
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

https://doi.org/10.1016/j.autcon.2017.01.018

http://hdl.handle.net/10251/81293

Elsevier

Ponz Tienda, JL.; Salcedo-Bernal, A.; Pellicer, E.; Benlloch Marco, J. (2017). Improved
Adaptive Harmony Search algorithm for the resource levelling problem with minimal lags.
Automation in Construction. 77:82-92. doi:10.1016/j.autcon.2017.01.018.



Improved Adaptive Harmony Search algorithm for the 

resource levelling problem with minimal lags 

J. L. Ponz-Tienda1 A. Salcedo-Bernal1 E. Pellicer2 * Benlloch-Marco3 
1 Department of Civil and Environmental Engineering. Universidad de Los Andes, Bogotá, Colombia 

2 School of Civil Engineering, Universitat Politècnica de València, Valencia, Spain 
3 Department of Architectural Construction, Universitat Politècnica de València,Valencia, Spain 

* Corresponding Author 
 

Abstract 

The resource leveling problem (RLP) aims to provide the most efficient resource consumption as 
well as minimize the resource fluctuations without increasing the prescribed makespan of the 
construction project. Resource fluctuations are impractical, inefficient and costly when they happen 
on construction sites. Therefore, previous research has tried to find an efficient way to solve this 
problem. Metaheuristics using Harmony Search seem to be faster and more efficient than others, but 
present the same problem of premature convergence closing around local optimums. In order to 
diminish this issue, this study introduces an innovative Improved and Adaptive Harmony Search 
(IAHS) algorithm to improve the solution of the RLP with multiple resources. This IAHS algorithm 
has been tested with the standard Project Scheduling Problem Library for four metrics that provide 
different levelled profiles from rectangular to bell shapes. The results have been compared with the 
benchmarks available in the literature presenting a complete discussion of results. Additionally, a 
case study of 71 construction activities contemplating the widest possible set of conditions 
including continuity and discontinuity of flow relationships has been solved as example of 
application for real life construction projects. Finally, a visualizer tool has been developed to 
compare the effects of applying different metrics with an app for Excel. The IAHS algorithm is 
faster with better overall results than other metaheuristics. Results also show that the IAHS 
algorithm is especially fitted for the Sum of Squares Optimization metric. The proposed IAHS 
algorithm for the RLP is a starting point in order to develop user-friendly and practical computer 
applications to provide realistic, fast and good solutions for construction project managers. 

1. Introduction 

Project scheduling problems (PSP) are NP-Hard optimization problems that comprise resource-
constrained problems (RCPSP) and resource leveling problems (RLP) among others 
(Demeulemeester, 1995) (Neumann & Zimmermann, 2000) (Ponz-Tienda, Yepes, Pellicer, & 
Moreno-Flores, 2013). In the former, resources are considered a constraint, and in the latter, the 
problem is the efficiency in resource consumption. Both problems are similar but of different 
natures. The RCPSP is a regular problem with the objective of minimizing the project makespan 
without exceeding the resource availability. The RLP is a non-regular problem with the objective of 
providing the most efficient resource consumption and reducing the resource fluctuations without 
increasing the prescribed makespan of the project. 

Resource fluctuations are impractical, inefficient and costly when they happen on construction sites 
(El-Rayes & Jun, 2009) (Koulinas & Anagnostopoulos, 2013); therefore, increasing the efficiency 
of the project sequence is one key factor to achieve the project goals (Damci, Arditi, & Polat, 2013). 
In order to measure the efficiency of the project sequence, different metrics for the objective 
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function have been proposed along the literature (Damci & Polat, 2014). The first and most 
common objective function is the so called minimum squares optimization method or Sum of 
Squares Optimization (SSQR) method, which aims to provide an ideal uniform shape, minimizing 
the sample variance of resources consumption. 

In construction projects a bell-shaped resource profile would be better from a practical point of 
view (Yeniocak, 2013), so other metrics have been proposed by El-Rayes & Jun (2009) and Florez, 
Castro-Lacouture, & Medaglia (2012). The first authors proposed the Resource Idle Days and 
Maximum Daily Resource Demand Method to provide nearly gauss shape, eliminating the 
resources’ idle periods. Florez, Castro-Lacouture, & Medaglia (2012) proposed maximizing labor 
stability, aiming to increase the extent of use of workers and job continuity, and minimizing the 
maximal fluctuation of workers and the sum of the fluctuations. 

Exact algorithms based upon enumeration, integer programming or mixed integer programing have 
been proposed to offer optimal solutions, but this kind of problems have a phenomenon of 
“combinatorial explosion” or rapid non-polynomial increase in the number of possible solutions, 
especially for large strong problems (Ponz-Tienda, Yepes, Pellicer, & Moreno-Flores, 2013). 
Although these algorithms produce the absolute optimum to a given problem, they are only 
functional from a practical point of view for small problems, as they require a vast computational 
capability and complex parallel processing of the network graph (Ponz-Tienda, Salcedo-Bernal, & 
Pellicer, 2016). 

Alternative heuristic algorithms have been proposed to find near optimal solutions in an acceptable 
computational effort as the Burguess & Killebrew (1962) algorithm, or the Minimum Moment 
(MOM) and Packing Method (PACK) proposed by Harris in 1978 and 1990 respectively. When the 
complexity of the problem increases, heuristic approaches fail to produce near optimum solutions, 
arising nature inspired algorithms, known as metaheuristics that apply smart searching strategies 
over a population of solutions (population-based) or evaluating only one potential solution 
(neighborhood-based) (Siddique & Adeli, 2015). 

Numerous metaheuristics have been developed in the past years to solve complex optimization 
models. A new family of population-based metaheuristic inspired on the composition and 
improvisation process of jazz musicians, known as Harmony Search (HS) (Geem, Kim, & 
Loganathan, 2001), has acquired special relevance. Harmony is synonymous to proper rhythm, the 
opposite of the dissonance and the anarchy; in other words, harmony seeks to provide the sequence 
of sounds that best fit with an ideal of sonorous beauty, or its equivalent in optimization problems, 
an objective function represented by a metric of efficiency. 

