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Spectral properties with application to epidemic models
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Poveda2 and Elena Sánchez 1
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Abstract. In this paper, we address our study to analyze diseases whose trans-
mission occurs through a contaminated environment. Moreover, the individuals
are organized in compartments by age range. This epidemiological process with
indirect transmission of the disease has a mathematical representation by means
of a nonlinear discrete-time invariant system. A strategy to act when the system
is unstable is proposed. As a consequence of it, the new system is N -periodic and
its stability is given by the monodromy matrix of the system. The above matrix
analysis is applied to establish some conditions over the number of steps that we
can be without action and being the epidemiological process asymptotically stable.
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1. Model description and results

In recent years, concern has grown about foodborne illness because food is
the vehicle for the transmission of numerous diseases, such as salmonella [3,
4, 7, 8]. Therefore, the source of food contamination is becoming a growing
public health problem in industrialized countries. This contamination can
be endogenous (animals are fed on such a food) or exogenous (which takes
place during processing, transport or storage), [9]. According to the annual
report of Epidemiological Surveillance of Communicable Diseases issued by
the National Epidemiological Surveillance Network; in 2011, 271 Salmonella
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outbreaks were reported in Spain, with 2861 sick people and 7 deaths. More
than half of them were caused by salmonella (85% of outbreaks) followed by
S. typhimurium (10%), [6]. Therefore, one of the strategies that can be raised
is how to prevent the disease in the initial production stage

In [2, 4] mathematical models in order to analyze the salmonella disease
in a henhouse are showed and, in [1] the amount of bacteria in the henhouse
is also considered.

In this paper, we consider a discrete-time mathematical model where the
variables S(t) and I(t) represent time dependent population densities of sus-
ceptible and infected individuals at time t, t ∈ Z, t ≥ 0, respectively. This
model estimates the prevalence of salmonella infection in the henhouse. We
analyze the epidemic process taking into account the salmonella density in the
environment, being this density denoted by C(t). Then, the behavior of the
salmonella will be analyzed through the evolution of the infected individual
and contaminant populations.

Then, the model is described by the following nonlinear system

x(t+ 1) = F (x(t))

where x(t) = (S(t) I(t) C(t))T and the parameters involved are the usual in
this type of models. That is, the parameters 0 < p, q, s < 1 shall represent
density survival rate of S(t), I(t) and C(t), respectively, the parameter σ
denotes the exposition rate, the death removal rate at time t is denoted by µ(t)
and P is the population size. Moreover, µ(t)P and βI(t), 0 < β < 1, represent
the replacement rate and the density of pathogen produced by individuals
infected, respectively.

A linear model may arise from the linearization of above system around
disease-free equilibrium point, and this approach can provide sufficient accu-
racy describing the evolution of the system.

Linearizing around of the disease-free equilibrium point x∗ = F (x∗) de-
noted by Pf = (Sf , O,O) we obtain a linear discrete-time system

x̂(t+ 1) = Ax̂(t) + b,

being x̂(t) = x(t)−x?, A =

(
∗ ∗
O E

)
and we rewrite E = T +F. To analyze

the behavior of the solution around the Pf , we only consider the subsystem
containing the variables causing infection, i.e, variables that correspond to the
infected and the contaminant. It is clear that this subsystem is not asymptot-
ically stable if ρ(E) > 1. In our model, considering a population P , it easy to
check that if ρ(E) > 1 the eigenvalues are

λ1,2 =
q + s±

√
(q − s)2 + 4βσP

2
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with λ1 > 1 and the sign of the second eigenvalue, λ2, depends on the size of
the population.

So, if P satisfies P <
qs

βσ
, then λ2 > 0, with 0 < λ2 < 1 < λ1. And, if P

satisfies
qs

βσ
< P , then λ2 < 0, with −1 < λ2 < 0 < 1 < λ1.

On the other hand, one of the most important parameters of epidemic
modeling is the basic reproduction number R0 which is a measure or indicator
to know whether the disease will disappear at all or not. In [5] the expression
of R0 is given for an epidemiological model with indirect transmission. Thus,
R2

0 = βσP (1− q)−1(1− s)−1.
The disease will die out in the long run if R0 < 1 and the disease will be

able to spread through a population if R0 > 1.

We consider the case R0 > 1, then the population P satisfies

P > K =
(1− q)(1− s)

βσ

Note that, K < qs
βσ if and only if q + s > 1, this occurs when the density

survival rate of infected individual plus the density survival rate of pathogen
is greater than one.

If we focus on the fact that the infection does not disappear in the hen-
house, we want to find strategies for infection fade. Since the henhouse is
usually not clean, one strategy may be to perform a periodic cleaning of the
henhouse to eliminate the contaminant but we need to delay as much as pos-
sible this cleaning action. We want to find the minimum number of steps that
can be uncleaned, keeping the asymptotically stable system. That is, if we let
another step without cleaning the environment, then the disease grows and
the system is unstable in a neighborhood of free-disease point.

Therefore, we start with the initial condition (S(0), I(0), 0) and perform
cleaning every N stages leaving the henhouse free of contaminant. Then, the
process is given in the following system

I(t+ 1) = qI(t) + σ(t)B(t)S(t)
B(N) = s(t)B(t) + βI(t)

where σ(t) y s(t) are two N -periodic functions defined by

σ(t) =

{
0 t = 0
σ t = 1, , 2, . . . , N − 1

, s(t) =

{
0 t = 0
s t = 1, , 2, . . . , N − 1

,

σ(t+N) = σ(t) y s(t+N) = s(t).

