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Abstract 

 

This paper presents a new well-being index which allows environmental quality to be 

measured through CO2 emissions, renewable energies and nuclear power. Its formula 

derives from a geometric mean used to calculate which things in the human production 

system warm the planet and which do not. This index has been introduced into a gender-

defined stochastic population dynamic mathematical model which measures well-being 

in a country. The main variables in this model are rates of death, birth, emigration and 

immigration, as well as three UN indices: Human Development Index, Gender 

Development Index and Gender Empowerment Index. This model has been extended with 

variables that allow an environmental quality evaluation, and it has been validated for 

Spain during the 2001-2010 period. Moreover, a sensitivity analysis has been carried on 

the simulated future trend (2011-2020) to see which environmental quality variables refer 

more to deaths, births or the Human Development Index. 

 

 

Keywords:  Environmental quality; demographic model; well-being. 

 

1. Introduction 

 

Programme 21 was forged in the United Nations Conference on Environment and 

Development (UNCED), which was held in Rio de Janeiro, Brazil, from 3 to 14 June 

1992. This programme is an action plan that should be adopted universally, nationally 

and locally by organisations of the United Nations System, Governments, and major 

groups in all areas in which humans influence the environment. This paper focuses on 

Chapters 5 and 9 of Programme 21 to justify the need for an index that measures 

environmental quality. 

 

Chapter 5, entitled Demographic Dynamics and Sustainability, proposes promoting 

"Increasing and disseminating knowledge about the relationship between demographic 

trends and factors and sustainable development", whose main objectives are: 

 

a)  Incorporating demographic trends and demographic factors into the global 

analysis of issues relating to the natural environment and development. 

b)  Better understanding the relationship among population dynamics, technology, 

cultural behaviour, natural resources and life support systems. 

 

 

Chapter 9, entitled Protection of the Atmosphere, proposes the "Addressing uncertainties: 

improving the scientific basis for decision-making", among others. There is growing 

concern about climate change, climate variability and air pollution. Therefore, it is 

necessary to improve the understanding and predictability of the various properties of the 

atmosphere and those ecosystems affected, as well as effects on health and its interaction 

with socio-economic factors. The main objectives are: 

 

a)  Promoting sustainable development. 

b)  Reducing the harmful effects produced by the energy sector on the atmosphere by 

promoting policies or programmes, whenever appropriate, that increase the 

contribution of environmentally-sound and economical energy systems, in 
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particular new and renewable energies, through the production, transmission, 

distribution and use of cleaner and more efficient energy. 

 

After studying Programme 21, we understand that the combination of world population 

growth, production and unsustainable consumption places enormous pressure on the 

Earth’s ability to sustain life. If management is incorrect, rapidly growing cities will face 

major environmental problems, which will have economical, demographical, health, 

educational and environmental effects worldwide. The need for strategies that solve 

environmental problems has led us to the creation and proposal of an environmental 

quality index, and to introduce it into a population model that measures a country’s well-

being. 

 

The literature contains demographic models that include CO2 emissions. For example, 

Cranston and Hammond (2010) studied the impact of population size and economic 

growth on CO2 emissions. This study was carried out in industrialised and overpopulated 

countries. These authors concluded that, although population growth influences the CO2 

concentration in the atmosphere, economic growth has a more significant impact on this 

phenomenon. Thus, this study significantly supports the objective of the present paper. 

The paper by Liddle and Lung (2010) included a population-based analysis (based on 

age, in this case), as well as CO2 emissions caused by transport, residential energy and 

electricity consumption. It showed that the population’s environmental impact differed 

between age groups as older age groups (50-64 years) had a negative influence. Moreover, 

Martinez and Maruotti (2011) analysed the impact of urbanisation on CO2 emissions in 

developed countries during the 1975-2003 period. The results showed an inverted U-

shaped relationship between urbanisation and CO2 emissions. These authors divided 

countries into three groups and, for two of them, they observed that further increases in 

the urbanisation rate did not contribute to higher emissions. However, the third group, 

this being population and wealth, but not development, helped explain emissions. 

 

In the same way, O'Neill et al. (2012a) studied the relationship between demographic 

change and CO2 emissions. They provided results on how fossil fuel-based CO2 emissions 

are affected by factors such as population growth or population decline, ageing, 

urbanisation and changes in household size. Their results led them to conclude that the 

policies which defend slow population growth will have climate-related benefits. O'Neill 

et al. (2012b) conducted a study on the implications that a range of possible development 

paths for the best energy use and for cutting CO2 emissions in India and China will have. 

They found that changes in urbanisation had a slightly less proportional effect on 

aggregate emissions and energy use. They also demonstrated that this effect was due 

mainly to the economic growth driven by increased labour associated with rapid 

urbanisation.  

 

Finally, Billionnet (2013) presented many examples of the mathematical models offered 

to protect biodiversity. The various chosen examples referred to the selection of nature 

reserves, controlling the adverse effects caused by landscape fragmentation (such as the 

creation or restoration of wildlife corridors), ecological forest management, controlling 

invasive species and maintaining genetic diversity. Most of these models represented the 

decisions made in a static context, but they also considered the time dimension. This work 

concluded that research is still required for progress to be made in protecting biodiversity 

and to successfully deal with real cases. 
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Our aim was to build a demographic dynamic model that includes some well-being 

indices defined by the United Nations (UN) in its Human Development Reports (UNDP, 

1990-2011), such as Human Development Index (HDI), Gender Development Index 

(GDI) and Gender Empowerment Index (GEM), and an index that measures 

environmental quality in order to come closer to measuring the generic quality of a given 

country.  

 

Basically, the HDI is a summary measure of the average achievement made in some key 

dimensions of human development: a long and healthy life, being knowledgeable and 

enjoying a decent standard of living. The GDI measures the gender gap in human 

development achievements in three basic dimensions of human development (health, 

education and command) over economic resources. Finally, the GEM is a measure of 

inequalities between men's and women's opportunities in a given country. 

 

To go about accomplishing our aim, we found some particularly interesting papers that 

have worked with the three well-being indices listed above. Caselles et al. (2008) and 

Sanz et al. (2011) proposed two deterministic human population-dynamics models using 

these three indices; the second model is more complex and has been validated for Belgium 

for the 1997-2008 period. Sanz et al. (2014a) presented a stochastic human population-

dynamics model per gender, in which fertility and death rates depended on the GDI. The 

model has been validated for Spain for the 2000-2006 period and has been applied to 

select government investments for the 2006-2015 period. Finally, Sanz et al. (2014b) also 

offered a gender-defined stochastic model, but birth and death rates depended on HDI, 

GDI and GEM. It has been validated for Austria for the 1999-2009 period and has been 

applied to solve the population stability problem. 

 

The present paper is based on the model developed by Sanz et al. (2014b). First, we 

introduced into that model the necessary variables and functions to take into account 

environmental quality. Then we designed a generic formula, which has been validated for 

Spain. It allows the measurement of the level of environmental quality through not only 

CO2 emissions, but also by using nuclear power and renewable energies. The new 

extended model has also been validated for Spain and has been applied to shed some light 

on this problem. 