Harmony Search (HS) seems to be faster and more efficient than other metaheuristics (Peraza, 
Valdez, & Castillo, 2015) avoiding the premature convergence and relapse into local optimums, but 
proposals with the application of HS algorithms in construction project scheduling are still scarce 
and limited to small projects. Aiming to prove the goodness of Harmony Search (HS) algorithms in 
construction project scheduling problems, this research adapts the Improved Harmony Search 
algorithm proposed by Chakraborty et al. (2009), taking into consideration the adaptive adjustment 
of parameters proposed by Mahdavi et al. (2007) in an Improved and Adaptive Harmony Search 
(IAHS) algorithm. This IAHS algorithm is tested solving the j30, j60 and j120 instances of the 
Project Scheduling Problem Library (PSPLIB) (Kolisch & Sprecher, 1996) for four different 
metrics, comparing the obtained results with benchmarks available in the literature. Additionally, as 
case study of a real life construction projects, a building project of 15 floors (Ponz-Tienda, Pellicer, 
Benlloch-Marco, & Andrés-Romano, 2015; 2016), is used to illustrate the versatility and 
adaptability of the proposed IHSA for the four objective functions analysed in this research. 
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2. Literature review of the RLP 

The first contribution to solve the RLP to optimality was proposed by Petrovic (1969). It was later 
improved by Bandelloni et al. (1994), applying dynamic programming with precedence constraints. 
After that, Ahuja (1976) exposed an enumeration method to compute all the combinations of the 
activities' starting times for the minimum lags problem. Applying mixed binary-integer 
programming, Easa (1989) proposed the first know formulation based on the Pritsker et al. (1969) 
model for the RCPSP in which the solution is presented by binary variables that represent the 
finishing period of the tasks. Rieck et al. (2012) introduced the domain-reducing pre-processing 
technique for the mixed-integer formulation. Hariga and El-Sayegh (2010) improved the classical 
mixed binary-integer model allowing the activity splitting minimizing its associated costs. Ponz-
Tienda, et al. (2013) developed two different binary optimization models, based on decision 
variables that establishes the period in which the activities are finished and executed respectively. 
More recently, the same authors proposed a Parallel Branch and Bound (B&B) (Ponz-Tienda, 
Salcedo-Bernal, & Pellicer, 2016) algorithm, solving to optimality 50 instances of the PSPLIB (with 
complexity from 108 to 1018) for the RLP with minimal lags for the first time using an acceptable 
computational effort. Proposals to reduce the set of feasible solutions, branching the nodes in order 
to solve the problem approximately, were suggested by Neumann and Zimmermann (2000), Mutlu 
(2010) and Gather et al. (2011). 

The RLP, as an NP-Hard problem, has a phenomenon of “combinatorial explosion” (Ponz-Tienda, 
Yepes, Pellicer, & Moreno-Flores, 2013) and exact algorithms are only efficient for small projects. 
To avoid this problem, different heuristic procedures have been proposed along the literature to 
provide local optimal against global optimal solutions. The first heuristic procedure for the RLP 
was proposed by Burgess and Killebrew (1962), establishing the Sum of Squares Optimization 
metric as the performance measure. The Burgess and Killebrew algorithm presents some 
inefficiencies that were solved by Burman (1973) using the free float as the limit for the activity 
shifting. Other sound proposals are the Minimum Moment (MOM) algorithm (Harris R. , 1978) and 
the packing method (PACK) (Harris R. , 1990). 

As alternative to heuristic procedures, metaheuristic algorithms are higher-level procedures 
designed to find sufficiently good solutions to an optimization problem with limited computation 
capacity. Metaheuristic algorithms are grounded in physical, biological and animal behaviour, such 
as Greedy Randomized Adaptive Search Procedure (GRASP), evolutionary algorithms (EA), 
genetic algorithms (GA), tabu search (TS), simulated annealing (SA), ant colony optimization 
(ACO), particle swarm optimization (PSO), shuffled frog-leaping (SFL), the grenade explosion 
(GE) method, or more recently the harmony search (HS), a population-based metaheuristic 
algorithm, proposed by Geem et al. (2001).  

3. Research justification, goal and process 

Construction activities need to be sequenced in a way that minimizes resource variability whereas 
optimize the project schedule sequences. This way, the resource leveling problems (RLP) aims to 
minimize resource fluctuations. Previous authors (Peraza, Valdez, & Castillo, 2015) indicate that 
HS algorithm are faster and more efficient than other metaheuristics avoiding the premature 
convergence and relapse into local optimums. However, applications of the HS algorithm to 
scheduling problems are still scarce in the literature. 

Therefore, the goal of this study is to prove the goodness of the HS algorithms in project scheduling 
problems, by means of adapting the HS algorithm proposed by Chakraborty et al. (2009) with a 
variation of the adaptive adjustment of parameters proposed by Mahdavi et al. (2007) in an 
Improved and Adaptive Harmony Search (IAHS) algorithm. The Improved and Adaptive Harmony 
Search will be tested solving the j30, j60 and j120 instances of the PSPLIB (Kolisch & Sprecher, 
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1996) for four different metrics, comparing the obtained results with benchmarks available in the 
literature. Additionally, the results of the computational experimentation, with 5,760 solved 
instances from 30 to 120 activities, is generalized with a real case study of 71 construction activities 
contemplating the widest possible set of conditions including continuity and discontinuity of flow 
relationships also known as point-to-point relationships. In order to fulfill this goal, this study 
follows the following process: 

1. Literature review on the RLP (summarized in the previous section). 
2. After stating the resource leveling problem with minimal time lags in the next section, the 

proposal of an algorithm for the Improved and Adaptive Harmony Search (IAHS 
henceforth) for the RLP with multiple resources is introduced in the sub-sequent section. 

