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Abstract We investigate how to adapt the Q-Arnoldi method for the case of sym-
metric quadratic eigenvalue problems, that is, we are interested in computing a few
eigenpairs (λ ,x) of (λ 2M + λC +K)x = 0 with M,C,K symmetric n× n matrices.
This problem has no particular structure, in the sense that eigenvalues can be complex
or even defective. Still, symmetry of the matrices can be exploited to some extent.
For this, we perform a symmetric linearization Ay = λBy, where A,B are symmetric
2n× 2n matrices but the pair (A,B) is indefinite and hence standard Lanczos meth-
ods are not applicable. We implement a symmetric-indefinite Lanczos method and
enrich it with a thick-restart technique. This method uses pseudo inner products in-
duced by matrix B for the orthogonalization of vectors (indefinite Gram-Schmidt).
The projected problem is also an indefinite matrix pair. The next step is to write a
specialized, memory-efficient version that exploits the block structure of A and B,
referring only to the original problem matrices M,C,K as in the Q-Arnoldi method.
This results in what we have called the Q-Lanczos method. Furthermore, we define a
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Keywords Quadratic eigenvalue problem · Pseudo-Lanczos · Q-Arnoldi · TOAR ·
Thick-restart · SLEPc

Mathematics Subject Classification (2000) 65F15 · 15A18 · 65F50

This work was supported by the Spanish Ministry of Economy and Competitiveness under grant TIN2013-
41049-P. Carmen Campos was supported by the Spanish Ministry of Education, Culture and Sport through
an FPU grant with reference AP2012-0608.

C. Campos
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1 Introduction

We address the question of how to exploit symmetry of coefficient matrices when
solving the quadratic eigenvalue problem. This was already analyzed in a 1990 paper
by Parlett and Chen [21], where the authors demonstrate the use of a pseudo-Lanczos
recurrence operating on a symmetric linearization of the quadratic eigenproblem. We
want to extend this methodology by incorporating several new ingredients to make its
practical use more appealing, such as an effective restarting mechanism and memory-
efficient variants that avoid storage of double-sized bases. The ultimate goal is to have
symmetric eigensolvers that are as robust as possible, on a par with Arnoldi-based
counterparts.

Although the methods discussed in this paper are relevant for many application
areas, the paradigmatic example arises in the analysis of damped vibrating structures,
where the discretization of the equations of motion results in the quadratic eigenvalue
problem (QEP) of the form

(λ 2M+λC+K)x = 0. (1.1)

The n× n coefficient matrices M, C and K (mass, damping and stiffness matrices,
respectively) are all real and symmetric. The eigenvector x is related to displacements
of the structure being analyzed, and one is normally interested in computing a few
modes of vibration corresponding to eigenvalues λ located in a certain region of the
complex plane. Results in this paper also apply to the case of complex Hermitian
matrices. In both cases, the eigenvalues are real or come in complex conjugate pairs
(λ , λ̄ ).

In the simplest case, the eigenproblem (1.1) has 2n finite solutions, i.e., there exist
2n complex scalars λ , not necessarily distinct, that, together with the corresponding
x, satisfy (1.1). More generally, the problem can have infinite eigenvalues if M is
singular. In the previous discussion and throughout the paper, we will assume that
the matrix polynomial Q(λ ) = λ 2M + λC + K is regular, that is, detQ(λ ) is not
identically zero for all values of λ . For further details regarding the properties of the
QEP, the reader is referred to [28].

Iterative methods for computing a few eigenpairs of large-scale, sparse quadratic
eigenproblems are based on subspace projection. Some of these methods (e.g., SOAR
[1] or Jacobi-Davidson [24]) directly project the quadratic eigenproblem, resulting in
a small-sized QEP, whereas other approaches consist in projecting an equivalent lin-
ear eigenvalue problem. We focus on the latter category of methods, where it is pos-
sible to apply techniques that are well-known in the realm of linear eigenproblems,
such as locking to deflate converged eigenpairs.

Consider the L1 symmetric linearization L(λ ) = A−λB, with

A =

[
0 −K
−K −C

]
, B =

[
−K 0
0 M

]
, (1.2)

where K is assumed to be non-singular. The linear eigenproblem L(λ )z = 0 is equiv-
alent to (1.1) in the sense that its eigenvalues coincide and their partial multiplicities
are preserved [14]. The eigenvector of the linearization has the form z = [ x

λx ], from
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which the eigenvector x of (1.1) can be retrieved. We note that A and B are 2n× 2n
symmetric matrices, but the pencil A−λB is not necessarily definite.

Assuming B is non-singular, i.e., M is non-singular, to solve the linear eigenprob-
lem one can apply a standard Krylov method such as Arnoldi to matrix

S := B−1A =

[
0 I

−M−1K −M−1C

]
, (1.3)

to compute an orthonormal basis V of the Krylov subspace Kk(S,Ve1) and an up-
per Hessenberg matrix H = V ∗SV , from which Rayleigh-Ritz approximations to the
eigenpairs can be extracted. Alternatively, instead of applying the Arnoldi algorithm
directly on S, it is possible to exploit the block structure shown in (1.3) to perform
the computation in a memory-efficient way, where the computed basis will consist of
n-vectors rather than explicitly storing the whole basis V of length 2n. This is the idea
of Meerbergen’s Q-Arnoldi method [18]. The outcome of the two methods may differ
in finite-precision arithmetic under some circumstances, and Q-Arnoldi may even get
unstable. Later, a stabilized reformulation called TOAR was proposed [26, 16].

Both A and B in (1.2) are symmetric, and we would like to take advantage of this
fact. Potential benefits are a reduction of computational effort and the preservation of
the symmetry in the projected problem, which may be a good thing from the numer-
ical point of view. If the pencil A−λB was (semi-)definite, the way to go would be
B-Lanczos, a reformulation of the Lanczos recurrence where the standard Hermitian
inner product is replaced by the inner product induced by matrix B. In this way, since
S is self-adjoint with respect to this inner product, symmetry is preserved through-
out the computation and the projected matrix is real, symmetric and tridiagonal, with
real eigenvalues. This scheme entails Gram-Schmidt B-orthogonalization to obtain
basis vectors satisfying V ∗BV = I. For the case of an indefinite pencil, we can adapt
this scheme, but with important differences. Now we have a pseudo-inner product
defined by B, where it is possible to find vectors w 6= 0 such that w∗Bw ≤ 0. The
pseudo-Lanczos method [21, 3, 15, 17] collects these negative (or positive) signs in a
signature matrix Ω = diag(±1), in such a way that the computed Lanczos basis now
satisfies V ∗BV = Ω , and the projected problem is a symmetric-indefinite pencil. We
will see that this is just a particularization of non-symmetric Lanczos where the left
basis is assumed to be W = BV Ω−1 and not computed explicitly. As in any flavour
of non-symmetric Lanczos, pitfalls such as serious breakdown must be addressed.

In this paper, we build upon pseudo-Lanczos and cast it to the schemes of the
Q-Arnoldi and TOAR methods mentioned above. The derivation of the new algo-
rithms, that we call Q-Lanczos and STOAR, follows the original methods closely,
but introduce the pseudo-inner product with B. We will also pay special attention to
the solution of the projected problem, trying to exploit its symmetric-indefinite struc-
ture. Another important aspect to take into account in a practical implementation is
restarting, that can be done with a Krylov-Schur scheme [25] or its equivalent for
symmetric problems called thick restart [30]. We will show how to adapt this type of
restart to the newly proposed methods.