 

It is necessary to emphasise the fact that the environmental quality index is calculated 

from the CO2 emissions produced by using energies. The work by Budzianowski (2013) 

supported this approach as he asserted that “It is likely that changes in the energy sector 

will play a central role in climate change mitigation strategies”.  

 

Nuclear power and renewable energies have also been introduced into this index. On the 

one hand, nuclear power is not the full answer to global warming problems, but it does 

not produce carbon emissions (Blix, 1990). Zakaria (2014) explained that nuclear power 

can be cheaper than other energies, but its production is more expensive and its radiation 

might be a potential threat to the environment. On the other hand, renewable energies 

have also been introduced because as the EPA (the United States Environmental 

Protection Agency) stated: “Renewable energy is electricity generated by fuel sources 

that restore themselves over a short period of time and do not diminish. Although some 

renewable energy technologies have an impact on the environment, renewables are 

considered environmentally preferable to conventional sources and, when replacing 

fossil fuels, have significant potential to reduce greenhouse gas emissions.” Bacher 
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(2002) concluded that renewable energies (with natural gas or nuclear power) are 

important energies in the 21st century.  

 

From this point, this work is divided as follows: Section 2 presents and justifies the 

environmental quality index called EQUI. Section 3 introduces the EQUI variable into 

the demographic mathematical model. Section 4 validates the model in its deterministic 

and stochastic formulation for Spain during the 2001-2010 period. Section 5 offers a 

sensitivity analysis with simulated future trend data (2011-2020) to observe the 

relationship between environmental variables and deaths, births and the HDI. Finally, 

Section 6 presents some conclusions drawn from this work. 

 

 

2. Environmental Quality Index  

 

The Environmental Quality Index (EQUI) was calculated from three different variables 

that relate to the energy that a country consumes: CO2 emissions, renewable energies and 

nuclear power. In turn, CO2 emissions were calculated from using those energies that 

produce emissions, namely coal, oil and natural gas, and from those structures that 

mitigate these emissions, in this case, a forest area.  

 

Figure 1 illustrates these relationships. Note that there are other variables involved that 

have not been considered, such as marine phytoplankton or details of all renewable 

energies (wind, hydro, solar, etc.). The used variables were those for which it was possible 

to acquire adequate real data to be used in the model. If we obtain more historical data on 

the aforementioned variables, these new variables will be introduced into the equations 

presented in this paper in the future. 

 

(Please insert Figure 1 about here) 

 

 

This section is divided into two parts: the first explains how CO2 emissions are calculated 

from the influential variables according to Figure 1; the second reasons about the 

procedure used to calculate the EQUI index. 

 

 

2.1. Study of the relationship between CO2 emissions and the variables involved to 

calculate them  

 

 

As seen in Figure 1, CO2 emissions were calculated based on the use of coal, natural gas 

or oil. We also introduced a forest area because the larger the forest area, the lower the 

CO2 emitted into the atmosphere. As the data had different magnitudes, the first step was 

to normalise all the variables used to calculate CO2 emissions. To do this, the following 

equation was used, where VARI was a generic variable to be normalised: 

 

𝑉𝐴𝑅𝐼 =
𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒−𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒−𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒
  (1) 

 

 

The required maximum and minimum values for our variables are presented in Table 1. 

The real CO2 emission values were taken from the World Data Bank for the period 
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considered (2000-2009). The maximum and minimum values were the maximum and 

minimum ones of the 247 countries for which information exists for the 1960-2009 

period. The minimum value corresponded to Swaziland, for 1961, and the maximum one 

to the United Arab Emirates for 1969. This broad spectrum of countries and time were 

chosen to confer as much generality as possible to the new index. 

 

 

Information on the real values of the other four variables shown in Table 1 was obtained 

from the Spanish National Statistics Institute (INE) for the 2000-2009 period, as Spain is 

the country where the model in this paper has been validated.  

 

(Please insert Table 1 about here) 

 

After normalising the data, the relationship between the dependent variable (CO2 

emissions) and all the independent variables that appear in Table 1 is graphically 

observed. Figure 2 illustrates this graphical relationship.  

 

(Please insert figure 2 about here) 

 

From this figure, no clear conclusion can be drawn: the upward trend was the logic for 

coal, oil and gas. It is possible that the downward part of the gas curve is because of gas 

replaces other energy sources that emit more CO2; the upward part for the forest area is 

possible because its growth coincides with a period of general growth for the country’s 

economy (more CO2); the almost stable trend for coal is more difficult to explain. 

However a priori, it seems logical that the mathematical relationship between these 

independent variables and CO2 emissions was a linear combination: each CO2 source had 

an impact given its positive emission coefficient, except for the forest area where the 

coefficient was negative. This intuition was confirmed using the Regint functions’ 

searcher (Caselles, 1998), with which the following equation was obtained as a valid 

function with a higher determination coefficient, random remainders and the 

Kolmogorov-Smirnov test passed (data normality): 

 

𝑐𝑜2𝑒 = 0.324705 + 0.0168638 𝑐𝑎𝑟𝑏 + 0.00966052 𝑔𝑎𝑠𝑡 + 0.0783131 𝑝𝑒𝑡𝑟 −
0.576634 𝑓𝑜𝑠𝑢       (2) 

 

where: 

CO2E: CO2 emissions; 

CARB: coal; 

GAST: natural gas; 

PETR: oil; 

FOSU: forest area. 

 

 

In Figure 3, the randomness of the remainders for the fit of Equation (2) is shown, along 

with the determination coefficient (R2), which was over 0.99 (R2 is a useful index for 

measuring the overall degree of fit between two data sets), and the Kolmogorov-Smirnov 

test results. Thus, the CO2 emissions variable was introduced into the model by Equation 

(2). 

 

(Please insert Figure 3 about here) 
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2.2. Computing EQUI 

 

As with the variables used to calculate CO2 emissions, we did the same with the variables 

employed to calculate EQUI after normalising the real data. The information that we used 

is provided in Table 2.  

 

In this case, information on the variables "nuclear power" and "renewable energies" for 

the 2000-2009 period was also obtained from the INE databases. 

 

(Please insert Table 2 about here) 

 

 

Equation (3) was used to calculate EQUI. Then we attempted to answer any questions 

about the design of this equation that could arise: 

 

 

𝑒𝑞𝑢𝑖 = √
0.2·𝑐𝑜2𝑒+0.8·𝑛𝑢𝑐𝑙

𝑟𝑒𝑒𝑛

10
  (3) 

 

where: 

CO2E: CO2 emissions; 

NUCL: nuclear power; 

REEN: renewable energies. 

 

Note that the minimum value that variable REEN could take was 0.1. If it was not possible 

for a country to use renewable energies or their use took a value less than 0.1, then the 

0.1 value for this variable was used in the formula by default. 

