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Abstract 

BACKGROUND: Tomatoes are an important source of antioxidants (carotenoids, 

vitamin C, etc.) due to their high level of consumption.  There is a great interest in 

developing cultivars with increased levels of lycopene, β-carotene or L-ascorbic acid. 

There is necessary to survey new sources of variation.  In this study, the potential of 

improvement for each character in tomato breeding programs, in a single or joint 

approach, and the nature of genotype (G), environment (E) and GxE interaction effects 

in the expression of these characters were investigated.   

RESULTS: The content of lycopene, β-carotene and ascorbic acid determined was very 

high in some phenotypes (up to 281, 35 and 346 mg kg
-1 

respectively). The important 

differences in the three environments studied (with some stressing conditions in several 

situations) had a remarkable influence in the phenotypic expression of the functional 

characters evaluated. Nevertheless, the major contribution came from the genotypic 

effect along with a considerable GxE interaction.  

CONCLUSION: The joint accumulation of lycopene and β-carotene has a high genetic 

component. It is possible to select elite genotypes with high content of both carotenoids 

in tomato breeding programs but multi-environment trials are recommended. The 

improvement of ascorbic acid content is more difficult because the interference of 

uncontrolled factors mask the real genetic potential. Among the accessions evaluated, 

there are four accessions with an amazing genetic potential for functional properties that 

can be used as donor parents in tomato breeding programs or for direct consumption in 

quality markets.  

 

Keywords: Solanum section Lycopersicon, genetic resources, functional quality, 

lycopene, -carotene, vitamin C, linear mixed models. 



 

 

INTRODUCTION 

In developed country markets, such as in European countries ones, therenis a tendency 

to evolve from an agriculture focused on yield towards an agriculture focused on 

quality
1
. In these areas, with high spending power, consumers demand products with 

higher internal quality which lead to the development of new higher quality products. 

This is especially true for ‘functional foods’ which offer an interesting growth 

opportunity for the food industry
2
.  

Tomato has moderate nutritional value, but it is consumed all year round. It is one of the 

most important sources of antioxidants, such as vitamin C or carotenoids, which are 

protective to degenerative diseases
3,4

. In this context, during the last decade there has 

been an increasing interest in the development cultivars with increased levels of L-

ascorbic acid or the main carotenoids present in tomato: beta-carotene and lycopene. 

Cultivar such as ‘DoubleRich’ has twice as much vitamin C content or the ‘high 

pigment’ cultivars that are becoming popular in the processing tomato industry
5
. 

Several mutations have been identified related to the carotenoid content in tomato, but 

important organoleptic or agricultural deficiencies have limited their use
6,7

 and it is 

necessary to survey new sources of variation.  

Although several works have been focused on this objective
i.e.5,8,9

,  the elevated 

influence of the agronomic and environmental variables in the expression of 

characteristics of the functional value of the fruits of tomato
7,10

 is yet to be determined. 

Not only the environment plays an important role in the system. It has been suggested 

that the GxE interaction would be considerably high
11

. Therefore more studies on the 

contribution of different environments, genotypes and their interactions to the 

expression of properties of functional value should be carried out in order to select elite 

genotypes with more precision that enhances the accumulation of favourable 



 

 

compounds. Information on the structure and nature of GxE interactions is particularly 

necessary to determine if it is possible to develop ‘high functional value’ cultivars with 

high environmental stability or specific cultivars for specific target environments.   

The objective of this study is to perform an evaluation of Solanum section Lycopersicon 

germplasm in different environments in order to elucidate the nature and structure of 

genotype, growing environment and its interaction and to identify the genotypic 

potential of these materials for direct use or as sources of variability in breeding 

programs for lycopene, β-carotene and/or ascorbic acid accumulation in tomato fruits.  

 

MATERIALS AND METHODS 

Plant material 

Five Solanum lycopersicum L. accessions, one S. lycopersicum var cerasiforme L. and 

four S. pimpinellifolium L. representing a wide diversity of fruit shapes and colours 

were studied (Table 1). Three modern tomato cultivars with normal levels of ascorbic 

acid and carotenoids and a high pigment line were included as controls: CDP8779 

(experimental line developed by COMAV, Valencia, Spain), Cambria (a hybrid 

commercialized by Seminis Vegetable Seeds, Almería, Spain), Gevora (a processing 

tomato variety developed by el Centro de Investigación “La Orden-Valdesequera”, 

Badajoz, Spain) and LA1563 (accession provided by TGRC, University of California, 

Davis,  with enhanced carotenoid content
12

 due to the Intense Pigment gene). 

