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Abstract.  

 

The agricultural use of anaerobically digested sewage sludge (ADSS) as stable, 

mature compost implies knowing its total content in heavy metals and their 

bioavailability.  This depends not only on the initial characteristics of the 

composted substrates but also on the organic matter transformations during 

composting which may influence the chemical form of the metals and their 
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bioavailability. 

The objective of this work was to examine the relationships between the 

changes in the organic matter content and humus fractions, and the 

bioavailability of heavy metals.   

A detailed sampling at 0, 14, 84, and 140 days of the composting process was 

performed to measure C contents in humic acids (HAs), fulvic acids, (FAs) and 

humin, the total content of Zn, Pb, Cu, Ni, and Cd, and also their distribution 

into mobile and mobilisable (MB), and low bioavailability (LB) forms.  

Significant changes of C contents in HA, FA, and Humin, and in the FA/HA, 

HA/Humin and Chumus/TOC ratios were observed during composting. The MB 

and LB fractions of each metal also varied significantly during composting. The 

MB fraction increased for Zn, Cu, Ni, and Cd, and the LB fraction increased for 

Pb. Stepwise linear regressions and quadratic curve estimation conducted on 

the MB and LB fractions of each metal as dependent on the measured organic 

variables suggested that Zn bioavailability was mainly associated to percentage 

of C in FAs. Bioavailability of Cu, Ni and Cd during composting was associated 

to humin and HAs. Pb concentration increased in the LB form, and its variations 

followed a quadratic function with the Chumus/TOC ratio. Our results suggest that 

the composting process renders the metals in more available forms. The main 

forms of metal binding in the sludge and their availability in the final compost 

may be better described when metal fractionation obtained in sequential 

extraction and humus fractionation during composting are considered together. 

 

Keywords: sewage sludge, compost, humic substances, humin, heavy metals, 

bioavailability.  
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Abbreviations: CHA (Carbon in humic acids), CFA (Carbon in fulvic acids), CHumin 

(C in hydrolisable humin), Chumus (sum of C contents in FAs, HAs and 

hydrolyzable humin), TOC (Total organic carbon), XMB (mobile and mobilisable 

metal form), XLB (low bioavailability metal form). 
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1. Introduction  

 

The agricultural use of anaerobically digested sewage sludge as an 

organic amendment to improve soil fertility is becoming increasingly important. 

The management of the raw sludge involves many problems such as 

pathogens, plant seeds, odours, and a pasty structure with high water content. 

This later feature makes it hard to store and may lead to immobilization and 

volatilization of plant nutrients (Cambardella et al., 2003). One of the 

possibilities to convert sewage sludge into a marketable organic amendment or 

fertilizer is to co-compost it with different bulking agents, such as wood chips, 

thus obtaining a humus-like material that is easy to store (Gallardo et al., 2007). 

The addition of such a bulking agent for composting may optimize substrate 

properties such as air space, moisture content, C/N ratio, particle density, pH 

and mechanical structure, affecting positively the decomposition rate. In this 

sense, lignocellulosic by-products such as wood chips and sawdust are 

commonly used as bulking agents (Maboeta and van Rensburg, 2003; Pasda et 

al., 2005; Neves et al., 2009). In the case of anaerobically digested sewage 

sludges with high contents of nitrogen, heavy metals, and other toxic or 

phytotoxic substances, bulking agents like sawdust are recommended because 

of the dilution effect (Banegas et al., 2006).  
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Composting of organic wastes has been defined as a well-established 

method, which leads to a stabilized product rich in humic substances that 

resemble native soil humic substances (De Bertoldi et al., 1996). In addition, the 

agricultural use of stable, mature sewage sludge-based compost means 

knowing its content (CEC, 1986; Royal Decree, 1990), and the biogeochemical 

forms of the heavy metals present (Hsu and Lo, 2001).  

Most of the studies on the speciation of heavy metals have been carried out in 

raw or composted sludges-amended soils (Petruzzelli et al., 1994; Kunito et al., 

2001; Maboeta and van Rensburg, 2003; Hanc et al., 2009). Only a few were 

dedicated specifically to study the bioavailability of the heavy metals during 

composting of sewage sludges (Amir et al., 2005; Liu et al., 2007; Tandy et al., 

2009). Studies relating changes in bioavailability of heavy metals with changes 

in humus fractions during composting are scarce (Amir et al., 2005; Liu et al., 

2007).  