 

What does EQUI measure? With this formula, we intended to aggregately measure the 

negative impact of human activity on the global ecosystem by taking the relationships 

between what warms and what does not warm the planet in the human production system 

as representatives. CO2 warms the planet through the greenhouse effect (let’s not forget 

the negative impact that any industrial activity producing CO2 has directly or indirectly 

on the ecosystem). Nuclear power ends up being converted into heat through any human 

activity that it generates (including its well-known risks to the environment and the own 

negative impact of the human activity that it generates). It is assumed that renewable 

energies do not contribute, or they do so relatively poorly, to global warming and 

environmental degradation. EQUI was designed to vary between 0 and 1. A value closer 

to 0 implies reducing global warming. So it is well-accepted that we should use more 

renewable energies and less nuclear power, and we should reduce CO2 emissions, just as 

the formula indicates. 

 

Why a geometric mean? Firstly, let’s recall that we are creating an environmental quality 

index. If we look at the literature on this subject, the Human Development Reports of the 

United Nations explain the creation of all the well-being indices that this organisation has 

developed. After the Human Development Report was published in 2010 (UNDP, 2010), 

almost all these indices were calculated with a geometric mean, which it justified by 
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stating: "The geometric mean decreases the level of substitutability between dimensions 

[being compared] and at the same time ensures that 1 percent decline in life expectancy 

at birth has the same impact on the HDI as a 1 percent decline in education or income. 

Thus, as a basis for comparisons of achievements, this method is more respectful of the 

intrinsic differences across dimensions than the simple average." 

(http://hdr.undp.org/en/statistics/faq/). Finally, the geometric mean is often used to 

average percentages, indices and relative numbers by providing an average with an 

advantage over the arithmetic mean as it is not affected that much by extreme values. 

 

Why take 0.2 and 0.8 as weights for CO2 emissions and nuclear power? They are tentative 

values which were estimated based on existing literature. We know that CO2 emissions 

are those that actually cause global warming and that nuclear power prevents around 700 

million tons of CO2 being emitted into the atmosphere each year. Therefore apart from its 

other known disadvantages and risks, its weight is heavier. 

  

Note that the CO2E/REEN and NUCL/REEN ratios were averaged. Remember that 

variables CO2E, NUCL and REEN were normalised to between 0 and 1, and that it was 

assumed that the maximum value of any of these ratios was 10 because the maximum 

value of the numerator in both ratios was 1 and the minimum value of REEN was 0.1. 

 

 

3. Introducing EQUI  into a demographic model  

 

The model used to introduce the environmental quality index was that created by Sanz et 

al. (2014b). This model contained four subsystems: demographic, educational, health and 

economic. The environmental subsystem was the novel aspect of this paper. It improved 

the model and proved useful to solve a wider range of problems. Figure 1 in Appendix 1 

shows a Forrester Diagram (Forrester, 1961), which allows us to rapidly see the 

connections among all the variables that the model includes. Appendix 1 also presents 

some general explanations to better understand the Forrester Diagram, and it contains the 

list of all the model variables by specifying the type of each variable and its unit of 

measure. 

 

Sanz et al. (2014b) calculated the birth and death rates from the multiplication of the well-

being indices: HDI, GDI and GEM. We introduced the EQUI variable into these formulae. 

As EQUI varied between 0 and 1, and as the highest values corresponded to greater 

environmental deterioration, it seemed logical that it intervened by dividing instead of 

multiplying. Thus we defined variable x through Equation (4): 

 

 

𝑥 =
ℎ𝑑𝑖·𝑔𝑑𝑖·𝑔𝑒𝑚

𝑒𝑞𝑢𝑖
                                        (4) 

 

 

Variable x was the independent variable in the formulae that we used to calculate the 

aforementioned rates (see Figures 4-7). 

 

Sanz et al. (2014a, 2014b) had their reasons to choose the combination of a straight line 

with a cosine to fit the oscillation observed in the birth and death rates rather than using 

a combination of logistics which, according to Marchetti et al. (1996), would have been 

more appropriate for this particular case. To show that the formula was generic, i.e., valid 

http://hdr.undp.org/en/statistics/faq/
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for any country that we wish to study, these authors selected a countries sample (the 

countries belonging to the OECD, for which data were available). In our case, we used 

the combination of logistics. When introducing EQUI into the formulas, it was difficult 

to compare it with other countries because not all the data on nuclear power has been 

included in the World Data Bank;  consequently, it was not possible to validate the rates 

for other countries. Therefore, we validated only for Spain, but perhaps we will attempt 

to validate the model for other countries in the future (when more information will be 

available). 

 

Let’s recall the shape of the logistic function and the interpretation of the values of its 

parameters: 

 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒(𝑥𝑥) = 𝑏0 +
𝑏1

1+𝑏2∗Exp[b3∗(𝑥𝑥−𝑥𝑥0)]
              (5) 

 

 

where b0 can take any value, b1> 0 and b3 <0 (to represent a logistic function), if b2> 0, 

it is a growing logistics; if b2 <0, it is a decreasing logistics. Furthermore, xx can also be 

considered the time or any other variable, and xx0 represents its initial value. 

 

We present the logistics functions that fitted the real data corresponding to the birth and 

death rates per gender, and also the corresponding graphs (Figures 4-7). 

 

(Please insert Figures 4-7 about here) 

 

We can see in Figures 4-7 that introducing the EQUI variable into x increased not only 

the determination coefficient of the demographic rates, but also the level of randomness 

of the remainders as compared to the previous results reported by Sanz et al. (2014b). So 

we consider these equations to be valid. 

 

 

4. Model Construction and Validation 
 

We herein introduced environmental variables into a dynamic demographic mathematical 

model, which was previously used in the work by Sanz et al. (2014b). For this reason, we 

presented only the novel aspects, which were classified into three types: (a) the new input 

variables and their fit over time; (b) the relations of the new variables with the previous 

variables in the model; (c) the validation of the new extended model. 

 

 

4.1. New input variables  

 

Note that these new variables were those that represented the consumption of various 

energy types in one country and a forest area. As the model was continuously defined, 

these input variables should be fitted over time, and they were fitted by logistic functions 

because such trends have been observed (Marchetti et al., 1996). 

 

Figure 8 shows the validation of these fittings. In this case, the logistics corresponding to 

each input variable are not shown. 
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(Please insert Figure 8 about here) 

 

 

4.2. Relations between previously existing variables in the model and new ones 

 

We observed that some of the input variables that corresponded to the economic 

subsystem could be related to energy consumption. For this reason, we introduced a new 

variable, CONE, which resulted from the addition of all the energies used. 

 

 

CONE=carb + petr + gast + nucl + reen                                         (6) 

 

Now we can graphically observe the trend among energy consumption, CONE and each 

economic input variable. Figures 9, 10, 11 and 12 show the real data. All these figures 

indicate a growing trend. Among the known functions that fitted growing trends, we once 

again chose logistics because, if it was of the growing kind (b2> 0 in Equation 7), it would 

have an asymptotic maximum. The generic form of this function is as follows: 

 

 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒(𝑐𝑜𝑛𝑒) = b0 +
b1

1+b2∗Exp[b3∗(𝑐𝑜𝑛𝑒−𝑐𝑜𝑛𝑒 𝑖𝑛𝑖𝑐𝑖𝑎𝑙)]
                       (7) 

 

 

With these fittings, the obtained determination coefficients were above 0.86. The 

residuals were also random and normally distributed (using the Kolmogorov-Smirnov 

test). 