 

Experimental design and growing conditions 

The trials were carried out in 3 growing environments representing common cycles and 

cultivation techniques. For a precise evaluation of genotype, environment and its 

interaction effects, clones of all the plants studied were used in each environment. A 



 

 

randomized complete block design was used with 4 blocks per environment, 14 plots 

per block (one per accession) and 8 plants per plot. All the blocks of each accession had 

clones of the same 8 plants in order to have a better estimate of block and environment 

effects.  

Two sites of cultivation were used. Cultivation at Valencia was carried out in two 

different cultivation cycles (autumn-winter and spring-summer) in a glasshouse with 

automated climate control.  Cultivation at Turis was carried out in spring-summer cycle 

at the open air. In protected cultivation, heating systems (in autumn-winter cycle) and 

heat dissipation systems (progressive shadowing and cooling in spring-summer cycle) 

were used. In all the environments fertirrigation was scheduled daily and plants were 

staked and pruned properly. In order to have information about climatic parameters 

influencing plant metabolism and growth, air temperature and photosyntetically active 

radiation (PAR) were recorded every 10 minutes using WatchDog wheatear stations 

(Spectrum Technologies Inc., Illinois, USA) equipped with temperature, quantum light 

PAR sensors and data logger.  

Sampling 

Uniformly ripe, healthy fruits, at the red-ripe stage were harvested. Accessions with 

colours other than red were harvested when fruits reached maximum colour intensity. A 

total of 5 to 20 representative fruits (depending on the species) were collected from each 

plant only from the first 3 trusses to minimise intra-plant variability. Samples were 

blended at 4ºC and low light intensity to minimise antioxidant loss. The laboratory 

homogenizer (Diax 900, Heidolph, Germany) was used with a generator 6G to disrupt 

tissue to particle sizes <0.4 mm. Samples were stored at -80ºC until analysis. 

Ascorbic acid determination 



 

 

Ascorbic acid was quantified by Capillary Zone Electrophoresis using a P/ACE System 

MDQ (Beckman Instruments, Fullerton, USA). Two grams of sample were thawed in 

the dark at 4ºC and centrifuged at 12500 rpm in a refrigerated centrifuge. The 

supernatant was diluted in 2% metaphosphoric acid to avoid ascorbic acid oxidation
13

.  

Potassium hydrogen phthalate (100 mg l
-1

) was used as an internal standard. Sample 

extracts were filtered through a 0.2 mm filter membrane (Millipore, Bedford, USA) 

prior to injection. Uncoated fused-silica capillaries (31.2 cm of total length, 21 cm of 

effective length, 50 μm i.d.) were used (Polymicro Technologies, Phoenix, USA). 

Hydrodynamic injection of samples was carried out at 0.5 psi during 5 s. The detection 

wavelength was 254 nm. Separation was performed at -15 kV and 25ºC. Three 

analytical replicates per sample were made.  

Carotenoid determination 

Determination was based on a spectrophotometric analysis
9
 using a spectrophotometer 

with double-beam operation (model Lambda-25, Perkin-Elmer, Waltham, USA). The 

samples were thawed at 4ºC. Carotenoid extractions were performed with 0.1 g of 

thawed samples, which were shaken for 1 hour using 7 mL of organic solvents 

(ethanol:hexane, 4:3) . The extractions were conducted in the dark to prevent light-

induced carotenoid oxidation. Afterwards, 1 mL of distilled water was added to separate 

organic solvent layers and 0.5 mL of the upper layer (hexane phase) was recovered and 

refrigerated at 4ºC to avoid carotenoids loss. A calibration line which relates standards 

concentrations and absorbance at 510 nm was used to obtain lycopene concentrations. 

For -carotene, a calibration plane relating the concentrations from standards and 

absorbance at 452 nm (positive correlation) and 510 nm (negative correlation) was used. 

Seven standards with joint concentrations (randomly paired up) of lycopene and -

carotene were used for calibration. Three analytical replicates per sample were made.  



