterial Challenge  115 

The bacterial suspension was made from a Staph. simulans strain obtained from a gland with 116 

subclinical mastitis from a commercial flock. Staphylococcus simulans forms part of the group 117 

of CNS that are considered opportunist microorganisms normally found on healthy teat skin as 118 

well as on the hands of milkers. Consequently, Staph. simulans may easily colonize the teat 119 

canal and infect the mammary gland. The bacterial suspension used to dip the teats was prepared 120 

according to Hogan et al. (1990). Stock cultures of Staph. simulans were stored at −20°C in 50% 121 

glycerine. A 6-mL tube of trypticase soy broth (TSB) was inoculated from a vial of stored stock 122 

culture and incubated at 37°C for 7 h. One milliliter of this starter culture was used to inoculate 123 
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500 mL of TSB, which was then incubated for 16 to 18 h at 37°C on a gyratory shaker. Cells 124 

were pelleted by centrifugation, washed twice with a 0.1% water solution of proteose-peptone 125 

(no. 3, Difco Laboratories, Detroit, MI), and resuspended in proteose-peptone. A standard plate 126 

count was conducted on the stock suspension before it was stored at 5°C. The plate count was 127 

used to determine the dilution required to prepare daily challenge suspensions containing 5 × 107 128 

cfu/mL in TSB. The challenge suspension was prepared immediately before use. 129 

Bacteriological Analysis  130 

To obtain milk samples for bacteriological analysis, teats were carefully cleaned with 70% 131 

ethanol and the first three streams of foremilk were discarded. Approximately 10 mL of milk 132 

were collected aseptically from each gland before the morning milking. Samples were kept at 133 

4ºC for a maximum of 12 h until bacteriological analysis. Twenty microliters of each sample 134 

were plated on blood agar plates (5% washed sheep eritrocytes; Biomerieux, Lyon, France). 135 

The plates were incubated aerobically at 37ºC and examined at 24 h, 48 h, and 7 d. Cultures 136 

with five or more identical colonies were considered positive for IMI. A new IMI in a half 137 

udder was diagnosed when the same bacterial species was isolated from two consecutive 138 

positive for IMI samples ( ≥ 250 cfu/mL). A gland diagnosed with IMI was considered 139 

infected from the first sampling in which the culture was positive for IMI. Bacteria were 140 

identified according to the National Mastitis Council recommendations (Harmon et al., 1990). 141 

Identification of staphylococci was carried out using commercial micromethods (API STAPH; 142 

BioMèrieux, Lyon, France). SCC was determined with a Fossomatic 90 (A/S N Foss Electric, 143 

Hiller∅d, Denmark) in all samples taken for the bacteriological analysis. Samples remained 144 

under refrigeration for 24 to 48 h before being analyzed (IDF, 1995).  145 

Sampling and Analysis 146 

Whole-udder milk yield was determined by volume measurers during morning and evening 147 

milking. Half-udder milk yield was estimated by using the productive potential method such 148 
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that a first intravenous injection of 3 I.U. of oxytocin was administered to animals after the 149 

milking and the glands were completely emptied by handling milking. After a period of 4 150 

hours a second injection of oxytocin (3 I.U.) was administered and glands were completely 151 

emptied again, and milk of each gland was collected separately. The obtained milk by this 152 

method was measured using graduated test tubes. To estimate the quantity of milk that each 153 

gland could synthesize par day (PPM), the milk quantity obtained within 4 hours was 154 

multiplied by 6.  155 

From each milk sample, both obtained from complete udders and from half udders, a 50 156 

mL aliquot was transferred into a plastic storage jar and was moved into portable refrigerator 157 

and storaged at 4ºC until analysis. Milk composition (fat, protein, true protein, casein, whey 158 

protein, lactose and dry matter) was determined by midrange infrared spectroscopy using a 159 

MilkoScan FT120 (Foss Electric, Hiller∅d, Denmark). The mean percentage of components in 160 

milk samples from whole-udder were determined by meaning percentages obtained from 161 

morning and evening milking weighted by volume of milk. 162 

Grouping of Ewes for Data Analysis 163 

Depending on the moment of the first IMI diagnosis, the infected ewes were divided into 164 

two groups to be analysed within two separate studies. The first group included ewes that 165 

were free of IMI at first post-partum days and acquired unilateral subclinical mastitis along 166 

lactation. The second group comprised ewes that were diagnosed with unilateral subclinical 167 

mastitis at first checking, at post-partum period. In both cases a set of healthy ewes were 168 

selected to be blocked into trios together with infected ewes as control animals. In each trio, 169 

one ewe was infected and the other two ones were healthy throughout the trial and similar in 170 

parity, milk production and lactation state at the moment of selection. 171 

Study of ewes infected along lactation. 20 unilaterally infected ewes and the 40 free of 172 

IMI ones with which they were blocked were included in this analysis. Ewes with an 173 
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inappropriate for the experiment udder health status (clinical mastitis, bilateral infection) and 174 

too late infected sheep (with less than 5 weeks postinfection) were excluded. Parities of the 20 175 

ewes were: first, 10; second and plus, 10. The ewes acquired IMI between the 3th and 10th 176 

lactation week and kept infected during the rest of the trial. The averaged infection period 177 

during which they were permanently infected was 6.5 weeks. The variable “Infection Week” 178 

