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Regino Criadoa,b, Esther Garćıaa,b, Francisco Pedrochec, Miguel Romancea,b,∗
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Abstract

In this paper we analyze families of rankings by studying structural properties
of graphs. Given a finite number of elements and a set of rankings of those
elements, two elements compete when they exchange their relative positions in
at least two rankings, and we can associate an undirected graph to a set of
rankings by connecting elements that compete. We call this graph a competi-
tivity graph. Competitivity graphs have already appeared in the literature as
co-comparability graphs, f -graphs or intersection graphs associated to a con-
catenation of permutation diagrams. We introduce certain important sets of
nodes in a competitivity graph. For example, nodes that compete among them
form a competitivity set and nodes connected by chains of competitors form a
set of eventual competitors. We analyze these sets and we show a method to
obtain sets of eventual competitors directly from a family of rankings.

Keywords: Competitivity graphs, permutation graphs, comparability graphs,
f -graphs

1. Introduction

It is well known that Personalized PageRank is a very remarkable tool that
helps ranking the nodes of a network according to their centrality (see, for
example, [22, 5, 23]). This main fact makes that in many real-life networks
(such as WWW networks or social networks) it is crucial for a node i to spot
other nodes that can be overcome by i in a ranking based on Personalized
PageRank, since these nodes are the nodes that actually compete with i in the
ranking based on Personalized PageRank. In their work [12], the last three
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authors of this paper introduced the notion of effective competitors related to
nodes that exchanged their relative positions in the Personalized PageRank
algorithm when the personalization vector was modified. This kind of problems
had already been posed in the literature in social networks, and actually in [23] a
necessary condition for a couple of nodes i, j ∈ N to compete was given in terms
of the so-called competitivity intervals. Nevertheless, the techniques developed
in [12] completely solved the problem of finding the competing nodes of a fixed
vertex i and gave a computationally efficient solution to it.

Notice that the problem of studying the competitors of a certain node is
not a problem strictly related nodes ranked by the Personalization PageRank
algorithm, but directly depends on the concept of ranking itself. No matter the
nodes have been ranked by this algorithm or by any other method, given a set
of nodes we can say that two nodes compete when they exchange their relative
positions in at least two rankings of the set.

In a recent work (see [7]) a method to compare full rankings based on the
study of structural properties of some graphs was introduced. Regarding our
proposal, any finite set of rankings leads to a graph called competitivity graph.
In this paper we identify these graphs with some already known families of
graphs, see [15], and provide some relationships with other families. We are
more interested in the tool itself – the competitivity graph – than in the original
focus of the problem – the rankings.

Any full ranking of n elements can be considered a permutation of {1, 2, . . . , n}.
Note that according to this approach it is not possible to consider rankings with
ties of two or more elements. One of the first studies on comparison of full
rankings appears in the work of Kendall [17], where the counting of interchanges
between two given rankings plays an essential role. In that seminal paper the
main objective was to introduce a measure of correlation between two rankings
– the so-called Kendall’s measure of correlation. Since then, some papers have
been devoted to analyze, compare and extend this coefficient. For example,
in [8] some metrics to compare rankings can be found. Given some rankings
one may be interested in obtaining a consensus ranking: a ranking that bet-
ter gathers the information collected in the rankings. The resulting consensus
ranking is also called an aggregated rank, see [20]. Many studies are devoted
to describe techniques for aggregate rankings with an eye on ranking web pages
on the Internet, see. e.g. [2]. The most famous technique to aggregate rankings
consists of a Markov chain used by the founders of Google [22]. A different
approach consists of finding a permutation that minimizes the crossings over a
set of rankings, see [3] and [4] for more details on computational complexity.

The structure of the paper is the following: after this introduction, section 2
is devoted to introducing some preliminary results and the main definitions, par-
ticularly the one of competitivity graphs. In section 3 the relationships among
competitivity graphs, comparability graphs and other well known families of
graphs are presented. Finally, section 4 is devoted to studying in depth the sets
of eventual competitors. Moreover, an algorithm for computing them directly
from the rankings is provided.
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2. Competitivity graphs

Definition 2.1. Given a finite set of elements N = {1, . . . , n} (n ∈ N) that we
will call nodes we define a ranking c of N as any bijection c : N −→ N .

Since a ranking is a permutation of the elements of N , we can identify
rankings with vectors of Nn = N × · · · × N in the following way: if we take a
ranking c : N −→ N , we identify c ≡ (i1, . . . , in) ∈ Nn, where c(1) = i1, c(2) =
i2, . . . , c(n) = in.