 

Figure 9 shows an increasing trend of the Final consumption expenditure (GCFI)    

 

(Please insert Figure 9 about here) 

 

Figure 10, which represents the Gross Capital Formation (FBCA), depicts no clear trend. 

Therefore, we considered that this variable was not in accordance with the energy used 

(although Logic suggests otherwise). 

 

(Please insert Figure 10 about here) 

 

In the case of Exports of Goods and Services (EBSE), Figure 11 indicates that the situation 

was similar to that of variable GFCI. 

 

(Please insert Figure 11 about here) 

 

Finally from Imports of Goods and Services (IBSE) in Figure 12, we deduced that the 

situation was similar to that of variables GFCI and EBSE. 

 

(Please insert Figure 12 about here) 

 

 

4.3.Validation of the new extended model 
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Model validation was presented with two formulations: deterministic and stochastic. The 

historical data, used to validate the model, were obtained from the INE database and 

covered the 2001-2010 period. SIGEM was the software tool employed for model 

validation (Caselles, 1998, 2008). 

 

4.3.1. Deterministic Validation 

 

The model was created as a set of differential and functional equations. Solutions were 

calculated with the Euler Method following Djidjeli et al. (1998), who explained that the 

Euler Method was more suitable for solving such equations. This approach resulted in a 

set of finite difference equations, which were programmed in Visual Basic 6.0 and were 

run using SIGEM. The obtained results corresponded to the 2001-2010 period. 

 

Validation was done numerically by calculating the determination coefficients and the 

random remainders tests (Figure 13). The degree of overlapping of the results obtained 

for each year and the historical data were also graphically depicted. The validation 

process was considered successful because the determination coefficients, R2, were very 

high, and the maximum relative error did not exceed 2.3% in any case. 

 

(Please insert Figure 13 about here) 

 

Note that in Figure 13 the model predictions presented a one-sided bias. This bias was 

considered negligible given the low maximum relative error value. 

 

4.3.2. Stochastic validation 

 

In addition to validating the model, its stochastic version was used to simulate the future 

because it helped determine the reliability of the results (each result was obtained with its 

respective confidence interval or its respective mean value and standard deviation). 

 

The procedure used to verify that the stochastic model formulation was valid was: 

 

1. Verifying that all the past simulation results showed a normal distribution (for this 

purpose, SIGEM automatically programmed a χ2 test). 

2. Obtaining each result with its respective confidence interval (e.g., 95%). 

3. Checking that all the historical data fell within their respective simulated interval. 

 

The results for the variables "female population" and "male population" for this validation 

type are respectively presented in Figure 14 and confirm that the model is valid for Spain 

for the 2001-2010 period. 

 

 

(Please insert Figure 14 about here) 

 

 

5. Application  

 

As mentioned at the beginning of this paper, we used this model in an attempt to shed 

some light on an existing problem. In this case, a sensitivity analysis was applied to 

observe the direct relationship among births, deaths, the HDI and the input variables in a 
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simulated future trend (the 2011-2020 period). We present only the main results in this 

section as the whole study is provided in Appendix 2. 

 

The sensitivity analysis is contemplated herein as the study of the impact that a minor 

change in an input variable can have on an output variable by considering the model. Yet 

obviously, this output variable might also be affected by the remaining input variables. 

Thus for the purpose of noting the real effect of each input variable on the given output 

variable, we had to consider that the other input variables were constant or we had to take 

a random sample of all the possible combined values. Otherwise, as in the present case, 

the analysis would be valid for only the specific situation considered. An example of this 

approach is found in a work by Caselles et al. (1999). 

 

Some methodological observations: 

 

- The input variables were assumed independent. 

- If the real data did not originate from a random sample taken from within the range of 

all the possible values for each input variable, the conclusions would be valid for 

only the particular situation considered. 

- The future trend was simulated with the stochastic model and attempts were made to 

find the best direct relationship between each selected input variable and output 

variable. 

- These data were fitted by linear and/or quadratic functions because, with these functions, 

it was easier to interpret their coefficients in relation to the sensitivity of the 

dependent variable in relation to the independent variable. In the linear function, y = 

mx + n, m gave the rate of increase or decrease of y in relation to x. In the quadratic 

function y = ax2 + bx + c, this rate of increase or decrease was determined by its 

derivative function, 2ax + b. The aforementioned rate was that which determined the 

degree of sensitivity of y in relation to x; that is, that which increased or decreased y 

for each unit of increase in x in general (for a linear fit) or at each point (for the 

parabola type fit). 

- The R2 coefficient determined the fraction of variability of the output variable, which 

was explained by the input variable with the considered function. 

 

The variables relating to energy and the environment were the novel aspect of this model. 

So we paid attention to these input variables in an attempt to find direct relationships 

between them and births, deaths and the HDI with the previously presented methodology. 

 

 

All the relationships between births and the energy variables considered in this work are 

summarised in Table 3 (more details are provided in Appendix 2). 

 

(Please insert Table 3 about here) 

 

 

Note that with variables GAST and CARB, no direct relations were found. Therefore we 

did not provide graphs and we did not analyse these cases. 

 

(Please insert Figure 15 about here) 

 

Relationship (8) is a parabola. 
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𝐵𝑖𝑟𝑡ℎ𝑠 = −1.69567 · 107 + 4.02469 · 107 · 𝑟𝑒𝑒𝑛 − 2.3185 · 107 · 𝑟𝑒𝑒𝑛2  (8) 

 

When interpreting these results, we see that renewable energies clearly related with births 

(R2 = 0.91). The resulting parabola from the fit to the simulated data was interpreted as 

follows (note that in all cases, the environment-related variables were normalised, so they 

took values of between 0 and 1): 

 

1 - The potential impact associated with a possible variation in REEN was calculated 

using derivative function 2 (-2.3185·107) reen + 4.02469·107. 

2 - The maximum value of simulated births (roughly 300,000 people) was associated with 

a renewable energies value, REEN = -4.02469·107/ (2 (-2.3185·107)) = 0.868. 

3 -  As the simulated REEN values between 2011-2020 were between 0.84 and 0.94, an 

increase of one-thousandth in their lowest value was associated with variation in 

Births: (2 (-2.3185·107) 0.84 + 4.02469·107) 0.001 = 1296, while the same increase 

in their higher value was associated with variation in Births: (2 (-2.3185·107) 0.94 + 

4.02469·107) 0.001 = -3341; that is, sensitivity of Births in relation to Renewable 

Energies would be great, and would be positive near the lower limit, negative near 

the upper limit, and very low near the value of 0.868. 

4 -   Using the same procedure, any intermediate value can be obtained. 

 

Conversely for nuclear power (Figure 16), the relationship (9) was linear:  

 

𝐵𝑖𝑟𝑡ℎ𝑠 = 265642 + 630374 · 𝑥𝑢𝑐𝑙  (9) 

 

As mentioned at the beginning of this section, the slope of the line represented 

sensitivity when the relationship was linear. The slope of this line was m = 630,374. 