(IW) was defined as the time (in weeks) that passed from the moment of first IMI diagnosis. 179 

So, IW = -1 corresponded to the week before the first diagnosis, IW = 0 was the week of first 180 

diagnosis, week IW = 1 the week just after the first diagnosis, and so on until IW = 6 (from 181 

there on we had not enough animals to be analysed). Therefore two experimental periods were 182 

established: a preinfection period of two weeks (IW = -1 and -2), and a postinfection period of  183 

7 weeks (IW = 0, 1, 2, 3, 4, 5, and 6).  184 

Study of ewes infected from post-partum week. 20 ewes with unilateral subclinical 185 

mastitis at post-partum period and 40 free of IMI ewes with which they were blocked were 186 

included. Therefore, there was not a preinfection period in this case. Ewes with an 187 

inappropriate for the experiment udder health status (clinical mastitis, bilateral infection) were 188 

excluded. Parities of the 20 ewes were: first, 9; second and plus, 11.  189 

Statistical Analysis 190 

Statistical analyses were performed using the SAS program (SAS, 2011). Several mixed-191 

effects models (by Mixed procedure) were used to study the effects of different factors on 192 

Log10 SCC, individual milk yield, PPM of half udders and milk composition parameters. At 193 

half-udder level the following mixed model was used to analyse data of ewes infected along 194 

lactation in the preinfection period: 195 

Yijklmn = µ + YEARi + EISj + Ek (YEAR×EIS ij) + GISl + GLAm (E×GISkl) + IWn + 196 

YEAR×EISij + E×GISkl + EIS×GISjl + EIS×GIS×IWjln + EIS×GIS×YEARjli + eijklmn [1] 197 

Where Yijklmn = records of each variable; µ  = general mean; YEARi = year effect (i = 1, first 198 
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year; i = 2, second year); EISj = fixed effect of ewe infectious status (j = 1, healthy ewes; j = 2, 199 

infected ewes); Ek (YEAR× EIS ij) = random effect of the ewe nested in YEAR×EIS ij 200 

interaction (k = 1, 2, 3, …, 60); GISl = fixed effect of gland infectious status [l = 1, infected 201 

glands from infected ewes (type A glands) or healthy glands from healthy ewes (type C 202 

glands); l = 2, healthy contralateral glands to A glands (type B glands) or healthy contralateral 203 

glands to C glands (type D glands); letters C and D were randomly assigned to each gland of 204 

healthy ewes; GLAm (E×GISkll) = random effect of gland nested in E×GISkll interaction (m = 205 

1, 2, 3, …, 120); IWn = fixed effect of infection week (n=0, 1, 2, 3,….6); YEAR×EISij = year × 206 

ewe infectious status interaction; E×GISkl = ewe × gland infectious status interaction; 207 

EIS×GISjl = ewe infectious status × gland infectious status interaction; EIS×GIS×IWjln = ewe 208 

infectious status × gland infectious status x infection week interaction; EIS×GIS×YEARjli = 209 

ewe infectious status × gland infectious status x year interaction ; and eijklmn = residual effect. 210 

In the postinfection period, the mixed model used to analyse data of ewes infected along 211 

lactation at half udder level was the same as [1] with adding the mean value of preinfection 212 

period as a covariate (COV). At individual level the model used to analyse data of ewes 213 

infected along lactation in the preinfection period was: 214 

Yijkl = µ + YEARi + EISj + Ek (YEAR×EIS ij) + IWl + YEAR×EIS ij + EIS×IWjl + eijkl [2] 215 

The model used in the postinfection period to analyse data of ewes infected along lactation 216 

at individual level was the same as [2] with adding the mean value of preinfection period as a 217 

covariate (COV). The models used to analyse data of ewes infected from post-partum week 218 

were the same that above ([1] and [2]) except that the covariate was not included in any case 219 

because of the absence of preinfection period. 220 

To evaluate the influence of infection severity and milk production level on the magnitude 221 

of milk losses, both in the study of ewes infected along lactation and that of ewes infected 222 

from post-partum wk, several regression analyses were done with the Reg procedure. A file 223 
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with mean values of the infected ewes was used to make the regressions. There were two 224 

dependent variables: the first was, for each infected ewe, the mean value of the differences 225 

between the PPM of healthy and infected gland along the postinfection period (PPMDm); the 226 

second was, for each infected ewe, the PPMDm expressed in relative terms, calculated by 227 

dividing PPMDm by the postinfection mean PPM of healthy gland (PPMDm%). The 228 

independent variables were calculated by different manner depending on the group of ewes 229 

considered. In the case of ewes infected along lactation the independent variables were, for 230 

each ewe, the mean value of PPM of both glands in the preinfection period (PPMm), and the 231 

mean value of Log10SCC of the infected gland during the postinfection period (Log10SCCm). 232 

In the case of ewes infected from post-partum wk, the independent variable Log10SCCm was 233 

calculated by the same way but the PPMm was calculated, for each ewe, as the mean value of 234 

PPM of healthy gland during the 3 first checking. A total of 12 regression equations were 235 

obtained, in the way that for each dependent variable (PPMDMm and PPMDMm%) three 236 

regression equations were obtained for each study: two regressions with one variable (PPMm 237 

or Log10SCCm) and one regression with the two variables all together.     238 

RESULTS  239 

Characteristics of Ewes  240 

In the study of ewes infected along lactation, the infections occurred between weeks 3 and 241 