If c ≡ (i1, . . . , in) is a ranking, then we will write i ≺c j when node i appears
first than node j in the vector of the ranking c, i.e., when c−1(i) < c−1(j).
Hence, if we take a ranking c ≡ (i1, . . . , in), then it defines an ordering on the
set N = {1, . . . , n}, where the first element in this ordering is c(1), the second
is c(2) and so on.

Definition 2.2. Given a finite set R = {c1, c2, . . . , cr} of rankings we say that
the pair of nodes (i, j) ∈ N compete if there exist cs, ct ∈ {1, 2, . . . , r} such that
i ≺cs j but j ≺ct i, i.e., i and j exchange their relative positions between the
rankings cs and ct.

The competitiveness between two nodes i, j ∈ N is strongly related with
the fact that (i, j) is an inversion of a ranking of the set, as the following result
shows. Remember that an inversion in a ranking c is a pair of nodes (i, j) such
that

(i− j)(c−1(i)− c−1(j)) < 0.

Lemma 2.3. Given a finite set R = {c1, c2, . . . , cr} of rankings, the following
conditions are equivalent:

(i) The pair of nodes (i, j) compete.

(ii) There exists cs ∈ {c1, . . . , cr−1} such that i and j exchange their relative
positions between the rankings cs and cs+1.

(iii) There exists a relabeling of the nodes such that c1 = id ≡ (1, 2, . . . , n) and
some cs ∈ {c2, . . . , cr} with an inversion of (i, j).

Proof. Clearly (ii) =⇒ (i). For (i) =⇒ (iii) relabel the nodes such that c1 = id;
if i and j exchange their relative positions between rankings cs and ct either
(i, j) is an inversion of cs or (i, j) is an inversion of ct.

For (iii) =⇒ (ii), once the nodes have been relabeled so that c1 = id and
we have an inversion (i, j) in ranking cs, either i and j exchange their relative
positions between cs and cs−1, or cs−1 also contains the inversion (i, j). The
result follows by induction since R is a finite set.

If we take a set of rankings R = {c1, c2, . . . , cr} we are going to associate
it a graph that gives information about the structure of the competitiveness
between nodes.
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Definition 2.4. Let R = {c1, c2, . . . , cr} be a set of rankings of nodes N =
{1, . . . , n}. We define the competitivity graph of the family of rankings R as the
undirected graph Gc(R) = (N , ER), where the set of edges ER is given by the
following rule: there is a link between nodes i and j if (i, j) compete.

Remark 2.5. This kind of graphs have already been defined and studied in
the particular case of two rankings (r = 2). They are the so-called permutation
graphs, see [24], [25], [19], [18], [3], [21], [13]. Moreover, by Lemma 2.3, after
the relabeling of the nodes such that c1 = id, the competitivity graph of the
set of rankings R is the graph consisting of nodes N and edges given by the
inversions induced by c2, . . . , cr, i.e., the union of all the possible permutation
graphs given by c2, . . . , cr, where the union of graphs means the classic union
of graphs G1 ∪G2 = (V1 ∪V2, E1 ∪E2) if G1 = (V1, E1) and G2 = (V2, E2) (see,
for example [9]).

Example 2.6. If we consider N = {1, . . . , 6}, and the following rankings of N :

c1 ≡ (1, 2, 3, 4, 5, 6),

c2 ≡ (1, 3, 4, 2, 5, 6),

c3 ≡ (1, 2, 5, 3, 4, 6),

c4 ≡ (3, 2, 6, 1, 5, 4),

then the competitivity graph Gc(R) = (N , ER) of the family of rankings R =
{c1, c2, c3, c4} is shown in Figure 1.

2 4

1 6

3 5

Figure 1: The competitivity graph Gc(R) = (N , ER) of the family of rankings R =
{c1, c2, c3, c4}.

Remark 2.7. The computational cost of constructing the competitivity graph
Gc(R) = (N , ER) of the set of rankingsR = {c1, . . . , cr}, where N = {1, . . . , n}
is of order rn2, since by Lemma 2.3, after relabeling the nodes such that c1 = id
(which has computational cost of order rn in the worst case), we only have to
find the inversions between c1 and each of the cs, which has computational cost
of order (r − 1)

(

n

2

)

≈ rn2.

One of the goals of this paper is showing that there are some deep con-
nections between structural properties of the competitivity graph Gc(R) (such
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as connectedness, maximal cliques,...) and properties of the rankings and the
competitiveness between nodes. As a first example of these relationships we can
consider the nodes that compete with a fixed node i ∈ N .

Definition 2.8. If we take a set of rankings R = {c1, . . . , cr} of nodes N =
{1, . . . , n} and we fix i ∈ N , the competitivity set C(i) of a node i is the set of
elements of N that compete with i together with i, i.e.,

C(i) = {j ∈ N | (i, j) compete} ∪ {i}.