This indicates that, on the one hand, there was a direct (positive slope) relationship. On 

the other hand, and in numerical terms, we observed that births increased by 630 people, 

when the nuclear power rate increased one thousandth. 

 

 

(Please insert Figure 16 about here) 

 

 

 

The relationships between deaths and the energy variables are summarised in Table 4. 

The analysis performed and the conclusions drawn were similar to Births. 

 

 

(Please insert Table 4 about here) 

 

 

 

Finally, Table 5 shows the relationships between the HDI and the energy variables. 

 

(Please insert Table 5 about here) 
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To summarise, after studying the direct relationships observed in the data simulated 

among the energy variables and births, deaths and the HDI, we  state that in general: 

 

• In Births, Deaths and the HDI, a direct relationship was observed with the 

three energy variables (renewable energies, oil and nuclear power), and 

also with forest area, but not with coal and gas. 

• Births rose when oil and nuclear power consumption increased, but they 

lowered when the consumption of renewable energies and forest area 

increased. 

• What occurred with births also took place with deaths. 

• In contrast, the HDI rose when renewable energies and forest area did, but 

decreased with increasing oil and nuclear power consumption. 

• An increase in Births/Deaths was associated with a rise in EQUI, CONE 

and CO2E. 

• In contrast, the HDI decreased when EQUI, CONE and CO2E increased. 

 

 

6. Conclusions 

 

This paper presents an index that attempts to measure environmental quality from the 

variables related with energy consumption and CO2 emissions. It is a geometric mean that 

involves three variables: CO2 emissions, nuclear power and renewable energies. The 

values of this index range between 0 and 1, with 0 being the optimal value; i.e., the closer 

we come to a value of 0, renewable energies increase, while nuclear power and CO2 

emissions diminish. 

 

This index has been introduced into a gender-defined demographic model (including 

three of the well-being variables defined by the United Nations: HDI, GDI, GEM) through 

birth and death rates. The new formulae for these rates have been validated for Spain for 

the 2001-2010 period, and higher determination coefficients were obtained than in 

previous related papers. The new extended model has been validated in terms of its 

deterministic and stochastic formulation through the Spanish male and female 

populations during the 2001-2010 period. 

 

An application of this new model is proposed. It consists in a sensitivity analysis based 

on Spain’s previous situation (2001-2010) which uses simulated data for the next decade 

(2011-2020). Note that the more relevant environment-related input variables used to 

control births, deaths and the HDI are: use of renewable energies, nuclear power, oil and 

existing forest area. We wish to stress that this solution is specific for Spain’s situation 

today, despite the fact that the general model formulation allows the same analysis to be 

done for other countries when their historical data are employed. 

 

Future work is expected to obtain the information required to apply such an analysis to 

other countries. This new information will help us, if necessary, to also fine tune the 

design of the environmental quality index presented herein. 

 

As regards the evolution of the global model that served as a basis, we believe that the 

demographic part of the model should include age cohorts in the future to, for example, 

calculate life expectancy at birth from deaths and population in order to note how this 

variable varies according to the environmental variables. 
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Variable Minimum Maximum 

CO2 emissions (Mtc)  0.01025852 101.954214 

Coal (Ktep)  4000 25000 

Oil (Ktep) 6000 75000 

Natural Gas (Ktep)  9000 40000 

Forest Area (Ha) 10000000 40000000 

 

Table 1. Variables used to calculate CO2 emissions, with their maximum and minimum 

values, to normalise real data. Mtc=metric tons per capita, Ktep= thousand tons of 

equivalent oil. Ha=hectares.  

 

 

Variable Minimum Maximum 

CO2 emissions (Mtc) 0.01025852 101.954214 

Nuclear power  (Ktep) 9000 20000 

Renewable energies (Ktep) 3000 17000 

 

Table 2. Variables used to calculate EQUI, with their maximum and minimum values to 

normalise real data. Mtc=metric tons per capita, Ktep= thousand tons of equivalent oil. 

Ha=hectares.  

 

 

Variable Fitted Function R2 

REEN Births=-1.69567·107+4.02469·107·reen-0.3185·107·reen2 0.915209 

PETR Births =360458 +509688·petr-478264·petr2 0.978178 

NUCL Births = 265642 +630374·nucl 0.99479 

FOSU Births =6.99712·107-1.17457·108·fosu 0.993239 

EQUI Births= -2254.96+4.20247·106·equi-7.78129·106·equi2 0.988539 

CONE Births =-1.03817·107 +173.732 ·cone-0.000692913·cone2 0.992624 

CO2E Births =-1.1718·106 +6.64262·107·co2e-6.56331·108 ·co2e2 0.987838 

 

Table 3. Relationships between births and the energy variables. 

 

 

Variable Fitted Function R2 

REEN Deaths = -4.47599·106+1.11967·107·reen-6.43738·106·reen2 0.85187 

PETR Deaths = 352358 +148273·petr-150122·petr2 0.940898 

NUCL Deaths = 326963 +171859·nucl 0.994368 

FOSU Deaths = 1.92475·107-3.18816·107·fosu 0.984114 

EQUI Deaths = 234270+1.43884·106·equi-3.17256·106·equi2 0.996328 

CONE Deaths=-2.66918·106+49.0826·cone-0.000196754·cone2 0.978276 

CO2E Deaths = -62023.2 +1.81067·107 ·co2e-1.80379·108 ·co2e2 0.96625 

 

Table 4. Relationships between deaths and the energy variables. 
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Variable Fitted Function R2 

REEN HDI =3.48012-5.86834·reen+3.33633·reen2 0.7619 

PETR HDI = 0.916125-0.074374·petr+0.0923047·petr2 0.903823 

NUCL HDI = 0.946633-0.244185·nucl+0.340663·nucl2 0.991066 

FOSU HDI = 4754.51-16070.8·fosu+13583·fosu2 0.996103 

EQUI HDI =0.986776 -0.909672 ·equi+32.46424 ·equi2 0.989948 

CONE HDI = 2.54239 -0.000026822 ·cone+1.09647·10-10 ·cone2 0.974054 

CO2E HDI = 1.12462 -9.30345·co2e+97.1069·co2e2 0.958057 

 

Table 5. Relationships between the HDI and the energy variables. 
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Figure 1. The variables involved in the Environmental Quality Index, EQUI. 
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Figure 2. CO2 emissions (metric tons per capita) versus the indices of coal consumption 

(carb), natural gas consumption (gast), forest area (fosu), oil consumption (petr). Spain, 

2000-2009. 
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Figure 3. Random remainder of Equation (2) versus real CO2 emissions (metric tons 

per capita). Spain, 2000-2009. R2 = 0.993819. Kolmogorov-Smirnov Test: 0.254951. 
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𝑟𝑑𝑒𝑓 =   4.74874 −
5

1 + e−3.59069 (−1.76+𝑥)
+

8.52895

1 + 𝑒−2.1185 (−1.33555+𝑥)
 

 
 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

Figure 4. Fitting the Female Death Rate (rdef) in relation to the quality variables. Real 

data (dots), simulated data (line). Spain, 2001-2010. R2 = 0.650736. 
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𝑟𝑑𝑒𝑚 =    −1.09555 +
12