10 from lambing, although the majority (14 ewes out of 20) were infected between weeks 7th 242 

and 9th. Most of the infections, 13 out of 20 isolates, were caused by the same bacteria 243 

utilized to carry out the immersions (Staph. simulans), whereas the other infections were 244 

caused by Staph. epidermidis (in three isolates), and Streptococcus spp., Staph. xylosus, 245 

Micrococcus spp., and  Str. Bovis in one isolate each one.  246 

In the group of ewes infected from post-partum week, the most isolated microorganisms 247 

were Staph. simulans (10 infections), followed by Streptococcus spp. (2 isolates); and finally 248 
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the germs Staph. epidermidis, Klebsiella pneumoniae, Staph. caprae, Staph. capitis, Serratia 249 

marcencens, Staph. aureus, Staph. xylosus and Staphylococcus spp. caused one mastitis each 250 

one.  251 

Effect of Subclinical IMI at Half-Udder Level 252 

In the preinfection period, in the study of ewes infected along lactation year was 253 

statistically significant upon all variables, but the YEAR x EIS x GIS interaction effect was 254 

not significant. The effect of EIS x GIS interaction was not significant either, so that the 255 

average values of all variables were not significant different because of gland’s type (A, B, C, 256 

and D).  257 

In the postinfection period, both in the study of ewes infected along lactation and that of 258 

ewes infected from post-partum week, year significantly affected several variables but the 259 

YEAR x EIS x GIS interaction effect was not significant. However, EIS x GIS interaction was 260 

significant upon Log10 SCC, PPM, protein, true protein, casein/protein, whey protein and 261 

lactose.  262 

In Table 1 it may be observed the LS means (±SEM) of the considered parameters and their 263 

significance levels as affected by gland health status during the postinfection period. In both 264 

studies, Log10 SCC presented a significant higher mean value in infected glands than in 265 

healthy ones, and in milk of B healthy glands (contralateral to infected ones) Log10 SCC was 266 

significantly higher than in milk from C and D healthy glands. Nevertheless, the three values 267 

were very low and typical of free of IMI glands. In both studies, the average (± SEM) PPM in 268 

infected glands (A glands) was smaller than that expressed by all healthy ones (B, C and D 269 

glands). During the 7 weeks postinfection, in ewes infected along lactation the difference of 270 

PPM between the infected glands and their contralateral healthy ones was of 38%. A 271 

significant 6.6% average PPM difference was established between B healthy glands (572 272 

mL/d) and C and D glands (average of 534 mL/d), indicating that healthy glands produced 273 
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more milk when their contralateral glands were infected than when their contralateral ones 274 

were healthy. 275 

When the analysis was made on the ewes infected from post-partum week the mean PPM 276 

of infected glands along 11 lactating weeks was 61% smaller than that obtained in the healthy 277 

glands of the same animals (A glands, 311 mL/d vs. B glands, 798 mL/d). Moreover, the PPM 278 

of healthy B glands was higher than that of healthy glands from control ewes (B glands, 798 279 

mL/d vs. C glands, 648 mL/d and D glands, 649 mL/d).  280 

With respect to chemical composition of milk (Table 1), it was observed a similar trend in 281 

the study of ewes infected from post-partum week and in that of ewes infected along lactation, 282 

showing a significantly higher protein, true protein and whey protein in infected glands (A) 283 

than in healthy ones (B,C and D). Lactose and the casein/protein ratio were lower in infected 284 

glands, while fat, casein and dry matter did not present significant differences between glands.  285 

Factors Influencing Effect of IMI. In Table 2 it is shown the regression equations that 286 

correlate the productive level of animals and the infection severity (SCC level) with the PPM 287 

losses as affected by IMI, both in the study of ewes infected from post-partum week and in 288 

that of those infected along lactation. In equations [1] and [1’] of Table 2 it can be verified a 289 

significant relationship between the productive level (PPMm) and the mean PPM differences 290 

between glands of infected animals during the postinfection period (PPMDm). Nevertheless, 291 

when the PPMDm was expressed in percentage terms (PPMDm%) the regression analysis did 292 

not give a significant result (equations [4] and [4’]).  293 

In regression equation between PPMDm and Log10SCCm (equation [2]) on the ewes 294 

infected along lactation, the determination coefficient was significant but low (R2=0.25) and 295 

the same parameter for PPMDm% (equation [5]) was not significant. In the analysis of ewes 296 

infected from post-partum week (equations [2’] and [5’]), both of the determination 297 

coefficients for PPMDm and PPMDm% (R2=0.63 and R2=0.40, respectively) were significant. 298 
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All the same, the determination coefficients were better when the regressions included both 299 

variables, PPM and Log10 SCC.  300 

In the Figure 1 it is shown the evolution of PPM in the four groups of glands (A, B, C and 301 

D) of ewes infected along lactation, during the next 7 weeks from the onset of infections. In 302 