The speciation of each metal in the sewage sludge-based compost may 

depend not only on its initial chemical state in the sewage sludge which also 

depends on their nature and processing (Fuentes et al., 2004; Walter et al., 

2006), but also on the organic matter transformations during composting. These 

could influence the metal distribution through metal interaction with the newly 

formed humic substances (Petruzzelli et al., 1994; Amir et al., 2005; Liu et al., 

2007). 

The objective of this work was to examine the relationships between the 

changes in the organic matter content and humus fractions, and the 

bioavailability of heavy metals. This was tested in a 70:30 (on wet basis) 

mixture of ADSS and wood chips with an initial C/N ratio of 30.4, during its 
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aerobic batch composting at 30ºC of external temperature in an open type lab-

scale reactor without lixiviation.  

 

 

2. Materials and methods  

 

2.1. Composting  

  

The raw material used in the composting process was a mixture of 

sewage sludge and wood chips as bulking agent, in the ratio 70:30 (on a wet 

basis). Sewage sludge was an anaerobically digested dewatered cake of 

sludge (FACSA Sewage Treatment Plant in Castellón, Spain). The 

characteristics of the raw sludge were 94.3 % moisture content, pH  8.51, EC 

1.51 dS m-1; 42.2 % TOC; 6.37 % total N; C/N 6.62; and total Zn, Pb, Cu, Ni, 

and Cd contents of 1660, 310, 256, 16.0, and 1.95 mg kg -1, respectively (all 

results expressed in dry basis). The C/N ratio of the wood chips was 64.5, its 

moisture content was 8.5 %, and its total N content was 0.83 % (Gallardo et al., 

2007). Normally, bulking agents have high C/N ratios, which can compensate 

for the low values of the sewage sludge because of the dilution effect (Banegas 

et al., 2006; Neves et al., 2009). 

The pilot-scale composting experiments were carried out in five 65 L capacity 

open type lab-scale reactor without drainage of lixiviates. Aeration was 

controlled daily, moisture every five days, and mixture turned every 15 days. 

Composting was monitored for 140 days, when oxygen consumption finished 

(García et al., 1992). According to temperature measurements (Gallardo et al., 
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2007) composting developed in a first very active phase with high oxygen 

consumption until day 20; a second phase in which the activity dropped to a 

medium level until day 90; and a third phase with low activity, which lasted until 

day 140. 

 

2.2. Physico-chemical analysis  

 

To obtain representative samples for the physico-chemical analysis of 

the sludge based compost during the time of composting, good homogenization 

was ensured, and five aliquots of about 80 g (on dry basis) were taken and 

mixed at every sampling date. Three replicates of each composite sample were 

analysed at 0, 14, 84, and 140 days of composting. The time intervals were 

determined according to the changes of composting temperature and oxygen 

consumption (Gallardo et al. 2007). To determine their main physico-chemical 

properties we followed standard methods (MAFF, 1986): organic carbon by 

partial oxidation with potassium dichromate, total nitrogen by the Kjeldahl 

method, and pH and electrical conductivity (EC), respectively, in a 1/2.5 and a 

1/ 5 sample/water ratios. The total concentrations of metals were determined 

through inductively coupled plasma-ICP (EPA, 1990) using a Perkin Elmer ICP/-

5 500 after the microwave digestion of the samples with HNO3:HClO4 

(Polkowska-Motrenko et al., 2000). 

Compost samples were extracted with 0.1 M NaP2O7 (pH 9.8) at room 

temperature using a sample/extractant ratio of 1/10. Each extraction was 

repeated 3 times. For each extraction step, the mixture was shaken for 3 h, 

centrifuged at 15 000 g for 15 minutes and the supernatant was filtered through 
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a Whatman 31 filter paper. The combined alkaline extracts (soluble  humic 

substances) were then acidified with concentrated H2SO4 to pH 1, left standing 

for 24 h in a refrigerator to allow the complete precipitation of HAs, and then 

centrifuged at 15 000 g for 30 min to separate the supernatant FAs fraction. 