 

 

Data analysis 

The mixed linear model used for the analysis of i genotype in j environment and k block 

inside environment j was: 

Yijk=+Gi+Ej+GEij+Bk(j)+eijk 

Where Y=phenotypic value with population mean  and variance VP; G=genotype 

effect with mean 0 and variance VG; E=environment effect with mean 0 and variance 

VE; GE=GenotypexEnvironment interaction effect with mean 0 and variance VGxE; 

B=the block effect with mean 0 and variance VB; e=residual effect with mean 0 and 

variance Ve. All the factors were considered as random. The MINQUE (1) method
14,15 

was used to obtain unbiased variance and covariance components for each trait. 

Variance and covariance estimates were used to calculate the corresponding correlation 

coefficients for phenotypic, genotypic, environmental and interaction effects. The 

random effects were predicted using the adjusted unbiased prediction (AUP) method
14

. 

Standard errors of the statistics were obtained by the jackknife procedures
14,16

 and a 

two-tail t-tests were performed for testing the significance of parameters obtained. The 

model was also recalculated considering environment as fixed factor for growing season 

and type of cultivation comparison computing the pairwise mean comparison using the 

False Discovery Rate (FDR) criterion
17

 at α = 0.05. 

All the data analyses were performed with QTModel (v. 0.7) and QGAStation (v. 1) 

software (Bioinformatics Institute, Zhejiang University, China). 

 

RESULTS AND DISCUSSION 

Phenotypic means of carotenoids and ascorbic acid content for the tomato 

accessions studied 

  



 

 

In general, it could be observed that the phenotypic antioxidant content of tomato 

largely varied among accessions in each environment (Table 2). Moreover, the 

phenotypic values of the content of lycopene, β-carotene and ascorbic acid seemed to be 

very promising for some accessions. For the lycopene content, values up to 281 mg kg
-1

 

were observed, which are much higher than the reported average phenotypic value (30 

mg kg
-1

)
11,18

. A similar situation occurred for β-carotene content (35 mg kg
-1 

observed in 

contrast with the 3.9 mg kg
-1 

commonly reported
18

) and for ascorbic acid content (346 

mg kg
-1 

versus
 
200 mg kg

-1
 commonly accepted

19
).  

Although it was possible to detect high phenotypic values for all the compounds, 

important environmental and interactions effects were easily detected, as the values 

obtained fluctuated with different trends for different accessions and environments 

(Table 2). In order to obtain a better estimation of the potential of improvement for each 

character in tomato breeding programs it was necessary to ascertain the relative 

contribution of the genotype, environment and genotype x environment interactions, 

variance components. Genetic correlations between traits were also analysed in order to 

determine if a combined selection for these antioxidant traits would be feasible.  

 

Estimation of variance components and correlations analysis 

First, a decomposition of phenotypic variances in genetic, environmental and GxE 

interaction components was carried out (Table 3).  All the estimates of the variance 

components calculated were significantly different from zero, thus offering reliable 

information on the relative contribution of each one to the total phenotypic variance.  

For carotenoid content, the residual variance was around 25% of the total phenotypic 

variance; hence it can be considered that the model explained well the distribution of the 

variation with the factors included. However, for ascorbic acid, the residual variance 



 

 

was two times higher. The model, despite providing useful information, only explained 

one half of the total phenotypic variance. Nevertheless, it should be considered that 

ascorbic acid plays a very active and important role in reducing the oxidative damage at 

cellular level caused by stress conditions
20

 and it is very difficult to model the GxE 

interactions in its accumulation due to uncontrolled factors. For all the traits, the block 

effect was very small (between 0.41% and 1.28% of the total phenotypic variance) so 

this effect could be discarded. The more important result to consider was that, for 

carotenoid accumulation, the genotypic component represented the larger contribution 

to the phenotypic variance (around the 60%) and the environmental variance was very 

low, having less contribution to the phenotypic value than the GxE interaction. The GxE 

interaction represented between 5 to 10 times less variance (for β-carotene and lycopene 

respectively) than the genotypic component. These results show that the improvement 

of lycopene and β-carotene is feasible in breeding programmes and that elite carotenoid 

accumulation cultivars can be commercialised independently of the growing conditions 

used, to obtain good phenotypic values. In the case of ascorbic acid accumulation, the 

genetic variance represented a quarter of the total phenotypic variance, and the 

environmental and GxE variance was around the 10%, indicating that the improvement 

of the ascorbic acid content in tomato breeding programs will be difficult and that the 

use of high ascorbic acid cultivars not necessarily implies the production of high 

ascorbic acid fruits. Therefore this situation may lead to important conflicts in quality 

controls during commercialisation. 