IW = 0, when infections were diagnosed in glands A, an abrupt drop in the PPM of these 303 

glands was observed, and B glands presented a higher PPM than C and D ones. Because of the 304 

effect of triple interaction EIS x GIS x IW was not significant upon PPM, the differences 305 

between all glands did not varied during the postinfection period.  306 

In the group of ewes infected from post-partum week, the evolution of PPM in the four 307 

groups of glands (A, B, C and D) during lactation period is shown in the Figure 2. The effect 308 

of IMI was evident from the first checking week (second week from lambing) appearing a 309 

difference of approximately 500 mL/d between infected A glands and healthy B ones. From 310 

lactation week 2 to 3 all healthy glands (B, C and D) had a light rise in its PPM or held at the 311 

same level, and after experimented a decreasing trend until the end of the lactating period. 312 

However, in the infected A glands PPM decreased all time from the 2nd lactation week. In 313 

spite of these differences at the beginning of the lactating period, the EIO x EIG x SI 314 

interaction was not statistically significant. Nevertheless, when the differences of PPM 315 

between infected A glands and healthy B glands were expressed in percentage terms with 316 

respect to the healthy B glands, it was evidenced a significant rise of PPMDm% (P < 0.05) as 317 

lactation week advanced, from 51% in week 2 to 66% in week 12.  318 

In the case of the Log10 SCC and the milk components affected by IMI it was also observed 319 

a difference between glands from the week in which the infection was diagnosed, both in the 320 

ewes infected from first week post-partum and those infected along lactation. The interaction 321 

EIS x GIS x IW was not significant upon chemical parameters, so that the differences between 322 

glands kept constant from the week of first IMI diagnosis until the end of studied periods. 323 
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Only in the study of ewes infected along lactation was significant this interaction for Log10 324 

SCC (Figure 3). A decreasing trend was observed in A glands from the week of infection to 325 

the end of lactating period, while a typical rising trend in the B, C and D glands was observed. 326 

Nevertheless, in the ewes infected from post-partum week the effect of EIS x GIS x IW 327 

interaction was not statistically significant for Log10 SCC (Figure 4). 328 

Effect of Subclinical IMI at Individual Level  329 

During preinfection period at individual level, in the study of ewes infected along lactation 330 

year effect was statistically significant for fat and true protein, but the YEAR x EIS  331 

interaction effect was not significant for any variable. The effect of EIS was not significant 332 

either, so that the average values of all variables were not significant different because of ewe 333 

infection status. 334 

In the postinfection period, both in the study of ewes infected along lactation and that of 335 

ewes infected from post-partum week, year significantly affected several variables but the 336 

YEAR x EIS interaction effect was not significant for any of them. On the other hand, EIS 337 

effect was significant upon Log10 SCC, milk yield, casein/protein and lactose. In Table 3 it 338 

can be observed the mean values of parameters determined during postinfection period in 339 

individual milk of infected and healthy control ewes, both in the study of ewes infected along 340 

lactation and in that of infected from post-partum week. Log10 SCC presented a significant 341 

higher mean value in infected ewes than in healthy ones that was smaller than at half-udder 342 

level in the two studies, because of the milk came from the two glands and the content of cells 343 

in infected gland was diluted. The difference of individual milk production between infected 344 

and healthy ewes was of 15% in the study of ewes infected along lactation and 17% in that of 345 

ewes infected from post-partum week. All milk components followed the same pattern as at 346 

half-udder level, but the differences at whole-udder milk were moderated with respect to those 347 
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at half-udder one because of a dilution effect. Only the ratio casein/protein and lactose 348 

presented significant differences due to IMI at individual level (Table 3).   349 

The results from the analysis at individual level confirmed, in the two studies, the trend 350 

throughout time found at half-udder level, showing an abrupt drop of milk production in 351 

infected ewes as compared with healthy at the infection diagnosis week. During the 352 

postinfection period, milk yield in both studies decreased in a parallel way because of the EIS 353 

x IW interaction was not statistically significant. Also on casein/protein ratio and lactose 354 

content the effect of IMI was evident from infection diagnosis week in the two studies, and 355 

the differences between infected and healthy ewes kept constant during all the postinfection 356 

period, the EIS x IW interaction not being significant. Only in the study of ewes infected 357 

along lactation was significant this interaction for Log10 SCC. A decreasing trend was 358 

observed on infected ewes from the week of infection to the end of lactating period, while a 359 

typical rising trend in the B, C and D glands was observed. Nevertheless, in the ewes infected 360 

from post-partum week the effect of EIS x IW interaction was not statistically significant for 361 

Log10 SCC. 362 

DISCUSSION 363 

Infection Characteristics of Ewes 364 

Various CNS bacteria are the most abundantly occurring in isolates associated with 365 

subclinical mastitis in sheep flocks (Leitner et al., 2001, 2004; Gonzalo et al., 2002). The CNS 366 

bacteria are usually ignored by farmers and veterinarians because they are not considered as 367 

major pathogenic bacteria. However, in the present study, CNS infection, mainly that caused 368 

by novobiocin-sensitive CNS (NSCNS) induced the inflammatory response, reflected in a 369 

high SCC, which is consistent with previous findings in sheep (Ariznabarreta et al., 2002; 370 

Gonzalo et al., 2002; Leitner et al., 2003).  371 

Effect of IMI on Milk Yield 372 

 



 16 

In the present work the difference of PPM between the infected glands and their 373 

contralateral healthy ones, over the following 7 weeks to the onset of infection (that occurred 374 

between the 3th and the 10th lactation week), was of 38%. This difference was much higher 375 