Since the alkali-insoluble humin fraction may contain humic-like substances (i.e. 

proteinaceous compounds linked to decomposed ligno-cellulosic materials), we 

determined the hydrolyzed humin (Zaccheo et al., 2002).The hydrolyzed humin 

was obtained after acidification of the sample retained in the filter paper with 

concentrated 6 N HCl for 10 h, filtration and washing with deionized water. This 

fraction was considered as forming part of the humus in the compost. The total 

alkali extractable (soluble humic substances), the FAs, and the hydrolyzed 

humin were analyzed for C. The C in HAs was obtained by the difference 

between C in the total alkali extractable and C in FAs (MAFF, 1986). Chumus was 

obtained as the sum of C contents in FAs, HAs and hydrolysable humin.  

Heavy metal fractionation for Zn, Cu, Pb, Ni, and Cd was determined 

according to Sposito’s procedure (Amir et al., 2005). In each of the three 

replicates taken from the composite samples, a series of reagents were 

sequentially applied with a compost/extractant ratio of about 1/4. The sequence 

of reagents application to collect the medium -bioavailable fraction MB (mobile 

and mobilisable) was: H2O (shaking during 2h at 20 ºC, three times); KNO3 0.5 

M (shaking during 16 h at 20 ºC); NaOH 0.5 M (shaking during 16 h at 20 ºC), 

and EDTA 0.05 M (shaking during 16 h at 20 ºC). Finally, to collect the low-

bioavailable fraction LB (bound to sulphides; hardly mobilisable) the samples 

were treated with HNO3 4 M (shaking during 16 h at 80 ºC). Metal concentration 

was measured after each step treatment, and referred to dry weight. All filtered 
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supernatants were analyzed by ICP (EPA, 1990).  

The levels of bioavailability considered in this work are:   

1) Medium, MB (mobile and mobilisable fractions): 

 MB = X-H2O + X-KNO3 + X-NaOH + X-EDTA 

2) Low, LB (Sulphides. Hardly mobilisable fraction):  

LB = (X-HNO3)  

 

2.3. Statistical analysis  

Statistical analyses were performed with the SPSS v.17.0 statistical 

software. A one-way ANOVA was used to detect the significant effect of time of 

composting on different compost parameters. The Tukey’s t- test was used for 

mean comparison and significant differences at 95% level on data obtained at 

the different composting times. To describe more clearly the metal and humus 

fraction variations through time, also linear and curvilinear adjustments were 

performed. In order to ascertain the best-fit model between variations in the 

metal fractions during composting and changes in the organic fractions, 

stepwise linear regressions and quadratic curve estimations were performed on 

the MB and LB fractions of each metal as dependent variables.  The 

independent organic variables were CFA, CHA, CHumin, and CFA/CHA, CHA/CHumin, 

and Chumus /TOC ratios. 

 

 

3. Results and discussion  

 

3.1. Compost properties  
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The main physico-chemical properties of the composted sludge at 

different times of the process, the ANOVA and the Tukey’s t-test results are 

presented in Table 1.   

 (Table 1)  

 Because of the high moisture content of the raw sludge, the ratio of 

sewage sludge and wood chips on a dry weight basis was 15:85. As shown by 

Pasda et al. (2005) this product is not easy to decompose because its high 

lignin / tannins ratio. This fact likely provoked that temperature in the reactors 

during the composting process was always below 35ºC. No significant changes 

were detected for pH, EC and total N. The high value of pH in the raw sewage 

sludge may compensate for the decrease of this parameter during composting 

(Amir et al., 2005; Liu et al., 2007). The pH during composting was in the 

optimal range for the development of bacteria and fungi (Zorpas et al., 2003).  

Total organic C content (TOC) decreased significantly during composting 

(Table 1), which is consistent with the decomposition of the organic matter 

through microbe respiration in the form of CO2 and even through mineralization. 

The overall decomposition observed in this work (37%) contrasts with the 60% 

observed by Jouraiphy et al. (2005) during 135 days of composting of a mixture 

of sewage sludge and green plant waste, and the 19.6 % of Amir et al. (2005) 

during 180 days with straw as bulking agent. At difference with other authors 

(Soumaré et al., 2002), the organic matter decomposition during composting did 

not cause an increase in total N during the process. Although N variations were 

not significant, the trend was to decrease. In agreement with the results by 

García et al. (1995), it is interpreted because heavy metal concentration of the 
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sewage sludge may have affected to certain extent the mineralization rate of N 

in our sewage sludge based compost.  