Remark 2.9. Local information of the competitivity graph gives properties of
the competitivity set of nodes, since it is straightforward to check that C(i) cor-
responds to i together with all its neighbors in the competitivity graph Gc(R).

Definition 2.10. If we take a set of rankings R = {c1, . . . , cr} of nodes N =
{1, . . . , n}, a set of nodes C ⊆ N is called a set of competitors if it is a maximal
set with respect to the property of competition among its elements, i.e., given
any two elements i, j ∈ C, (i, j) compete and C is maximal with respect to this
property.

Remark 2.11. The sets of competitors are exactly the maximal complete sub-
graphs (maximal cliques) of Gc(R). Notice that two nodes compete if and only
if they belong to the same set of competitors. Moreover, it can be checked that
a set of nodes C ⊆ N is a competitors set if and only if

C =
⋂

i∈C

C(i).

The previous remark points out the fact that the maximal cliques of Gc(R)
correspond to the sets of competitors. If we consider other structural sets of
nodes of Gc(R), such as the connected components of Gc(R), we obtain other
weaker set of competitors, as the following:

Definition 2.12. If we take a set of rankings R = {c1, . . . , cr} of nodes N =
{1, . . . , n}, we say that a pair of nodes (i, j) ∈ N eventually compete if there exist
k ∈ N and nodes ii, . . . , ik ∈ N such that (i, i1) compete, (i1, i2) compete,. . . ,
and (ik, j) compete.

A set of nodes D ⊆ N is called a set of eventual competitors if it is a maximal
set with respect to the property of eventual competition among its elements.

Remark 2.13. It is straightforward to check that if a pair of nodes (i, j) com-
pete, then eventually compete. Furthermore, (i, j) eventually compete if and
only if i and j are connected by a path in the graph Gc(R).

Notice that the sets of eventual competitors of N are the connected compo-
nents of Gc(R) and two nodes eventually compete if and only if they belong to
the same set of eventual competitors. Clearly if two nodes belong to different
sets of eventual competitors, they cannot compete.

In section 4 we will make a deeper study of sets of eventual competitors,
their structure and an algorithm that calculates them without computing the
whole competitivity graph Gc(R).
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3. Competitivity, comparability, permutation and chordal graphs

In this section we will study the relationships among competitivity graphs
and other well-known families of graphs such as comparability graphs, permu-
tation graphs, f -graphs, co-comparability graphs and chordal graphs. We will
follow the notation used in [1].

Let us start this section by reminding the basic well-known definitions of
chordal, comparability, permutation f -graphs and co-comparability graphs that
are the main classic families of graphs that will be compared with the compet-
itivity graphs.

Definition 3.1. A graph G = (N , E) is chordal if each of its cycles of four
or more vertices has a chord, which is an edge joining two nodes that are not
adjacent in the cycle.

Definition 3.2. Given any partial ordered set (N ,�) we can associate a di-
rected graph G� to (N ,�) as defined in [16]: the vertex set is N and there is
a link from i to j, i 6= j, if i � j.

A graph G = (N , E) is a comparability graph if it is the non-directed graph
obtained after removing orientation in G� for some partial order � of N .

Remark 3.3. It has been proven [14, 24] that a graph G = (N , E) is a compa-
rability graph if and only if it admits a transitive orientation of its edges, i.e., if

there is a directed graph
−→
G = (N ,

−→
E ) obtained from G by orienting each edge

in E, such that if (i, j), (j, k) ∈
−→
E , then (i, k) ∈

−→
E .

Comparability graphs are a broadly studied class of graphs, and are related
to other families of graphs such as permutation graphs, interval graphs, etc. see
e.g., [15]. We highlight the work of Gallai [11] where the modular decompo-
sition of a graph was introduced as a tool to characterize when a graph is a
comparability graph.

Definition 3.4. A graph G = (N , E) is a permutation graph if its vertices
represent the elements of a permutation and each one of its edges correspond
to a pair of elements that are reversed by the permutation.

Permutation graphs may also be defined geometrically, as the intersection
graphs of line segments whose endpoints lie on two parallel lines.

Remark 3.5. A very useful characterization of permutation graphs is the fact
that both the graph G and its complement Ḡ (the graph with the same set
of nodes and links between nodes that are not linked in G) are comparability
graphs, i.e., admit a transitive orientation of its edges, see [10].

Notice that permutation graphs are both comparability (by using the last
remark) and competitivity graphs (simply by considering two rankings: c1 = id
and c2 as the permutation that constitutes the permutation graph).

There are several characterizations of permutation graphs, but we point out
the following given in terms of cohesive vertex-set orders (see [13]).
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Definition 3.6 ([13]). If G = (N , E) is a graph, we say that G has a cohesive
vertex-set order (or simply cohesive order) if there is a relabeling of the nodes
such that:

(i) if there is a link between nodes a and b and a < b, then for every x,
a < x < b, there must exist a link between a and x or a link between x

and b.