After partitioning phenotypic covariance into its genotypic, environmental and GxE 

components, the corresponding paired correlation coefficients were calculated (Table 

4).  For Lycopene and β-carotene accumulation an important and highly significant 

positive genotypic correlation (rG) was observed. On the contrary, the GxE correlation 



 

 

coefficient was negative but not significant. Accordingly, the total genetic correlation 

(rG+rGxE) indicated that it is possible to select genotypes with high levels of both 

carotenoids.  Nevertheless, it is interesting to point out that a high negative significant 

environmental correlation was determined and this  makes difficult the development of 

selection trials, as the growing environments that increase the lycopene accumulation 

seem to reduce the β-carotene content and vice versa. Therefore, multi-environment 

trials must be implemented in order to obtain a reliable genotype evaluation. In the case 

of the pair β-carotene and ascorbic acid there was a very high and positive significant 

total genetic correlation (0.8), mainly due to the genotype component, that allows a 

practicable joint improvement of these two traits. There also exist a minor significant 

and negative environmental correlation but this may not represent an important 

difficulty for the selection. 

When analysing the phenotypic correlations for lycopene and ascorbic acid 

accumulations it seemed that these two characters were independent (very low non-

significant positive correlation). This result is similar to others reported in previous 

single environment trials
21

. Nevertheless, a deeper insight to the components of this 

correlation showed a more complex relation. There exists an important negative and 

highly significant environmental correlation. In the case of the total genetic correlation 

there is a positive significant correlation with opposite contribution of each 

subcomponent, as the genotypic correlation component is negative, but the GxE 

correlation component is positive and much more important. Therefore, the growing 

environments used can highly influence the selection due to their contribution to two 

opposite effects (the environmental and the interaction) making complicated the joint 

selection for high genotypic potential of both lycopene and ascorbic acid content. 

Summarizing, in most breeding programs it will only be realistic the combined 



 

 

improvement of two characters, lycopene and β-carotene or β-carotene and ascorbic 

acid. The production of cultivars with increased levels of the three compounds, even if 

feasible, would be unstable and probably cause commercialization problems. 

 

Prediction of the environmental, genotypic and interaction effects 

 

A general mixed linear model was used for the prediction of the growing environment, 

genotype and interaction factors on the total phenotypic response, thus enabling a more 

appropriate and independent analysis of each effect (Fig 1).  

For all the studied traits important differences between growing environments were 

detected (left side of Fig 1). The paired differences between spring-summer and 

autumn-winter and between open field and glasshouse cultivation were all significant 

(all P<critical values for FDR test at 0.05). These results could be better understood if 

the reported influence of climatic conditions in the biosynthesis of the antioxidants is 

considered together with the combination of temperature and radiation registered in the 

three environments. In this regard, it has been reported that the lycopene accumulation 

depends on temperature and seems to take place at a range of average day temperature 

between 12 and 32ºC
22

-35ºC
23

, with the optimal conditions around 22-26ºC
24

. For β-

carotene accumulation the range of average day temperature is wider than for lycopene. 

Its biosynthesis is poorly affected by temperatures lower than 12ºC
25

 and with 

temperatures higher than 35ºC when the lycopene accumulation is inhibited the 

conversion of lycopene into β-carotene is stimulated
23

. Nevertheless, the optimal 

temperature for β-carotene accumulation seems to be around 30ºC
23

. The ascorbic acid 

accumulation in tomato fruits seems to be also directly correlated with temperature
26

. It 

has been suggested that at relatively high temperatures probably there is a decrease in 



 

 

the ascorbic acid content due to oxidation
27

, however these harmful conditions have not 

been studied properly. At favourable temperatures, the lycopene, β-carotene and 

ascorbic acid biosynthesis increase whit the sunlight intensity
24,28

 probably due to the 

increase of photosynthetic rate. These light induced variations are especially important 

in the case of ascorbic acid accumulation. Normally, open field leads to higher ascorbic 

acid content than greenhouse cultivation, as well as harvesting at the later summer 

versus other seasons
29

. The reduction in ascorbic acid accumulation with reduced 

radiation conditions occurs can be as important as a 70%
10,28

. In the case of lycopene, 

when a harmful direct radiation level occurs (650 Wm
-2

 for 1.5-4 hours) its synthesis is 

inhibited. On the other hand, for ascorbic acid synthesis the excessive radiation does not 

inhibit its synthesis but causes a reduction on its accumulation
30

.   