The C/N ratio significantly decreased from 30.4 in the initial mixture to 

21.6 at 140 days. This relatively high C/N ratio at the end of composting 

indicates that organic matter has not achieved an adequate stabilization (De 

Bertoldi et al., 1996), likely due to the quality of the bulking agent (Pasda et al., 

2005).  

Since metal loss by leaching did not occur in our experiment, we 

observed a continuous increase of total heavy metal concentration in the 

compost due to the weight loss during composting, the release of carbon 

dioxide and water, and the mineralization process as shown by Lazzari et al. 

(2000). Although the trend was to increase, no significant differences with time 

were detected for total Zn. The increase of the total metal concentration during 

composting was significant for other metals which had high concentration in the 

sludge (Pb and Cu), but also for metals with low concentrations (Ni, Cd). The 

total heavy metal concentrations in the obtained compost were below the 

maximum permitted in Spain for application of sewage sludge in soils (Royal 

Decree, 1990).  

 

3.2. Heavy metals bioavailability  

 

The sum of the amounts extracted by sequential extraction (MB and LB 

fractions, Table 2)  for the most abundant metals (Zn, Pb, Cu, Ni), and also for 

Cd, was, respectively, almost four or two times lower than the total amount of 

metal. This result indicates that most metals are mainly bound to residual forms. 
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Our results agree with those by Amir et al. (2005), who found recoveries of 20-

30% using this sequential extraction procedure. The fact that the residual 

fraction is so abundant indicates that an important proportion of metal is 

probably occluded in minerals present in the sludge as has been referred by 

Wong et al. (2001) for some metals such as Pb.  

For all metals except Pb, the concentration of the MB forms is higher 

than that in the LB forms (Table 2). This suggests that composting enhances 

the availability of most of metals. The MB and LB fractions of Zn vary in a 

quadratic function with time. The amount of ZnMB increases to a maximum at 

day 84 and decreases thereafter to concentrations that are similar to those at 

day 14. ZnLB follows the reverse trend (Table 2). It decreases to a minimum at 

day 84, and increases at day 140 to concentrations that are similar to those at 

the beginning of composting. This result suggests that important changes in the 

Zn speciation occur in the final period.  

For Cu, Ni and Cd, the concentrations of the MB fraction follow a linear 

significant increase with time of composting. CuLB also linearly decreases with 

time although with the b parameter (absolute value) lower than the 

corresponding parameter of the CuMB model.  This result indicates that the 

increase in the MB fraction of Cu occurs at expenses of both the LB fraction 

and the residual fraction. The changes in the LB fractions of Ni and Cd during 

composting follow a curvilinear trend, reaching a maximum at day 84 and 

decreasing thereafter, especially Ni. The decrease of the NiLB in the last period 

of composting suggests that some moieties of the NiLB become more available 

and increase the NiMB fraction, whereas some other could join the residual 

fraction. For Cd, the decrease in the LB fraction is lower than the corresponding 
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increase of the MB fraction, and suggests that some CdMB forms also at 

expenses of residual Cd. The MB fraction of Pb remains constant during 

composting, but the curvilinear trend of increase observed for PbLB indicates 

that this form likely increases at expenses of the residual forms during 

composting and reaches a maximum at the end of the process.  Although the 

quadratic fit may indicate a further decrease, this cannot be tested because of 

the lack of data beyond 140 days.  Overall, the results for Pb indicate that this 

metal accumulates in the very stable organic fractions and unavailable mineral 

forms. 

Increased availability for Zn and Cu through composting is in agreement 

with results obtained by several authors (Wong et al., 2001, Amir et al. 2005). 

The observed increase of Cd availability is in agreement with results by 

McGrath and Cegarra (1992), who found high extractable Cd levels in sludge-

amended soils. For composted sludges Walter et al. (2006) found increased 

mobility for Zn, Cu and Cd during composting. Richards et al. (1997) found 

reductions in Pb mobility and an increase in Cd and Cu mobility because of the 

composting process. 