Linearizing around of its disease-free equilibrium point, we have the fol-
lowing periodic system
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(
I(t+ 1)
B(t+ 1)

)
=

(
q f(t)
β s(t)

)(
I(t)
B(t)

)
= E(t)

(
I(t)
B(t)

)
, (1)

wheref(t) = σ(t)Sf and E(t) = T (t) + F (t) given by

T =

(
q 0
0 s(t)

)
, F (t) =

(
0 f(t)
β 0

)
.

We obtain a parameter that quantifies the transmission potential of the disease
by using the rates of transmissibility through of the pathogen produced by the
infected individuals, taking into account the “monodromy matrix” associated
with the periodic system. This matrix is defined as

ΦE(k, k0) =

k−1∏
i=k0

E(k0 + k − 1− i), k > k0, E(k0, k0) = In.

In this case, it is easy to see that we can limit the study of the behavior of the
spectral radius of the matrix of monodromy in s = 0. So, we want to get the
greatest value of N so that ρ(EN,0) < 1 y ρ(EN+1,0) > 1.

The parameters q and s are important for controlling salmonella, and the
population size in the henhouse plays an important role because it determines
the prevalence of salmonella. Now, we study the case mentioned above.

If P satisfies that K < P <
qs

βσ
, then λ2 > 0. With, 0 < λ2 < 1 < λ1.

We search for a period N such that

XN =
λN1 (q − λ2) + λN2 (λ1 − q)

λ1 − λ2
< 1

and

XN+1 =
λN+1
1 (q − λ2) + λN+1

2 (λ1 − q)
λ1 − λ2

> 1

being Xn = ρ(EN,0) and we denote

h(N) =
λ1 − λ2 − (q − λ2)λN1

λN1 (λ1 − q)
.

Then, it follows the following result.

Lemma 1 Consider the spectrum of matrix E. If R0 > 1 with P <
qs

βσ
then

(i) λ2 < q < λ1
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(ii) h(N) is a decreasing function and there exits Ñ such that 0 < h(N) < 1
for all N < Ñ .

Proof. If R0 > 1 with P satisfying P <
qs

βσ
, then λ2 > 0, with 0 < λ2 < 1 <

λ1.
(i) The proof is based on the following observation. λ1 + λ2 = q + s and

from the expression of the eigenvalues it is easy to see that λ1 − q > 0 and
q − λ2 > 0.

(ii) The basic idea of the proof is to take

h(N) = λ−N1

λ1 − λ2
λ1 − q

− q − λ2
λ1 − q

.

By (i) it is clear that
λ1 − λ2
λ1 − q

> 0 and
q − λ2
λ1 − q

and λ−N1 is a decreasing function,

then h(N) is also a decreasing function with h(0) = 1. According to the above
expression of h(N), we have

h(1) =
λ1(1− q) + λ2(λ1 − 1)

λ1(λ1 − q)
> 0.

Since h(N) is a decreasing function there exists Ñ such that h(Ñ) > 0 and
h(Ñ + 1) < 0. Moreover, 0 < h(N) < 1 for all N < Ñ. �

The behavior of the solution of the system around the free equilibrium
point is now discussed. The prevalence of infection by excreting salmonella can
be controlled using cleaning strategies and the desired value of N is obtained
in the following result.

Proposition 1 Consider that the trajectory of the N -periodic system given by

(1) is in an environment of the disease free point with R0 > 1 and P <
qs

βσ
.

Take N ∈ N satisfying N < Ñ and

ln(h(N))

ln(λ2λ1 )
< N < N + 1 <

ln(h(N + 1))

ln(λ2λ1 )
(2)

then N is the maximum of the period values such that the N -periodic system
is asymptotically stable.

Proof. If N satisfies the condition given in the proposition and using the

expression of the spectral radius we have h(N) > (
λ2
λ1

)N >
λ1
λ2
h(N + 1) and

λ1 − λ2 > λN1 ((λ2λ1 )N (λ1 − q) + (q − λ2)) then ρ(EN,0) < 1.

On the other hand, (λ2λ1 )N+1 > h(N +1) and λN+1
1 ((λ2λ1 )N+1(λ1− q)+(q−

λ2)) > λ1 − λ2 then ρ(EN+1,0) > 1.
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Thus, N satisfies ρ(EN,0) < 1 and ρ(EN+1,0) > 1. �
The obtained results suggest that to reduce the level of salmonella in the

henhouse is necessary to reduce the quantity of excretions in the henhouse
because this decreases the transmission of salmonella. The given result shows
the reduction in salmonella level by using an effective control strategy every
N steps.
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[5] B. Cantó, C. Coll, E. Sánchez Epidemic dynamics of an infection
through the pathogen density in the environment, Comptes rendus de
l’Acadmie bulgare des Sciences 69(7) 835-844 (2016).

[6] S. Finstad, C. A. O’Bryan, J. A. Marcy, P. G. Crandall, S. C.
Ricke, Salmonella and broiler processing in the United States: relation-
ship to foodborne salmonellosis. Food Research International 45 789-794
(2012).

[7] M. C. Malpass, A. P. Williams, D. L. Jones, H. M. Omed, Mi-
crobiological quality of chicken wings damaged on the farm or in the
processing plant. Food Microbiol 27 521-525 (2010).



B. Cantó et al 7
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