3. The rationale of the IAHS is confirmed through computational experimentation as well as a 
benchmarking test. 

4. Finally, a real case study (with 71 construction activities) is used to show the applicability of 
the IAHS proposal. 

4. Problem statement of the RLP 

For a complete comprehension of the remainder of the paper, some elements and the general 
formulation of the RLP based on activity-on-node networks with minimal finish-to-start 
relationships should take into consideration: 

1. The set N of activities (being 𝑛𝑛 the total number of activities that must be executed with 
constant intensity and without interruption, and {𝑗𝑗0, 𝑗𝑗𝑛𝑛+1} two dummy activities (zero 
duration) that represent the starting and finishing time of the project): 

𝑁𝑁 = {𝑗𝑗0, 𝑗𝑗1,⋯ , 𝑗𝑗𝑛𝑛, 𝑗𝑗𝑛𝑛+1} (1) 

2. The set D of durations (being 𝑛𝑛 the total number of activities): 

𝐷𝐷 = {𝑑𝑑1,⋯ ,𝑑𝑑𝑛𝑛} (2) 

3. The set T of times, not periods (Figure 1), in which these activities have to be distributed (being 
𝑇𝑇� the deadline of the project): 

𝑇𝑇 = {0,1,⋯ , 𝑡𝑡}|𝑡𝑡 ≤ 𝑇𝑇� (3) 

 
Figure 1 Times vs. periods of the project 

4. The set R of resources (being k the total number of resources): 

𝑅𝑅 = {𝑟𝑟1,⋯ , 𝑟𝑟𝑘𝑘} (4) 

5. The set RQ of resources requirements for each activity (being k the total number of resources and 
n the total number of activities): 

𝑅𝑅𝑅𝑅 = �{𝑟𝑟𝑟𝑟11,⋯ , 𝑟𝑟𝑟𝑟𝑘𝑘1},⋯ , {𝑟𝑟𝑟𝑟1𝑛𝑛,⋯ , 𝑟𝑟𝑟𝑟𝑘𝑘𝑛𝑛}� (5) 

6. The set U of resources requirements for each period: 

𝑈𝑈 = {𝑢𝑢1,⋯ ,𝑢𝑢𝑡𝑡} (6) 

7. The set C of cost associated to each resource (being k the total number of resources): 

𝐶𝐶 = {𝑐𝑐1,⋯ , 𝑐𝑐𝑘𝑘} (7) 
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8. The set Sj of a sequence of scheduled starting times of each activity along the elements of the set 
T, in the following way: 

𝑆𝑆𝑗𝑗 = {𝑠𝑠𝑠𝑠1,⋯ , 𝑠𝑠𝑠𝑠𝑘𝑘}|𝑒𝑒𝑠𝑠𝑗𝑗 ≤ 𝑠𝑠𝑠𝑠𝑗𝑗 ≤ 𝑙𝑙𝑠𝑠𝑗𝑗 (8) 

Being 𝑒𝑒𝑠𝑠𝑗𝑗 and 𝑙𝑙𝑠𝑠𝑗𝑗 the early and latest starting time, and k the total float of the activity 𝑗𝑗. 

Once the elements that compose the problem are set, a general formulation of the objective function 
for the optimization problem could be a function 𝑐𝑐𝑖𝑖 ∙ 𝑓𝑓[𝑟𝑟𝑖𝑖(𝑆𝑆, 𝑡𝑡)], which computes the consumption 
of the resource 𝑟𝑟𝑖𝑖 (during the period of time t that corresponds to a time t) for a feasible schedule 𝑆𝑆, 
for all the k resources of the project multiplied by its associated cost (𝑐𝑐𝑖𝑖): 

Minimize z = �𝑐𝑐𝑖𝑖 ∙ 𝑓𝑓[𝑢𝑢𝑖𝑖(𝑆𝑆, 𝑡𝑡)]
𝑘𝑘

𝑖𝑖=1

 

𝑆𝑆𝑢𝑢𝑆𝑆𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑡𝑡: 
𝑠𝑠𝑠𝑠𝑛𝑛+1 ≤ 𝑇𝑇� 
𝑠𝑠𝑠𝑠𝑖𝑖 + 𝑑𝑑𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑗𝑗 ≤ 𝑠𝑠𝑠𝑠𝑗𝑗,∀𝑖𝑖 𝑝𝑝𝑟𝑟𝑒𝑒𝑑𝑑𝑒𝑒𝑐𝑐𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑟𝑟 𝑡𝑡𝑓𝑓 𝑗𝑗 
𝛾𝛾𝑖𝑖𝑗𝑗  𝑆𝑆𝑒𝑒𝑖𝑖𝑛𝑛𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑒𝑒𝑙𝑙𝑑𝑑/𝑙𝑙𝑙𝑙𝑏𝑏 𝑆𝑆𝑒𝑒𝑡𝑡𝑏𝑏𝑒𝑒𝑒𝑒𝑛𝑛 𝑖𝑖 𝑙𝑙𝑛𝑛𝑑𝑑 𝑗𝑗 

(9) 

The conceptual model exposed in equation 9 minimizes an objective function (z) subject to the 
following restrictions: a) the scheduled start of the finish dummy activity (𝑗𝑗𝑛𝑛+1) must to be equal or 
less than the prescribed makespan of the project (𝑠𝑠𝑠𝑠𝑛𝑛+1 ≤ 𝑇𝑇); b) the scheduled start of a successor 
activity (𝑠𝑠𝑠𝑠𝑗𝑗) must to be greater or equal than the scheduled start of a predecessor activity (𝑠𝑠𝑠𝑠𝑖𝑖) plus 
its duration (𝑑𝑑𝑖𝑖) and an additional led/lag (𝛾𝛾𝑖𝑖𝑗𝑗) between them (𝑠𝑠𝑠𝑠𝑖𝑖 + 𝑑𝑑𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑗𝑗 ≤ 𝑠𝑠𝑠𝑠𝑗𝑗). 

The function 𝑓𝑓[𝑟𝑟𝑖𝑖(𝑆𝑆, 𝑡𝑡)] provides different ways of dealing with the RLP. The most usual criterion 
focuses on getting the resource consumption as levelled as possible by minimizing the sample 
variance or mean square error over an ideal reference. Consequently, a suitable formulation for 
equation 10, known as the Minimum Squares Optimization method or Sum of Squares Optimization 
(SSQR) method, is written this way: 

𝑚𝑚𝑖𝑖𝑛𝑛 �𝑐𝑐𝑖𝑖 ∙�𝑢𝑢𝑖𝑖𝑡𝑡2
𝑇𝑇�

𝑡𝑡=1

𝑘𝑘

i=1

 (10) 

And considering that 𝑐𝑐𝑖𝑖 = 1;𝑓𝑓𝑡𝑡𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘, the equation 10 can be simplified as shown in 
equation 11: 

𝑚𝑚𝑖𝑖𝑛𝑛�𝑢𝑢𝑖𝑖𝑡𝑡2
𝑇𝑇�

𝑡𝑡=1

 (11) 

 

The objective function of the Sum of Squares Optimization (SSQR) method exposed in equation 10 
for the resource leveling problem force the mathematical models and heuristic procedures to yield a 
flat resource utilization histogram where sampling variance is minimized, but in construction 
projects a bell-shaped resource profile would be better from a practical point of view (Yeniocak, 
2013). 