(61%) when infection was already present at post-partum week and persists during the whole 376 

considered lactation period (from week 2 to week 12), not knowing the onset of infections. It 377 

is worth mentioning that the PPM values obtained in the two types of analysis can not be 378 

really compared between them, because of in the group of ewes infected from post-partum 379 

week there was not a preinfection value to correct the results. In other words, might be there 380 

was already a difference between A and B gland’s PPM before the first checking that would 381 

allow to an overestimation of the true PPM difference between glands. However, from 38% to 382 

60% there is a high distance that allowed us to hypothesize, first, that the reduction in milk 383 

yield could be biggest when IMI occurred in early lactation as reported in cows (Lucey and 384 

Rowlands, 1984; Rajala-Schultz et al., 1999; and second, that in the study of ewes infected 385 

from post-partum, higher value of PPM reduction could be due to a harder effect of a 386 

persistent mastitis if it was acquired in one or more previous lactations, as indicated in cow 387 

researches (Rajala-Schultz et al., 1999; Sloth et al., 2003).  388 

The results of the study of infections occurred along lactation draw an individual milk loss 389 

of 14% if percentage was calculated based on the PPM values from half-udder approach (the 390 

addition of halves of infected ewes, 924 mL/d, vs. the addition of halves of control ewes, 391 

1,068 mL/d). This percentage was consistent with the 15% of milk loss obtained from the 392 

whole-udder approach. So that, it can be said that the actual milk loss as a result of unilateral 393 

subclinical IMI in the conditions of the present research, could be quantified in 15% for the 394 

following 7 weeks after the onset of infections. This result was consistent with a previous 395 

work in which a similar approach was used (Peris et al., 1996), and in general with other 396 

authors who reported losses of milk yield by unilateral subclinical mastitis from 3 to 14.4%, 397 
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depending on the methods used to estimate it, on the bacteria involved and on the time of 398 

infection permanency (Dario et al., 1996; Gonzalo et al., 2002). The individual milk yield lost 399 

by ewes infected from post-partum week was of 17%, value that was very similar to the 15% 400 

lost by ewes infected along lactation. This find contrast with the great difference obtained at 401 

half-udder level between the two types of analysis (38% vs. 61%). Might be ewes with 402 

mastitis from the first lactation week were higher yielding animals before the infection than 403 

were their healthy herdmates, according to what generally occur in cows (Gröhn et al., 1995; 404 

Rajala-Schultz et al., 1999; Wilson et al., 2004), that would reduce the estimated individual 405 

differences due to IMI.  406 

Comparison of PPM of healthy glands from control ewes with PPM of healthy glands from 407 

infected ewes gave the possibility to demonstrate a compensation phenomenon previously 408 

suggested in sheep (Peris et al., 1996; Leitner et al., 2003), by which when only one half is 409 

infected the other half try to compensate by producing more milk, so that the loss of 410 

individual milk is moderated. The importance of knowing the existence and the magnitude of 411 

this compensatory phenomenon lie in the underestimation of real importance of subclinical 412 

IMI on milk yield if it is ignored, together with the fact that this adaptation could involve an 413 

overstrain of the mammary gland. The result of the present research, with a 6.6% more milk 414 

obtained in the uninfected gland during the postinfection period, confirm with statistical 415 

significance the previous results of Peris et al. (1996), where an increase of 7.4% were 416 

obtained. In that research the results had not statistical significance probably because of the 417 

limited data, in which only 8 unilateral infected animals were studied. This compensatory 418 

effect was estimated in 13% in cows (Woolford, 1985).  419 

In the study of ewes infected from post-partum week it can not be said that the higher PPM 420 

of B glands of infected ewes compared with glands of control sheep was due to a 421 

compensatory effect, because there were not previous to infection values. Maybe healthy 422 
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glands of the infected ewes had already higher milk yield than control ewes before the onset 423 

of checking period.  424 

Effect of IMI on Milk Composition and SCC 425 

Several components of milk were affected by subclinical IMI, the effect being established 426 

with higher statistical significance at half-udder level than at individual one. The reason of 427 

that may be the absence of individual factors because samples own to the same animal and 428 

that half-udder samples provide higher variation ranges than the whole-udder ones (Le Roux 429 

et al., 1995). The IMI reduced clearly the lactose content and the ratio casein/protein, the 430 

values being according to those reported by others authors (Díaz et al., 1996; Burriel, 1997; 431 

Bianchi et al., 2004). However, fat and casein did not present a significant variation, not even 432 

at the half-udder level. The reduction of secreted milk volume due to IMI could be at the basis 433 

of this absence of modification because of a concentration effect on these components 434 

synthesized components (Schultz, 1977; Burriel, 1997). In the literature, the content of fat 435 

frequently increases (Burriel, 1997) or remains without changes as affected by IMI (Díaz et 436 

al., 1996; Leitner et al., 2003). With respect to casein, some authors found a reduction of its 437 

content (Leitner et al., 2004), an increase of it (Bianchi et al., 2004) or any variation (Díaz et 438 

al., 1996). In any case, when the ratio casein/protein (parameter independent of the milk 439 

volume) was established, it was confirmed that it decreased as a result of infection (Bianchi et 440 

al., 2004) or elevated SCC (Pellegrini 1997; Pirisi et al., 1999). This is an important find for 441 

ewe milk producers because of, according to Klei et al. (1998), the ratio casein/protein is the 442 

parameter that justify the variations of cheese yield dues to proteins in milk, more than only 443 

casein concentration. In the present work, the increase of whey proteins in half udder milk as a 444 

result of the increase of the blood-milk barrier permeability during an IMI is likely that was 445 

the responsible of the reduction in the ratio casein/protein, as it was described previously 446 