Often, the sought-after eigenvalues are interior and it is convenient to apply a
spectral transformation analog of shift-and-invert in the linear case. The transformed
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quadratic eigenproblem (µ2Mσ +µCσ +Kσ )x = 0, where

Mσ = Q(σ), (1.4a)
Cσ =C+2σM, (1.4b)
Kσ = M, (1.4c)

has the same eigenvectors x and re-mapped eigenvalues µ = (λ −σ)−1, for a certain
σ ∈R. In this case, (1.2) and (1.3) require Mσ and Kσ to be non-singular, i.e., M must
be non-singular and σ must not be equal to an eigenvalue of (1.1).

We have implemented the new methods as full-fledged solvers within the SLEPc
parallel library of eigensolvers [9]. In this framework, we are able to conduct a num-
ber of numerical experiments to compare them with solvers that disregard symmetry.

A related work is the use of symplectic Lanczos for the case of quadratic eigen-
value problems with Hamiltonian structure [5] or more generally the SHIRA method
based on Arnoldi [19, 11]. Other authors have considered adapting other methods
(LOBPCG) to the indefinite B case [13].

The rest of the paper is organized as follows. We start by giving some defini-
tions that will be used throughout the paper and describing the methods we will use
to solve small-sized symmetric indefinite eigenproblems (projected eigenproblems).
Section 3 describes the pseudo-Lanczos method, including details about restart. Sec-
tions 4 and 5 present the new Q-Lanczos and STOAR methods, respectively. A few
implementation details are discussed in section 6. Section 7 shows results of numer-
ical experiments as well as parallel performance. We wrap up with some concluding
remarks.

2 Pseudo-symmetric matrices

For any Hermitian matrix M ∈ Cn×n, we use the quadratic form given by

〈x,y〉M := y∗Mx for x,y ∈ Cn, (2.1)

as the inner product defined by M, even when M is not positive definite and hence
(2.1) is not a proper inner product. We refer to it as the pseudo (or indefinite) inner
product. Also for Hermitian matrices, we call pseudo-norm defined by M the real
function ‖x‖M := sgn(〈x,x〉M)

√
|〈x,x〉M|, which is a norm if M is a Hermitian posi-

tive definite matrix. A vector u is said to be M-normalized if |‖u‖M |= 1.
In this context, we say two vectors x and y, x 6= y, are M-orthogonal if 〈x,y〉M = 0.

More generally, the column vectors of a matrix V = [v1, . . . ,vk] are said to be mutually
M-orthogonal if V ∗MV is a non-singular diagonal matrix. When we want to stress the
fact that, in addition to being M-orthogonal, the columns of V are M-normalized, we
will say they are M-orthonormal. In this case, Ω :=V ∗MV is a signature matrix (a di-
agonal matrix whose diagonal elements are either 1 or −1), and we will equivalently
say that the columns of V are (M,Ω)-orthogonal.

For a Hermitian matrix M we state that a matrix S is M-symmetric if it is self-
adjoint with respect to the (pseudo) inner product defined by M, i.e., if S∗M = MS.
In the particular case that M is a signature matrix, this condition is equivalent to S
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being the product of a signature matrix (M) by a symmetric (or Hermitian) matrix.
In this latter case, when we do not want to specify the involved signature matrix, we
will just say that S is pseudo-symmetric.

2.1 Block diagonalization

The pseudo-Lanczos method described in §3 generates a projected eigenproblem
whose matrix is real pseudo-symmetric. The restart technique we will see in §3.2
requires that this projected eigenproblem is solved preserving this structural prop-
erty. Next we describe different ways we have considered to compute the solution of
these small-sized eigenproblems.

Solving an eigenproblem defined by a pseudo-symmetric matrix Ω−1T , where Ω

is a signature and T is symmetric, is equivalent to solving the generalized eigenprob-
lem defined by the symmetric-indefinite pencil (T,Ω). We are interested in comput-
ing real matrices Q, Ω̃ and D such that D is a block diagonal matrix with maximum
block size equal to two and Ω̃ is a signature matrix satisfying

Q∗ΩQ = Ω̃ , (2.2a)
Q∗T Q = D. (2.2b)

Relations (2.2) imply that Q is (Ω ,Ω̃)-orthogonal and D is symmetric. The relation

Ω
−1T Q = QΩ̃

−1D (2.3)

is also satisfied. We will refer to this decomposition as a real pseudo-symmetric di-
agonalization of the pencil (T,Ω).

To compute the matrices Q, Ω̃ and D in (2.2) we have considered two approaches:
(i) preserve the symmetric-indefinite structure of the matrix pair throughout the com-
putation, or (ii) use standard non-symmetric methods and recover the symmetric-
indefinite structure at the end.

Structure-preserving diagonalization We start by describing the structure-preserving
method described in [29]. This approach is based on first reducing to tridiagonal form
and then applying the HR iteration.

The tridiagonalization process is done by making zeros in the matrix in a similar
way as in the symmetric case, although in order to preserve pseudo-symmetry, it is
necessary that the used similarity transformations are Ω -orthonormal. So, in this case
we use Householder reflectors combined with hyperbolic rotations,

Hr =

[
c s
s c

]
, c2− s2 =±1. (2.4)

These transformations are not unitary and can have arbitrarily high condition num-
bers that could result in inaccurate solutions. Also, it is not always possible to build
a hyperbolic rotation, Hr, such that Hrx = αe1 for a nonzero vector, x, and hence
the tridiagonalization process may suffer from breakdown. That is why, to minimize
both effects, it is necessary that the tridiagonalization be done very carefully. Tisseur
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[27] proposes a method to reduce a symmetric-diagonal matrix pair to tridiagonal-
diagonal form by means of a combination of orthogonal and hyperbolic transforma-
tions, reducing the number of the latter as much as possible and controlling their con-
dition number. To carry out the first step of reducing to tridiagonal pseudo-symmetric
form, we have an implementation based on [27] that takes into account the particular
structure of the matrix generated in the restarted Lanczos process (see §3.2),

T =



D1 Γ1
. . .

...
Dm Γm

Γ T
1 · · · Γ T

m αp+1
. . .

. . . . . . βk−1
βk−1 αk


, (2.5)

where Di, i = 1, . . . ,m, are 1× 1 or 2× 2 blocks, and Γi are vectors with dimension
consistent with Di. In order to minimize the number of required hyperbolic transfor-
mations, we are adapting [27] to be used only on the arrowhead part of (2.5).

The next step uses the HR method [29], a GR-type iteration (similar to the QR
method) that maintains pseudo-symmetry along the computation. If no breakdown
occurs, this method (together with the tridiagonalization process) computes matrices
Q, Ω̃ and D satisfying (2.2)-(2.3). To produce the (Ω ,Ω̃)-orthogonal transformation
Q, the HR iteration uses hyperbolic rotations (2.4) in the bulge-chasing phase. That
is why this method has risk of breakdown, and potential instability, similarly to the
tridiagonalization process. No implementations of the HR method are available in
libraries such as LAPACK, that is why we have included in our code a basic imple-
mentation based on [29].