For lycopene accumulation, in the spring-summer cycle in Turis favourable day average 

temperature conditions during the cultivation were recorded, especially in the harvest 

period when they were near to the optimum interval and did not exceed the thermal 

stress threshold (Fig 2). On the contrary, regarding the radiation conditions in the first 

half of the cycle the PAR radiation increased, reaching the maximum photosynthetic 

capacity and a high growing performance, but for the harvest period the amount of 

radiation surpassed the harmful threshold. To see it, the 650 W m
-2 

of total sun radiation 

was be expressed
 
in the PAR scale. We considered that the proportion of PAR radiation 

vs. direct total radiation in our latitude for spring-summer cycle is 78.77% (information 

provided by National Meteorology Agency at Valencia) and the expression W m
-2

*4.57
 

=
µmolm

-2 
s

-1 
for sun and sky daylight

31
 led to obtain the harmful radiation threshold of 

2340 umolm
-2

s
-1

. So, in this part of the growing cycle, the fruits would be exposed to 

excessive solar radiation that could lead to an arrest of lycopene biosynthesis and reduce 

the final level of lycopene accumulation 



 

 

In the case of Valencia in spring-summer cycle in glasshouse, the day average 

temperature was slightly higher than in Turis but the heat dissipation systems were able 

to maintain it inside the favourable, though not optimal, temperature range almost all 

the days of cultivation. Regarding the radiation, due to the use of a shadowing system as 

part of the heat dissipation management, its level inside the protection was reduced and, 

in general, no radiation stress occurred.  

In Valencia during the autumn-winter cycle the use of heating system maintained the 

temperature lightly under the lower limit of the optimal interval but inside the 

favourable temperature range of lycopene biosynthesis. Obviously for this cycle the 

radiation was not high and the lycopene accumulation was relatively good but not 

optimal. 

Regarding β-carotene accumulation the worst growing environment was spring-summer 

cycle in Valencia, coinciding with the better growing conditions for lycopene 

accumulation. This is in agreement with the regulation proposed for the major 

biosynthesis pathway of both carotenoids in tomato: phytoene → phytofluene → ζ-

carotene → neurosporene → lycopene → γ-carotene → β-carotene in which the 

enhanced flux of carotene in the pathway is arrested at
 
lycopene in no stressing 

conditions
32

. On the contrary, in Turis in spring-summer cycle and in Valencia at 

autumn-winter cycle there were some stressing conditions that limited the lycopene 

accumulation but not the β-carotene. In Turis, the temperature range was better for the 

β-carotene biosynthesis than for lycopene, but as the radiation conditions led to an arrest 

in lycopene biosynthesis, its subsequent accumulation was important but not as high as 

it would be in this season with no radiation stress. This could explain that the β-carotene 

accumulation in Turis in the open air were similar to the levels accounted in a growing 

cycle (Valencia, autumn-winter) less favourable for carotenoid accumulation.  



 

 

With respect to the ascorbic acid accumulation, the better combination of temperature 

and radiation occurred at Turis in open air during the spring-summer cycle, probably 

not being affected by the high radiation level as it may have been the case of lycopene. 

The worst condition for ascorbic acid accumulation was the autumn-winter cycle at 

Valencia, as the temperature and radiation in this cycle were lower than in the others. 

 

The genetic merit of the accessions tested must be evaluated on both genotype main 

effect and GxE interaction (Fig 1), being compared with the genetic merit of the 

controls for reference.  

For the lycopene accumulation the controls of fresh market type (CDP8779 and 

Cambria) had shown a genotypic main effect (black bars of Fig 1 a) that diminished the 

general mean (105.07 mg kg
-1

) in 24.22 and 14.20  mg kg
-1

 respectively leading to a 

predicted lycopene content due to the genotypic effect of 80.85 and 90.87 mg kg
-1

 

respectively.  These genotypic potential of lycopene expression can be considered in the 

higher segment of modern commercial fresh market cultivars, as even considering the 

worst growing environment and interaction effects the predicted lycopene content for 

these two controls would be 66.15 and 71.96 mg kg
-1

 respectively, values higher than 

the best phenotypic value reported for cvs broadly grown in Spain (65 mg kg
-1

, 

represented graphically in Fig 1a by the horizontal continuous line)
33

.  