1 + e−0.243686 (−1.5+𝑥)
+

9.50337

1 + 𝑒0.591043 (−1.33+𝑥)
 

 
 

 
 

 
 

Figure 5. Fitting the Male Death Rate (rdem) in relation to the quality variables. Real 

data (dots), simulated data (line). Spain, 2001-2010. R2 = 0.82117.  
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𝑟𝑓𝑒𝑓 =    8.15695 +
100

1 + 𝑒−2.58141 (−1.5+𝑥)
+

94

1 + 𝑒2.3812 (−1.33+𝑥)
 

 

 

 
 

 
 

Figure 6. Fitting the Female Birth Rate (rfef) in relation to the quality variables. Real 

data (dots), simulated data (line). Spain, 2001-2010. R2 = 0.976886. 
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𝑟𝑓𝑒𝑚 =    5.42031 +
110

1 + 𝑒−2.31109 (−1.5+𝑥)
+

100

1 + 𝑒2.06817 (−1.33+𝑥)
 

 

 

 
 
 

 

Figure 7. Fitting the Male Birth Rate (rfem) in relation to the quality variables. Real 

data (dots), simulated data (line). Spain, 2001-2010. R2 = 0.983279. 
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Figure 8. Indices of: Coal consumption (carb), Renewable energies consumption 

(enre), Natural gas consumption (gast), Nuclear power consumption (nucl), Forest 

area (fosu), Oil consumption (petr), all of them versus time. Spain, 2000-2009.  
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Figure 9. Fitting the final consumption expenditure (GCFI) in relation to energy 

consumption (CONE). Spain, during the 2000-2009 period. R2 = 0.911381. 

Kolomogorov-Smirnov test:  0.1333.                                       
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Figure 10. Gross capital formation (FBCA) versus energy consumption (CONE). 

Spain, 2000-2009. 
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Figure 11. Fitting Exports of goods and services (EBSE) in relation to energy 

consumption (CONE). Spain, during the 2000-2009 period. R2=0.888753. 

Kolomogorov-Smirnov test, 0.233744. 
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Figure 12. Fitting Imports of goods and services (IBSE) in relation to energy 

consumption (CONE). Spain, during the 2000-2009 period. R2=0.861259. 

Kolomogorov-Smirnov test, 0.261592. 
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Figure 13. The forecast function (solid line) given by the model and real data (dots) 

for: (a) Spanish Female Population (POPF) and (b) Spanish Male Population 

(POPM), both during the 2001-2010 period. In (a) R2=0.990853, with a maximum 

relative error of 1.92638%. In (b) R2=0.991516, with a maximum relative error of 

2.211898%. 
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(a)  (b)  

 

 

 

Figure 14. (a) Spanish Female Population 2001-2010. (b) Spanish Male Population 

2001-2010. Minimum and Maximum values (solid lines) and real values (dots). 
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Figure 15. Births and renewable energies (ENRE). Simulated data (dots), fitted 

function (line). Spain, during the 2011-2020 period. R2=0.915209. 
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Figure 16. Births versus nuclear power (NUCL). Simulated data (dots), fitted function 

(line). Spain, during the 2011-2020 period. R2=0.99479. 
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Appendix 1 

 

 The model: variables and their mutual influences. 
 
 
 
 

(This appendix may be situated on a web page) 
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Figure 1.  Forrester diagram of the model.  

 

 
 

Let’s recall that Forrester diagrams are hydrodynamic similes in which variables are 

usually classified as follows: 

 

• Level variables: they require an initial value, which is an input variable, and the 

following values are updated. They are represented by a square or rectangle, and 

can be compared to the tanks in which fluid is stored. 

• Flow variables: they can be compared with the stopcocks that regulate flow to or 

from a fluid tank. They are represented by a distinctive icon that resembles a 

stopcock. 

• Auxiliary variables: these are either the intermediate variables used to calculate 

flows or are strict output variables (not used in other calculations, but are usually 

the variables to be optimised). They are represented by a circle or an ellipse. 

• Input variables: they are not calculated in the model, and are classified into: 

• Scenario variables: input variables that are not controlled. 

• Control variables: input variables whose value can be assigned by the person 

using the model. 

• Constants: system parameters with a known and fixed value. 

 

All the input variables are represented by a doubled-line circle or ellipse. Sources or sinks 

(the origin or destination of flows) are represented by a cloud. 
 

 

MODEL’s VARIABLES 
 

DEMOGRAPHY 

DEFE Female Deaths [population] (flow variable) 

DEMA Male Deaths [population] (flow variable) 

DETO Total Deaths [population] (auxiliary variable) 

EMIF Female Emigration [population] (flow variable) 

EMIG Total Emigration [population] (auxiliary variable) 

EMIM Male Emigration [population] (flow variable) 

POFI Female Population at the beginning of the year [population] 

(constant)  

POFL Female Population at the end of the year [population] (level 

variable) 

POMI Male Population at the beginning of the year [population] 

(constant) 

POML Male Population at the end of the year [population] (level 

variable) 

POPI Population at the beginning of the year [population] (auxiliary 

variable) 

POPL Population at the end of the year [population] (auxiliary 

variable) 

PRPF Female proportion (auxiliary variable) 

PRPM Male proportion (auxiliary variable) 

RDEF Female Death Rate [%] (auxiliary variable) 

RDEM Male Death Rate [%] (auxiliary variable) 

REMF Female emigration rate [%] (auxiliary variable) 

REMM Male emigration rate [%] (auxiliary variable) 

RFEF Female Birth rate [births/female population] (auxiliary variable) 

RFEM Male Birth rate [births/female population] (auxiliary variable) 
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RINF Female immigration rate [%] (auxiliary variable) 

RINM Male immigration rate [%] (auxiliary variable) 

TEMI Initial year [time] (constant) 

TEMS Year [time] (level variable) 

XACF Female Births [population] (flow variable) 

XACI Total Births [population] (auxiliary variable) 

XACM Male Births [population] (flow variable) 

YNMF Female immigration [population] (flow variable) 

YNMI Total immigration [population] (auxiliary variable) 

YNMM Male immigration [population] (flow variable) 

 

EDUCATION 

GRFE Female Gross Registered to level primary, secondary and tertiary 

[%] (setting variable) 

GRMA Male Gross Registered to level primary, secondary and tertiary 

[%] (setting variable) 

GRRR Gross Rate Registered to level primary secondary and tertiary [%] 

(auxiliary variable) 

LAPO Literate Adult Population [%] (auxiliary variable) 

RLAF Female literacy rate adults [%] (auxiliary variable) 

RLAM Male literacy rate adults [%] (auxiliary variable)  

RLIF Female literacy rate [%] (setting variable) 

RLIM Male literacy rate [%] (setting variable)   

YEDU Educational Index [%] (auxiliary variable) 

YEID Equally Distributed Education Index [%] (auxiliary variable) 

YEFE Female Education Index [%] (auxiliary variable) 

YEMA Male Education Index [%] (auxiliary variable) 

YGRF Female Gross Rate Registered to level primary secondary and 

tertiary [%] (auxiliary variable) 