Alternative diagonalization Now we consider an alternative procedure to obtain ma-
trices Q, Ω̃ and D of (2.2)-(2.3) from the eigendecomposition of the pair (T,Ω). First,
such decomposition, TY = ΩYΘ , is computed, for example, using the QR method.
Then, by representing the real and imaginary parts of the complex eigenpairs sep-
arately, we obtain an equivalent real decomposition, TYr = ΩYrΘr, in which Θr is
block diagonal. Later, the obtained real vectors, Yr, are Ω -orthogonalized. A general
property of Hermitian indefinite pencils (A,B) is that if B is nonsingular and B−1A is
diagonalizable, then there exists a complete set of eigenvectors, W , such that W T BW
is a signature matrix [3]. So, although the columns of Yr associated with simple real
eigenvalues of Ω−1T are already a set of Ω -orthogonal vectors, and it would only
be needed to perform Ω -orthogonalization between pairs associated with a complex
eigenvalue (real and imaginary part), or between vectors associated with a multiple
eigenvalue, for the sake of accuracy, we prefer to Ω -orthogonalize all vectors Yr, and
compute an HR decomposition Yr = QR such that Q∗ΩQ = Ω̃ , and R is upper trian-
gular. Finally, the diagonal blocks of D are obtained from D = Q∗T Q = Ω̃RΘrR−1.
We remark that in our implementation we just compute the diagonal blocks of D,
hence implicitly zeroing the rest of elements that could be nonzero in finite precision
arithmetic.
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The HR decomposition can be carried out by the Gram-Schmidt process with the
indefinite inner product defined by Ω , or, alternatively, working with a combination
of Householder reflectors and hyperbolic rotations, similarly to the tridiagonalization
described in [27]. This latter option is the one we use in our implementation, since it
provides information about the condition number of the applied transformations that
can be used to improve the overall numerical robustness in the following cases:

– In the case of complex conjugate eigenpairs, the order in which the two corre-
sponding columns are orthogonalized may have an influence on the global accu-
racy. In order to minimize errors, we use the condition number of the transforma-
tions to decide about the order of orthogonalization.

– As we will see in §3.2, when restarting, the Krylov relation is truncated and there-
fore only a part of the computed decomposition will be kept. That is, for computed
matrices of dimension (p+q),

D =
p

q

p q[
Dp

Dq

]
, Q =

[
Qp Qq

]
, and Ω̃ =

[
Ω̃p

Ω̃q

]
,

with Ω̃−1
p Dp containing the most desirable eigenvalues of Ω−1T , only matrices

Dp, Qp and Ω̃p will be used to update the Krylov relation. Hence, when comput-
ing the HR decomposition we perform a column permutation so that we move to
the group, Qq, to be eliminated those columns whose orthogonalization results in
breakdown or in an ill-conditioned transformation (it is not necessary to maintain
Ω -orthogonality in Qq). Matrices Ω̃ and D are permuted accordingly.

3 Lanczos for symmetric-indefinite pencils

The pseudo-Lanczos method [21] is a variant of Lanczos to solve symmetric (not nec-
essarily definite) generalized eigenvalue problems, Ax = λBx, where A and B are real
symmetric or complex Hermitian matrices. It uses the indefinite inner product defined
by the Hermitian matrix B to preserve the symmetric structure in the projected eigen-
problem that it generates. This method can be derived from non-symmetric Lanc-
zos [8] applied to symmetric-indefinite pencils.

3.1 Pseudo-Lanczos method

Given a matrix S ∈ Cn×n and a vector v ∈ Cn, the Krylov subspace of order k associ-
ated with S and v is defined as Kk(S,v) := span{v,Sv,S2v, . . . ,Sk−1v}. Non-symmetric
Lanczos is an oblique projection method, for solving non-symmetric eigenvalue prob-
lems, that computes biorthogonal bases Vk and Wk of the Krylov subspaces Kk(S,Vke1)
and Kk(S∗,Wke1), respectively, by using a two-sided Gram-Schmidt process for each
step of recurrences

pk = Svk−VkW ∗k Svk = Svk− γ̂k−1vk−1− α̂kvk, (3.1a)

qk = S∗wk−WkV ∗k S∗wk = S∗wk− ¯̂
βk−1wk−1− ¯̂αkwk, (3.1b)



8 Carmen Campos, Jose E. Roman

where, pk = β̂kvk+1, qk = ¯̂γkwk+1, q∗k pk = γ̂kβ̂k and α̂k = w∗kSvk. The short recur-
rences (3.1) produce the oblique projection matrix of S onto the right Krylov sub-
space,

T̂k :=W ∗k SVk =


α̂1 γ̂1

β̂1 α̂2 γ̂2
. . . . . . . . .

β̂k−2 α̂k−1 γ̂k−1

β̂k−1 α̂k

 ,
and the decompositions

SVk =VkT̂k + β̂kvk+1e∗k ,

S∗Wk =WkT̂ ∗k + ¯̂γkwk+1e∗k ,

from which non-symmetric Lanczos provides approximations for both right and left
eigenvectors.

The pseudo-Lanczos method is a particular form of non-symmetric Lanczos that
arises in the case that S is B-symmetric, for example when S = B−1A, or S = (A−
σB)−1B for some σ ∈R. In this case, if initial vectors v1 and w1 := Bv1(v∗1Bv1)

−1 are
used, recurrence (3.1b) produces W = BV Ω−1, where Ω = V ∗BV is diagonal. The
biorthogonality of the bases V and W generated by non-symmetric Lanczos results in
the B-orthogonality of vectors V generated by pseudo-Lanczos. Hence, this variant
does not need to form wk vectors explicitly, and it only computes right vectors with
recurrence (3.1a).

Both symmetric and non-symmetric Lanczos (and pseudo-Lanczos) can hit a
happy breakdown if a basis of an invariant subspace is computed (if and only if
Svk ∈ span(Vk) or S∗wk ∈ span(Wk) for some k when expanding Krylov subspaces).
On the other hand, as a result of working with biorthogonal bases, non-symmetric
Lanczos can also lead to a serious breakdown, which appears when Lanczos recur-
rences (3.1) yield non-null vectors, pk and qk satisfying q∗k pk = 0. Various strategies
have been proposed to deal with serious breakdown in non-symmetric Lanczos, such
as look-ahead variants [22], adaptive block [2] or implicit restart [23]. Next, we give
details of a restarted version of the pseudo-Lanczos method that aims at reducing the
effects of working with an indefinite inner product.

Algorithm 3.1 shows how pseudo-Lanczos is used to compute a basis Vk of Lanc-
zos vectors, a symmetric tridiagonal matrix and a signature matrix,

Tk =


α1 β1

β1 α2
. . .

. . . . . . βk−1
βk−1 αk

 and Ωk =


ω1

ω2
. . .

ωk

 ,
such that

SVk =VkΩ
−1
k Tk +βkω

−1
k+1vk+1e∗k , (3.3)

where ωi = ±1, i = 1, . . . ,k+ 1, V ∗k BVk = Ωk and V ∗k Bvk+1 = 0. Note that the non-
symmetric tridiagonal matrix of the projected problem, T̂k = Ω

−1
k Tk, generated by



Restarted Q-Arnoldi-type methods exploiting symmetry in quadratic eigenvalue problems 9

Algorithm 3.1 Pseudo-Lanczos
Input: Hermitian matrices A,B ∈ Cn×n defining S as in (1.3), initial vector v1 ∈ Cn

Output: Matrices Tk,Ωk ∈ Ck×k , Vk+1 ∈ Cn×(k+1) and βk,ωk+1 ∈ R satisfying (3.3)
1: V1← v1 = v1/‖v1‖B
2: Ω1← ω1 = v∗1Bv1
3: for j = 1,2, . . . ,k do
4: u = Sv j
5: h =V ∗j Bu
6: u = u−VjΩ

−1
j h

7: α j = e∗j h
8: v j+1 = u/‖u‖B
9: ω j+1 = v∗j+1Bv j+1

10: β j = ω j+1‖u‖B

11: Vj+1← [V j v j+1 ], Ω j+1←
[

Ω j
ω j+1

]
12: end for

Algorithm 3.1, is tridiagonal, pseudo-symmetric and real (even with A and B being
complex). Note also that in Algorithm 3.1, Lanczos vectors are B-normalized so that
ωi is always ±1. However, we keep the notation Ω

−1
k , because it is possible to use

other normalizations so that Ωk is no longer a signature matrix. In that case the tridi-
agonal matrix T̂k would not be pseudo-symmetric, but the projected problem (Ωk,Tk)
would still be a symmetric-indefinite pair.

