
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://doi.org/10.1104/pp.112.212407

http://hdl.handle.net/10251/81260

American Society of Plant Biologists

Perea García, A.; Garcia Molina, A.; Andres-Colas, N.; Francisco José Vera Sirera; Perez
Amador, MA.; Puig, S.; Penarrubia, L. (2013). Arabidopsis copper transport protein COPT2
participates in the crosstalk between iron deficiency responses and low phosphate signaling.
Plant Physiology. 162(1):180-194. doi:10.1104/pp.112.212407.



1 
 

 

 

 

Running Head:  

COPT2 responds to iron and phosphate deficiencies  

 

 

Corresponding Author: 

Lola Peñarrubia.  

Departament de Bioquímica i Biologia Molecular. Universitat de València. Av. Doctor 

Moliner, 50. E-46100 Burjassot, Valencia, Spain.  

Tel: +34-963543013  

Fax: +34-963544635 

E-mail: penarrub@uv.es 

 

 

Research Area: 

Environmental Stress and Adaptation 

 

Associate Editor: 

Julia Bailey-Serres 

 

 

 

 

 



2 
 

Title: 

 

Arabidopsis copper transport protein COPT2 participates in the crosstalk between 

iron deficiency responses and low phosphate signaling 

 

 

Authors: 

Ana Perea-García1**, Antoni Garcia-Molina1# **, Nuria Andrés-Colás1, Francisco Vera-

Sirera2, Miguel A. Pérez-Amador2, Sergi Puig1‡, and Lola Peñarrubia1*. 

 

Institution address: 
1Departament de Bioquímica i Biologia Molecular. Universitat de València. Av. Doctor 

Moliner, 50. ES-46100 Burjassot, Valencia, Spain. 
2Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de 

Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022 Valencia, 

Spain 



3 
 

 

Footnotes: 

This work was supported by grants BIO2011-24848 and CSD2007-00057 to L. P. from 

the Spanish Ministry of Economy and Competitiveness and by FEDER funds from the 

European Union. A. P.-G and A. G.-M. were recipients of a predoctoral FPI fellowship 

from the Spanish Ministry of Economy and Competitiveness  

 

#Present address: 

Molecular Plant Genetics Department. Max Planck Institute for Plant Breeding. Carl-

von-Linne-Weg, 10. D-50829 Cologne, Germany. 

 
‡ Present address:  

Departamento de Biotecnología. Instituto de Agroquímica y Tecnología de Alimentos 

(IATA-CSIC). Av. Agustín Escardino 7, E-46980 Paterna (Valencia) Spain. 

 

 

*Corresponding author e-mail: penarrub@uv.es 

**These authors contributed equally to this work 

 

 

 

 

One sentence summary: The function of the COPT2 high affinity copper transport 

protein unveil its role in the crosstalk among Cu, Fe and Pi deficiency responses in 
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ABSTRACT 

 

Copper and iron are essential micronutrients for most living organisms because 

they participate as cofactors in biological processes, including respiration, 

photosynthesis and oxidative stress protection. In many eukaryotic organisms, including 

yeast and mammals, copper and iron homeostases are highly interconnected; yet such 

interdependence is not well-established in higher plants. Here we propose that COPT2, 

a high-affinity copper transport protein, functions under copper and iron deficiencies in 

Arabidopsis thaliana. COPT2 is a plasma membrane protein that functions in copper 

acquisition and distribution. Characterization of the COPT2 expression pattern indicates 

a synergic response to copper and iron limitation in roots. We characterized a knockout 

of COPT2, copt2-1, which leads to increased resistance to simultaneous copper and iron 

deficiencies, measured as reduced leaf chlorosis and improved maintenance of the 

photosynthetic apparatus. We propose that COPT2 could play a dual role under Fe 

deficiency. First, COPT2 participates in the attenuation of copper deficiency responses 

driven by iron limitation, possibly to minimize further iron consumption. Second, the 

global expression analyses of copt2-1 line versus wild-type Arabidopsis plants indicate 

that low phosphate responses increase in the mutant. These results open up new 

biotechnological approaches to fight iron deficiency in crops. 
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INTRODUCTION 

 

Copper (Cu) and iron (Fe) act as a double-edged sword in living beings since 

they are essential redox active micronutrients, but are cytotoxic when in excess. Since 

both metals participate as catalytic cofactors in multiple metabolic pathways, their 

homeostasis needs to be strictly controlled. Plants are the basis of trophic chains and 

their nutritional deficiencies are often transferred to consumers. The essentiality of Cu 

and Fe in plants is evidenced by the symptoms that their deficiencies provoke, which 

affect the yield and nutritional value of crops (Märschner H., 2002; Puig et al., 2007). In 

biological terms, use of Fe preceded Cu due to the high bioavailability of Fe as Fe2+ 

under anoxic conditions. However, the appearance of oxygen in the atmosphere caused  

not only reduced Fe bioavailability, but also concomitantly increased the bioavailability 

and use of Cu by biological systems (Crichton and Pierre, 2001). In parallel with the 

incorporation of Cu into multiple processes requiring higher redox potentials, a fact that 

temporally coincided with the commencement of pluricellularity, new strategies to 

solubilize and acquire Fe3+ were developed. In some cases, enzymes that catalyze the 

same biochemical reaction are coordinately regulated to allow the alternative use of 

either Cu- or Fe-containing proteins, depending on metal bioavailability. One main 

example in Arabidopsis thaliana plants is the use of Cu and zinc (Zn) superoxide 

dismutase (Cu/ZnSOD) versus FeSOD, which both play a role in reactive oxygen 

species detoxification (Abdel-Ghany et al., 2005; Yamasaki et al., 2007; Burkhead et 

al., 2009; Waters et al., 2012). 

In Arabidopsis, deciphering responses to Cu deficiency is now starting (Pilon et 

al., 2009; Penarrubia et al., 2010). A family of high-affinity Cu transport proteins, 

denoted COPTs in plants (CTR in yeast and humans), participates in Cu transport 

toward the cytosol. COPT1 is a plasma membrane-located member of this family that 

plays a key role in Cu uptake, root growth and pollen development (Kampfenkel et al., 

1995; Sancenon et al., 2004). Recent studies have shown that deregulated Cu transport 

in COPT1 overexpressing plants affects development under continuous environmental 

conditions (Andres-Colas et al., 2010). On the other hand, Cu activates calcium- and 

potassium-permeable plasma membrane transporters in COPT1 overexpressing plants 

under 10 M Cu conditions, a fact that might be caused by the generation of cytosolic 

hydroxyl radical (Rodrigo-Moreno et al., 2012). In the COPT family, COPT1 and 
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COPT2 mRNA levels are down-regulated by Cu and their expression completely 

rescues the respiratory defect of Saccharomyces cerevisiae ctr1ctr3 mutants, which 

are defective in high-affinity Cu uptake (Sancenon et al., 2003). Arabidopsis genome 

encodes a 17-member Zn finger plant-specific transcription factor family named SPL 

(SQUAMOSA-promoter binding-like proteins) (Birkenbihl et al., 2005). SPL7 has been 

shown to be essential for the transcriptional activation observed in response to Cu 

deficiency in vivo through its binding to the GTAC motifs within the promoter of Cu-

responsive genes, including those encoding COPT1, COPT2 and Fe superoxide 

dismutase FSD1 (Yamasaki et al., 2009; Bernal et al., 2012).  

Despite its abundance in soils, Fe bioavailability is very limited, which often 

provokes Fe deficiency symptoms (i.e., chlorosis) and lowers crop yields. The primary 

response of Arabidopsis plants to Fe deficiency is controlled through coordinated 

transcriptional activation, including the increased expression of metal reductases and 

transporters, such as FRO2 and IRT1 respectively, to improve metal bioavailability and 

acquisition. The Arabidopsis basic helix-loop-helix (bHLH) transcription factor 

bHLH29/FRU, also known as FIT (Fe deficiency-induced transcription factor), controls 

some of the root responses upon Fe limitation at different levels (reviewed by (Guerinot, 

2000; Hindt and Guerinot, 2012; Ivanov et al., 2012)). 