Other formulations for the objective function have been proposed by several authors. The Resource 
Idle Days (RID) metric was proposed by El-Rayes & Jun (2009) to quantify the total number of idle 
and nonproductive resource days caused by undesirable resource fluctuations (eq. 12). The 
Resource Idle Days metric is complemented with an additional value to control the Maximum 
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Resource Demand (MRD) (eq. 13) in such a way that an adjustable multi-objective function 
Resource Idle Days and Maximum Resource Demand (RID-MRD) is obtained (eq. 14): 

𝑅𝑅𝑅𝑅𝐷𝐷 = �𝑐𝑐𝑖𝑖 ∙��𝑚𝑚𝑖𝑖𝑛𝑛�𝑀𝑀𝑙𝑙𝑀𝑀(𝑢𝑢1,𝑢𝑢2,⋯ ,𝑢𝑢𝑡𝑡),𝑚𝑚𝑙𝑙𝑀𝑀�(𝑢𝑢𝑡𝑡 ,⋯ ,𝑢𝑢𝑇𝑇�−1,𝑢𝑢𝑇𝑇�)�� − 𝑢𝑢𝑡𝑡�
𝑇𝑇�

𝑡𝑡=1

𝑘𝑘

𝑖𝑖=1

 (12) 

𝑀𝑀𝑅𝑅𝐷𝐷 = �𝑐𝑐𝑖𝑖 ∙ 𝑚𝑚𝑙𝑙𝑀𝑀(𝑢𝑢1,𝑢𝑢2,⋯ ,𝑢𝑢𝑡𝑡 ,⋯ ,𝑢𝑢𝑇𝑇�−1,𝑢𝑢𝑇𝑇�)
𝑘𝑘

𝑖𝑖=1

 (13) 

𝑅𝑅𝑅𝑅𝐷𝐷 −𝑀𝑀𝑅𝑅𝐷𝐷 = 𝑊𝑊1 ∙ 𝑅𝑅𝑅𝑅𝐷𝐷 + 𝑊𝑊2 ∙ 𝑀𝑀𝑅𝑅𝐷𝐷 (14) 

Being 𝑊𝑊1 and 𝑊𝑊2 the planner defined weight (or relative importance) for Resource Idle Days (RID) 
and Maximum Resource Demand (MRD) respectively. 

The use of Resource Idle Days (RID) objective function yields resource utilization profiles from 
rectangular-shapes to hill-shapes with high peak demand, which are controlled through the 
inclusion of Maximum Resource Demand (MRD) metric, guarantying that the obtained resource 
profile be more like a bell shape rather than a hill shape. 

The Release and Re-Hire (RRH) metric was proposed as alternative metric besides the Resource 
Idle Days (RID) metric by El-Rayes & Jun (2009) to quantify the total amount of resources that 
need to be temporarily released during low demand periods and rehired at a later stage during high 
demand periods (eq. 15). As in the Resource Idle Days (RID) metric, the single objective function is 
complemented with Maximum Resource Demand (MRD) to provide an adjustable multi-objective 
metric (eq. 16). 

𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
2
∙ �𝑢𝑢1 + 𝑢𝑢𝑇𝑇 −�|𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑡𝑡+1|

𝑇𝑇�−1

𝑡𝑡=1

� −𝑀𝑀𝑅𝑅𝐷𝐷� (15) 

𝑅𝑅𝑅𝑅𝑅𝑅 −𝑀𝑀𝑅𝑅𝐷𝐷 = 𝑊𝑊1 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑊𝑊2 ∙ 𝑀𝑀𝑅𝑅𝐷𝐷 (16) 

The Sum of Differences of Consecutive Daily Resources, (SDCDR) was proposed by Florez, 
Castro-Lacouture & Medaglia (2012) and defined by the authors as a metric of labor stability which 
quantifies the project’s capability of maintaining a stable crew workforce. The Sum of Differences 
of Consecutive Daily Resources metric aims to minimize the sum of fluctuations or absolute 
variation of resources along the planning horizon (eq.17) 

SDCDR = �𝑐𝑐𝑖𝑖 ∙ �𝑢𝑢1 + �|𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑡𝑡+1|
𝑇𝑇�−1

𝑡𝑡=1

+ 𝑢𝑢𝑇𝑇��
𝑘𝑘

𝑖𝑖=1

 (17) 

The Sum of Squares of Differences of Consecutive Daily Resources, (SSDCDR) is an evolution of 
the Sum of Differences of Consecutive Daily Resources metric squaring the differences to provide a 
more flat shape (eq.18): 

SSDCDR = �𝑐𝑐𝑖𝑖 ∙ �𝑢𝑢12 + �(𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑡𝑡+1)2
𝑇𝑇�−1

𝑡𝑡=1

+ 𝑢𝑢𝑇𝑇�2�
𝑘𝑘

𝑖𝑖=1

 (18) 

The previous objective function for the RLP provides different shapes to provide alternative metrics 
and resource utilization histogram depending on the preferences of the decision maker and the 
needs of the project. There is not a performance metric better than another, but some metrics are 
more efficient algorithmically than others (Table 1), in such a way that the Resource Idle Days and 
Maximum Resource Demand (RID-MRD) metric requires 𝑘𝑘 ∙ (𝑛𝑛 ∙ 𝑇𝑇�2 + 𝑇𝑇�) calculations, being the 
less efficient from a computational point of view: 
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Table 1 algorithmic complexity of RLP objective functions 