There are several aspects to consider when executing Algorithm 3.1 in finite pre-
cision arithmetic. First, in order to preserve B-orthogonality of vectors generated by
the Lanczos short recurrence (3.1a), we opt for storing previously computed vectors
and orthogonalizing against all of them (lines 5 and 6 of Algorithm 3.1). For more in-
formation about loss of orthogonality in Lanczos see, e.g., [20]. Second, for efficiency
reasons, Algorithm 3.1 (lines 5 and 6) uses the classical Gram-Schmidt procedure in-
stead of modified Gram-Schmidt, but in a practical implementation this process must
be repeated twice to enhance numerical stability. See [10] for details on parallel im-
plementation of iterated Gram-Schmidt. Finally, although full reorthogonalization is
performed, all Gram-Schmidt coefficients are discarded except the diagonal element
α j, as is done in practical Lanczos implementations, and similarly we only store the
diagonal elements of Ωk, even if V ∗k BVk is not really diagonal in finite precision arith-
metic (furthermore, ω j’s are rounded to±1 when Lanczos vectors are B-normalized).

The Rayleigh-Ritz procedure can be used to compute approximations to the eigen-
pairs (θ̃i, x̃i) in a similar way as symmetric Lanczos. The eigenpairs (θ̃i,yi) from the
projected problem Ω

−1
k Tk supply the approximations on span(Vk), verifying Sx̃i−

θ̃ix̃i ⊥ span(Wk) (Petrov-Galerkin condition), for Wk := BVkΩ
−1
k . Multiplying de-

composition (3.3) by yi on the right, it gives the residual for each right Petrov vector
computed,

ri = SVkyi− θ̃iVkyi = βkω
−1
k+1vk+1e∗kyi. (3.4)

We consider a computed approximation as converged if the norm of the residual,
(3.4), is smaller than a certain tolerance tolconv,

‖ri‖= |βkω
−1
k+1e∗kyi|‖vk+1‖< tolconv. (3.5)
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The pseudo-Lanczos recurrence can suffer from breakdown when it produces a
vector, u, with B-norm equal to zero. This breakdown is a serious one if u is not
identically zero. In finite precision, exact breakdowns will not likely appear, but near
breakdowns can introduce instability in the process, so it is necessary to detect them
and take care of them too. To this end, at each iteration of Algorithm 3.1 the angle
between vector u computed in line 6 and Bu must be checked to test if they are nearly
orthogonal, and it is considered a breakdown if its cosine is smaller than a fixed
tolerance (tolbreak),

cos∠(u,Bu) =
|u∗Bu|
‖u‖‖Bu‖

< tolbreak.

When a serious breakdown is detected it is not possible to extend the factorization
with Algorithm 3.1. One possible workaround is to force a restart, either explicit
with a new initial vector, throwing away the computed vectors, or implicit such as the
one proposed in [23]. In this situation, we opt for performing an implicit restart in the
way it is explained below. This strategy works correctly, as we have checked it with
a synthetic case (we have not seen serious breakdowns in any of our practical runs).

3.2 Thick restart in pseudo-Lanczos

It is well known that convergence in Lanczos methods can be slow, resulting in an
increasingly high cost for each iteration in the case of full reorthogonalization. That is
why methods of this type are often restarted. To control the storage requirements and
the orthogonalization cost, we propose to adapt the thick-restart technique [30], or the
more general Krylov-Schur algorithm [25], to the pseudo-Lanczos method described
above.

Implicit restart procedures aim at reducing the size of the working basis while pre-
serving the most relevant information. Thick-restart techniques are based on Krylov
relations [25],

SUk =UkCk +uk+1b∗, (3.6)

which generalize the Arnoldi and Lanczos relations in the sense that Ck and b have no
particular structure. Bases Uk in Krylov relations are different from those in Lanczos
or Arnoldi, but also span Krylov subspaces.

We will consider that a Krylov relation (3.6) is symmetric if S is symmetric with
respect to a Hermitian matrix B, and Ck is symmetric with respect to Ωk := U∗k BUk.
For this type of Krylov relations there exists another implicit Krylov relation that
holds for Wk := BUkΩ

−1
k . Indeed, if we multiply (3.6) on the left by B and on the

right by Ω
−1
k , due to the symmetry of S and Ck, we obtain

S∗Wk =WkC∗k +wk+1d∗,

where wk+1 =Buk+1 and d =Ω
−1
k b. Thus, the columns of Uk and Wk generate Krylov

subspaces for S and S∗, respectively.
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To restart the pseudo-Lanczos method we consider symmetric Krylov relations in
which Uk has B-orthogonal columns and the Rayleigh quotient Ck is real and has the
form Ck = Ω

−1
k Tk with Tk symmetric and Ωk :=U∗k BUk (diagonal),

SUk =UkΩ
−1
k Tk +uk+1b∗. (3.7)

We will refer to this type of relations as pseudo-orthogonal Krylov relations. One
instance of them is the relation (3.3), generated by Algorithm 3.1. When multiplying
a pseudo-orthogonal Krylov relation (3.7) on the right by an Ωk-orthogonal matrix,
Qk, we obtain another pseudo-orthogonal Krylov relation,

SŨk = ŨkΩ̃
−1
k T̃k +uk+1b̃∗, (3.8)

where Ũk = UkQk, Ω̃k = Q∗kΩkQk, T̃k = Q∗kTkQk, and b̃ = Q∗kb. In this situation we
say that both relations (3.7) and (3.8) are equivalent.

The strategy for restarting a pseudo-orthogonal Krylov relation (3.7), is to com-
pute an equivalent one (3.8) such that Ω̃

−1
k T̃k has a block diagonal form

Ω̃
−1
k T̃k =

p

k−p

p k−p[
D11

D22

]
.

The idea is to keep the decomposition corresponding to the leading part only, which is
a pseudo-orthogonal Krylov relation of order p, and then use Algorithm 3.1 to extend
it again to order k.

Assuming Algorithm 3.1 has generated a relation (3.3), thick restart for pseudo-
Lanczos proceeds as follows. First, we compute matrices Qk, Ω̃k and Dk of a real
pseudo-symmetric diagonalization (2.3) of the symmetric-indefinite pair (Tk,Ωk), in
such a way that the sought-after eigenvalues (or the associated blocks) remain in the
leading principal submatrix of Dk of order p. Then, post-multiplying the decomposi-
tion (3.3) by Qk = [Qp,Qp+1:k] results in the equivalent relation

SVkQk =VkQk(Q∗kΩkQk)
−1Q∗kTkQk +βkω

−1
k+1vk+1e∗kQk,

that can be truncated (for any p that does not break a 2×2 block), resulting in

SṼp = ṼpΩ̃
−1
p Dp + vk+1b∗, (3.9)

where b = βkω
−1
k+1Q∗pek and Ṽp =VkQp.

Note that this update (together with the indefinite orthogonalization in pseudo-
Lanczos) is one of the sources of instability in the generated Krylov relation. An
update with a very high condition number must be avoided, and this is the aim of
discarding the last part of the factorization when using the alternative method for the
pseudo-symmetric diagonalization as discussed in §2.

The new equation (3.9) satisfies the definition of pseudo-orthogonal Krylov re-
lation, and hence it is possible to take it as a starting point to resume the pseudo-
Lanczos iteration. The new iteration will extend the basis Ṽp as well as the Rayleigh
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quotient matrix, which will get the shape characteristic of this type of restart with an
arrowhead part plus a tridiagonal,

T̃k =

[
Dp be∗1

e1b∗ T̂k

]
, with T̂k =


αp+1 βp+1

βp+1 αp+2
. . .