(Díaz et al., 1996; Bianchi et al., 2004), because of casein content did not varied.  447 
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Influence of Production Level and Severity of Infection on Milk Yield Loss 448 

In the present research regressions were established to test the influence of production level 449 

of animales and infection severity on the mean of PPM lost par ewe along the postinfection 450 

period. The regressions showed that the more productive animals lost more quantity of milk 451 

because of IMI than the less productive ones, but these losses were proportional to the 452 

production level in healthy conditions, the predictions being more reliable in the case of ewes 453 

infected from post-partum week (higher R2) than in those infected along lactation.  The 454 

regressions also indicated that the infection severity affected the mean of PPM loss between 455 

glands of infected ewes during the postinfection period, both in absolute (PPMDm) and 456 

relative terms (PPMDm%), being more pronounced as Log10SCCm increased. The association 457 

between the two variables, PPMDm and Log10SCCm, appeared closer in ewes infected from 458 

post-partum week than in those infected along lactation. This difference was probably due to 459 

the larger number of observations in the whole lactating period test. In general, those results 460 

were consistent with Gonzalo et al., (1994) that obtained a mathematical model to estimate 461 

the individual milk yield as a function of Log10 SCC in sheep, accounting for 73% of the 462 

variation in milk yield. It is worth mentioning that in the research of these authors a total of 463 

8,403 samples from 3,202 ewes from 22 herds were studied, which provide a huge SCC 464 

variability corresponding to a great diversity of bacteria species, factor that is proved to affect 465 

the SCC and the milk production (Gonzalo et al., 2002).     466 

Influence of Time from Infection on Milk Yield Loss and Composition Changes  467 

The obtained results in the study of ewes infected along lactation, both at half and whole-468 

udder level, demonstrated that the milk yield dropped dramatically from the very week in 469 

which the infection was diagnosed. In the same way, the yield reduction in one gland was 470 

accompanied by a rapid increase in the yield of the other gland in the very week of infection. 471 

All that denoted a quick response of mammary secretor tissue to subclinical IMI, both in the 472 
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infected glands and in their collateral uninfected ones, according to Knight and Peaker (1991) 473 

in goats. Moreover the milk yield differences in absolute terms remained constant during the 7 474 

weeks following the onset of infections. In sheep, possible fluctuations of milk yield losses 475 

within the following weeks from infection have not been studied. In cows, the investigation of 476 

that has been focused on clinical mastitis, which is always treated after diagnosis. In these 477 

cases, it has been reported that after treatment the level of milk production for mastitic cows 478 

does not return completely to the level of that for healthy herdmates (Rajala-Schultz et al., 479 

1999; Wilson et al., 2004). 480 

In the ewes infected from post-partum week, the absolute differences between glands were 481 

evident from the first checking week, and remained the same during the rest of lactation. 482 

Nevertheless, the interest of this analysis lies in the estimation of lactational losses for milk 483 

yield and contents in sheep infected from the first wk postpartum, and also in the elucidation 484 

of the evolution of infection consequences along the lactation curve. In this sense, it should be 485 

pointed out that whilst there were not variations on the absolute magnitude of milk yield 486 

losses along the lactation period, the relative ones increased as lactation advanced because of 487 

the typical declining trend of lactation curve, the consequences of IMI getting worse as 488 

lactation advanced.  489 

The study of Log10SCC in milk from ewes infected during lactation showed that in the very 490 

week of infection, ewes experimented also a rapid and strong inflammatory response to IMI 491 

that next is slightly moderated. However, the trend of Log10SCC of ewes infected from post-492 

partum week, represented the typical curve for this parameter in ovine livestock (Fuertes et 493 

al., 1998) in all glands, infected and healthy. The absence of the progressive reduction of 494 

Log10SCC as lactation advanced that was observed in milk from ewes infected during 495 

lactation, reinforces the hypothesis that probably a considerable number of these infections 496 

were permanent infections acquired in previous lactations. Finally, in both studies the 497 
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differences in the studied milk components between glands infected and uninfected were 498 

manifested from the very week of infection diagnosis and also remain constant along the 499 

postinfection period.  500 

CONCLUSIONS 501 

The individual milk loss as a result of unilateral subclinical IMI acquired along lactation 502 

has been quantified in 15% for the following 7 weeks. This loss of milk yield was smaller 503 

than what it could be thanks to a 6.6% more milk produced by the uninfected half to 504 

compensate some of the milk lost by infected one. This compensatory adaptation highlights 505 

the risk for underestimate subclinical mastitis in sheep. The lactational milk yield loss in ewes 506 

infected from lambing was 17%. A rapid response of the mammary secretor tissue to 507 

subclinical IMI was noticed from the very week in which IMI were diagnosed and remained 508 

constant within the rest of lactation. The milk losses were proportional to the production level 509 

of ewes and infection severity affected the milk loss. The present research confirms the 510 

previous knowledge about the clear decrease of lactose content and the ratio casein/protein 511 

because of subclinical IMI in sheep. Those finds warn us about the negative consequences of 512 

subclinical IMI on the yield and quality of ewe milk and suggest the importance of subclinical 513 

mastitis control and treatment programs for the improvement of udder health status. 514 
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TABLES AND FIGURES 1 

Table 1. LS means (±SE) of the considered parameters as affected by the gland health status1 during the 2 
postinfection period 3 

      Infected ewes  Healthy ewes  

Parameter 
First 

diagnosis  
A 

(Infected) 
B 

(Healthy) 
 C 

(Healthy) 
D 

(Healthy) Signif. 