Fe availability has been shown to play a crucial role in the root architecture 

changes induced by phosphate (Pi) deficiency in Arabidopsis (Ward et al., 2008). Thus, 

whereas primary root elongation is greatly inhibited by Pi starvation, root growth is 

restored under reduced Fe without increasing Pi availability (Ward et al., 2008). 

Moreover, Pi-starved Arabidopsis plants show elevated Fe accumulation in both shoots 

and roots (Misson et al., 2005; Ward et al., 2008). Phosphorus is not only an essential 

macronutrient, but also a key component of, among others, membrane phospholipids, 

and is crucial for processes such as signaling cascades (Raghothama, 1999; Chiou and 

Lin, 2011). It has been suggested that Pi may be sensed indirectly via complex and 

antagonistic interactions between Pi and Fe availabilities, which still remain to be 

elucidated (Abel, 2011).  

Given their sessile nature, plants are organisms that probably explore the widest 

variety of responses to environmental nutrient availabilities, and they have developed 

multiple regulatory mechanisms to respond to metal and nutrient deficiencies. In 

addition to the aforementioned substitution of specific metalloproteins, improved metal 
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bioavailability and acquisition, including the increased expression of metalloreductases 

and high-affinity transporters, are among the main strategies to help face metal 

deficiencies (Jeong and Guerinot, 2009; Palmer and Guerinot, 2009; Puig and 

Penarrubia, 2009). Nutrient status information has to be communicated between organs 

to optimize essential inorganic nutrient allocation, especially in plants growing under 

suboptimal conditions. Root architecture is differentially modified during nutrient 

deficiencies. Whereas root elongation is considered an adequate modification under 

metal deficiencies, possibly to seek metals in underground soil layers, the inhibition of 

primary root growth and the development of secondary and higher-order roots under Pi 

starvation maximize the interception of the nutrient in top soil layers (Liao et al., 2001). 

These processes exemplify not only the extensive crosstalk between different metals 

and other nutrient homeostasis networks, but also the delicate balance that plant cells 

have to strike according to the variable nutritional status in the environment. 

In this study, we analyzed the function of high-affinity Cu transport protein 

COPT2, whose expression in Arabidopsis is up-regulated in roots by both Cu and Fe 

deficiencies (Sancenon et al., 2003; Colangelo and Guerinot, 2004; Waters et al., 2012), 

whereas Pi-starvation diminishes its expression (Thibaud et al., 2010). The phenotypes 

and gene expression changes displayed by a copt2-1 line unveil a role for COPT2 in the 

crosstalk among Cu, Fe and Pi deficiency responses in Arabidopsis. 
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RESULTS 

 

High-affinity copper transport protein COPT2 localizes to the plasma membrane 

of Arabidopsis cells. 

 

The COPT2 gene (At3g46900) from Arabidopsis encodes a protein with a 78% 

identity with COPT1 (Kampfenkel et al., 1995; Sancenon et al., 2003); see Figure S1A. 

The hydrophobicity pattern and the topological comparison between COPT2 and other 

CTR/COPT family members indicate the presence of three transmembrane domains 

(TMDs) with an external amino terminus and a cytosolic carboxy terminus (Figure 

S1B). Moreover, it possesses the conserved extracellular methionine residue (indicated 

by an asterisk in Figure S1) before TMD1, the MxxxM motif in TMD2 and the GxxxG 

motif in TMD3, which are essential in yeast homologs (Puig et al., 2002; Aller et al., 

2004). A CxC motif is also observed in the COPT2 carboxy-terminal domain (Figure 

S1). Given its ability to fully complement the respiratory defects of yeast ctr1ctr3 

mutants and its regulation by environmental Cu in Arabidopsis, it has been previously 

suggested that both the COPT2 and COPT1 proteins could function in Cu acquisition in 

the plasma membrane of specific plant cells (Kampfenkel et al., 1995; Sancenon et al., 

2003; Sancenon et al., 2004). 

For the purpose of localizing COPT2 at the subcellular level in Arabidopsis 

cells, its coding sequence was fused to the green fluorescent protein (COPT2-GFP) 

under the control of the constitutive CaMV35S promoter. As shown in Figure 1A, the 

construct COPT:GFP complements the respiratory defect of yeast ctr1ctr3 mutants 

to a similar extent as COPT2 and COPT1, indicating that addition of the GFP does not 

interfere with the Cu transport function in yeast. Isolated Arabidopsis protoplasts 

transiently expressing the PCaMV35S:COPT2:GFP construct were analyzed for 

localization of COPT2-GFP, lipophilic styryl dye FM4-64 and chlorophyll 

fluorescences indicated by green, cyan and magenta colors, respectively (Figure 1B). In 

addition to the chlorophyll autofluorescence, COPT2-GFP-expressing cells display a 

signal on the cell surface that is absent in vacuoles, the cytosol and other discrete 

subcellular localizations. This signal colocalizes with the FM4-64 marker, which 

localizes to the cell surface at low temperatures (Figure 1B). Furthermore, 

immunofluorescence labeling of stable transgenic Arabidopsis plants expressing the 
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CaMV35S:COPT2-HA construct show a signal restricted to the peripheral side of the 

cytoplasm when using anti-HA antibodies (Figure S2). These results strongly suggest 

that the COPT2 protein localizes to the plasma membrane of Arabidopsis cells. 

 

The COPT2 expression is differentially regulated by Cu and Fe deficiencies. 

 

 In order to study the COPT2 spatial expression pattern, the promoter region 

(PCOPT2, covering 1248 base pairs upstream from the start codon) was fused to the 

uidA (GUS) reporter gene. The transgenic Arabidopsis lines harboring the 

PCOPT2:GUS chimeric gene were obtained. GUS staining in 7-day-old Arabidopsis 

seedlings grown under Cu-deficient conditions indicated that COPT2 was expressed in 

most tissues of the seedlings (Figure 2A). For roots, GUS staining was observed in the 

differentiation zone, but was absent from the elongation and meristematic zones (Figure 

2B and 2C). Moreover, COPT2 expression in roots included the lateral roots and root 

hairs, displaying expression mostly in the epidermis (Figure 2D). In cotyledons, the 

highest expression was observed in vascular bundles and hydathodes (Figure 2E). 

Histological analyses of seedlings and adult plants showed a COPT2 promoter-driven 

GUS expression in the apical meristem and trichomes (Figure 2F) and in young leaves 

(Figure 2G). During the development of reproductive organs, the GUS staining in 

anthers (Figure 2H) indicates that COPT2 is highly expressed in pollen (Figure 2I). 

Three other independent PCOPT2:GUS lines were analyzed and showed the same 

COPT2 tissue pattern expression (data not shown). A schematic COPT2, as compared 

to the COPT1 expression pattern, along with other characteristics of both permeases, are 

shown in Figure S3. 