. . . . . . βk−1
βk−1 αk

 . (3.10)

The thick-restart technique allows reducing the dimension of the Krylov subspace
purging unwanted directions from it. Another chance for reducing the computational
effort is when the criterion (3.5) indicates that certain Petrov pairs are sufficiently
converged. Then, they can be deflated and locked so that from that point on they
remain unchanged and the Rayleigh quotient gets the form,

Ck = Ω
−1
k

[
D` 0
0 G

]
,

where D` is symmetric block diagonal (with block size 2 at most) and G is symmetric.
This results in an effective size reduction of the eigendecomposition to be computed
(only needed for G). Nevertheless, to maintain B-orthogonality of vectors computed
by Algorithm 3.1, each new one must be orthogonalized also against locked vectors.

4 Q-Lanczos

The Quadratic Arnoldi method, or Q-Arnoldi [18], solves the quadratic eigen-
value problem (1.1) by exploiting the structure of the Krylov vectors when applying
the Arnoldi method to the linearization

A−λB =

[
0 N
−K −C

]
−λ

[
N 0
0 M

]
, (4.1)

where N = I or N =−K. Q-Arnoldi computes the Arnoldi relation for S = B−1A,[
0 I

−M−1K −M−1C

][
V 0

k
V 1

k

]
=

[
V 0

k v0

V 1
k v1

]
Hk, (4.2)

where Hk is the extended (k+1)× k upper Hessenberg matrix. The goal is to repre-

sent the Arnoldi decomposition (4.2) without storing the full Arnoldi basis
[

V 0
k

V 1
k

]
, but

only the upper part V 0
k . To this end, Q-Arnoldi takes advantage of the relation,

V 1
k = [V 0

k ,v
0]Hk, (4.3)

that comes from the first block row of (4.2). Algorithm 4.1 shows how Q-Arnoldi
performs the Arnoldi iteration to compute vectors V 0

k and the Rayleigh quotient Hk.
In the sequel, V 0

j and V 1
j denote, for j ∈ N, the top and bottom halves of the Arnoldi

basis Vj, respectively. In general, when a vector x is given, we use x0 and x1 to denote
the two halves of x.
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Algorithm 4.1 Q-Arnoldi
Input: Hermitian M, C, K ∈ Cn×n defining the QEP, initial vectors w0 and w1 ∈ Cn

Output: Matrix Hk ∈ C(k+1)×k and vectors V 0
k ∈ Cn×k and v0,v1 ∈ Cn satisfying (4.2) for V 1

k =Vk+1Hk
1: /* Normalize initial vector w */

β =
√
‖w0‖2 +‖w1‖2

v0 = w0/β , v1 = w1/β , /* v =
[

v0

v1

]
= w
‖w‖ */

2: V 0
1 ←

[
v0]

3: for j = 1,2, . . . ,k do
4: /* Expand w = Sv */

w0 = v1

w1 =−M−1(Kv0 +Cv1)
5: /* Gram-Schmidt coefficients h j =V ∗j w */

t = (V 1
j−1)

∗w1 = H∗j−1 [V
0
j−1 v0 ]

∗w1

h j =

[
V 0

j−1 v0

V 1
j−1 v1

]∗
w =

[
(V 0

j−1)
∗
w0+t

v∗w

]
6: /* Gram-Schmidt update w̃ = w−Vjh j */

w̃0 = w0−
[
V 0

j−1 v0
]

h j

w̃1 = w1−
[[

V 0
j−1 v0

]
H j−1 v1

]
h j

7: /* Normalize */
h j+1, j =

√
‖w̃0‖2 +‖w̃1‖2

v0 = w̃0/h j+1, j , v1 = w̃1/h j+1, j
8: /* Append new Arnoldi vector (top part)*/

V 0
j+1← [V 0

j v0 ]
9: end for

To solve a symmetric quadratic eigenvalue problem (1.1) by symmetric lineariza-
tion (N = −K in (4.1)), the pseudo-Lanczos method can be applied to S = B−1A to
produce a relation (4.2) in which Hk is a pseudo-symmetric tridiagonal matrix and the
vectors Vk are B-orthogonal. In this case, it is also possible to use the relation (4.3) to
reduce the storage requirements in the same way as Q-Arnoldi does. We refer to this
adaptation to the symmetric quadratic eigenvalue problem as the Q-Lanczos method.

The Q-Lanczos method works in a similar way as Q-Arnoldi except that the for-
mer must take into account the pseudo inner product defined by B in the orthogonal-
ization stages. Hence, to normalize vectors (at steps 1 and 7 of Algorithm 4.1), the
Q-Lanczos algorithm uses the pseudo-norm defined by B, resulting in:

1: δ = sgn(−w0∗Kw0 +w1∗Mw1)
√
|−w0∗Kw0 +w1∗Mw1| /* δ = ‖w‖B */

v0 = w0/δ , v1 = w1/δ , ω1 = sgn(δ ) /* ω1 = v∗Bv */
7: h j+1, j = ‖w̃‖B, v = w̃/h j+1, j, ω j+1 = sgn(‖w̃‖B)

Also, step 5 of Algorithm 4.1, that computes the Gram-Schmidt coefficients, is sub-
stituted in the Q-Lanczos algorithm by:

5: /* Gram-Schmidt coefficients h j = (V ∗j BVj)
−1V ∗j Bw */

t = H∗j−1 [V
0
j−1 v0 ]∗Mw1

h j = Ω
−1
j

[
−(V 0

j−1)
∗Kw0+t

−v0∗Kw0+v1∗Mw1

]
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As in the pseudo-Lanczos iteration (Algorithm 3.1), and as a result of working
with finite precision arithmetic, the generated matrix H j is not tridiagonal. However,
to recover the vectors V 1

j when needed, Q-Lanczos, contrarily to pseudo-Lanczos,
needs to store all Gram-Schmidt coefficients that result from full orthogonalization.
After generating relation (4.2) by means of Q-Lanczos, elements outside the Hk tridi-
agonal are discarded and the pseudo-Lanczos process continues as explained in §3.

Restart in Q-Arnoldi and Q-Lanczos The Krylov-Schur restart can be easily adapted
to Q-Arnoldi. Given the order-k decomposition (4.2), we compute the (sorted) Schur
decomposition HkYk = YkSk and perform a similarity transformation with Yk. The
resulting decomposition is truncated to[

0 I
−M−1K −M−1C

][
Ṽ 0

p
Ṽ 1

p

]
=

[
Ṽ 0

p v0

Ṽ 1
p v1

]
Sp,

where Ṽp = VkYp, being Yp the first p columns of Yk, Sp =
[

Sp
e∗k+1HkYp

]
and Sp the

leading p× p submatrix of Sk containing the wanted eigenvalues. It is possible to
extend this compressed factorization to order k again with the Q-Arnoldi algorithm,
because a relation analog to (4.3) also holds,

Ṽ 1
p =

[
Ṽ 0

p v0]Sp. (4.4)

In Q-Lanczos, the restarting procedure is very similar, replacing the Schur decompo-
sition by the real pseudo-symmetric diagonalization described in §2.