 

3.3. Humic substances 

 

The changes in C in humic (FAs, HAs) and humic-like substances 

(hydrolyzed humin) and their ratios during composting are shown at the bottom 

of Table 2. All of them changed significantly with time of composting indicating 

that transformations of the organic matter and humification have occurred.  C in 

FAs increased mainly during the initial phases of composting. The best model 
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describing the FAs changes is quadratic and reflects that stop increase beyond 

day 84 of composting. C in FAs was higher than that in HAs thus indicating that 

among the soluble humic substances the most abundant are those of low 

molecular weight. Some of them may have polymerized in the last phases of 

composting likely forming more condensed structures such as HAs thus 

explaining some of the increase of C in HAs and also the linear decrease of the 

CFA/CHA ratio (Table 2).  

C in HAs increased linearly during composting. Its rate of increase was 

similar or even higher than that of C in FAs, as deduced from the b parameters 

of models. The linear rate of increase observed for C in hydrolyzed humin is 

higher than that of C in HAs as deduced by comparison of the corresponding b 

parameters.  This suggests that both FAs and HAs of the sludge may 

polymerize in the form of humin. The abundance of aliphatic compounds in 

sewage sludges may have a negative effect on the formation of the condensed 

structures typical of the true HAs (García et al., 1989). Likely, the dilution of the 

sludge with the bulking agent in our compost has lowered this negative effect 

and even facilitated HAs and likely humin formation through polymerization of 

FAs with some ligno-cellulosic derivates coming from the partial degradation of 

the wood chips. The slope of the linear model describing the changes of the 

HA/Humin ratio (Table 2) is an order magnitude lower (absolute value) than that 

of FA/HA ratio. This result may indicate that the transformation of FAs into HAs 

is higher than that of HAs into humin, but also that some compounds in humin 

may transform into HAs. 

Finally, the progressive increase of the Chumus/TOC ratio indicates that 

the proportion of humified organic matter (sum of FAs, HAs, and hydrolyzed 
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humin) increases linearly through composting.  

 

3.4. Metal fraction-humic substances relationships  

 

Table 3 summarizes the best-fit models (highest R2) containing the 

humus fractions in the compost that are most related to the changes in the main 

metal forms during composting. FAs and humin explained the ZnMB fraction. 

The stepwise regression procedure selected Chumus/TOC ratio as the 

independent variable predicting metal fractions of the rest of metals. The 

Chumus/TOC ratio was also dependent on the three humus fractions considered 

in this work. The best model explaining the variations of the Chumus/TOC is 

shown at the bottom of the table. Chumus/TOC ratio increases when C in 

hydrolyzed humin and HAs increase, and when C in FAs decreases.  

Overall, results in Table 3 suggest that the bioavailability of metals 

clearly depend on the organic compounds present and formed during 

composting, which may increase or restrict it.  

 

(Table 3) 

  

Regressions indicate that Zn availability is positively associated with the 

FA fraction and negatively with humin. This result agrees with those by Moreno 

et al. (1996) who questioned the capability of Zn to form complexes with organic 

compounds. Alloway and Jackson (1991) found Zn associated to organic matter 

of low molecular weight. The negative dependence with humin may be 

indicating a decrease in Zn bioavailability at the end of the composting process 
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due to a relative decrease of FAs amount in much more stable forms such as 

humin.  

The Chumus/TOC ratio explains both CuMB and CdMB fractions. CuMB 

increases at expenses of the LB fraction (Table 2), and this increase is 

explained by the increase of C in humin and HAs at expenses of 

transformations of the sulphide forms.  It follows that more than a half of CuMB 

must be attached to alkali insoluble EDTA extractable organic forms such as 

humin, and the rest bound to alkali soluble HAs. This explanation also follows 

for Cd, although, as deduced from data (Table 2), CdMB increases at expenses 

of the residual form of this metal. 

NiMB increases when Chumus/TOC ratio increases and C in FAs decreases 

because some FAs polymerize into HAs and humin. These results suggest that 

NiMB follows the same trend as Cu and Cd, and the reverse trend as ZnMB.  

As indicated in Table 1, the order of abundance of Cu, Ni, and Cd in the 

sludge is Cu>Ni>Cd. However, comparing the amount of metal in the MB 

fraction at the beginning and at the end of composting, their relative availability 

increase in the order CdMB>NiMB=CuMB. This suggests that the main factor 

explaining their bioavailability during composting was not the initial metal 

concentration but the stability of complexes with humic-like substances and 

HAs, which likely increase in the order Cu>Ni>Cd.. Other authors (Canet et al., 

1997) have also attested to the high stability of Cu-organic matter complexes. 