(ii) (transitivity) if there is a link between nodes a and x, another between x

and b, and a < x < b, then a and b are also linked.

It was proved the following characterization of permutation graphs in terms
of cohesive vertex-set orders (see [13]):

Theorem 3.7 ([13], Theorem 2.3). G = (N , E) is a permutation graph if and
only if it has a cohesive vertex-set order.

Remark 3.8. Notice that, by using Remark 3.3, for every comparability graphs
there is always a relabeling of the nodes such that satisfies condition (ii) of
Definition 3.6 (transitivity), since it admits a transitive orientation of its vertices
(in fact, condition (ii) characterizes comparability graphs). Hence we get an
alternative proof of the fact that every permutation graph is a comparability
graph.

Following the essence of the definition of cohesive order (Definition 3.6)
and since condition (ii) (transitivity) characterizes comparability graphs, we
can investigate the graphs that verify condition (i), introducing the following
definition.

Definition 3.9. If G = (N , E) is a graph, we say that G has a semi-cohesive
vertex-set order (or simply semi-cohesive order) if there is a relabeling of the
nodes such that verifies condition (i) of Definition 3.6, i.e., if there is a link
between nodes a and b and a < b, then for every x, a < x < b, there must exist
a link between a and x or a link between x and b. We will say that a graph G

is semi-cohesive if it has a semi-cohesive vertex-set order.

While condition (ii) of Definition 3.6 is connected with comparability graphs,
condition (i) (semi-cohesiveness) is connected with competitivity graphs, as the
following lemma shows.

Lemma 3.10. Every competitivity graph is semi-cohesive.

Proof. Suppose without loss of generality that the ranking id ≡ (1, 2, . . . , n)
belongs to the set of rankings R that generates the graph. Suppose that there
is a link between nodes a and b, a < b, and take x such a < x < b. If there is
a link between a and b, (a, b) compete, so there exists another ranking cm ∈ R
such that b ≺cm a. If x ≺cm a, the pair (x, a) compete and there is a link
between a and x, and otherwise b ≺cm a ≺cm x so the pair (b, x) compete,
giving rise to a link between x and b.
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Conjecture 3.11. Lemma 3.10 is a characterization of competitivity graphs,
i.e. G = (N , E) is a competitivity graph if and only if it has a semi-cohesive
vertex-set order.

Finally we also consider the class of f -graphs that were introduced in [15],
as follows:

Definition 3.12 ([15]). An f -diagram in R
2 is a set of curvesD = {γ1, · · · , γn},

where γi : [0, 1] −→ R
2 is given by γi(t) = (t, fi(t) with fi : [0, 1] −→ R

continuous for every 1 ≤ i ≤ n. An f -graph G(D) = (V,E) that represents
the diagram D = {γ1, · · · , γn} is given by E = {1, · · · , n} and i 6= j ∈ V are
adjacent in G(D) if fi(a) = fj(a) for some a ∈ [0, 1].

This well-known family of graphs is actually the family of competitivity
graphs and therefore every f -graph can be expressed in terms of a set of rankings
R = {c1, · · · , cr}, as the following result shows:

Proposition 3.13. Let G = (V,E) be an unweighed and undirected graph with
n nodes. Then the following assertions are equivalent:

(i) G is an f -graph that represents an f -diagram of n curves in R
2.

(ii) Ḡ is a comparability graph.

(iii) There are permutations c1, · · · , cr of N = {1, · · · , n}, such that

G = G1 ∪ · · · ∪Gr,

where ∪ stands for the classic union of graphs and Gi is the permutation
graph associated to the permutation ci for every 1 ≤ i ≤ r.

(iv) G is a competitivity graph.

Proof. On the one hand, (i)⇔(ii)⇔(iii) is Theorem 1 in [15], since if we consider
some permutations c1, · · · , cr ofN = {1, · · · , n}, then the graphG1∪· · ·∪Gr was
called in [15] the intersection graph of a concatenation of permutation diagrams

and it was proved in [15] that this is equivalent to the fact that G is an f -graph.
On the other hand, (iii)⇔(iv) is a direct consequence of Lemma 2.3, as it

was pointed out in Remark 2.5.

Last proposition shows that competitivity graphs are actually the family of
f -graphs, and therefore the relationships among the set of competitivity graphs
and other classic families of graphs is in fact the well-known relationships with
the f -graphs. Hence, we get the following result that summarizes the relation-
ships among the set of competitivity graphs and other classic families of graphs.
For the sake of completeness, we include the proof of this known result.