5 STOAR

As already pointed out by Meerbergen [18], the Q-Arnoldi method is not numeri-
cally stable. The instability may appear in the case that ‖Hk‖ becomes large. This is
often the case when a transformed QEP (1.4) is being solved with a shift σ close to
an eigenvalue. The source of the problem comes from representing the vectors V 1

k
in (4.3) with two matrices,

[
V 0

k ,v
0
]

and Hk, whose columns are not orthogonal.
The main idea of TOAR (Two-level Orthogonal Arnoldi) [26, 16, 7] is to compute

an orthonormal basis, Uk+1, of span([V 0
k ,V

1
k ,v

0]), from which to recover both V 0
k and

V 1
k when needed. The Krylov basis is represented as the product of two matrices with

orthogonal columns,

Vk =

[
Uk+1

Uk+1

][
G0

k
G1

k

]
, (5.1)

where G0
k and G1

k are the Uk+1 coordinates of V 0
k and V 1

k , respectively. TOAR rewrites
the Arnoldi relations using this representation of the Krylov basis,[

0 I
−M−1K −M−1C

][
Uk+1G0

k
Uk+1G1

k

]
=

[
Uk+2G0

k+1
Uk+2G1

k+1

]
Hk. (5.2)
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Algorithm 5.1 TOAR
Input: Hermitian M, C, K ∈ Cn×n defining the QEP, initial vectors w0 and w1 ∈ Cn

Output: Hk ∈ C(k+1)×k , Uk+2 ∈ Cn×(k+2), G0
k+1,G

1
k+1 ∈ C(k+2)×(k+1) satisfying (5.2)

1: u1 = w0/‖w0‖, g0 =
[
‖w0‖

0

]
ũ = w1−u1u∗1w1, u2 = ũ/‖ũ‖, g1 =

[
u∗1w1
‖ũ‖

]
U2← [u1 u2 ]

2: β = ‖g‖, g0
1 = g0/β , g1

1 = g1/β , G1←
[

g0
1

g1
1

]
3: for j = 1,2, . . . ,k do
4: /* Expand w = Sv j */

w1 =−M−1(KU j+1g0
j +CU j+1g1

j)
5: /* Expand U j+1 */

g0 =
[

g1
j

0

]
/* w0 = v1

j */

ŵ =U∗j+1w1, ũ = w1−U j+1ŵ, α = ‖ũ‖
u j+2 = ũ/α , g1 =

[
ŵ
α

]
6: /* Gram-Schmidt coefficients */

h j = G∗j
[

g1
j

ŵ

]
7: /* Gram-Schmidt update */

y0 = g1
j −G0

j h j , g̃0 =
[

y0

0

]
y1 = ŵ−G1

j h j , g̃1 =
[

y1

α

]
, g̃ =

[
g̃0

g̃1

]
8: /* Normalize with ‖w̃‖= ‖g̃‖ */

h j+1, j = ‖g̃‖, g j+1 = g̃/h j+1, j
9: /* Append new Arnoldi vector */

U j+2← [U j+1 u j+2 ]

G0
j =
[

G0
j

0

]
, G1

j =
[

G1
j

0

]
, G j+1←

[
G0

j g0
j+1

G1
j g1

j+1

]
10: end for

Algorithm 5.1 shows the TOAR version of the Arnoldi iteration. Given an initial
vector w, the algorithm starts by computing a representation, in the form (5.1), of
w/‖w‖. For this, step 1 uses the Gram-Schmidt procedure to compute orthonormal
vectors u1,u2 and coefficients g0,g1 such that wi = [u1,u2]gi, i = 1,2. In step 2,
w is normalized by normalizing g, since ‖g‖ = ‖w‖. For j = 1, . . . ,k the Arnoldi
iteration continues expanding the Krylov subspace, applying the operator matrix to
the last Arnoldi vector computed, which is expressed in the form (5.1). In step 5, the
bottom part of the new computed vector, w1, is used to expand U j+1 to obtain a basis
of span([V 0

j ,V
1
j ,w

0,w1]). The new basis vector u j+2 ∈ U⊥j+1 is obtained via Gram-

Schmidt orthogonalization, together with g =
[

g0

g1

]
so that w =

[
[U j+1 u j+2 ]g0

[U j+1 u j+2 ]g1

]
. Note

that u j+2 cannot be computed if α = 0, which implies that ũ = 0 or, equivalently,
w1 ∈ span(U j+1). In this case, only the matrix G j will be extended and not the basis
U j+1.

The Gram-Schmidt coefficients are computed in step 6, taking into account that

h j =V ∗j w =

[
G0

j
G1

j

]∗ [U∗j+1
U∗j+1

][
U j+1g1

j
U j+1ŵ+u j+2α

]
= G∗j

[
g1

j
ŵ

]
.
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The orthogonalization of w can be expressed as

w̃ = w−Vjh j =

[[
U j+1 u j+2

] [
U j+1 u j+2

]]([g0

g1

]
−
[

G0
j

G1
j

]
h j

)
,

where Gi
j =

[
Gi

j
0

]
, for i = 0,1. That is why the Gram-Schmidt update (step 7) is

carried out by orthogonalizing g, computed in step 5, against the columns of G j.
Finally, by normalizing in step 8, we obtain a representation of the new Arnoldi vector
in the form (5.1),

v j+1 =
w̃
‖w̃‖

=

[[
U j+1 u j+2

] [
U j+1 u j+2

]] g̃
‖g̃‖

=

[
U j+2

U j+2

]
g j+1.

The STOAR method is an adaptation of TOAR for solving the symmetric QEP. In
a similar way as TOAR relates to Q-Arnoldi, STOAR expresses the Lanczos vectors
in the form (5.1) and rewrites the Q-Lanczos algorithm using this decomposition.
Since Lanczos vectors in Q-Lanczos are B-orthogonal, the matrices of the STOAR
decomposition are not orthogonal. Expressing the condition of B-orthogonality using
(5.1),

Ωk =V ∗j BVj = G∗j

[
U∗j+1

U∗j+1

][
−K

M

][
U j+1

U j+1

]
G j,

and defining the Hermitian matrix

B̂ j =

[
−K̂ j 0

0 M̂ j

]
, with K̂ j =U∗j KU j, M̂ j =U∗j MU j,

we obtain that the columns of matrix G j are B̂ j+1-orthogonal.
Algorithm 5.2 (STOAR) has the same input and output as TOAR, but the pro-

jected matrix in (5.2) for STOAR is pseudo-symmetric. Thus, STOAR generates a
pseudo-Lanczos relation of the form[

0 I
−M−1K −M−1C

][
Uk+1G0

k
Uk+1G1

k

]
=

[
Uk+2G0

k+1
Uk+2G1

k+1

]
T̂ k, (5.3)

where T̂k is tridiagonal pseudo-symmetric, Uk+2 has orthogonal columns and Gk+1
has B̂k+2-orthogonal columns. To generate the columns of U j, both TOAR and STOAR
use a Gram-Schmidt process (steps 1 and 6 of Algorithms 5.1 and 5.2). The B-
normalization of a vector in the form w̃ =

[
U j

U j

]
g (steps 2 and 8 of Algorithm 5.2),

is performed in STOAR by B̂ j-normalizing g, using the fact that ‖w̃‖B = ‖g‖B̂ j
.