Soler Rovira et al. (2010) found that the complexing capacity of Cu (II) 

increased as the humification degree increased.  Our results suggest that it may 

occur also for Ni and Cd. 

Finally, the model for Pb differs from the rest of metals. Since the MB 
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fraction did not change through composting (Table 2), the increase of the PbLB 

fraction in a quadratic model with the Chumus/TOC ratio may indicate the amount 

of residual Pb changing to LB forms. The quadratic fit would open the question 

to a further decrease of PbLB forms (decreasing branch of the curve) depending 

on the compost maturation. 

 

 

4. Conclusions  

 

The 140 days composting process of a mixture of sewage sludge and 

wood chips (C/N ratio of 30.4), resulted in a product with a relatively high C/N 

ratio of 21.6, a relatively low stabilization of the organic matter if considered the 

dominance of FAs over HAs, and total heavy metal concentrations below the 

maximum permitted for land application. With exception of Pb, the relative 

bioavailability of metals increased with composting. Zn bioavailability was 

mainly associated to percentage C in FAs. Bioavailability of Cu, Ni and Cd 

during composting was associated to percentage C in humin and HAs. Pb 

concentration increased in unavailable forms, and followed a quadratic function 

of the Chumus/TOC ratio.   

Our results suggest that the composting process renders the metal in more 

available forms. The main forms of metal binding in the sludge and their 

availability in the final compost may be better described when metal 

fractionation obtained in sequential extraction and humus fractionation during 

composting are considered together. 
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Table 1. Physico-chemical properties (n=3) of the sludge based compost at 

different days of composting. All results expressed in dry basis. 

 

Table 2.  Evolution of heavy metal fractions,  humic substances, and their ratios 

during composting. Metal fractions (mg kg-1 dry basis): MB=Mobile+Mobilisable 

(Bioavailable), LB=low bioavailability. FA=% C Fulvic acids; HA=% C Humic 

acids; TOC=% Total organic carbon. Means in a row followed by the same letter 

are not significantly different at α = 0.05 according to the Tukey's t-test.  P=P 

values of the F test in ANOVA curvefit for linear and quadratic models.  Model 
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parameters: a =constant; b= coefficient of x in linear and quadratic models; 

c=coefficient of x2 in the quadratic model. Independent variable =Time of 

composting (days). 

 

Table 3. Best-fit models for major metal fractions variations as a function of C in 

different humus fractions during composting, and linear combination of humic 

substances explaining the variations in the Chumus/TOC ratio. 



Table 1. Physico-chemical properties (n= 3) of the sludge based compost at different days of composting. All results expressed in 

dry basis. 

Time* Moisture pH EC TOC Total N C/N Total Zn Total Pb Total Cu Total Ni Total Cd 
 (%)  (dSm-1) (%) (%) mg kg -1 

0 71.8 a 7.07 a 1.06 a 50.0 a 1.64 a 30.4 a 259.8 a 45.3 a 37.7 a 2.24 a 0.29 a 
14 71.0 a 7.03 a 1.14 a 45.2 b 1.54 a 29.3 ab 262.1 a 49.5 ab 41.3 a 2.38 a 0.33 ab 
84 69.0 b 7.01 a 1.16 a 37.4 c 1.51 a 24.8 ab 267.1 a 53.7 ab 43.1 ab 2.69 b 0.40 ab 
140 68.8 b 7.01 a 1.12 a 31.3 d 1.45 a 21.6 b 278.2 a 57.4 b 49.5 b 2.76 b 0.45 b 
            
ANOVA            
F 15.942 1.848 0.243 1960.23 1.896 14.340 2.924 14.141 12.446 19.310 12.365 
p 0.001 0.217 0.864 0.000 0.209 0.001 0.100 0.001 0.002 0.001 0.002 
* Days of composting. Mean value followed by different letters is statistically different (Tukey’s t-test, p < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2.  Evolution of heavy metals in medium bioavailable forms (MB) and in low bioavailable forms (LB), and evolution of  humic 

(FA, HA),  humic-like substances (hydrolysable humin), and their ratios during composting.  All metal concentrations are expressed 

in mg kg-1 dry matter (n=3).  