YGRM Male Gross Rate Registered to level primary secondary and 

tertiary [%] (auxiliary variable) 

YGRR Gross Rate Registered to level primary secondary and tertiary 

index [%] (auxiliary variable) 

YLAP Literacy Rate Adults [%] (auxiliary variable) 

 

LABOR 

EPID Percentage parliamentary representation [%] (auxiliary variable) 

EPIF Female Percentage parliamentary representation [%] (setting 

variable) 

EPIM Male Percentage parliamentary representation [%] (auxiliary 

variable)   

PAEF Female percentage shares of positions as legislators senior 

officials and managers [%] (setting variable) 

PAEM Male percentage shares of positions as legislators senior 

officials and managers [%] (auxiliary variable) 

PEID Average PEID [%] (auxiliary variable) 

PPPF Female percentage shares of professional and technical positions 

[%](setting variable) 

PPPM Male percentage shares of professional and technical positions 

[%](auxiliary variable) 

PPTE PEID [%] (auxiliary variable) 

PPTI Professional index [%] (auxiliary variable) 

XAEE PEID within index [%] (auxiliary variable) 

XAEI PEID index senior [%] (auxiliary variable) 

 

HEALTH 

LEBF Female life expectancy at birth [age] (setting variable) 

LEBI Life expectancy at birth [age] (auxiliary variable) 

LEBM Male life expectancy at birth [age] (setting variable) 

YEVD Equally Distributed life expectancy at birth index [%] (auxiliary 

variable) 
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YLEB Life expectancy at birth index [%] (auxiliary variable) 

YLEF Female life expectancy at birth index [%] (auxiliary variable) 

YLEM Male life expectancy at birth index [%] (auxiliary variable) 

 

ECONOMY 

CCPC Consumption of fixed capital per capita [€](setting variable) 

COCF Consumption of fixed capital [€] (auxiliary variable) 

CTOI Initial total fixed capital [€] (setting variable) 

CTOT Total fixed capital [€] (auxiliary variable) 

CUCP Coefficient of utilization of productive capacity [proportion] 

(setting variable) 

EBSE Welfare and services exports [€] (setting variable) 

DESE Number of unemployed people [population] (auxiliary variable) 

FBCA Gross capital formation [€] (setting variable) 

GCFI Final consumption expenditure [€] (setting variable) 

GDPR Gross Domestic Product [PPP US$] (auxiliary variable) 

IBSE Welfare and services imports [€] (setting variable) 

PEAH Economically active male population [population] (setting 

variable) 

PEAM Economically active female population [population] (setting 

variable) 

PHEA Economically active male percentage [%] (auxiliary variable)  

PMDM Female population at working age [population] (setting variable)   

PMDV Male population at working age [population] (setting variable) 

PMEA Economically active female percentage [%] (auxiliary variable)  

PMTS Proportion of women in total wages [%] (auxiliary variable) 

POTR Population working [population] (auxiliary variable) 

PTRA Number of jobs [] (auxiliary variable) 

SNAF Female non-agricultural wage [€] (setting variable) 

SNAM Male non-agricultural wage [€] (setting variable) 

TACM Female labor force rate [proportion] (setting variable) 

TACV Male labor force rate [proportion] (setting variable) 

TDES Unemployment rate [%] (auxiliary variable) 

TRAB Economically active population [population] (auxiliary variable) 

TRAM Female workers [population] (auxiliary variable) 

TRAV Male workers [population] (auxiliary variable) 

XVMT Average value of a new job place [€] (setting variable) 

YFEI Female income [PPP US$] (auxiliary variable) 

YFEM Female income [PPP US$] (auxiliary variable) 

YGDP Gross Domestic Product Index [%] (auxiliary variable) 

YIIC Total income [PPP US$] (auxiliary variable) 

YIID Equally Distributed Income Index [%] (auxiliary variable) 

YIFE Female income index [%] (auxiliary variable) 

YIMA Male income index [%] (auxiliary variable) 

YMAI Male Income [PPP US$] (auxiliary variable) 

YMAL Male income [PPP US$] (setting variable) 

 
ENVIRONMENTAL 

CARB Coal [ktep] (setting variable) 

CONE Addition of all energies [ktep] (auxiliary variable) 

CO2E CO2 emissions [ktep] (auxiliary variable) 

FOSU Forest area [ha](setting variable) 

GAST Natural gas [ktep] (setting variable) 

NUCL Nuclear power [ktep] (setting variable) 

PETR Oil [ktep] (setting variable) 

REEN Renewable energies [ktep] (setting variable) 

 
WELFARE VARIABLES 

EQUI Environmental Quality Index [%] (auxiliary variable) 

XDII Human development Index initial value [%] (constant) 

XHDI Human development Index [%] (level variable) 
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XGDI Gender Development Index [%] (level variable) 

XGII Gender Development Index initial value [%] (constant) 

XGEM Gender Empowerment Index [%] (level variable) 

XIPI Gender Empowerment Index initial value [%] (constant) 
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Appendix 2 

 

Details of the study 

 

 

 

 
(This appendix may be placed on a web page)  
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1. Births 

Figure 1 and Table 1 show the functions fitted to the direct relationship between births 

and the corresponding energy consumption variable. The different input variables are on 

the x-axis and births lie on the y-axis, all of which correspond to the simulated 2011-2020 

period. At the bottom of each figure, we include the function that fits the simulated data 

to help draw conclusions from these relationships. 

 

With variables GAST and CARB, no direct relations were found. Therefore, we neither 

provided graphs nor analysed these cases. 

 

 

Variable Fitted Function R2 

REEN Births=-1.69567·107+4.02469·107·reen-0.3185·107·reen2 0.915209 

PETR Births =360458 +509688·petr-478264·petr2 0.978178 

NUCL Births = 265642 +630374·nucl 0.99479 

FOSU Births =6.99712·107-1.17457·108·fosu 0.993239 

 

Table 1. Relation between births and the energy variables. 
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(a)  (b)  

(c)  (d)   
 

 

Figure 1. Births versus: (a) renewable energies, (b) oil, (c) nuclear power, (d) forest 

area. Simulated data (dots), fitted function (line). Spain, during the 2011-2020 period.  
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When interpreting these results (Table 1), we see that renewable energies are clearly 

related with births (R2 = 0.91). The parabola resulting from the fit to the simulated data 

can be interpreted as follows (note that in all cases, the environment-related variables 

were normalised, so they took values of between 0 and 1): 

 

1 - The potential impact associated with a possible variation in REEN was calculated 

using derivative function 2 (-2.3185·107) reen + 4.02469·107. 

2 - The maximum value of simulated births (roughly 300,000 people) was associated with 

a renewable energies value, REEN = -4.02469·107/ (2 (-2.3185·107)) = 0.868. 

3 -  As the simulated REEN values between 2011-2020 were between 0.84 and 0.94, an 

increase of one-thousandth in their lowest value was associated with variation in 

Births: (2 (-2.3185·107) 0.84 + 4.02469·107) 0.001 = 1296, while the same increase 

in their higher value was associated with variation in Births: (2 (-2.3185·107) 0.94 + 

4.02469·107) 0.001 = -3341; that is, sensitivity of Births in relation to Renewable 

Energies would be great, and would be positive near the lower limit, negative near 

the upper limit, and very low near the value of 0.868. 