The Gram-Schmidt coefficients are computed, in step 6 of Algorithm 5.2, as

h = Ω
−1
j V ∗j Bw = Ω

−1
j

[
G0

j
G1

j

]∗ [U∗j+1
U∗j+1

][
−KU j+1g1

j
M(U j+1ŵ+u j+2α)

]

= Ω
−1
j

G0
j

0
G1

j
0

∗ [U∗j+2
U∗j+2

][
−KU j+2

[
g1

j
0

]
MU j+2 [ ŵ

α
]

]
.
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Algorithm 5.2 STOAR
Input: Hermitian M, C, K ∈ Cn×n defining the QEP, initial vectors w0 and w1 ∈ Cn

Output: T̂ k ∈ C(k+1)×k , Uk+2 ∈ Cn×(k+2), G0
k+1,G

1
k+1 ∈ C(k+2)×(k+1) satisfying (5.3)

1: u1 = w0/‖w0‖, g0 =
[
‖w0‖

0

]
M̂1 = u∗1Mu1, K̂1 = u∗1Ku1 /* Initialize M̂1, K̂1 */

ũ = w1−u1u∗1w1, u2 = ũ/‖ũ‖, g1 =
[

u∗1w1

‖ũ‖

]
U2← [u1 u2 ]
/* Update M̂2 and K̂2 */

M̂2←
[

M̂1 u∗2MU1
U∗1 Mu2 u∗2Mu2

]
, K̂2←

[
K̂1 u∗2KU1

U∗1 Ku2 u∗2Ku2

]
2: β = sgn(−g0∗K̂2g0 +g1∗M̂2g1)

√
−g0∗K̂2g0 +g1∗M̂2g1, /* β = ‖g‖B̂2

*/

g0
1 = g0/β , g1

1 = g1/β , G1←
[

g0
1

g1
1

]
ω1 = sgn(β ), β = ω

−1
1 β , Ω1← ω1 /* ω1 = g∗1B̂2g1 */

3: for j = 1,2, . . . ,k do
4: /* Expand w = Sv j */

w1 =−M−1(KU j+1g0
j +CU j+1g1

j)
5: /* Expand U j+1 */

g0 =
[

g1
j

0

]
/* w0 = v1

j */

ŵ =U∗j+1w1, ũ = w1−U j+1ŵ, α = ‖ũ‖
u j+2 = ũ/α , g1 =

[
ŵ
α

]
/* Update M̂ j+2 and K̂ j+2 */

M̂ j+2←
[

M̂ j+1 u∗j+2MU j+1

U∗j+1Mu j+2 u∗j+2Mu j+2

]
, K̂ j+2←

[
K̂ j+1 u∗j+2KU j+1

U∗j+1Ku j+2 u∗j+2Ku j+2

]
6: /* Gram-Schmidt coefficients */

G0
j =
[

G0
j

0

]
, G1

j =
[

G1
j

0

]
,

h = Ω
−1
j G∗j B̂ j+2

[
g0

g1

]
α j = e∗j Ω jh

7: /* Gram-Schmidt update */
g̃i = gi−G jh, i = 0,1

8: /* Normalize with ‖w̃‖B = ‖g̃‖B̂ j+2
*/

β j = ‖g̃‖B̂ j+2
, g j+1 = g̃/β j, ω j+1 = sgn(β j)

β j = ω j+1β j, Ω j+1 =
[

Ω j
ω j+1

]
9: /* Append new Arnoldi vector */

U j+2← [U j+1 u j+2 ]

G j+1←
[

G0
j g0

j+1

G1
j g1

j+1

]
10: end for

There are no relevant differences between TOAR and STOAR in the rest of stages.
As in the case of TOAR, happy breakdown occurs when a null vector g̃ is obtained

at step 8. A non-null g̃ giving a zero value of β j in step 8 indicates that a serious
breakdown has taken place in the pseudo-Lanczos process.

Restart in TOAR and STOAR After k steps, the TOAR method computes an Arnoldi
decomposition (5.2), that can be compressed to order p < k and then restarted [12, 7].
For this, (5.2) is reduced to a Krylov-Schur decomposition by means of the similarity
transformation defined by Yk, from the (sorted) Schur decomposition of Hk, HkYk =
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YkSk. This decomposition can then be truncated to order p,[
0 I

−M−1K −M−1C

][
Uk+1G̃0

p
Uk+1G̃1

p

]
=

[
Uk+1G̃0

p
Uk+1G̃1

p

]
Sp +

[
Uk+2g0

k+1
Uk+2g1

k+1

]
b∗,

where G̃p = GkYp (Yp denotes the first p columns of Yk), Sp the leading p× p subma-
trix of Sk containing the wanted eigenvalues, and b=Y ∗p H∗kek+1. The next step is to re-
duce the number of columns of Uk+1 (and rows of G̃p), otherwise there is no effective
reduction of memory needs. For this, we use the fact that rank([G̃0

p,g
0
k+1, G̃

1
p,g

1
k+1]) =

rank([Ṽ 0
p ,v

0
k+1,Ṽ

1
p ,v

1
k+1]) = p+2 (at most), since Ṽ 1

p = [Ṽ 0
p ,v

0
k+1]Sp in a similar way

as was shown in (4.4) for Q-Arnoldi. We then compute the compact singular value
decomposition [

G̃0
p g0

k+1 G̃1
p g1

k+1

]
= Ǔ Σ̌V̌ ∗, (5.4)

where Σ̌ is a (p+ 2)× (p+ 2) diagonal matrix of singular values, and Ǔ , V̌ have
dimensions (k+2)× (p+2) and (2p+2)× (p+2), respectively.

This decomposition allows us to express the updated Arnoldi vectors in the form
(5.1), [

Ṽ i
p vi

k+1
]
=Uk+2

[
G̃i

p gi
k+1

]
=Uk+2Ǔ Σ̌V̌ i∗ , for i = 0,1,

where we have written V̌ ∗ = [V̌ 0∗ ,V̌ 1∗ ]. Updating Up+2←Uk+2Ǔ and Gi
p+1← Σ̌V̌ i∗ ,

for i = 0,1, we obtain the representation for [Ṽp,vk+1] we are looking for.

6 Implementation Details

We have implemented all the methods described in this paper as eigensolvers in the
SLEPc library [9]. SLEPc provides a collection of parallel solvers for computing a
few eigenpairs of large scale eigenvalue problems, both linear and nonlinear, in either
real or complex arithmetic. Our solvers for symmetric QEP’s are available in SLEPc
3.6, except Q-Lanczos that was taken out of the release version due to its poorer
performance (see section 7).

Matrix inverses are not computed explicitly. Instead, the eigensolvers compute
an LDLT factorization of M (or A−σB) and perform triangular solves whenever the
inverse is required. In our implementation, we delegate this task to the underlying
PETSc library [4], which provides direct linear solvers, both sequential and parallel
(the latter via third-party libraries such as MUMPS).

For measuring the quality of the computed eigenpairs, e.g. in the experiments of
section 7, we use the relative backward error [28],

ηQ(x,λ ) =
‖Q(λ )x‖2

(|λ 2|‖M‖2 + |λ |‖C‖2 +‖K‖2)‖x‖2
. (6.1)

In the implementation, we replace the 2-norms in the above expression by ∞-norms,
which can be easily computed for a parallel matrix distributed by rows.
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On the other hand, during the iteration, the quantities used in the convergence
criterion are based on the residual of the linearization, that is readily available during
the pseudo-Lanczos iteration, (3.4). By default, we check ‖ri‖/|θ̃i|< tolconv.

As discussed in previous sections, all methods that use an indefinite inner product
can potentially suffer from instability, either due to the pseudo-Lanczos process or
the resolution of the symmetric-indefinite projected problem. Although there is no
known way of making these methods as stable as the methods based on orthogonal
transformations, we have noticed that the first immediate consequence of instability
is the loss of symmetry, that is, that the computed Krylov relation (3.7) is no longer
symmetric. In this way, to avoid returning wrong results, we have devised a simple
mechanism that tracks symmetry of matrix Tk at each pseudo-Lanczos step, and exits
the run (keeping the eigenpairs converged so far) whenever ‖Tk − T ∗k ‖F/‖Tk‖F is
larger than a given tolerance (this symmetry test is done before the Gram-Schmidt
coefficients corresponding to values outside the tridiagonal are discarded).