Proposition 3.14. If G is the set of all finite graphs, CHG, PG, CG and CPG
are the sets of all chordal, permutation, comparability and competitivity graphs
respectively, then:
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(i) There are comparability graphs that are neither competitivity graphs nor
chordal graphs, i.e. CG \ (CPG ∪ CHG) 6= ∅.

(ii) There are competitivity graphs that are neither comparability graphs nor
chordal graphs, i.e. CPG \ (CG ∪ CHG) 6= ∅.

(iii) There are graphs that are neither comparability, competitivity graphs nor
chordal graphs, i.e. G \ (CG ∪ CPG ∪ CG) 6= ∅.

(iv) Permutation graphs coincide with the intersection of competitivity and
comparability graphs, but not every permutation graph is chordal, i.e.
PG = CG ∩ CPG and PG 6⊆ CHG.

(v) There are chordal graphs that are neither comparability graphs nor com-
petitivity graphs, i.e. CHG \ (CG ∪ CPG) 6= ∅.

(vi) There are graphs that are both competitivity and chordal but not compara-
bility, i.e. CPG ∩ CHG ∩ (G \ CG) 6= ∅.

(vii) There are graphs that are both comparability and chordal but not compet-
itivity, i.e. CG ∩ CHG ∩ (G \ CPG) 6= ∅.

(viii) There are graphs that are chordal, competitivity and comparability, i.e.
CHG ∩ CPG ∩ CG 6= ∅.

Proof. Let us start the proof, by adding some notation and basic facts. If
G = (N , E) is a graph, we call the common neighbours of a pair of nodes
i, j ∈ N as the set of nodes that are either linked to i or j (or to both).
Fact 1: If a graph G = (N , E) is semi-cohesive with respect to some labeling of
its nodes and we have relabeled N according to this labeling, then if i, j ∈ N
are linked, then the number of the common neighbours of i and j is at least
|i− j| − 1.

This fact is a straightforward, since it is easy to check that the number of
common neighbours of two nodes is controlled in semi-cohesive graphs, simply
by using the definition.
Fact 2: Every cycle of n vertices Cn with n ≥ 5 is not semi-cohesive, and
therefore it is not a competitivity graph.

In order to proof this fact, let us work with the cycle of 5 vertices. The
same argument applies verbatim for cycles of n vertices, n > 5. Suppose that
it is semi-cohesive and relabel the nodes in a semi-cohesive vertex order. Let us
label one of its nodes with 1 and let i, j, k,m, n be the labels of the rest of the
nodes as in Figure 2.

The pairs of nodes (1, i) and (1, j) must satisfy Fact 1 so i, j ≤ 4. If i = 4 then
j, k ∈ {2, 3} because it is semi-cohesive, hence m = 5. There is a link between
j and m and j < i = 4 < m so using again that it is semi-cohesive there must
exist a link between i and j or a link between i and m, which is not the case.
Hence i 6= 4 and by symmetry j 6= 4, so one of them is 2 and the other is 3.
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1

i j

k m

Figure 2: The cycle of 5 nodes C5

Without loss of generality suppose that i = 2, j = 3 and hence we are in the
situation of Figure 3.

1

2 3

k m

Figure 3: The cycle of 5 nodes C5

Since k ≥ 4 and 2 and k are linked, since it is semi-cohesive there must exist
a link between 2 and 3 or a link between 3 and k, which again is not true and
therefore C5 is not semi-cohesive.
Fact 3: Every cycle with an odd number of vertices C2n+1, n ≥ 2, is neither a
competitivity graph, nor a comparability graph nor chordal.

The proof of this Fact it is easy to see since these graphs do not admit a
transitive orientation of their vertices, i.e., they are not comparability. Moreover
they are not a competitivity graph by Fact 2, and they are not chordal either,
by definition.

Now we can start the proof of the main Proposition.
(i) The cycle of 6 vertices, C6, is a comparability graph since we can give a

transitive orientation to its edges, as Figure 4 shows.

Nevertheless, C6 is not semi-cohesive by Fact 2 and hence it is not a competi-
tivity graph.

(ii) Consider the complement of the cycle of 6 vertices C̄6 with the labeling of its
nodes as shown in Figure 1. It is a competitivity graph of a family of rankings
but its edges do not admit a transitive orientation, hence it is not comparability.

10



Figure 4: The cycle of 6 nodes C6 with a transitive orientation

(iii) Every cycle with an odd number of vertices C2n+1, n ≥ 2, is neither a
competitivity graph, nor a comparability graph nor chordal, as seen in Fact 3.