The analysis of the regulatory elements in the PCOPT2 region indicates the 

presence of four GTAC motifs, which are probably involved in its regulation by Cu 

(Figure S4; (Yamasaki et al., 2009)). Interestingly, COPT2 is the COPT family member 

whose expression was most highly regulated by Cu deficiency (Sancenon et al., 2003; 

Yamasaki et al., 2009; del Pozo et al., 2010). In addition, a putative E-box consensus, 

which may be involved in the interaction with bHLH-type transcription factors such as 

the Fe-responsive FIT protein (Hartmann et al., 2005), was present in its promoter 

(Figure S4). Accordingly, COPT2 expression has been shown to respond to Fe 

deficiency in a partially FIT-dependent manner (Colangelo and Guerinot, 2004). To 

ascertain COPT2 expression under separate Fe and Cu deficiencies, or when both 
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deficiencies are applied simultaneously, wild-type (WT) seedlings were grown in the 

four following media combinations: first, Fe- and Cu-sufficient medium (+Fe+Cu; ½ 

MS supplemented with 10 M CuSO4); second, Fe-sufficient and Cu-deficient medium 

(+Fe-Cu; ½ MS without CuSO4); third, Fe-deficient and Cu-sufficient medium 

(-Fe+Cu; ½ MS without Fe and supplemented with 10 M CuSO4 and 300 M 

ferrozine, a specific Fe2+ chelator); and fourth, Fe- and Cu- deficient medium (-Fe-Cu; 

½ MS without Cu and Fe, and supplemented with 300 M ferrozine). The Cu 

concentration used in this experiment was 10 M, which was high enough to guarantee 

a sufficient Cu supply while being far from the deficiency and excess responses 

(Andres-Colas et al., 2010). COPT2 expression was induced by Cu deficiency (35.6-

fold), by Fe deficiency (4.3-fold) and its expression was further increased under 

simultaneous Fe and Cu deprivation (52.3-fold) (Figure 3A and Table S1). COPT2 

expression remained mostly under the control of the SPL7 transcription factor since the 

spl7 mutant displayed a significant drop at the mRNA levels (Figure 3A; (Yamasaki et 

al., 2009; Bernal et al., 2012)). However, COPT2 was still expressed at low basal levels 

under all the conditions tested in the spl7 mutant as compared to a copt2 null mutant 

(copt2-1 line, see next section) (Figure 3A), indicating that this basal expression level 

was SPL7-independent. Furthermore, the COPT2 tissue pattern shows that under Cu 

deficiency (+Fe-Cu), it was highly expressed in roots and that its expression increased 

under both metal deficiencies (-Fe-Cu) (Figure 3B). In order to further define where 

COPT2 expression started, root photographs under 1 h at 37ºC for GUS staining were 

obtained, showing cell patches of differentiated root cells (Figure 3B). Interestingly, 

high (1 M) Cu levels (+Fe+Cu) completely abolished COPT2 expression in roots, but 

a low expression level, which requires overnight GUS staining remained restricted to 

cotyledons under Fe deficiency (-Fe+Cu) (Figure 3B). The expression in roots requires 

Cu deficiency conditions, and it was not observed under Fe deficiency when the Cu 

levels in the medium were higher than 0.25 μM (Figure S5). However, the low 

expression in cotyledons was observed at higher Cu levels under overnight GUS 

staining conditions (Figures 3B and S5). Taken together, these results not only 

demonstrate that COPT2 expression is differentially regulated by low Cu and Fe 

conditions, but suggest a crosstalk between both metal deficiencies. 

 

Characterization of copt2-1 line under Cu and Fe deficiency conditions. 
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  A copt2-1 line (Figure S6) that contains the T-DNA insert at the -55 base pairs 

(in relation to the translation start codon), separating the four putative Cu regulatory 

GTAC motifs from the COPT2 coding sequence (Figure S6A), shows no COPT2 

expression in seedlings grown on different Cu availabilities (100 BCS, and 0, 1, 5, 

or 10 M CuSO4) (Figure S6C). Moreover under the four conditions previously stated 

for Cu and Fe availability, the COPT2 expression levels in the copt2-1 line were below 

those found in the spl7 mutant (Figure 3A). Therefore, we used the copt2-1 mutant to 

study the function of this transporter in Arabidopsis.  

Since COPT2 displays different expression patterns under +Fe-Cu, -Fe+Cu and 

-Fe-Cu conditions, we studied the potential copt2-1 phenotypes under these conditions 

as compared to the +Fe+Cu control media. Apparently the mutant did not seem to differ 

from the WT controls when grown on soil or in ½MS with different Cu availabilities. 

Furthermore certain parameters, such as root length, seed germination, de-etiolation and 

hypocotyls length, showed no significant difference between the WT and copt2-1 line 

under the different Cu statuses analyzed (data not shown). However, whereas the WT 

plants grown under simultaneous Cu- and Fe-deficiency conditions exhibited a light 

green leaf appearance, a typical symptom of mild chlorosis, the copt2-1 seedlings 

displayed a slight increased resistance to Fe deprivation by delaying symptoms, as 

shown by their greener leaves (Figure 4A). In order to quantify this copt2-1 phenotype, 

total chlorophylls were measured in the 7-day-old WT and mutant seedlings grown 

under the four Fe/Cu conditions stated above. As Figure 4B illustrates, the copt2-1 line 

showed increased chlorophylls when compared to the WT seedlings, especially under -

Fe conditions. Despite no significant changes in fresh weight being detected under Fe 

deficiency (Figure S7A), a parameter indicative of photosynthetic apparatus integrity 

such as LHCB1.1 (light harvesting complex B1.1) mRNA, showed a slightly higher 

level in the mutant than in the WT plants under Fe deficiency conditions (Figure S7B). 

In order to ascertain whether these defects were COPT2-specific, we transformed the 

copt2-1 line with the COPT2 WT gene driven by its own promoter 

(PCOPT2:COPT2:GFP). Importantly, the PCOPT2:COPT2:GFP seedlings grown 

under both metal deficiencies revealed a partial restoration of COPT2 expression and, 

accordingly, displayed an increased sensitivity to metal deficiencies as shown by the 

chlorophyll content (Figure 5). Moreover, the LHCB1.1 and FSD1 expression decreased 

when compared to the copt2-1 line under simultaneous metal deficiency (Figure 5C), 
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which is in agreement with reduced plant performance in the presence of COPT2 

expression. The copt1 mutant also display a similar phenotype of resistance to Fe 

deficiency-induced chlorosis (results not shown), which further corroborates the role of 

Cu in this process. To investigate whether the better resistance of the mutant to ferric 

chlorosis under -Fe-Cu conditions was also displayed in adult stages, plants were grown 

in hydroponic cultures under +Fe+Cu (Hoagland) and -Fe-Cu conditions (Hoagland 

with no added Cu and Fe). As indicated for the seedlings grown in agar plates (Figures 

4 and 5), once again the chlorosis under -Fe-Cu conditions in the aerial part was less 

pronounced or retarded in the copt2-1 line than in the WT adult plants (Figures 6A and 

6B). It is worth noting that the plastocyanin content in the leaves of the adult plants 

grown under -Fe-Cu conditions was higher in the copt2-1 line than in WT plants (Figure 

S8). Moreover, senescence of the copt2-1 siliques is delayed compared to WT (Figure 

S9A) and subsequently the mutant produces more seeds (Figure S9B) with a higher 

germination rate (40%) than WT plants (5%) when grown under both metal deficiency 

conditions. Taken together, these results further support the better or extended 

maintenance of the photosynthetic apparatus in the copt2-1 line than in the WT plants 

grown under conditions of simultaneous Fe and Cu deficiencies, which leads to 

improved plant growth and seed production. 

In order to determine whether the total endogenous metal content in these plants 

was responsible for the phenotypes observed in the copt2-1 line, the Fe and Cu contents 

from the 7-day-old seedlings grown under the four Fe/Cu conditions described above 

were determined by inductively coupled plasma mass spectroscopy (ICP-MS). No 

significant differences in Fe content were observed between WT and copt2-1 plants 

(Figure 7A). Although a slight decrease in Cu content was detected in the mutant under 

high Cu (Figure 7B), COPT2 was expressed at low levels under these conditions 

(Figure 3A), questioning a putative COPT2 role in Cu uptake from the medium under 

high Cu. Moreover, no significant differences in Cu content between the WT and the 

copt2-1 plants grown under either hydroponic or Cu deficiency conditions were found 

in different organs, such as roots, rosette leaves, stems or inflorescences (data not 

shown). These results suggest that the total endogenous metal content in seedlings is not 

responsible for the phenotype of the simultaneous resistance to Fe and Cu deficiencies 

displayed by the copt2-1 line.  
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The negative effects of Fe starvation on Cu deficiency responses are altered in the 

copt2-1 line.  