Regarding the interaction effect, CDP8779 control showed a very stable performance 

with no significant and negligible predicted values in the three growing environments 

studied.  Cambria had a similar performance but with a small instability (two significant 

GxE predicted effects). The processing tomato control (Gevora) showed a very high 

genotypic effect (increased in 45.38 mg kg
-1

 the general mean leading a lycopene 

accumulation of 150.45 mg kg
-1

). It should be pointed out that Gevora is a cv adapted to 



 

 

open field cultivation in spring-summer cycle in hot Spanish regions, and it showed 

negative interactions with growing environments differencing to this conditions that 

diminished its lycopene accumulation. The control accession LA1563, with the Intense 

Pigment (IP) gene, that has been reported to have an increased carotenoid accumulation 

around 60%
12

, showed a genotypic potential between the other controls. Only in 

protected cultivation with climatic control in spring summer cycle its total genetic 

potential (G+GxE) would be higher than the processing tomato control 

(7.19+40.99=48.18 mg kg
-1

). Anyway, the genotypic value of Gevora was chosen as the 

high threshold criterion to select interesting accessions.  

Following this comparison criteria (represented graphically in Fig 1a by the horizontal 

dashed line), the best predicted genotypic values for lycopene accumulation were 

detected in accessions CDP1568, CDP7090 and CDP9822, all of them belonging to S. 

pimpinellifolium, with respectively 1.9, 1.71 and 1.68 times the genotypic potential of 

the industry control and 6, 5.47 and 5.36 times the genotypic potential of the 

commercial hybrid for fresh consumption. These accessions would be very interesting 

as donor parents in breeding programs for developing new cultivars. Due to its wild 

origin, these three accessions showed better adaptation to open field and spring-summer 

growing conditions (no significant GxE interaction in this environment). Accession 

CDP1568 showed small negative interactions with protected environment, especially in 

autumn-winter cycle that slightly diminished its total genetic potential (86.54-

23.59=62.95 mg kg
-1

). Nevertheless, it was the most stable accession of the selected 

three. Accession CDP7090 showed an important negative interaction in the growing 

environment with higher temperatures, which would decrease its total genetic potential 

(77.71-41.21=36.5 mg kg
-1

) and hinder the selection of its descendants. On the contrary, 

accession CDP9822 showed an important and highly significant interaction in the 



 

 

growing environment with higher temperatures. If this accession is selected to derive 

cultivars targeted to specific environments with these growing conditions, the total 

genetic potential would be very high (76.2+51.23=127.43 mg kg
-1

). However, it should 

be considered that this accession is highly unstable and in other environments with 

lower temperatures and radiation its total genetic potential to accumulate lycopene 

would be dramatically diminished (76.2-57.45=18.75 mg kg
-1

). Accessions  CDP6957/R 

and CDP7632 (traditional varieties with interesting organoleptic quality) despite having 

a negative genotype subcomponent prediction, offered a total genetic potential for 

lycopene accumulation of 23.99 and 19.64 mg kg
-1

 respectively, twice as much as the 

fresh market reference control.   

For β-carotene accumulation (Fig 1b), controls showed a genotypic potential and 

stability opposite to that observed for lycopene accumulation. These controls had 

shown, in the worst conditions (V s/s), a phenotypic β-carotene content that is 1.5 times 

the reported average content in tomato
18

, so they could be considered good references. 

The best accession for β-carotene accumulation was CDP4777 from S. lycopersicum var 

cerasiforme. This accession showed more than twenty times the genotypic potential of 

the best control, the high carotenoid IP genotype, LA1563, and a high stability. 

Therefore, it will be very useful for both its use as donor parent in breeding programs 

and for direct consumption in gourmet uses, as it is a cherry tomato. Other accessions 

interesting for its use as donor parents in breeding programs for β-carotene 

accumulation were the three S. pimpinellifolium previously selected for their high 

lycopene content. In this sense, accessions CDP9822 and CDP1568 showed a genotypic 

value for β-carotene accumulation approximately ten times higher than the best control.  

However, these two accessions should be used in specific environments in order avoid 

negative GxE interaction. Accession CDP9822 should be targeted to protected 



 

 

cultivation in spring-summer cycle and CDP1568 accession to open field cultivation. 