Number of ewes  20 20  40 40  

Log10 SCC  
SCC, g.m2, x 103 cells/mL 

Along Lact. 6.21 ± 0.05a 
1,622  

4.85 ± 0.05b 
71 

 4.71 ± 0.03c 
51 

4.74 ± 0.03c 
55  

*** 
- 

 Post-partum 6.17 ± 0.04a 
1,479  

4.77 ± 0.04b 
59 

 4.64 ± 0.02c 
44 

4.63 ± 0.02c 
43  

*** 
- 

PPM, mL/d Along Lact. 352±16a 572 ± 16b  528 ± 11c 540 ± 11c *** 

 Post-partum 311±23a 798 ± 23b  648 ± 18c 649 ± 18c *** 

Fat, % Along Lact. 8.65±0.16 8.52 ± 0.16  8.76 ± 0.12 8.74 ± 0.12 NS3 

 Post-partum 8.11 ± 0.20 8.13 ± 0.17  8.36 ± 0,11 8.24 ± 0,11 NS 

Protein, % Along Lact. 5.81 ± 0.04a 5.50 ± 0.04 b  5.51 ± 0.03 b 5.50 ± 0.03 b *** 

 Post-partum 5.63 ± 0,04a 5.38 ± 0,03 b  5.39 ± 0,02 b 5.41 ± 0,02 b *** 

True Protein, % Along Lact. 5.51 ± 0.06 a 5.18 ± 0.06 b  5.19 ± 0.04 b 5.19 ± 0.04 b *** 

 Post-partum 5.33 ± 0,06 a 5.06 ± 0,03 b  5.08 ± 0,03 b 5.06 ± 0.03 b ** 

Casein, % Along Lact. 4.69 ± 0.11 4.50 ± 0.08    4.52 ± 0.04  4.52 ± 0.04  NS 

 Post-partum 4.36 ± 0.03 4.28 ± 0.03    4.35 ± 0.02  4.36 ± 0,02  NS 

Casein/Protein  Along Lact. 78.58 ± 0.51a  80.29 ± 0.43b  80.39 ± 0.33b 80.46± 0.30b ** 

 Post-partum 77.60 ± 0.35a  79.32 ± 0.30b  80.39 ± 0.22b 79.91 ± 0.23b * 

Whey Protein, % Along Lact. 0.97 ± 0.05a 0.84 ± 0.05b  0.84 ± 0.03b 0.86 ± 0.04b * 

 Post-partum 0.95 ± 0.04a 0.80 ± 0,03b  0.76 ± 0.02b 0.77 ± 0.02b * 

Lactose, % Along Lact. 4.56 ± 0.06a 4.92 ± 0.06b  4.92 ± 0.04b 4.90 ± 0.04b *** 

 Post-partum 4.59 ± 0.05a 5.01 ± 0.04b  5.05 ± 0.03b 5.05 ± 0,03b *** 

Dry Matter, % Along Lact. 20.10 ± 0.17 19.94 ± 0.18  20.10 ± 0.12 20.11 ± 0.12 NS 

 Post-partum 19.01 ± 0.27 19.48 ± 0.23  19.71 ± 0.16 19.60 ± 0.16 NS 
a,b,cMeans within a row with different superscripts differ; 4 
1A = infected glands; B = healthy glands contralateral to A glands; C = healthy glands of healthy control ewes; D 5 
= healthy glands of healthy control ewes, contralateral to C glands; 6 
2g.m.: geometrical mean; 7 
***: P < 0.001; **: P <0.01; *: P < 0.05; 8 
3NS: non statistically significant. 9 

 10 

 11 

 12 
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Table 2. Regression equations for the mean value of PPM difference between infected and healthy glands of 1 
infected animals 2 

Variable Regression equations  Pairs. 
no. R2 Sign. 

PPMDm1 
(mL/d) 