Objective function Algorithm Complexity 
SSQR 𝑘𝑘 ∙ 𝑛𝑛 ∙ 𝑇𝑇� 
𝑆𝑆𝐷𝐷𝐶𝐶𝐷𝐷𝑅𝑅 𝑘𝑘 ∙ 𝑛𝑛 ∙ 𝑇𝑇� 
𝑆𝑆𝑆𝑆𝐷𝐷𝐶𝐶𝐷𝐷𝑅𝑅 𝑘𝑘 ∙ 𝑛𝑛 ∙ 𝑇𝑇� 

𝑅𝑅𝑅𝑅𝑅𝑅 −𝑀𝑀𝑅𝑅𝐷𝐷 𝑘𝑘 ∙ (𝑛𝑛 ∙ 𝑇𝑇� + 𝑇𝑇�) 
𝑅𝑅𝑅𝑅𝐷𝐷 −𝑀𝑀𝑅𝑅𝐷𝐷 𝑘𝑘 ∙ (𝑛𝑛 ∙ 𝑇𝑇�2 + 𝑇𝑇�) 

5. The proposed IAHS Algorithm for the RLP 

The development of Improved and Adaptive Harmony Search (IAHS henceforth) algorithm is 
structured in three steps: Step 1 initializes the parameters of the IAHS algorithm, Step 2 initializes 
the Memory of Harmonies (MH) and, Step 3 improvises new harmonies from the memory of 
harmonies (MH). The main structure of the IAHS algorithm is exposed in Algorithm 1 and 
Pseudocode 1 (see the Supplementary Material). Note that each time that the memory of harmonies 
is modified (lines 5 and 13), a dummy vector “Order()” is actualized, such that if 𝑓𝑓(𝑆𝑆(𝑖𝑖)) ≥
𝑓𝑓(𝑆𝑆(𝑗𝑗)) then 𝑂𝑂𝑟𝑟𝑑𝑑𝑒𝑒𝑟𝑟(𝑖𝑖) ≥ 𝑂𝑂𝑟𝑟𝑑𝑑𝑒𝑒𝑟𝑟(𝑗𝑗). 

Algorithm 1 Structure of the IAHS 

ImprovedHarmonyMemory

Initialize Parameters

Is S better 
than worst harmony?

Include S in HM

Fitness (S) < 
BestValueFound

BestValueFound = Fitness (S)

Stop Criterion
is met?

Yes

bo

Yes

bo

bo

End

Yes

i += 1

Improvise Harmony S
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Step 1. Initialize the parameters of the Improved and Adaptive Harmony Search algorithm. 

Once the structure of the IAHS algorithm is stated, its parameters should be set. These parameters 
are not static values, and must be adjusted to the nature of the problem to be solved and the especial 
characteristic of the instance. These parameters are: 

• Number of Notes of the Harmonies (𝑛𝑛): It is the number of tasks of the problem to be 
considered in the sequences. This parameter is the cardinality of the set of non-critical tasks. 

• Number of Sessions to be played by the Musicians (𝑆𝑆𝑆𝑆𝑆𝑆): It is the number of times that a 
problem is completely solved. 

• Harmony Memory (𝑅𝑅𝑀𝑀) and Harmony Memory Size (𝑅𝑅𝑀𝑀𝑆𝑆): The musician’s Harmony 
Memory is the quantity (Harmony Memory Size, 𝑅𝑅𝑀𝑀𝑆𝑆) of randomly generated solution 
vectors (initial solutions) simultaneously handled by the algorithm. The Harmony Memory 
(𝑅𝑅𝑀𝑀) can be represented as a matrix [𝑅𝑅𝑀𝑀𝑆𝑆,𝑛𝑛 + 1] (eq. 19) with 𝑅𝑅𝑀𝑀𝑆𝑆 rows and 𝑛𝑛 columns 
with and additional column for the objective function 𝑓𝑓(𝑆𝑆𝑖𝑖) = 𝑓𝑓[𝑟𝑟𝑖𝑖(𝑆𝑆, 𝑡𝑡)].  

𝑅𝑅𝑀𝑀 =

⎣
⎢
⎢
⎡ 𝑆𝑆1
𝑆𝑆2
𝑆𝑆𝑖𝑖

𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻

��

𝑓𝑓(𝑆𝑆1)
𝑓𝑓(𝑆𝑆2)
𝑓𝑓(𝑆𝑆𝑖𝑖)

𝑓𝑓(𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻)⎦
⎥
⎥
⎤

= �

𝑠𝑠𝑠𝑠1,1 𝑠𝑠𝑠𝑠1,2 ⋯ 𝑠𝑠𝑠𝑠1,𝑛𝑛
𝑠𝑠𝑠𝑠2,1 𝑠𝑠𝑠𝑠2,2 ⋯ 𝑠𝑠𝑠𝑠2,𝑛𝑛 
⋯ ⋯ ⋯ ⋯

𝑠𝑠𝑠𝑠𝐻𝐻𝐻𝐻𝐻𝐻,1 𝑠𝑠𝑠𝑠𝐻𝐻𝐻𝐻𝐻𝐻,2 ⋯ 𝑠𝑠𝑠𝑠𝐻𝐻𝐻𝐻𝐻𝐻,𝑛𝑛

�

𝑓𝑓(𝑆𝑆1)
𝑓𝑓(𝑆𝑆2)
⋯

𝑓𝑓(𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻)

� (19) 

• Maximum of Improvisations (𝑀𝑀𝑅𝑅): It is the number of iterations (improvisations) that the 
musician (algorithm) improvises for a new harmony (sequence) from the Harmony Memory. 

• Harmony Memory Considering Rate (𝑅𝑅𝑀𝑀𝐶𝐶𝑅𝑅): It is the probability to pick a note from the 
Harmony Memory (𝑅𝑅𝑀𝑀), in such a way that with a 𝑅𝑅𝑀𝑀𝐶𝐶𝑅𝑅 probability, a value is pitched from 
𝑅𝑅𝑀𝑀 and with (1 −𝑅𝑅𝑀𝑀𝐶𝐶𝑅𝑅) probability is selected from the set between the minimal and 
maximal feasible values. In the case of scheduling problems, it is the set of values between the 
earliest and latest starting times (𝑠𝑠𝑠𝑠𝑖𝑖,𝑗𝑗 ∈ �𝑒𝑒𝑠𝑠𝑗𝑗,⋯ , 𝑙𝑙𝑠𝑠𝑗𝑗�). 