 

 In order to understand the molecular reasons underlying the copt2-1 phenotype, 

the mRNA levels of selected genes regulated by Cu deficiency (COPT1, FSD1 and 

CSD2) were determined by qPCR in the 7-day-old WT and mutant seedlings grown 

under the four Fe/Cu conditions described above (Figure 8). We observed that COPT1 

expression was up-regulated by Cu deficiency in both the WT and copt2-1 lines (Figure 

8A, +Fe+Cu vs. +Fe-Cu; (Sancenon et al., 2003). It is interesting to note that when Fe 

was limited (-Fe conditions), no COPT1 up-regulation was observed in response to Cu 

deficiency (Figure 8A, -Fe+Cu vs. -Fe-Cu). These results suggest that Fe deficiency 

negatively affects COPT1 induction by low Cu in both the WT and copt2-1 lines. To 

further address this observation, we determined the mRNA levels of Cu-regulated genes 

FSD1 and CSD2, which respectively encode for FeSOD and Cu/ZnSOD. As Figures 8B 

and 8C depict, the CSD2/FSD1 substitution was normally observed with Cu deficiency 

under Fe-sufficient conditions (+Fe+Cu vs. +Fe-Cu). However, when Fe deficiency was 

imposed, the increased FSD1 mRNA levels were greatly compromised (Figure 8B, 

-Fe+Cu vs. -Fe-Cu) and the copt2-1 line showed a slightly increased FSD1 expression 

under Cu and Fe deficiencies (Figure 8B). To check whether this slight increase in SOD 

expression implies a general enhancement in oxidative stress protection in the copt2-1 

line, SOD activities were measured in gel and no significant differences were found 

between the WT and the mutants (Figure S10A). Moreover, when subjected to oxidative 

treatments, such as hydrogen peroxide (500 M) or paraquat (0.1 M), no phenotypical 

differences were observed (Figure S10B), indicating that the copt2-1 line does not show 

more resistance to general oxidative stress conditions.  

Since Fe starvation attenuated the Cu deficiency-induced up-regulation of 

COPT1 and FSD1 (Figures 8A and 8B), we wondered how Cu deficiency could affect 

plant responses to Fe scarcity. For this purpose, the expression pattern of two well-

known Fe deficiency genes, metalloreductase FRO2 and Fe transporter IRT1, was 

analyzed under the four previously assayed Fe/Cu conditions. Although both genes were 

activated in response to Fe deficiency (Figures S11A and S11B, +Fe vs. -Fe), as 

previously reported (Colangelo and Guerinot, 2004), no major differences were 

observed in the expression of FRO2 and IRT1 in copt2-1 plants (Figure S11).  
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Global analysis of gene expression changes under Fe and Cu deficiencies indicate 

that copt2-1 plants display phosphate starvation responses. 

 

With the aim of characterizing at the molecular level the causes of enhanced 

resistance to Fe deficiency and induced chlorosis in the copt2-1 mutant, a global 

profiling analysis of gene expression under Fe and Cu deficiency was performed. To 

that end, WT and copt2-1 seedlings were grown for 7 days under Fe and Cu sufficient 

conditions (+Fe+Cu) and compared to seedlings grown on medium without Fe and Cu 

(-Fe-Cu). Moreover, medium without Fe (-Fe+Cu) has been used as a control for Cu-

complemented expression changes in the copt2-1 line. In order to validate these growth 

conditions, we have previously confirmed by qPCR analysis the expression pattern of 

two genes previously known to be upregulated by Cu deficiency, COPT2 (Sancenon et 

al., 2003) (Figures 3A and S12A) and ZIP2, a ZRT, IRT-like protein 2 transporter 

(Wintz et al., 2003) (Figure S12B). 

Global profiling analysis of copt2-1 and WT lines was carried out from four 

biological replicates grown in the three different conditions (+Fe+Cu, -Fe-Cu and 

-Fe+Cu). A median log2 ratio of 1 (2-fold difference in expression) was used as a cutoff 

criterion to compare the mutant with the WT under each condition. We identified 324 

differentially expressed genes (Tables S1 and S2) distributed in 49 induced (ratio>1) 

and 275 repressed (ratio<1) genes in the copt2-1 line in the three growth conditions 

(Figure 9A). Repressed genes are more abundant than induced in all the conditions. The 

condition -Fe+Cu shows the largest number of genes which expression is affected. Gene 

ontology analysis indicated that repressed genes include those of the abiotic stress and 

detoxifying processes, maybe reflecting the consequences of the dismantling 

photosynthetic apparatus taking place in the WT plants (Table S3) which may be 

delayed in the mutant. Interestingly, a significant percentage (35%) of the induced genes 

is related to Pi starvation responses based on bibliography (Table 1). Over-

representation of this category in all three nutritional conditions indicated a general 

effect of COPT2 function in Pi starvation (Table S4). The ribo-regulators At4, IPS1 and 

several SPX domain proteins are among the best-known genes induced in Pi-starved 

plants and they have been shown to participate in Pi homeostasis and signaling (Franco-

Zorrilla et al., 2007; Duan et al., 2008; Thibaud et al., 2010; Chiou and Lin, 2011). 

Therefore, At4 and SPX1 expression was analyzed in the copt2-1 line, confirming the 
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microarray results (Figure 9B). Moreover, these data underscore the intricate 

interactions between Fe and Pi deficiencies, since whereas At4 is down-regulated by Fe 

deficiency in WT, SPX1 expression remains mostly unaffected (Figure 9B). To check 

how Cu is implicated in Pi-starvation, we have grown WT and copt2-1 seedlings in Pi-

deficient media and under different Cu and Fe regimes. As shown in Figures 10A and 

10B, copt2-1 displays slightly larger roots than WT plants in all growth conditions, 

indicating a general insensitivity to Pi deficiency. Moreover, the COPT2 expression 

pattern remains unaffected under Pi starvation (Figure 10C). Taken together, our results 

are compatible with a model where COPT2 is involved in the antagonistic responses of 

metals and Pi deficiencies (Figure 11). 
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DISCUSSION 

 

The conserved family of CTR/COPT proteins mediates high-affinity Cu 

transport in eukaryotic organisms (reviewed by (Puig et al., 2002; Kim et al., 2008; 

Nevitt et al., 2012)). Distinct COPT-family members have been characterized in the 

plant Arabidopsis. Whereas COPT1 is a plasma membrane protein that functions in root 

Cu uptake and pollen development, COPT5 is intracellularly localized and mediates Cu 

mobilization under severe deficiency conditions (Sancenon et al., 2004; Garcia-Molina 

et al., 2011; Klaumann et al., 2011). Previous studies have shown that COPT2 is the 

most similar COPT-family protein to COPT1, that both genes fully complement the Cu 

transport defect of yeast ctr1ctr3 mutants, and that they are up-regulated in response 

to Cu deficiency in a SPL7-dependent manner by probably SPL7-binding to GTAC 

motifs in the COPT1 and COPT2 promoter regions (Sancenon et al., 2003; Yamasaki et 

al., 2009; Bernal et al., 2012). Here we show that, similarly to COPT1, the COPT2 

protein localizes to the plasma membrane of Arabidopsis cells. Furthermore, both genes 

display a similar aerial expression pattern under slight Cu-deficient conditions (½ MS 

medium), including the expression in cotyledons from young seedlings, trichomes, 

anthers and mature pollen (Sancenon et al., 2004). These observations suggest that 

COPT1 and COPT2 might exhibit a partially redundant function in Cu homeostasis in 

the aerial part. A notable difference between COPT1 and COPT2 relies on their root 

expression pattern. COPT1 is exclusively expressed in primary and secondary root tips 

(Sancenon et al., 2004), where overexpression activates plasma membrane OH·–

sensitive calcium and potassium channels and subsequent root apex signaling (Rodrigo-

Moreno et al., 2012). However, COPT2 is expressed in subapical root regions (Figure 

2), where the activation of these channels is prevented (Rodrigo-Moreno et al., 2012), 

suggesting local and specific functions and subsequent signaling events of these 

transporters in Arabidopsis roots. Moreover, another key difference is the regulation of 

both genes under Fe deficiency. In low Cu media, whereas COPT1 is downregulated 

(Figure 8A), COPT2 expression is increased by Fe deficiency (Figure 3A). 