4 - . Using the same procedure, any intermediate value can be obtained. 

 

By changing the data, this can be carried out with oil in the same manner (Figure 1b). 

 

Conversely, for the case of nuclear power and forest area, the relationship was linear. As 

mentioned at the beginning of this section, the slope of the line represented sensitivity 

when the relationship was linear. For example, if we look at the graph corresponding to 

nuclear power (Figure 1c), the slope of this line is m = 630,374. This indicates that there 

was a direct (positive slope) relationship; in numerical terms, for every one thousandth 

that the nuclear power rate increased, we observe that births increased by 630 people. 

 

Figure 2 and Table 2 show the functions fitted to the direct relationship between births 

and EQUI, CONE and CO2E, respectively. The different input variables are on the x-axis 

and births lie on the y-axis, all of which correspond to the simulated period covering 

2011-2020. At the bottom of each figure, we include the function that fits the simulated 

data to help draw conclusions from these relationships. 

 

 

Variable Fitted Function R2 

EQUI Births= -2254.96+4.20247·106·equi-7.78129·106·equi2 0.988539 

CONE Births =-1.03817·107 +173.732 ·cone-0.000692913·cone2 0.992624 

CO2E Births =-1.1718·106 +6.64262·107·co2e-6.56331·108 ·co2e2 0.987838 

 

Table 2. Relation between births and EQUI, CONE and CO2E. 
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(a)  (b)       

(c)  
 

 

Figure 2. Births versus: (a) EQUI, (b) CONE, (c) CO2E.  

Simulated data (dots), fitted function (line). Spain, during the 2011-2020 period.  
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When interpreting these results (Table 2), EQUI is clearly related with births (R2 = 0.988). 

The parabola resulting from the fit to the simulated data can be interpreted as follows: 

 

1 - The potential impact associated with a possible variation in EQUI was calculated using 

derivative function 2 (-7.78129·106) equi + 4.20247·106. 

2 - The maximum value of simulated births (roughly 560000 people) was associated with 

an EQUI value of: EQUI= -4.20247·106/ (2 (-7.78129·106)) = 0.27. 

3 -  As the simulated EQUI values between 2011-2020 were between 0.11 and 0.19, an 

increase of one-thousandth in their lowest value was associated with variation in 

Births of: (2 (-7.78129·106) 0.11 + 4.20247·106) 0.001 = 2490, while the same 

increase in their highest value was associated with variation in Births of: (2 (-

7.78129·106) 0.19 + + 4.20247·106) 0.001 = 1245; that is, the sensitivity of Births in 

relation to EQUI would be great, and would be positive near the lower limit, negative 

near the upper limit, and very low near the value of 0.27. 

4 - . Using the same procedure, any intermediate value can be obtained. 

 

By changing the data, this can be carried out with CONE and CO2E in the same manner. 

 

 

2. Deaths 

 

Figure 3 and Table 3 depict the relationship between deaths and the various input 

variables, all of which correspond to the simulated 2011-2020 period. At the bottom of 

each figure, the function that fits the data is included. Once again, no direct relationship 

between deaths and variables CARB and GAST was found. 

 

 

 

Variable Fitted Function R2 

REEN Deaths = -4.47599·106+1.11967·107·reen-6.43738·106·reen2 0.85187 

PETR Deaths = 352358 +148273·petr-150122·petr2 0.940898 

NUCL Deaths = 326963 +171859·nucl 0.994368 

FOSU Deaths = 1.92475·107-3.18816·107·fosu 0.984114 

 

Table 3. Relationships between deaths and the energy variables. 
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The analysis performed and the conclusions drawn were similar to Births. 

 

 

Figure 4 and Table 4 depict the relationship between deaths and EQUI, CONE and CO2E, 

all of which correspond to the simulated 2011-2020 period. At the bottom of each figure, 

the function that fits the data is included. 

 

 

Variable Fitted Function R2 

EQUI Deaths = 234270+1.43884·106·equi-3.17256·106·equi2 0.996328 

CONE Deaths=-2.66918·106+49.0826·cone-0.000196754·cone2 0.978276 

CO2E Deaths = -62023.2 +1.81067·107 ·co2e-1.80379·108 ·co2e2 0.96625 

 

Table 4. Relationships between deaths and EQUI, CONE and CO2E. 

 
 

(a)   (b)   

(c)  (d)  
 

 

Figure 3. Deaths versus: (a) renewable energies, (b) oil, (c) nuclear power, (d) forest 

area. Simulated data (dots), fitted function (line). Spain, during the 2011-2020 period.  
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The analysis performed and the conclusions drawn were similar to Births. 

 

  

(a) (b)   

(c)   

 

 

Figure 4. Deaths and (a) EQUI, (b) CONE, (c) CO2E.  

Simulated data (dots), fitted function (line). Spain, during the 2011-2020 period.  
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3. Human Development Index, HDI 

Figure 5 and Table 5 illustrate the relationship observed between the HDI and the 

various input variables, all of which correspond to the simulated 2011-2020 period. At 

the bottom of each figure, the function that fits the data is included. Once again, no 

direct relationship between HDI and variables GAST and CARB was found. 

 

 

 

Variable Fitted Function R2 

REEN HDI =3.48012-5.86834·reen+3.33633·reen2 0.7619 

PETR HDI = 0.916125-0.074374·petr+0.0923047·petr2 0.903823 

NUCL HDI = 0.946633-0.244185·nucl+0.340663·nucl2 0.991066 

FOSU HDI = 4754.51-16070.8·fosu+13583·fosu2 0.996103 

 

Table 5. Relationships between the HDI and the energy variables. 
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(a)  (b)   

(c)  (d)  
 

 

 

Figure 5. The HDI and (a) renewable energies, (b) oil, (c) nuclear power, (d) forest area. 

Simulated data (dots), fitted function (line). Spain, during the 2011-2020 period.  
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For the HDI, all the relationships were of a parabola type, and the detailed analysis can 

be done as in previous cases. 

 

 

Figure 6 and Table 6 illustrate the relationship observed between the HDI and the EQUI, 

CONE and CO2E, all of which correspond to the simulated 2011-2020 period. At the 

bottom of each figure, the function that fits the data is included. 

 

 

 

Variable Fitted Function R2 

EQUI HDI =0.986776 -0.909672 ·equi+32.46424 ·equi2 0.989948 

CONE HDI = 2.54239 -0.000026822 ·cone+1.09647·10-10 ·cone2 0.974054 

CO2E HDI = 1.12462 -9.30345·co2e+97.1069·co2e2 0.958057 

 

Table 6. Relationships between the HDI and EQUI, CONE and CO2E. 
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(a)  (b)   

(c)   

 

 

Figure 6. The HDI versus: (a) EQUI, (b) CONE, (c) CO2E. Simulated data (dots), fitted 

function (line). Spain, during the 2011-2020 period.  