• Pitch Adjusting Rate (𝑃𝑃𝑃𝑃𝑅𝑅): It is the rate where the algorithm tweaks (change) the value which 
was originally picked from the Harmony Memory enabling to choose a neighboring feature. 
Consequently, (1 − 𝑃𝑃𝑃𝑃𝑅𝑅) is the rate where the algorithm keeps the original picked value. 

• Minimum Pitch Adjusting Rate (𝑃𝑃𝑃𝑃𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛): It is the minimal value for the Pitch Adjusting Rate 
(𝑃𝑃𝑃𝑃𝑅𝑅) in the improvisation. 

• Maximum Pitch Adjusting Rate (𝑃𝑃𝑃𝑃𝑅𝑅𝑚𝑚𝑙𝑙𝑀𝑀): It is the maximal value for the (Pitch Adjusting 
Rate) 𝑃𝑃𝑃𝑃𝑅𝑅 in the improvisation. 

• Evolution of the Pitch Adjusting Rate (𝑃𝑃𝑃𝑃𝑅𝑅𝑆𝑆): It is the criterion used to dynamically update 
the Pitch Adjusting Rate (𝑃𝑃𝑃𝑃𝑅𝑅) value along the improvisation to avoid the drawbacks 
associated with fixed values of the Pitch Adjusting Rate (𝑃𝑃𝑃𝑃𝑅𝑅). 

• Fret Width (𝐹𝐹𝑊𝑊): It is the value that constrains the dissimilarity allowed (the shift around the 
neighborhood) produced by the Pitch Adjusting Rate (𝑃𝑃𝑃𝑃𝑅𝑅). 

• Minimum Fret Width (𝐹𝐹𝑊𝑊𝑚𝑚𝑖𝑖𝑛𝑛): It is the minimal value for Fret Width (FW) in the 
improvisation. 

• Maximum Fret Width (𝐹𝐹𝑊𝑊𝑚𝑚𝑙𝑙𝑀𝑀): It is the maximal value for Fret Width (FW) in the 
improvisation. 

• Evolution Fret Width (𝐹𝐹𝑊𝑊𝑆𝑆): It is the criterion used to dynamically update the Fret Width 
(FW) value along the improvisation to avoid the drawbacks associated with fixed values of the 
Fret Width (FW). 

• Stopping Criterion (𝑆𝑆𝐶𝐶): It is the rule used for finishing the improvisation, in such a way that 
the improvement process of the Harmony Memory (𝑅𝑅𝑀𝑀) continues until a stopping criterion 
(or the most restrictive of several Stopping Criterion) has been satisfied. The Stopping 
Criterion can be a given maximum number of iterations, probabilistic stopping rules (Ponz-
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Tienda, Yepes, Pellicer, & Moreno-Flores, 2013), a target value found, an improvement in the 
best known solution value, or a given maximum number of consecutive iterations without 
improvement. 

The key control parameters Harmony Memory Considering Rate (𝑅𝑅𝑀𝑀𝐶𝐶𝑅𝑅), Fret Width (𝐹𝐹𝑊𝑊), and 
Pitch Adjusting Rate (𝑃𝑃𝑃𝑃𝑅𝑅) affects the explorative power of the IAHS algorithm. It is necessary to 
maintain a balance between exploration (extensive diversification) and exploitation (intensification) 
in the local fine-tuning at different stages of the search. The IAHS algorithm requires an effective 
diversification, but also intensification in the search process, opposing forces that need to be 
balanced (Eiben & Schippers, 1998) (Chen, Yang, Ni, Xie, & Cheng, 2015). The most commonly 
accepted strategy is to start with an extensive diversification along the universe of feasible values, 
finishing with intensification on the best found solutions. In that line, high values (𝐹𝐹𝑊𝑊𝑚𝑚𝑙𝑙𝑀𝑀 and 
PARmax) are chosen at the beginning of the improvisation to increase the global search ability, and 
gradually being reduced to minimal values (𝐹𝐹𝑊𝑊𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑃𝑃𝑃𝑃𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛), guaranteeing the 
intensification. 

Other proposals to avoid the use of constant values for Fret Width (𝐹𝐹𝑊𝑊) and Pitch Adjusting Rate 
(𝑃𝑃𝑃𝑃𝑅𝑅) redefine dynamically this values based on the current variance (Fourie, Green, & Geem, 
2013), or adjust them randomly (does not require initial parameters) between the minimum and 
maximum values found in the Harmony Memory (HM) (Wang & Huang, 2010). Mahdavi et al. 
(2007) proposed the increasing linear function presented in equation 20 for adjusting the Pitch 
Adjusting Rate (𝑃𝑃𝑃𝑃𝑅𝑅) and the decreasing exponential function presented in equation 21 for 
adjusting the Fret Width (𝐹𝐹𝑊𝑊). 

𝑃𝑃𝑃𝑃𝑅𝑅(𝑖𝑖) = 𝑃𝑃𝑃𝑃𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛 + 𝑖𝑖 ∙
𝑃𝑃𝑃𝑃𝑅𝑅𝑚𝑚𝑙𝑙𝑀𝑀 − 𝑃𝑃𝑃𝑃𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛

𝑀𝑀𝑅𝑅
 (20) 

𝐹𝐹𝑊𝑊(𝑖𝑖) = 𝐹𝐹𝑊𝑊𝑚𝑚𝑙𝑙𝑀𝑀 ∙ 𝑒𝑒𝑖𝑖∙
𝑙𝑙𝑛𝑛�𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑛𝑛

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹�
𝐻𝐻𝑀𝑀  

(21) 

 

For a decreasing linear evolution of Pitch Adjusting Rate (𝑃𝑃𝑃𝑃𝑅𝑅), equation 22 can be applied, and 
for a quicker decreasing evolution, the exponential function presented in equation 23 should be 
used.  