In this sense, it is noteworthy that previous genome-wide expression studies in 

Fe-deficient roots were mostly performed under low Cu levels (Colangelo and Guerinot, 

2004; Buckhout et al., 2009; Yang et al., 2010; Stein and Waters, 2011). These studies 

have shown that COPT2 expression is up-regulated in response to Fe deficiency, which 
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has been further corroborated herein (Figures 3 and S5). However, the Fe deficiency-

induced COPT2 expression in roots is abolished by high Cu in media, although still 

present in shoots (Figures 3B and S5), suggesting a role for Cu in FIT-mediated 

responses in Arabidopsis roots. Recently, (Waters et al., 2012) reported increased 

COPT2 expression in roots, but a decrease in rosettes for Fe deficiency under low Cu 

conditions. The remaining COPT2 expression in cotyledons under -Fe+Cu (Figures 3B 

and S5) may be attributed to another putative Fe-deficiency network that differs from 

FIT and is not affected by high Cu levels.  It is believed that the increase in endogenous 

Cu levels when Fe is low (Figure 7B) may occur to favor the cofactor supply to Cu-

enzymes (e.g., Cu/ZnSOD), which substitute their Fe counterparts (e.g., FeSOD) to 

optimize the utilization of low Fe available in more important or irreplaceable Fe-

dependent functions (Waters et al., 2012).  

Surprisingly, parameters indicative of the photosynthetic apparatus status, such 

as chlorophyll content are higher in copt2-1 than in WT plants (Figures 4 and 5) 

indicating that the absence of COPT2 expression results in better plant performance, 

which is more relevant under both metals deficiencies (Figure S9). A putative 

explanation for this interesting phenotype is based on the observation that copt2-1 plants 

display higher FSD1 mRNA levels than the WT ones for combined Fe and Cu 

deficiencies (Figure 8B). However, a concomitant disadvantageous effect of COPT2 

expression resulting from diminished oxidative protection is not observed in the copt2-1 

line (Figure S10). Instead, the analysis of global expression changes in the copt2-1 

mutant suggests a complex scenario where different cuproproteins and maybe specific 

COPT-mediated signaling processes could be at the basis of the observed phenotype. 

One of the altered categories in the copt2-1 line is the response to low Pi, which is 

mostly independent of the metal status (Tables 1 and S2 and Figure 9B). Our results 

unveil a role of COPT2-mediated Cu transport in Pi starvation signaling, which is in 

agreement with the down-regulated COPT2 expression observed under Pi starvation 

conditions (Thibaud et al., 2010). Potential connections between Pi starvation responses 

and the homeostasis of other ions have been described (Abel, 2011; Chiou and Lin, 

2011). Root responses to Pi starvation have been suggested to be an outcome of the 

complex interactions between Pi and other nutrients, essentially Fe (Svistoonoff et al., 

2007; Ward et al., 2008). With simultaneous Fe and Pi deficiencies, a recovery in 

primary root elongation has been reported (Ward et al., 2008). Our results add Cu 

homeostasis to those interactions in which Fe deficiency and Pi starvation have 
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antagonistic effects by up-regulating or down-regulating COPT2 expression, 

respectively (Figures 3A and 11; (Thibaud et al., 2010)).  

COPT2 could participate in Pi sensing by Cu delivery to cuproproteins, such as 

multicopper oxidases LPR1 and LPR2, which have been involved in root growth 

responses to low Pi (Svistoonoff et al., 2007). Our results are compatible with a role of 

COPT2-mediated Cu transport in supplying Cu to these enzymes. In this sense, a slight 

increase in root length is observed in the copt2-1 line as compared to the WT under low 

Pi conditions (Figure 10), which is consistent with the phenotype observed in lpr1 and 

lpr2 mutants (Svistoonoff et al., 2007). In addition these data reveal a putative complex 

COPT2-mediated role in Pi-starvation systemic signaling, such as At4 and SPX1 

expression (Figure 9B), which still remains to be elucidated.  

A putative explanation to the better maintenance of chlorophylls observed in the 

mutant can be postulated as an indirect effect through Pi-starvation responses. Indeed 

under Pi-limiting conditions, plants substitute phosphoglycerolipids by activating the 

genes for galactolipid biosynthesis (Kobayashi et al., 2009). 

Monogalactosyldiacylglycerol (MGDG) is an abundant lipid in chloroplast membranes 

(Shimojima and Ohta, 2011). Mutants affected in MGDG synthase show reduced 

chlorophyll content (Jarvis et al., 2000). Changes in lipid composition have already 

been shown to be involved in Cu deficiency responses in Chlamydomonas reinhardtii 

(Castruita et al., 2011). The genes induced in copt2-1 plants suggest that phospholipids 

substitution for galactolipids could take place in the mutant (Tables 1, S2 and S4). 

Alternatively, a putative COPT2-mediated signaling event could be involved in 

chlorophyll degradation and consequently, this process would be retarded in the copt2-1 

line. In agreement with this suggestion other degradation processes, such as seed protein 

mobilization are also inhibited in the mutant (Tables S1 and S3). In addition, both the 

influence of Cu on ethylene perception (Hirayama et al., 1999) and the recently 

postulated role of a multicopper oxidase in Fe homeostasis (Bernal et al., 2012) also 

indicate different Cu functions, which could affect plant responses under Fe and Pi 

starvation (Romera and Alcantara, 1994; Hirsch et al., 2006).  

Although more studies will be needed to further ascertain the relevance of 

COPT2 in these processes, this study opens up novel possibilities to help develop 

strategies to improve the growth, yield and nutritional quality of crops under 

environmental metal deficiencies. Along these lines, recent studies in rice indicate 
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certain COPT-family members, which are up-regulated by both Cu and Fe deficiency 

(Yuan et al., 2011), as potential targets for biotechnological improvement. 
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MATERIALS AND METHODS 

 

Plant growth conditions and treatments 

 Seeds of Arabidopsis thaliana, ecotype Columbia-0 (Col-0), were surface-

sterilized and stratified for 2 d at 4°C and were germinated in ½ MS medium plates 

either including 1% sucrose (Murashige, 1962) or supplemented with the indicated 

concentrations of metal ions. For severe Cu-deficient conditions, the ½ MS medium was 

supplemented with 100 μM BCS (Bathocuproinedisulfonic acid disodium). In order to 

know the effects of both Cu and Fe deficiencies in plants, the components of the ½ MS 

medium were prepared separately according to the conditions: macronutrients (10 mM 

NH4NO3, 9.4 mM KNO3, 0.37 mM MgSO4·7H20, 0.62 mM KH2PO4 and 1.13 mM 

CaCl2), micronutrients (50 μM H3BO3, 36.6 μM MnSO4· H20, 15 μM ZnSO4·7H20, 0.57 

μM NaMoO4·2H2O and 0.05 μM CoCl2·6H20), 50 μM Fe-EDTA, 0.25 mM KI, 1 μM 

CuSO4·5H20, 0.05% MES, 1% sucrose and 0.8% phytoagar; pH 5.7-5.8. 7-day-old 

seedlings were grown in Fe- and Cu-sufficient medium (+Fe+Cu, Fe-sufficient and Cu-

deficient medium (+Fe-Cu), Fe-deficient and Cu-sufficient medium (-Fe+Cu) and Fe- 

and Cu-deficient medium (-Fe-Cu). Cu-excess medium was supplemented with 10 μM 

CuSO4·5H20. Fe-deficient medium was supplemented with 300 μM ferrozine. With the 

Pi-deficient medium, KH2PO4 was not included in the macronutrients solution. To study 

sensitivity to others stresses, seedlings were grown in paraquat and H2O2 solution (0.1 

μM and 500 μM, respectively). Seedlings were grown for 7 days with a 12 h 

photoperiod (65 mol m-2 of cool-white fluorescent light) at 23ºC/16ºC temperature 

cycle. Hydroponic cultures were performed in the same photoperiod conditions from 3-

4 true leaves seedlings grown in commercial soil, which were transferred to black boxes 

containing standard Hoagland solution (0.1 X), pH 5.8, as described by (Hermans et al., 

2005). After a 14-day adaptation, the -Fe-Cu treatment (corresponding to a Hoagland 

medium without Cu and Fe sources) commenced. Media were changed weekly for 4-5 

weeks. The chlorophyll content of the Arabidopsis seedlings and leaves from adult 

plants was determined by the trichlorometric method (Parsons, 1962). Root length was 

measured using the Image J 1.42q software (http://rsb.info.nih.gov./ij). 