[1]  Along lactation diagnosis   PPMDm = 0.5 x PPMm3 – 107 

[1’] Post-partum diagnosis        PPMDm = 0.8 x PPM- 214 

20 

20 

0.58 

0.62 

*** 

*** 

[2] Along lactation diagnosis    PPMDm = 170 x Log10 SCC4 – 845 

[2’] Post-partum diagnosis        PPMDm = 369 x Log10 SCC – 1,794      

20 

20 

0.25 

0.63 

* 

*** 

[3] Along lactation diagnosis    PPMDm = 96 x Log10 SCC + 0.4 x PPM – 666 

[3’] Post-partum diagnosis        PPMDm = 259 x Log10 SCC + 0.6 x PPM – 1,594  

20 

20 

0.65 

0.87 

*** 

*** 

PPMDm%2 

[4] Along lactation diagnosis    PPMDm% = 0.02 x PPM + 24 

[4’] Post-partum diagnosis        PPMDm% = 0.03 x PPM + 36 

20 

20 

0.11 

0.10 

NS5 

NS 

[5] Along lactation diagnosis    PPMDm% = 10 x Log10 SCC – 27 

[5’] Post-partum diagnosis        PPMDm% = 27 x Log10 SCC – 105 

20 

20 

0.14 

0.40 

NS 

** 

[6] Along lactation diagnosis    PPMDm% = 8 x Log10 SCC + 0.01 x PPM – 22 

[6’] Post-partum diagnosis        PPMDm% = 26 x Log10 SCC – 0.01 x PPM - 103 

20 

20 

0.19 

0.42 

NS 

** 
1 PPMDm: mean value of PPM difference between infected and healthy glands of infected animals; 3 
2 PPMDm%: mean value of PPM difference between infected and healthy glands of infected animals in 4 
percentage terms; 5 
3 PPM: in ewes infected along lactation, the mean value of PPM of in both glands in the preinfection period; in 6 
ewes already infected at post-partum period, the mean value of PPM of the healthy gland during the 3 first 7 
checking; 8 
4 Log10 SCC: mean value of the infected gland during postinfection period (variation interval: 5.42-7.07); 9 
***: P < 0.001; **: P <0.01; *: P < 0.05; 10 
5NS: non statistically significant. 11 
 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 



 28 

 1 

Table 3. LS means (±SE) of the considered parameters in individual milk as affected by the ewe health status 2 
during the postinfection period  3 

Parameter First diagnosis      Infected ewes  Healthy ewes Signif. 

Number of ewes   20  40  

Log10 SCC  
SCC, g.m1, x 103 cells/mL 

Along Lact. 5.80 ± 0.04a 
631  

 4.95 ± 0.03b 
89 

*** 
- 

 Post-partum 5.64 ± 0.04a 
427  

 4.91 ± 0.03b 
81 

*** 
- 

Milk Yield, mL/d Along Lact. 897 ± 50a  1,053 ± 35b ** 

 Post-partum 982± 87a  1,186 ± 65b * 

Fat, % Along Lact. 7.08 ± 0.26  7.35 ± 0.19 NS2 

 Post-partum 7.09 ± 0.18  7.25 ± 0,14 NS 

Protein, % Along Lact. 5.69 ± 0.13  5.61 ± 0.09 NS 

 Post-partum 5.39 ± 0,08  5.38 ± 0,06 NS 

True Protein, % Along Lact. 5.50 ± 0.13  5.39 ± 0.09 NS 

 Post-partum 5.06 ± 0,09  5.05 ± 0,07 NS 

Casein, % Along Lact. 4.50 ± 0.11  4.48 ± 0.08  NS 

 Post-partum 4.14 ± 0.07  4.21 ± 0.05  NS 

Casein/Protein  Along Lact. 78.03 ± 0.54a   79.70 ± 0.39b ** 

 Post-partum 76.78 ± 0.43a   78.44 ± 0.31b *** 

Whey Protein, % Along Lact. 0.98 ± 0.06  0.92 ± 0.04 NS 

 Post-partum 0.90 ± 0.04  0.84 ± 0.03 NS 

Lactose, % Along Lact. 4.67 ± 0.07a  4.94 ± 0.05b ** 

 Post-partum 4.80 ± 0.06a  5.06 ± 0.04b *** 

Dry Matter, % Along Lact. 18.48 ± 0.39  18.81 ± 0.28 NS 

 Post-partum 18.01 ± 0.25  18.50 ± 0.20 NS 
a,b,cMeans within a row with different superscripts differ; 4 
1g.m.: geometrical mean; 5 
***: P < 0.001; **: P <0.01; *: P < 0.05; 6 
2NS: non statistically significant. 7 
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Figure 1. Productive potential of milk (PPM) of glands of ewes infected along lactation. 1 

Values are LS means with SEM indicated by vertical bars of infected A glands (○), B 2 

contralateral to A glands (□), C glands of healthy control ewes (▲) and D glands of healthy 3 

control ewes (♦) , before the onset of infection (IW < 0) and after the onset of infection (IW ≥ 4 

0). 5 

Figure 2. Productive potential of milk (PPM) of glands of ewes already infected at post-6 

partum week. Values are LS means with SEM indicated by vertical bars of infected A glands 7 

(○), B contralateral to A glands (□), C glands of healthy control ewes (▲) and D glands of 8 

healthy control ewes (♦). 9 

Figure 3. Log10 SCC in milk of glands of ewes infected along lactation. Values are LS means 10 

with SEM indicated by vertical bars of A glands (○), B contralateral to A glands (□), C glands 11 

of healthy control ewes (▲) and D glands of healthy control ewes (♦) before the onset of 12 

infection (IW < 0) and after the onset of infection (IW ≥ 0).  13 

Figure 4. Log10 SCC in milk of glands of ewes already infected at post-partum week. Values 14 

are LS means with SEM indicated by vertical bars of A glands (○), B contralateral to A glands 15 

(□), C glands of healthy control ewes (▲) and D glands of healthy control ewes (♦).  16 
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Figure 1 1 
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Figure 2 1 
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Figure 3 1 
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Figura 4 1 
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