7 Numerical Experiments

In this section, we conduct a number of numerical tests in order to analyze the be-
haviour of the methods when computing a few eigenpairs of symmetric (Hermitian)
QEP’s from the NLEVP collection [6]. All problems are solved in real arithmetic,
except sign1 that has complex coefficient matrices. Most of our experiments use the
shift-and-invert transformation (1.4) to compute eigenvalues closest to a given σ (ex-
cept sign1 that computes eigenvalues with real part in [−0.9,0.9]). We remark that,
in the case of Krylov-Schur and pseudo-Lanczos, the spectral transformation is per-
formed on the linearized problem, i.e., the iteration operates on (A−σB)−1Bx = θx,
where A and B are the matrices of the linearization (1.2).

The computer used for the executions is Tirant, an IBM cluster consisting of 512
JS21 blade computing nodes, each of them with two 64-bit PowerPC 970MP dual
core processors running at 2.2 GHz with 4 GB of memory, interconnected with a
low latency Myrinet network. All runs placed a single MPI process per node. The
software consists of SLEPc 3.6 and PETSc 3.6, together with MUMPS 5.0 that is
used where a parallel direct linear solver is required.

Table 7.1 shows results for 6 NLEVP test problems of varying dimensions, solved
using 1 processor. The results include the maximum backward error obtained for a
tolerance of 10−8 when computing 10 eigenpairs with a maximum basis size k = 25.
Also, the total computation time is shown (including the initial matrix factorization).
In all runs, the projected problem was solved with the second option discussed in
section 2, that is, the QR method followed by pseudo-orthogonalization.

From the results of the experiments, we conclude that the three proposed indefi-
nite methods have strengths and weaknesses. In some problems, these methods have
much faster convergence compared to the non-symmetric counterparts, as in shaft.
Also, these methods may sometimes provide better accuracy. In the sleeper problem,
that has some real eigenvalues with multiplicity equal to 2, it is noteworthy that the
methods that exploit symmetry do not perturb real eigenvalues out of the real axis,
while the non-symmetric solvers may sometimes return a complex conjugate pair of
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Table 7.1 Results for various test problems in the NLEVP collection, when computing 10 eigenpairs with
the different methods using a basis of size k = 25. The table shows the number of converged eigenvalues
(nconv), number of restarts (its), maximum backward error ηQ(x,λ ) and execution time (for one process).

name method nconv its ηQ time

Krylov-Schur 11 2 1.7×10−11 16
gen hyper2 Pseudo-Lanczos 11 2 1.2×10−9 18
n = 1000 Q-Arnoldi 11 2 7.3×10−11 2.3
σ =−1 Q-Lanczos 11 2 6.7×10−9 3.6

TOAR 11 2 8.7×10−11 2.3
STOAR 11 2 5.9×10−10 2.6

Krylov-Schur 20 1 8.1×10−13 0.66
schrodinger Pseudo-Lanczos 24 1 5.9×10−12 0.32
n = 1998 Q-Arnoldi 20 1 2.2×10−13 0.21
σ =−0.3 Q-Lanczos 16 1 5.6×10−7 0.24
k = 50 TOAR 20 1 3.2×10−12 0.21

STOAR 16 1 2.7×10−10 0.34

Krylov-Schur 12 81 1.4×10−9 1.5
shaft Pseudo-Lanczos 12 2 4.4×10−10 0.20
n = 400 Q-Arnoldi 12 83 2.3×10−6 0.99
σ =−10 Q-Lanczos 12 2 2.9×10−9 0.17

TOAR 10 186 2.9×10−9 1.7
STOAR 10 2 6.0×10−11 0.19

Krylov-Schur 10 3 5.7×10−10 0.67
sign1 Pseudo-Lanczos 10 6 1.4×10−10 1.0
n = 1000 Q-Arnoldi 10 4 1.6×10−11 0.028
shift Q-Lanczos 0 6 - -

TOAR 10 4 5.0×10−10 0.58
STOAR 10 6 1.0×10−11 0.85

Krylov-Schur 11 3 2.9×10−12 185
sleeper Pseudo-Lanczos 10 3 2.8×10−13 202
n = 1000000 Q-Arnoldi 10 3 1.9×10−10 130
σ =−0.9 Q-Lanczos 2 3 4.0×10−9 86

TOAR 10 3 5.7×10−14 123
STOAR 10 3 4.3×10−13 138

Krylov-Schur 10 2 6.9×10−12 151
spring Pseudo-Lanczos 10 2 4.7×10−13 162
n = 1000000 Q-Arnoldi 10 2 2.2×10−7 111
σ =−10 Q-Lanczos 6 1 8.8×10−8 91

TOAR 10 2 9.6×10−12 107
STOAR 10 2 4.1×10−13 116

eigenvalues with small imaginary part. Furthermore, when solving complex Hermi-
tian problems in complex arithmetic, there is the guarantee that indefinite solvers will
always get complex conjugate eigenvalues (λ , λ̄ ) together, while it may happen that
non-symmetric solvers miss one of them depending on convergence.

The downside of the symmetric-indefinite methods is that they occasionally fail
to converge, as they rely on the non-symmetric Lanczos process. The good news is
that the guard for detecting loss of symmetry discussed in section 6 confers the meth-
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Fig. 7.1 Comparison of parallel execution time of the spring (left) and sleeper (right) test problems for the
different solvers with increasing number of processes. The execution parameters are the same as in Table
7.1, but requesting 30 eigenpairs.

ods guaranteed robustness in the sense that the computed solution is always correct.
That is, when the pseudo-Lanczos process becomes unstable, the solver aborts and
returns less than the number of requested eigenpairs, but all of them with a small
backward error. From Table 7.1, we notice that failure is more often encountered
in Q-Lanczos (as in sign1, sleeper and spring), while pseudo-Lanczos and STOAR
perform remarkably well except in some cases (e.g. for some values of σ ).

Figure 7.1 displays the parallel execution times of the different methods for in-
creasing number of processes in the spring and sleeper problems, both of them for
problem size 1 million. In this case, 30 eigenpairs were requested with a maximum
basis size of 60 vectors. The scalability is far from ideal, and this can be attributed to
the fact that linear systems are solved with a parallel direct solver (MUMPS), whose
overhead grows with the number of processes. The times for TOAR and STOAR are
well below those of solvers that operate on the explicit linearization, since in the latter
case the matrix to be factored is twice as large. We can also see that STOAR has a
small performance penalty compared to TOAR, but both of them scale similarly.

8 Conclusions

We have proposed several methods for exploiting symmetry when solving the sym-
metric QEP. The first method extends the pseudo-Lanczos recurrence with a thick-
restart technique. Using this kind of restart, which has also been incorporated in the
other methods, is of paramount importance when solving real applications. The other
two methods, Q-Lanczos and STOAR, are memory-efficient schemes that avoid stor-
ing the complete Krylov basis. This issue may be quite important in very large prob-
lems. Anyway, the reduction of memory requirements will be much more significant
in symmetric polynomial eigenvalue problems of higher degree. We will consider as
future work how the proposed methods could be extended for this setting.

We must note that the indefinite methods that we have proposed are not as robust
as the orthogonal counterparts, as expected. Still, they work reasonably well, espe-
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cially pseudo-Lanczos and STOAR. Our implementations incorporate a mechanism
to avoid returning wrong solutions in case of instability, by aborting execution if sym-
metry loss is detected. The symmetric-indefinite solvers may have advantage in some
situations, with faster convergence or better accuracy, and our implemented solvers
are publicly available in SLEPc for anyone interested in trying for applications that
could benefit from them.
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