 

Functional complementation assays in yeast 
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The yeast ctr1Δctr3Δ mutant strain was transformed with p426GPD, or with a 

vector containing COPT1, COPT2 or COPT2:GFP, and was assayed for growth on 

glucose (YPD: 1% yeast extract, 2% bactopeptone, 2% glucose), glycerol (YPEG: 1% 

yeast extract, 2% bactopeptone, 2% ethanol, 3% glycerol), and glycerol + Cu (YPEG 

supplemented with 100 µM CuSO4) media solidified with 1.5% agar (Puig et al., 2002). 

 

Metal accumulation measurements  

Fresh Arabidopsis material was dried at 65ºC for 2 days and digested with 65% 

(v/v) HNO3 at 80-90ºC. Digested samples were then diluted with Millipore H2O 

(Purelab Ultra), and Cu and Fe contents were determined by ICP-MS at the Servei 

Central d'Instrumentació Científica (Universitat Jaume I, Castelló Spain). 

 

SODs activity assay 

 Plant material was homogenized in an equal volume of ice-cold grinding buffer 

(50 mM potassium phosphate, pH 7.4, 0.1% BSA, 0.1% ascorbate, 0.05% -

mercaptoethanol, 0.2% Triton X-100) and was clarified by centrifugation at 14000 

r.p.m. for 15 min. Total protein was measured by the protein-dye binding assay 

(Bradford, 1976) with the BIO-RAD Protein Assay reagent. Samples (20 µg) were 

separated on a non denaturing 12.5% polyacrylamide gel at 100 V for 3-4 h. SOD 

activity was detected on these gels using the in situ staining technique of (Beauchamp 

and Fridovich, 1971). Briefly, the gel was kept in 1 mg/ml NBT for 10 min in the dark 

and then in developing buffer (33 mM potassium phosphate, pH 7.8, 28 µM riboflavin, 

28 mM TEMED) for another 20-min period before exposure to light.  

 

Plasmid constructs 

The entire COPT2 open reading frame was obtained by PCR using the following 

specific primers: COPT2-SalI-F CATGTCGACATCATGGATCATGATCACATGC 

AT; COPT2-NcoI-R TCTCCATGGTACAAACGCACCCTGAAGACGGCGGAA. The 

COPT2 carboxy terminus was fused in the frame to the GFP with the CaMV35S 

promoter through its insertion into transient expression vector P35SΩsGFP(S65T) 

(Miras et al., 2002). COPT2-GFP, obtained from the previous construct by PCR using 

these specific primers: COPT2-HindII-F CATAAGCTTATGGATCATGATCACA 

TGCAT; GFP-R-SalI CATGTCGACTTACTTGTACAGCTCGTCCAT was cloned 

into the p426GDP plasmid for the yeast functionality assay. Plasmids p426GDP-COPT1 
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and p426GDP-COPT2 were described in (Sancenon et al., 2003). The uidA coding 

sequence and the 1248 base pairs from COPT2 transcription start site (PCOPT2) 

(indicated by arrows in Figure S4) were amplified and cloned into the pFP101 plasmid 

(Bensmihen et al., 2005) without its CaMV35S promoter to obtain the PCOPT2:GUS 

construct, used to determine the COPT2 spatial expression pattern by a -glucuronidase 

assay. A PCR product containing 1248 bp of the PCOPT2 and the entire COPT2 coding 

sequence was cloned into the pFP101 vector and introduced into the copt2-1 line by 

floral dipping (Clough and Bent 1998). Homozygous transgenic plants 

(PCOPT2:COPT2) were selected based on seed fluorescence. The entire COPT2 coding 

sequence was tagged with the human influenza virus haemagglutinin  epitope (HA) with 

the specific primers COPT2-XbaIF CATTCTAGAATGGATCATGATCACATGCAT 

and COPT2HA-SalI-R   

ATGTCGACTCAAGCATAATCTGGAACATCGTATGGATAACAAACGCAGCCT

GAAGACGGCGGAA and cloned into the pFP101 vector. Transgenic lines were 

selected based on the fluorescence of the seeds. 

 

Computer-assisted sequence analyses 

The hydrophobic profile of the COPT2 protein was obtained by the TMHHM 

application (www.cbs.dtu.dk/services/TMHHM). The theoretical analysis of the 

promoter sequences was performed with the PLACE Web Signal Scan 

(http://www.dna.affrc.go.jp/htdocs/PLACE/signalscan.html) and Patmatch from TAIR 

(www.arabidopsis.org). 

 

Subcellular localization of the GFP fusion proteins 

The Arabidopsis protoplasts from the fresh leaf tissue of the 30-day-old plants 

grown in soil were transiently transformed with COPT2-GFP, as previously described 

(Abdel-Ghany et al., 2005). After 16 h under continuous light at 23ºC in the wash 

solution, protoplasts were incubated with the FM4-64 dye (Invitrogen) at a 

concentration of 50 M for 15 min at 4ºC before analyzing. Confocal images were 

obtained using a Fluorescence Confocal Microscope TCS SP, vertical (DM-R) (Leica), 

equipped with the Argon ion (458 and 488 nm), He-Ne I (543 nm) and He-Ne II (633 

nm) excitation laser systems, and a 40-60X objective lens. Fluorescence signals were 

detected at 500-530 nm for the GFP, 650-750 nm for chlorophyll and 560-650 nm for 

FM4-64 after exciting at 488, 633 and 543 nm, respectively.  
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Immunohistochemical techniques and microscopy 
  

Samples of Arabidopsis plant leaves were fixed in Karnousky reagent. They 

were dehydrated in successive ethanol series (20%, 40%, 60%, 80%, 95%, and 100%) 

and embedded in polyethylene glycol for fluorescence microscopy. Semithin sections (2 

µM) were placed on slides and rehydratated with xylene and successive ethanol series 

(100%, 95%, 70%, 0%), washed with PBSII ((PBSI: 137 mM NaCl, 2.7 mM KCl, 9 

mM Na2HPO4, 1.5 mM KH2PO4, pH 7.2) + 0.1% BSA and 0.05% Na2N3) and dried. 

Slides were blocked in PBSII with 2% BSA and 1% powder milk for 20 min and dried. 

Then, labeled overnight at 4ºC and in humidity with rat monoclonal antibody to the HA 

epitope (clone 3F10; Roche) diluted 1:50 in PBSII. Subsequently, washed with PBSI, 

blocked in PBSII with 2% BSA and 1% powder milk for 20 min and dried. Then, an 

anti-rat-IgG antibody conjugated with AlexaFluor546 (Molecular Probes) diluted 1:500 

with 0.1 M Glycine was used for 1-4 h at 4ºC in humidity and darkness. Slides were 

then washed with PBSI and stained with 1 µg/ml DAPI in PBSI for 5 min.  Finally, 

slides were washed with PBSI and mounted in Citifluor. The fluorescence of 

immunolabeled COPT2-HA and of DAPI-stained nuclei was visualized with a 

fluorescence microscope (Axioskop 2; Zeiss, Jena, Germany) using the appropriate filter 

combinations. Micrographs were taken by a camera SPOT (Diagnostic Instruments Inc.) 

and were processed through the Photoshop program (Adobe Systems, Seattle). 