Dependent Variable  Means and Tukey`s t-test ANOVA curvefit Best-fit Model parameters 

 Time of composting (days) 

 0 14 84 140 
F P a b c R2 

ZnMB 39.4 a 46.2 b 53.6 c 46.1 b 80.533 <0.001 40.41 0.347 -0.002 0.947
ZnLB 25.6 a 19.4 b  13.2 c 23.4 a 94.132 <0.001 24.77 -0.343 0.002 0.954
CuMB 5.09 a 6.15 b 7.00 c 8.92 d 153.23 <0.001 5.349 0.024  0.939
CuLB 4.34 a 4.18 a 3.78 b 3.45 c 160.85 <0.001 4.300 -0.006  0.941
PbMB 5.27 a 5.42 a 5.43 a 5.25 a  0.7540     
PbLB 6.06 a 6.96 b 7.99 c 8.49 d 87.080 <0.001 6.263 0.031 -0.0001 0.951
NiMB 0.27 a 0.24 ab 0.29 ab 0.46 b 34.852 <0.001 0.234 0.001  0.777
NiLB 0.31 a 0.36 ab 0.38 ab 0.14 b 16.597 0.0010 0.309 0.001 -0.00004 0.787
CdMB 0.06 a 0.07 b 0.09 c 0.13 d 222.03 <0.001 0.065 0.0004  0.957
CdLB 0.08 a 0.09 b 0.11 c 0.10 d 882.99 <0.001 0.081 0.0001 -0.000004 0.995
CFA 5.80 a 6.72 b 8.80 c 9.07 c 64.860 <0.001 6.217 0.023 -0.0002 0.866
CHA 2.11 a 2.24 a 4.82 b 5.87 c 354.86 <0.001 2.057 0.029  0.973
CHumin 7.30 a 8.34 a 11.4 b 13.0 c 100.51 <0.001 7.616 0.040  0.941
CFA/CHA 2.75 a 3.02 a 1.82 b 1.54 c 84.349 <0.001 2.904 -0.010  0.894
CHA/CHumin 0.29 a 0.27 a 0.42 b 0.45 c 104.43 <0.001 0.277 0.001  0.913
Chumus/TOC 0.30 a 0.38 b 0.67 c 0.89 d 1383.5 <0.001 0.315 0.004  0.993
Metal fraction (mg kg‐1 dry basis): MB=Mobile+Mobilisable (Bioavailable), LB=low bioavailability. FA=% C Fulvic acids; HA=% C Humic acids; TOC=% Total 
organic carbon. Means in a row followed by the same letter are not significantly different at α = 0.05 according to the Tukey`s  t‐test.  P= P values of the F 
test in ANOVA curvefit for linear and quadratic models.  Model parameters: a =constant; b= coefficient of x in linear and quadratic models; c=coefficient of 
x2 in the quadratic model. Independent variable =Time of composting (days). 
 

 



Table 3. Best-fit models for major metal fractions varying in the sewage sludge compost and C in humus fractions during 

composting.  

Model Best-fit Model parameters Dependent 
variable  Coefficient SE p-value R2 

 Constant 8.271 2.897 0.019 0.975 
ZnMB CFA  

C
14.919 1.412 <0.001  

 Humin -7.515 0.848 <0.001   
CuMB Constant 3.538 0.304 <0.001 0.965 

 Chumus/TOC 5.785 0.499 <0.001   
PbLB Constant 3.578 0.533 <0.001 0.982 

 Chumus/TOC 10.330 2.051 0.011  
 (Chumus/TOC)2 -5.418 1.710 <0.001   

NiMB Constant 0.588 0.031 <0.001 0.990 
  humus/TOC 

C
C 0.908 0.041 <0.001  

 FA -1.030 0.007 <0.001   
CdMB Constant 0.033 0.004 <0.001 0.951 

 Chumus/TOC 0.101 0.007 <0.001   
Chumus/TOC Constant -0.084 0.104 0.440 

 CHumin 
C

0.090 0.030 0.018 
 HA 

C
0.073 0.029 0.036 

 FA -0.069 0.032 0.065 

0.990 
 

 

 

 

 