𝑃𝑃𝑃𝑃𝑅𝑅(𝑖𝑖) = 𝑃𝑃𝑃𝑃𝑅𝑅𝑚𝑚𝑙𝑙𝑀𝑀 − 𝑖𝑖 ∙
𝑃𝑃𝑃𝑃𝑅𝑅𝑚𝑚𝑙𝑙𝑀𝑀 − 𝑃𝑃𝑃𝑃𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛

𝑀𝑀𝑅𝑅
 (22) 

𝑃𝑃𝑃𝑃𝑅𝑅(𝑖𝑖) = 𝑃𝑃𝑃𝑃𝑅𝑅𝑚𝑚𝑙𝑙𝑀𝑀 ∙ 𝑒𝑒𝑖𝑖∙
𝑙𝑙𝑛𝑛�𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝑖𝑖𝑛𝑛

𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹�
𝐻𝐻𝑀𝑀  

(23) 

 

In a similar way, for a decreasing and quicker evolution of Fret Width (𝐹𝐹𝑊𝑊) equation 24 can be 
applied.  

𝐹𝐹𝑊𝑊(𝑖𝑖) = 𝐹𝐹𝑊𝑊𝑚𝑚𝑙𝑙𝑀𝑀 − 𝑖𝑖 ∙
𝐹𝐹𝑊𝑊𝑚𝑚𝑙𝑙𝑀𝑀 − 𝐹𝐹𝑊𝑊𝑚𝑚𝑖𝑖𝑛𝑛

𝑀𝑀𝑅𝑅
 (24) 

 

Step 2. Initialize Memory of Harmonies (HM) 

The initial Memory of Harmonies (𝑅𝑅𝑀𝑀) is randomly generated (Algorithm 2 below and Pseudocode 
2 can be found in the Supplementary Material) from a uniform distribution by two heuristic 
procedures, forward and backward, to preserve the maximum diversification of the Memory of 
Harmonies (𝑅𝑅𝑀𝑀). 
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Algorithm 2 Initialize the Harmony Memory (HM) 

Initialize Harmony Memory (HM)

Order Graph Topologically

Random <=0.5

Schedule a new Harmony S 
by a Backward scheme

Is S the last
harmony?

Yes

bo

bo

End

Schedule a new Harmony S 
by a Forward scheme

Compute fitness of S

Add S to HM

 

For the RLP, all the sequences that meet the deadline 𝑇𝑇� of the project are feasible sequences, 
because the RLP is not a resource constrained problem. For this reason, the initial Harmony 
Memory (𝑅𝑅𝑀𝑀) is generated applying improvement algorithms with a serial forward/backward 
scheduling scheme and random selection criterion. In the backward-serial scheduling scheme 
(Algorithm 3 below and Pseudocode 3.1 can be found in the Supplementary Material), the activities 
are selected from a Matrix of Dependencies (𝐷𝐷𝑃𝑃) following a descending topological order. In the 
backward-serial scheduling scheme, an activity (𝑖𝑖) belongs to the set of eligible activities to be 
sequenced, if all the elements of the set (𝑗𝑗) of successor activities are sequenced, or in other words, 
all the values for 𝑗𝑗 in 𝐷𝐷𝑃𝑃(𝑖𝑖, 𝑗𝑗) are equal to zero (𝐷𝐷𝑃𝑃(𝑖𝑖, 𝑗𝑗) = 0; line 10). Once the activity 𝑖𝑖 is 
randomly selected (line 13) and sequenced (line 14), all the values 𝑗𝑗 in the row 𝑠𝑠𝑒𝑒𝑙𝑙𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑 are set to 
one (𝐷𝐷𝑃𝑃(𝑠𝑠𝑒𝑒𝑙𝑙𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑, 𝑗𝑗) = 1), and the rows 𝑖𝑖 in column 𝑠𝑠𝑒𝑒𝑙𝑙𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑 are set to zero (𝐷𝐷𝑃𝑃(𝑖𝑖, 𝑠𝑠𝑒𝑒𝑙𝑙𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑) =
0; lines 16 to 21). 
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Algorithm 3 To create a new harmony serial backward / forward with random criterion 

Schedule S

Build dependency matrix

Ramdomly select a sequenceable 
task from Eligibles

Forward scheme

Is the last 
task sequenced?

Yes

Yes

bo

End

Set the start of all the 
tasks as late as posible

S(i) = ls(i) 

Set Eligibles as the set of 
sequenceable tasks  

Stablish the start S() for 
sequenceable with better fitness

Actualize the dependency matrix

bo

Set the start of all the 
tasks as soon as posible

S(i) = es(i) 

 
In the forward-serial scheduling scheme (Algorithm 3 and Pseudocode 3.2 can be found in the 
Supplementary Material), the activities are selected following an ascending topological order. In the 
forward-serial scheduling scheme, an activity (𝑗𝑗) belongs to the set of eligible activities to be 
sequenced, if all the elements of the set (𝑖𝑖) of predecessor activities are sequenced, or in other 
words, all the values for 𝑖𝑖 in 𝐷𝐷𝑃𝑃(𝑖𝑖, 𝑗𝑗) are equal to zero (𝐷𝐷𝑃𝑃(𝑖𝑖, 𝑗𝑗) = 0; line 12). Once the activity 𝑗𝑗 is 
randomly selected (line 15) and sequenced (line 16), all the values 𝑖𝑖 in the column 𝑠𝑠𝑒𝑒𝑙𝑙𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑 are set 
to one (𝐷𝐷𝑃𝑃(𝑖𝑖, 𝑠𝑠𝑒𝑒𝑙𝑙𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑) = 1), and the columns 𝑗𝑗 in row 𝑠𝑠𝑒𝑒𝑙𝑙𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑 are set to zero 
(𝐷𝐷𝑃𝑃( 𝑠𝑠𝑒𝑒𝑙𝑙𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑, 𝑗𝑗) = 0; lines 18 to 23). Note that it is necessary to schedule all the activities with its 
latest starting times before applying the forward-serial scheduling scheme (lines 5 to 7).  
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Step 3. Improvise a new harmony from the Harmony Memory (HM). 