Protein analysis by Western blot 

A crude extract from the WT and copt2-1 Arabidopsis leaves grown on plates 

was obtained and the amount of protein was determined by BCA (the BCA Protein 

Assay Kit, Thermo). Next, 40 μg of protein were analyzed by SDS-PAGE, transferred to 

a nitrocellulose membrane and blotted with an antibody against plastocyanin (Agrisera). 

Coomassie staining was used as a loading control.  

 

GUS expression analyses 

Assays were performed as described by (Jefferson et al., 1987). Briefly, the 

seedlings and organs from the adult PCOPT2:GUS plants were embedded with the 

substrate solution 100 mM NaPO4 pH 7.2, 0.5 mM K3Fe(CN)6, 0.5 mM K4Fe(CN)6, 

0.1% (v/v) Triton X-100, 0.5 mM 5-bromo-4-chloro-3-indolyl--D-glucuronide (X-
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Gluc, AppliChem) and 10 mM EDTA pH 7.2. Reactions took place at 37ºC and were 

stopped with ethanol (70%). 

 

copt2-1 mutant line analyses and complementation 

The Arabidopsis T-DNA insertion line AL770147 was obtained from the GABI-

Kat Project. Plants were self-pollinated and an homozygous mutant was obtained 

(denoted copt2-1 line). The COPT2-LB (F) and COPT2 RB (R) primers were used to 

amplify the WT alleles, whereas the COPT2-LB (F) and GKAT-PCR (S) primers 

amplified the inserted alleles in the copt2-1 line (see Figure S?A and Table S6). The 

location of the T-DNA insert was obtained by PCR amplification and sequencing. 

Several independent lines were obtained from different Arabidopsis databases were 

checked but none carried a T-DNA insertion in the coding region and the copt2-1 line 

was the closest insertion to the COPT2 coding sequence found among the lines 

analyzed. A PCR fragment containing the PCOPT2::COPT2 in frame with the GFP 

reporter gene was cloned into the pFP101 plasmid and introduced in the copt2-1 line by 

floral dipping to generate a complemented mutant line. 

 

 

Microarrays and bioinformatics 

Four biological replicates (7-day-old seedlings of the WT and copt2-1 plants 

grown in the 12L/12D photoperiod) were obtained for each treatment [Fe- and Cu-

sufficient medium (+Fe+Cu), Fe-deficient and Cu-sufficient medium (-Fe+Cu) and Fe- 

and Cu-deficient medium (-Fe-Cu)]. Fe-deficient medium was supplemented with 300 

μM ferrozine. Total RNA was isolated using the RNeasy Plant Mini Kit (Qiagen) and 

aRNA was amplified using the MessageAmpTM II aRNA Amplification kit (Ambion). 

Long oligonucleotide microarrays were provided by Dr. David Galbraith (University of 

Arizona, http://www.ag.arizona.edu/microarray/). The hybridization and analysis were 

performed as described elsewhere (Bueso et al., 2007). The expression values (log2) 

were obtained using the GenePix Pro 6.0 microarray-analysis software (Molecular 

Devices, Sunnyvale CA) and normalized with the GenePix Pro 6.0 and Acuity 4.0 

software (Molecular Devices, Sunnyvale CA). Differential genes were identified with 

significance analysis of microarray (SAM) (Tusher et al., 2001) with false discovery 

rate (FDR) of <6% and 2-fold change (log2≤|1|).  Biological processes were identified 

with the Gene Ontology (GO) annotation (Ashburner et al., 2000), performed by the 
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GeneCodis2.0 (http://genecodis.dacya.ucm.es/; (Carmona-Saez et al., 2007; Nogales-

Cadenas et al., 2009) programs (Table 1). The total microarray differentially regulated 

genes are shown as Supplemental material (Tables S1 and S2). The microarray raw data 

were deposited in the NCBI's Gene Expression Omnibus ibus (Edgar et al., 2002) and 

are accessible through GEO Series accession number GSE42642.  

 

Gene expression by semi-quantitative and real-time quantitative PCR  

 

Total Arabidopsis RNA was extracted with Trizol Reagent (Ambion) and RT-

PCR was performed with SSII (Invitrogen), as previously described (Andres-Colas et 

al., 2006). RNA was quantified by UV spectrophotometry; its integrity was visually 

assessed on ethidium bromide-stained agarose gels and was treated with Dnase I Amp 

Grade (Invitrogen). Semi-quantitative PCR (sqPCR) was carried out with specific 

oligonucleotides for ACT1 and COPT2 (Table S6). Real-time quantitative PCR (qPCR) 

was carried out with SYBR-Green qPCR Super-Mix-UDG with ROX (Invitrogen) and 

the specific primers detailed in Table S6 were used in a CFX96 TouchTM Real Time 

PCR Detection System (BioRad) with 1 cycle of 95ºC for 2 min and 40 cycles 

consisting in 95ºC for 30 s and 60ºC for 30 s. Values were normalized to the UBQ10 

mRNA levels and in control conditions WT was used as reference. 

 

Statistical Analysis 

The statistical analysis of the relative expression was performed by comparing  

the relative expression of the genes (RT-PCR) based on the pair wise fixed reallocation 

randomization test (P <0.05) (Pfaffl et al., 2002); for the remaining parameters, it was 

carried out using two-way ANOVA with the means compared by the Duncan test (P ≤ 

0.05) using the InfoStat software, version 2010 (http://www.infostat.com.ar; (Di Rienzo 

et al., 2011). 
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Table 1. Phosphate-starvation biological process overrepresented in the copt2-1 line. Common Pi-
starvation and copt2-1 induced genes compared to WT are indicated (Thibaud et al., 2010; *other 
sources). MIPS codes, gene description, GO cellular function and the microarray values under +Fe+Cu, 
-Fe-Cu and –Fe+Cu are indicated. The genes used in qRT-PCR quantitation are in bold; the genes 
statistically significant but with value <1 are in gray; and not statistically significant are indicated as n.s. 

 

MIPS code 
Gene 

description GO_cellular_function  +Fe+Cu -Fe-Cu -Fe+Cu 

At2g32960* PFA-DSP2 
catalytic activity, phosphatase activity, 
protein tyrosine phosphatase activity 

2.524 2.873 2.652 

At2g04460 unknown unknown 2.205 2.495 2.300 

At5g03545* At4 unknown 1.383 1.986 1.855 

At5g20150 SPX1 unknown 1.145 1.309 1.477 

At1g73010 PPsPase1 phosphoric monoester hydrolase activity 1.073 1.222 1.165 

At2g11810 MGD3 
1,2-diacylglycerol 3-beta-

galactosyltransferase activity 
1.306 1.052 0.738 

At5g20790  unknown unknown 0.865 1.811 1.515 

At3g09922* IPS1 unknown 0.614 1.354 1.469 

At1g73220 
OCT1 

carbohydrate and carnitine transporter 
activity 2.067 0.782 0.733 

At3g03530* NPC4 hydrolase and phospholipase C activity 1.112 0.489 0.607 

At1g17710 unknown phosphoric monoester hydrolase activity 1.448 1.289 n.s. 

At1g08310 unknown 
 galactolipid biosynthetic process, negative 
regulation of transcription, DNA-dependent 1.000 1.441 n.s. 

At4g26530* unknown fructose-bisphosphate aldolase activity 1.123 0.219 n.s. 

At2g45130 SPX3 unknown 2.069 n.s. n.s. 

At2g30540 unknown thiol-disulfide exchange intermediate activity 1.039 n.s. n.s. 

At4g11800* unknown protein serine/threonine phosphatase activity n.s. 1.129 n.s. 