(iv) Permutation graphs are competitivity graphs generated by two rankings,
and are also comparability graphs as proved in [10] and [6]. Conversely, suppose
that G is a competitivity and a comparability graph. Since it is a competitivity
graph, it is semi-cohesive. With respect to that labeling of the nodes, condition
(ii) of Definition 3.6 of cohesive-vertex set order also holds because the graph has
a transitive orientation of its vertices. Then by Theorem 3.7 (see [13], Theorem
2.3), G is a permutation graph. In addition to this, note that it is easy to check
that C4 is a permutation but not a chordal graph.

(v) The graph S3, shown in Figure 5.a, is a chordal graph but it can be checked
that it is not semi-cohesive (by using Fact 1 and following similar reasonings
to those used in the proof of Fact 2) and hence it is not a competitivity graph.
Moreover, it does not admit a transitive orientation of its edges.

(vi) The graph X176, shown in Figure 5.c, is chordal, but it is not comparability
since it does not admit a transitive orientation of its edges. It is a competitivity
graph because it can be generated by the set of rankings R = {c1, c2, c3, c4, c5}
given by

c1 ≡ (1, 2, 3, 4, 5, 6, 7),

c2 ≡ (2, 1, 4, 3, 6, 5, 7),

c3 ≡ (1, 2, 5, 4, 3, 7, 6),

c4 ≡ (1, 4, 2, 3, 5, 6, 7),

c5 ≡ (1, 3, 2, 6, 4, 5, 7).

(vii) The graphXF 2
2 , shown in Figure 5.b, is a comparability and chordal graph.

Nevertheless it is not a semi-cohesive graph (by using Fact 1 and following
similar reasonings to those used in the proof of Fact 2) and hence it is not a
competitivity graph.
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1

2 3

4 5 6

1

2

3 4 5 6 7

(a) (b)

3 5

1 2 4 6 7

1

2 3

(c) (d)

Figure 5: The graphs S3 (Figure 5.a) that it is chordal but not competitivity not comparability
graph, XF 2

2
(Figure 5.b), that it is chordal and comparability but not competitivity graph,

X176 (Figure 5.c), that it is chordal and competitivity, but not comparability graph, and C3

(Figure 5.d), that it is chordal and permutation graph.

(viii) The cycle of 3 vertices C3, shown in Figure 5.d, is chordal, and a permu-
tation graph (hence comparability and competitivity). Indeed it is generated
by the set of rankings R = {c1, c2} given by

c1 ≡ (1, 2, 3),

c2 ≡ (3, 2, 1).

Remark 3.15. We can summarize Proposition 3.14 in Figure 6. Each square
in this Figure corresponds to a class of graphs, as follows:

(i) G is the set of all finite graphs.

(ii) CG is the set of all comparability finite graphs.

(iii) CHG is the set of all chordal graphs.

(iv) CPG is the set of all competitivity graphs.

Then, Proposition 3.14 shows that each region in the Figure is non-empty (i.e.
there some graphs in each region) and CG ∩ CPG = PG.
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Figure 6: A visual summary of Proposition 3.14. Each region in the figure is non-empty and
CG ∩ CPG = PG.

4. Connected Components of the competitiveness graph: Structural

properties and computation

In this section we will make a deeper study of sets of eventual competitors.
This will lead to a new algorithm to calculate them without computing the
competitivity graph in advance. Moreover, we will show that sets of eventual
competitors can be ordered by means of a total order relation, giving rise to the
leader and the looser sets of eventual competitors.

First of all, we will show a property related to the convexity with respect of
the rankings of the sets of eventual competitors:

Lemma 4.1. Given a finite set R = {c1, c2, . . . , cr} of rankings of nodes N =
{1, . . . , n}, if D ⊆ N is a set of eventual competitors and a, b ∈ D, then for
every x ∈ N and every ranking cm ∈ R such that

a ≺cm x ≺cm b =⇒ x ∈ D.

Proof. Step 1: Suppose first that the pair of nodes (a, b) compete. Then, since
the competitivity graph is semi-cohesive (3.9), (a, x) compete or (x, b) compete,
so x ∈ D.
General case: Since a, b ∈ D, they are eventual competitors and there exist
k ∈ N and nodes ii, . . . , ik ∈ N such that (a, i1) compete, (i1, i2) compete,. . . ,
and (ik, b) compete. If a ≺cm x ≺cm i1 we can apply Step 1 to nodes a, x and i1
since (a, i1) compete, and we get that x ∈ D. Otherwise a ≺cm i1 ≺cm x ≺cm b.
Replace a by node i1 and repeat the same argument. The result follows by
induction.

In order to compute the sets of eventual competitors without calculating the
competitivity graph in advance, we need the following auxiliar lemma.

Lemma 4.2. Given a finite set R = {c1, . . . , cr} of rankings of nodes N =
{1, . . . , n}, if D ⊆ N is a set of eventual competitors and there exist a ∈ D and
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cm ∈ R such that c−1
m (a) = 1 (element a appears in the first position of cm)

then
{x ∈ N | c−1

s (x) = 1 for some cs ∈ R} ⊆ D,

i.e., all elements in the first position of the rankings of R belong to D.