Accession CDP7090 showed a genotypic potential five times higher than the best 

control and as the other two selected wild accessions should be targeted to a specific 

environment (protected cultivation in autumn-winter cycle) to escape from negative 

interactions (note that lycopene and β-carotene interactions are opposite, thus for joint 

improvement of both compounds the condition showing negligible interaction is 

preferred). The same applies to the traditional variety CDP6957/R, but in this case the 

growing environment adequate for selection is open field cultivation in spring-summer 

cycle. 

Finally, regarding ascorbic acid accumulation (Fig 1c), the controls showed phenotypic 

values lower than the commonly accepted average content of ascorbic acid in tomato 

(200  mg kg
-1

)
19

. Cambria showed the best performance of all the controls but due to the 

E and GxE effects. The best accession for use as donor parent in breeding programs was 

CDP4777 from S. lycopersicum var cerasiforme which also is the best donor parent for 

β-carotene content. CDP4777 had a genotypic value for ascorbic acid accumulation 

more than fifty times greater than the best control. It is also highly stable because the 

significant GXE interaction effects are small. Nevertheless, it should be noted that, as in 

the case of β-carotene accumulation, its performance is better in the open field. 

CDP9822 was other very interesting donor parent for breeding programs because, in 

specific environments (protected cultivation in spring-summer cycle) it has shown a 

very high GxE interaction effect, especially for ascorbic acid accumulation, that 

increased considerably its total genetic potential, and enables the improvement of the 

three functional traits studied. Finally, the traditional variety accession CDP7632 is also 

interesting for direct use for its high ascorbic acid genotypic potential (fifteen times 

greater than the best control) and stability.  



 

 

 

 

CONCLUSIONS 

 

Our results indicate that, in general, the high genetic component responsible of the 

accumulation of lycopene and β-carotene makes possible the selection of elite 

genotypes with high content of both carotenoids in tomato breeding programs. The high 

ratio of genotypic to environmental variance decomposition seems to indicate that high 

accumulation cultivars with wide adaptation might be successful despite the important 

environmental effects on carotenoid biosynthesis. Although there is a high genotypic 

correlation between the carotenoids studied, to perform a joint selection for both 

carotenoids it is mandatory to conduct multi-environment trials due to the existence of a 

considerably high negative environmental correlation. The improvement of the content 

of ascorbic acid is in most cases more difficult because the interference of uncontrolled 

factors masks the real genetic potential. Nevertheless, it would be possible to make a 

joint selection with β-carotene but renouncing to improve lycopene content.  

Four accessions with an amazing genetic potential for functional traits have been 

identified. Three of them belong to S. pimpinellifolium (CDP1568, CDP7090 and 

CDP9822) and are especially interesting for their use as donor parents in the 

improvement of lycopene and β-carotene content. CDP1568 showed the best genotypic 

potential (1.9 times greater than the processing control and 6 times higher than the 

commercial hybrid control) and the most stable expression across all the environments 

tested. CDP9822 is interesting to derive hybrids with high carotenoid and ascorbic acid 

accumulation for specific target environments (protected cultivation in spring-summer 

cycle) due to the importance of the GxE interaction. CDP4777 from S. lycopersicum var 

cerasiforme, showed a very high genotypic potential to accumulate β-carotene and 

ascorbic acid (more than twenty and fifty times respectively than the fresh consumption 



 

 

controls) and a high stability in their expression. This accession is a cherry local cultivar 

and might be used either as donor parent in breeding programs and for direct 

consumption in quality markets.  
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Table 1. Characteristics of accessions evaluated. 

Accession Sp Fruit characteristics Origin 

CDP8779 1 Large, light red Valencia, Spain 

CAMBRIA 1 Medium-size, red Almeria, Spain 

GEVORA 1 Medium-size, red Badajoz, Spain 

LA1563 1 Large, red University of California 

CDP2178 1 Medium-size, red Piura, Perú 

CDP7632 1 Medium-size, red Loja, Ecuador 

CDP2087 1 Large, red Gran Canaria, Spain 

CDP6957/A 1 Small, yellow Alicante, Spain 

CDP6957/R 1 Small, red Alicante, Spain 

CDP4777 2 Small, orange-brownish Ipala, Guatemala 

CDP7090 3 Very small, dark red Piura, Perú 

CDP1568 3 Very small, dark red Piura, Perú 

CDP9822 3 Very small, dark red Piura, Perú 

CDP9999 3 Very small, yellow Lambayeque, Perú 

Sp=Specie; 1=Solanum lycopersicum; 2= S. lycopersicum var. cerasiforme; 3=S. pimpinellifolium 

 



 

 

Table 2. Phenotypic content (mean ± standard deviation, in mg kg
-1

 fresh weight) of lycopene (LYC), -

carotene (βCAR) and ascorbic acid (AsA) of accessions evaluated. 