At1g21980* PIP5K1 
1-phosphatidylinositol-4-phosphate 5-kinase 

activity 
n.s. n.s. 1.111 
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Figure 1. COPT2:GFP functionality in yeast and subcellular localization in Arabidopsis protoplasts. A,
Saccharomyces cerevisiae ctr1ctr3 cells were transformed with p426GPD, COPT1, COPT2 and COPT2:GFP and were
spotted on SC-ura media (glucose) or YPG (glycerol) supplemented with CuSO4 100 M. Each spot represents a 1/10 cell
culture density dilution, decreasing from left to right. B, Arabidopsis protoplasts were isolated from 30-day-old leaves and
were transiently transformed with the PCaMV35S:COPT2:GFP construct, incubated with FM4-64 for 15 min at 4ºC
before being analyzed by confocal microscopy at 16 h post-transformation. Non transformed protoplasts were used as a
negative control. Green, cyan and magenta fluorescences are indicative of the localization of the GFP protein, the FM4-64
marker and chlorophyll, respectively. Representative protoplasts are shown on the same scale, including their merge and
light fields.
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Figure 2. The COPT2 expression pattern in Arabidopsis
PCOPT2:GUS transgenic plants under Cu deficiency. -
l id i i i i d ld dli (A)glucuronidase staining in a representative 7-day-old seedling (A),

detail of a secondary root tip (B), general view of the main root (C),
detail of root hairs (D), cotyledon (E), shoot meristem and
trichomes (F), aerial part from a 3-week-old seedling (G), flower
(H) and a longitudinal section of an anther with pollen grains (I).
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Figure 3. The COPT2 expression under Cu and Fe deficiencies. A, The COPT2
expression analysis by qPCR in wild-type (WT; plain bars), spl7 (gray bars) and
copt2-1 (copt2; dark gray bars) seedlings. The total RNA from the 7-day-old
seedlings grown under the control (+Fe+Cu, supplemented with 10 M CuSO4), Cu-
deficiency (+Fe-Cu), Fe-deficiency (-Fe+Cu, supplemented with 10 M CuSO4), or
Fe and Cu deficiency (-Fe -Cu) conditions described in Materials and Methods was
isolated and retrotranscribed to cDNA. The UBQ10 gene expression was used as aQ g p
loading control. Values are means ± SD of three biological replicates. r.u., relative
units. The different letters above the bars represent significant differences among all
the means (P<0.05). B, -glucuronidase staining in the 7-day-old seedlings from the
PCOPT2:GUS transgenic lines grown under control (+Fe+Cu, supplemented with 1
M CuSO4), Cu-deficiency (+Fe-Cu), Fe-deficiency (-Fe+Cu, supplemented with 1
M CuSO4), or Fe and Cu deficiency (-Fe-Cu) at different incubation times at 37ºC
(overnight; o/n and 1hour; 1h).
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Figure 4. Phenotype of the copt2-1 seedlings grown under Cu and Fe
deficiencies. A, Photographs of the 7-day-old seedlings from the wild type
(WT), and copt2-1 line (copt2) grown under the same conditions described
in Figure 3A. B, Chlorophyll content of the 7-day-old seedlings from both
the WT (plain bars) and copt2 (gray bars) lines grown under the same
conditions described in Figure 3. Values are means ± SD of at least three
biological replicates. F.W., fresh weight. The different letters above the bars
represent significant differences among all the means (P<0.05).
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Figure 5. Chlorophyll content and gene expression of complemented
copt2-1 seedlings grown under Cu and Fe deficiencies. A, Photographs
of the 7-day-old seedlings from the wild type (WT), copt2-1 (copt2) and
PCOPT2:COPT2:GFP (C2) plants grown under -Fe-Cu conditions. B,
Chlorophyll content of the WT (plain bars), copt2 (gray bars) and C2
(dotted bars) seedlings Values are means ± SD of at least four biological

F
S

C2WT copt2

(dotted bars) seedlings. Values are means ± SD of at least four biological
replicates. The different letters above the bars represent significant
differences among all the means (P<0.01). C, Expression analysis of
COPT2, LHCB1.1 and FSD1 genes by qPCR in WT (plain bars), copt2
(gray bars) and C2 (dotted bars) seedlings, as described in Figure 3. The
UBQ10 gene expression was used as a loading control. Values are means
± SD of three biological replicates. r.u., relative units. The different
letters above the bars represent significant differences among all the
means (P<0.05).
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Figure 6. Phenotype of the copt2-1 adult plants grown under Cu and
Fe deficiencies. A, Photographs from the rossette leaves and aerial part
details from the wild type (WT) and copt2-1 line (copt2) grown on the
+Fe+Cu and -Fe-Cu media were taken 14 days after treatments. B,
Chlorophyll content of the caulinar and rosette leaves from the WT (plain
bars) and copt2 (gray bars) shown in panel A. Values are means ± SD of
four biological replicates. F.W., fresh weight. The different letters above
the bars represent significant differences (P<0.05) among treatments in a
type of leaves.
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Figure 7. Endogenous Fe and Cu content in WT and copt2-1
seedlings. Fe (A) and Cu (B) content were measured by ICP-MS from
whole 7-day-old wild type (WT; plain bars) and copt2-1 (copt2; gray bars)
plants. Seedlings were grown under the same conditions described in
Figure 3. Values are means ± SD of at least three biological replicates.
D.W., dried weight. The different letters above the bars represent
significant differences among all the means (P<0.05).
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Figure 8. Gene expression pattern of the Cu-deficiency marker genes
in the copt2-1 seedlings. Expression analysis of Cu transporter COPT1
(A), and the Fe and Cu/ZnSOD genes FSD1 (B) and CSD2 (C),
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respectively, by qPCR in wild type (WT; plain bars) and copt2-1 (copt2;
gray bars) seedlings, grown under the same conditions described in Figure
3. The UBQ10 gene expression was used as a loading control. Values are
means ± SD of three biological replicates. r.u., relative units. The different
letters above the bars represent significant differences among all the means
(P<0.05).
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Figure 9. Venn diagrams of gene expression changes in WT versus
copt2-1 seedlings under different metal statuses. A, Numbers indicate the
amount of induced/repressed genes under grown under the same conditions
described in Figure 3B control (+Fe+Cu), Fe-deficiency (-Fe+Cu) or Fe and
Cu deficiency (-Fe -Cu) conditions in copt2-1 seedlings. B, Expression
analysis by qPCR of At4 and SPX1 in wild type (WT; plain bars) and copt2-
1 (copt2; gray bars) seedlings, as described in panel A. The UBQ10 gene
expression was used as a loading control. Values are means ± SD of at least
three biological replicates. r.u., relative units. The different letters above the
bars represent significant differences among all the means (P<0.05).
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Figure 10. Phenotype of the copt2-1 seedlings grown under Pi, Cu and
Fe deficiencies. A, Representative photographs of the 7-day-old seedlings
from the wild type (WT) and copt2-1 (copt2) line grown under Pi starvation
(-Pi) and in addition to -Pi, the same conditions described in Figure 3A with
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B, Root length from the WT (white bars) and copt2 (gray bars) measured in
three biological replicates ± SD in the samples described in panel A.
Asterisks above the bars represent significant differences among all the
means (P<0.05) comparing to the WT. C, Overnight -glucuronidase
staining in the 7-day-old seedlings from the PCOPT2:GUS transgenic line
grown under Pi-deficiency (+Fe+Cu-Pi), Cu and Pi-deficiency (+Fe-Cu-Pi),
and Fe and Pi-deficiency (-Fe+Cu-Pi).
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Figure 11. Model of the COPT2-mediated interactions among Cu and Fe deficiencies and
Pi starvation responses. Cu, Fe and Pi deficiencies display antagonistic effects on COPT2
expression. Cu+ uptake mediated by COPT2 attenuated Cu deficiency responses, could
participate in Cu delivery to low Pi local sensing and systemic signaling. Local sensing
mediated by multicopper oxidases LPR1 and LPR2 potentiates cell differentiation versus cell
division.