Proof. If cm 6= cs and a 6= x satisfy c−1
m (a) = 1 = c−1

s (x), then clearly a ≺cm x

and x ≺cs a, so (a, x) compete and therefore x ∈ D.

Theorem 4.3. Given a finite set R = {c1, . . . , cr} of rankings of nodes N =
{1, . . . , n}, the sets of eventual competitors can be identified with closed intervals
of natural numbers [p, q] in the following sense

D[p,q] = {x ∈ N | c−1
s (x) ∈ [p, q] for some cs ∈ R}.

Moreover p and q are the first on the left and last on the right positions of the
elements of D[p,q] with respect to all rankings.

Proof. We will show that every set of eventual competitors has the form D[p,q]

for some natural numbers p, q. Let a ∈ N , cm ∈ R such that c−1
m (a) = 1 and

let D be the set of eventual competitors that contains a. Set

D[1,1] = {x ∈ N | c−1
s (x) = 1 for some cs ∈ R}.

By Lemma 4.2, we get that D[1,1] ⊆ D.
Now, define

D[1,pk] = {x ∈ N | c−1
s (x) ∈ [1, pk] for some cs ∈ R}

and set pk+1 as the last (to the right) position of any element of D[1,pk] with
respect to any ranking. We claim that if D[1,pk] ⊆ D and

D[1,pk+1] = {x ∈ N | c−1
s (x) ∈ [1, pk+1] for some cs ∈ R},

then D[1,pk+1] ⊆ D. Let x ∈ N with c−1
s (x) ∈ [1, pk+1] for some cs; then either

c−1
s (x) ∈ [1, pk] and x ∈ D[1,pk] ⊂ D by hypothesis, or c−1

s (x) ∈ [pk, pk+1]. In
this second case, let b be an element of D[1,pk] who appears in position pk+1

with respect to some ranking cmb
, i.e., c−1

mb
(b) = pk+1. If x ≺cmb

b then x ∈ D

by Lemma 4.1, so we can suppose that b ≺cmb
x. All the elements on the left of

b in ranking cmb
belong to D by Lemma 4.1. Suppose that the number of those

elements is t. If x ≺cs b then (x, b) compete and x ∈ D, so we can suppose that
b ≺cs x. On the left of x in ranking cs there are at most t elements but one of
them is b so one of the elements z such that z ≺cmb

b must go after x in ranking
cs, making (x, z) compete, thus x ∈ D.

Since N is finite and D[1,pm] ⊆ N , the chain of sets D[1,1] ⊂ D[1,p1] ⊂ ...

stabilizes at some D[1,pm] ⊆ D. Moreover, D ⊆ D[1,pm]: by hypothesis a ∈
D so given any other element x ∈ D there exist a finite number of elements
a1, a2, . . . , ak such that (a, a1), (a1, a2),. . . , (ak, x) compete. From the facts
that a ∈ D[1,1] and (a, a1) compete we get that a1 ∈ D[1,p1]; similarly, from
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a1 ∈ D[1,p1] and (a1, a2) compete, a2 ∈ D[1,p2],... and repeating this argument
we get x ∈ D[1,pk+1] ⊆ D[1,pm].

Delete fromN all the elements appearing inD and repeat the same argument
to find the rest of sets of eventual competitors.

Remark 4.4. Since the proof of last theorem is constructive it gives an algo-
rithm for computing the sets of eventual competitors directly from the rankings
and not as connected components of the competitivity graph.

Algorithm 1: Computation of sets of eventual competitors

Input :

• A finite set of nodes N = {1, . . . , n} (n ∈ N)

• A finite set of rankings R = {c1, . . . , cr} of N (r ∈ N)

begin

j := 1;
q0 = 0;
qj := 1;
while |N | > 0 do

Dj := ∅;
p0 := qj−1;
p1 := qj ;
i := 0;
while pi 6= pi+1 do

i := i+ 1;
Construct Dj := D[qj ,pi];

pi+1 := max
x∈Dj , c∈R

c−1(x);

end

N := N \Dj ;
j := j + 1;
qj := pi;

end

end

Output: Sets of eventual competitors D1, . . . , Dk

It is easy to check that the computational cost of this algorithms is of order
kn2. Note that since the sets of eventual competitors coincide with the con-
nected components of the competitivity graph, they can also be calculated with
the usual connected components algorithms (which finally has computational
complexity of order kn2 as well), but this method requires the computation of
the competitivity graph in advance.
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In the last part of this section we will show that we can define a binary
relation between sets of eventual competitors that is a total order relation.
Before that we need to introduce a directed graph related to a set of rankings,
included in the following definition.