          Location 

Accession 

Turis spring/summer Valencia spring/summer Valencia autumn/winter 

LYC CAR AsA LYC CAR AsA LYC CAR AsA 

CDP8779 77±40 17±4 150±53 90±31 14±4 121±46 71±29 14±3 67±30 

CAMBRIA 85±23 13±5 178±62 103±41 10±4 161±52 84±19 14±2 92±32 

GEVORA 124±39 7±2 148±45 191±59 7±2 137±34 136±42 10±2 56±32 

LA1563 113±40 16±5 116±52 123±43 11±3 137±64 101±34 18±4 71±35 

CDP2178 102±32 9±2 135±38 143±51 8±2 142±70 115±33 12±4 52±28 

CDP7632 70±25 17±4 261±96 95±37 11±3 193±40 89±29 14±3 136±39 

CDP2087 93±36 12±3 138±79 104±38 8±2 113±48 86±32 13±4 59±26 

CDP6957/A 1±2 8±2 206±116 2±3 7±2 109±78 1±1 4±1 36±32 

CDP6957/R 56±22 20±3 194±91 107±41 18±3 143±66 94±35 19±5 118±57 

CDP4777 65±16 32±6 346±108 82±26 29±6 250±80 104±28 35±7 331±122 

CDP7090 225±80 18±7 162±96 227±96 17±5 139±93 75±4 18±2 6±5 

CDP1568 173±35 28±5 113±58 227±95 16±5 136±94 185±73 24±5 57±29 

CDP9822 139±41 24±6 214±139 169±75 22±7 191±104 281±2 22±0 296±30 

CDP9999 2±3 15±4 229±253 3±5 11±3 156±125 2±1 15±5 10±7 

 

  



 

 

Table 3. Estimated value and SE of variance components (and its percentage from total phenotypic 

variance) for lycopene, -carotene, and ascorbic acid content of tomato fruits. 

Parameter† Lycopene -carotene Ascorbic acid 

VG 3273.94±198.13** 

(58.05%) 

46.47±1.69** 

(65.25%) 

2747.62±242.41** 

(23.56%) 

VE 90.23±33.99* 

(1.60%) 

3.27±0.50** 

(4.60%) 

1517.92±215.08** 

(13.01%) 

VGE 663.46±158.14** 

(11.76%) 

3.82±0.61** 

(5.37%) 

1015.12±241.63** 

(8.70%) 

VB(E) 71.97±17.77** 

(1.28%) 

0.28±0.03** 

(0.41%) 

105.59±28.14** 

(0.91%) 

Ve 1539.96 

(27.31%) 

17.35 

(24.37%) 

6278.28 

(53.82%) 

VP 5639.58 71.22 11664.53 

†VG=genotypic main variance, VE=environment main variance, VGxE= genotype x environment variance, 

VB(E)= block in growing environment variance, Ve=residual variance,VP=phenotypic variance. 

*
,
** Significantly different from zero (t-test) at the 0.05and 0.01 levels of probability respectively. 

 



 

 

Table 4. Phenotypic, genotypic, environmental and interaction paired correlations (estimated value ± SE) 

for the functional characters studied in tomato fruits. 

Correlation† Lycopene  vs 

-carotene 

-carotene vs 

Ascorbic acid 

Lycopene  vs 

Ascorbic acid 

 rP  0.20±0.01**  0.32±0.01**  0.01±0.01NS 

 rG  0.36±0.01**  0.77±0.02** -0.14±0.02** 

 rE -1.00±0.05** -0.07±0.03* -0.23±0.06** 

 rGxE -0.13±2.47 NS  0.03±0.01**  0.63±0.02** 

† rP = phenotypic correlation, rG = genotypic correlation, rE = environmental correlation, rGxE = genotype 

x environment interaction correlation. 

*
,
** Significantly different from zero (t-test) at P = 0.05and 0.01 level respectively. NS = non-significant 
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