Definition 4.5. Given a set R = {c1, . . . , cr} of r rankings (r ≥ 2) of nodes
N = {1, . . . , n}, we define the directed graph Gd(R) in the following way:

(i) the vertex set of Gd(R) is N .

(ii) if i 6= j ∈ N there is an outlink from i to j in Gd(R) if there exists a
ranking cm ∈ R such that i �cm j.

Remark 4.6. Notice that this directed graphGd(R) coincides with the directed
graph G� defined by the (reflexive and antisymmetric) relation � given by:

(i) i � i for any i ∈ N ,

(ii) i � j (i 6= j ∈ N ) if there exists cm ∈ R such that i �cm j.

The competitivity graph Gc(R) coincides with the undirected graph with the
same set of nodes of Gd(R) and links between pairs of nodes (i, j) when there
is an outlink from i to j and an outlink from j to i in Gd(R).

Proposition 4.7. Following the same notation as before, if D1 and D2 are two
different sets of eventual competitors, the following conditions about the directed
graph Gd(R) are equivalent:

(i) there is an outlink from a node a ∈ D1 to a node b ∈ D2,

(ii) for every node in D1 there is an outlink to every node of D2

(similarly if we replace the word outlink with the word inlink).

Proof. We will separate the proof in three steps:
Step 1: We will show that if a ∈ D1, b1, b2 ∈ D2, the pair (b1, b2) compete
and there is an outlink from a to b1, then necessarily there is an outlink from
a to b2 (similarly if we replace the word outlink by inlink). By hypothesis
there exists a ranking cm such that a ≺cm b1. If a ≺cm b2 the claim holds;
otherwise b2 ≺cm a ≺cm b1, but since (b1, b2) compete there exists another
ranking cm′ such that b1 ≺cm′

b2 and since a cannot compete with b1 necessarily
a ≺cm′

b1 ≺cm′
b2 making (a, b2) compete (a contradiction).

Step 2: We will show that if a ∈ D1, b ∈ D2 and there is an outlink from a to b

then for every b′ of D2 there is an outlink from a to b′ (similarly if we replace the
word outlink by inlink). Since b, b′ ∈ D2 there exist k ∈ N and b1, . . . , bk ∈ D2

such that (b, b1) compete, (b1, b2) compete, . . . , (bk, b
′) compete. Nodes a, b, b1

are in the conditions of Step 1 so there is an outlink from a to b1; again nodes
a, b1, b2 are in the conditions of Step 1 so there is an outlink from a to b2, . . . ,
and the result follows by induction.
Step 3: Proof of (i) ⇒ (ii). If from an element a ∈ D1 there is an outlink to an
element in D2, by Step 2 there is an outlink from a to any element of D2. Fix
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now any element of D2 and use Step 2 to get that there are outlinks from any
element of D1 to this fixed element.

As a consequence of Proposition 4.7, we can define a binary relation between
the sets of eventual competitors as follows.

Definition 4.8. Given a set R = {c1, . . . , cr} of r rankings (r ≥ 2) of nodes
N = {1, . . . , n} whose sets of eventual competitors are denoted by D1, . . . , Dk,
we define a binary relation · −→ · between sets of eventual competitors as
follows:

(i) Di −→ Di for every set of eventual competitors Di of N ,

(ii) for any two different sets of eventual competitors Di, Dj,

Di −→ Dj ⇐⇒ any of the two statements of Proposition 4.7 holds.

Lemma 4.9. Following the same notation as before, the binary relation given
in Definition 4.8 is transitive, i.e., if D1, D2, D3 are three different sets of
eventual competitors and D1 −→ D2 and D2 −→ D3 then D1 −→ D3.

Proof. Suppose that D1 −→ D2, D2 −→ D3 but D3 −→ D1. Take a node x ∈
D1. Since D3 −→ D1 there exists a ranking cm such that a ≺cm x for all a ∈ D3.
Moreover, since D1 −→ D2, x ≺cm b for all b ∈ D2, and therefore a ≺cm b for
all a ∈ D3 and all b ∈ D2, i.e., D3 −→ D2 leading to a contradiction.

Corollary 4.10. The binary relation given in Definition 4.8 is a total order
relation between sets of eventual competitors of N .

Remark 4.11. With respect to this total order we can define a directed graph
whose nodes are the sets of eventual competitors and edges are given by the
rule: there is a link from node Di to node Dj if Di −→ Dj . The node Di with
outlinks to any other node will be called the leader among the sets of eventual
competitors, and the node with inlinks from any other node will be called the
looser among the sets of eventual competitors. Indeed, we obtain a ranking of
sets of eventual competitors: the first one, the second, etc.
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