Once the Harmony Memory (𝑅𝑅𝑀𝑀) is build, new harmonies are improvised from Harmony Memory 
(𝑅𝑅𝑀𝑀) as stated in Algorithm 4 below and Pseudocode 4 (see the Supplementary Material). First of 
all, the Fret Width (𝐹𝐹𝑊𝑊) and Pitch Adjusting Rate (𝑃𝑃𝑃𝑃𝑅𝑅) values are adjusted according to the 
iteration (lines 3 to 13 in Pseudocode 4) following a decreasing evolution criterion for both 
parameters. The improvisation procedure starts pitching, with Harmony Memory Considering Rate 
(𝑅𝑅𝑀𝑀𝐶𝐶𝑅𝑅) probability, a note from Harmony Memory( 𝑅𝑅𝑀𝑀), and with 1 −𝑅𝑅𝑀𝑀𝐶𝐶𝑅𝑅 from the set 
between the minimal and maximal feasible values �𝑒𝑒𝑠𝑠𝑗𝑗,⋯ , 𝑙𝑙𝑠𝑠𝑗𝑗�. Once a new note is pitched, the 
algorithm tweaks it with 1 −  𝑃𝑃𝑃𝑃𝑅𝑅 probability enabling to choose a neighboring feature, and then 
the Fret Width (𝐹𝐹𝑊𝑊) value constrains the shift applying a uniform distribution between 0 and 𝐹𝐹𝑊𝑊. 

Algorithm 4 To improvise a new harmony S from Harmony Memory HM 

Improvise Harmony S

FWE = Lineal

Rnd() <= HMCRbo

Yes

End

bo

FW(i) = 
FWmax – i * (FWmax – FWmin) / MI

FW(i) = 
FWmax * EXP(i * LN(FWmin / FWmax) / MI)

PARE = Lineal Yesbo

PAR(i) = 
PARmax – i * (PARmax – PARmin) / MI

PAR(i) = 
PARmax * EXP(i * LN(PARmin / PARmax) / MI)

Initialize S as empty Harmony

S(j) = HM(Rnd() * HMS, j)

Yes

Set j = 1 
as the first note of the harmony

S(j) = 
es(j) + Rnd() * (ls(j) – es(j))

Rnd() <= PAR(i)

bo

Rnd() <= 0.5Yes

S(j) -= Rnd() * FW(i)

S(j) += Rnd() * FW(i)
Yes

bo

j <= nYes

bo

j += 1
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6. Computational experimentation and quantitative results 

The IAHS algorithm has been completely implemented in an app developed in C# language (this 
app is available at https://goo.gl/7Dcirl) and tested with the standard sets j30, j60 and j120 of the 
PSPLIB library (Kolisch & Sprecher, 1996). The PSPLIB library is a set of instances represented as 
activity-on-node networks generated by the standard project generator ProGen (Kolisch & Sprecher, 
1996) for various types of project-scheduling problems, used for the evaluation of algorithms and 
solution procedures. The j30, j60 and j120 sets was designed originally for the Resource-
Constrained Project Scheduling Problem with minimal lags and four removable resources, and 
selected to guarantee a not biased benchmarking because it provides the widest collection of 
solutions for the RLP. 

The values of the IAHS parameters used to compute the instances are shown in Table 2. The 
instances are solved with five sessions, Harmony Memory Size (HMS) as twice of the cardinality of 
the set of activities (2 ∙ |𝑁𝑁|), Maximum of Improvisations (𝑀𝑀𝑅𝑅) as one thousand times the logarithm 
of the complexity, and the prescribed makespan as that obtained for the Resource Unconstrained 
Problem (RUPSP). 

Table 2 Parameters of the computational test 

Parameter Value 
Makespan RUPSP 
𝑆𝑆𝑆𝑆𝑆𝑆 5 
𝑅𝑅𝑀𝑀𝑆𝑆 2 ∙ |𝑁𝑁| 
𝑀𝑀𝑅𝑅 1,000 ∙ 𝑙𝑙𝑡𝑡𝑏𝑏�𝑂𝑂(𝑛𝑛)� 

𝑅𝑅𝑀𝑀𝐶𝐶𝑅𝑅 0.90 
𝑃𝑃𝑃𝑃𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛 0.20 
𝑃𝑃𝑃𝑃𝑅𝑅𝑚𝑚𝑙𝑙𝑀𝑀 0.75 

Pitch Evolution Exponentially decreasing 
𝐹𝐹𝑊𝑊𝑚𝑚𝑖𝑖𝑛𝑛 1 
𝐹𝐹𝑊𝑊𝑚𝑚𝑙𝑙𝑀𝑀 4 

Fetch Evolution Exponentially decreasing 
𝑆𝑆𝐶𝐶 𝑀𝑀𝑅𝑅 
𝑊𝑊1 1 
𝑊𝑊2 1 

 

The objective functions considered in the test are: a) the Sum of Squares Optimization (SSQR), b) 
Sum of Differences of Consecutive Daily Resources (SDCDR), c) Sum of Squares of Differences of 
Consecutive Daily Resources (SSDCDR), and d) Resource Idle Days and Maximum Resource 
Demand (RID-MRD), obtaining the mean improvements against the sequence with the earliest 
starting times (initial solution). The mean improvements for these objective functions are 
summarized in Table 3 and Figure 2.  Note that the improvement achieve by the IAHS algorithm for 
the metrics Sum of Squares of Differences of Consecutive Daily Resources (SSDCDR) and 
Resource Idle Days and Maximum Resource Demand (RID-MRD) are considerable greater than the 
obtained using the Sum of Squares Optimization (SSQR) and Sum of Differences of Consecutive 
Daily Resources (SDCDR), suggesting that objective functions with high hill bell shapes have a 
greater improvement. The PSPLIB and the complete benchmarking test for all the metrics applying 
the IAHS can be downloaded from https://goo.gl/7Dcirl. 

Table 3 Mean improvements for different objective functions 

 
𝑗𝑗30 𝑗𝑗60 𝑗𝑗120 

𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅 18.656% 24.731% 30.200% 
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𝑆𝑆𝐷𝐷𝐶𝐶𝐷𝐷𝑅𝑅 38.978% 44.557% 48.347% 
𝑆𝑆𝑆𝑆𝐷𝐷𝐶𝐶𝐷𝐷𝑅𝑅 56.425% 61.728% 69.416% 

𝑅𝑅𝑅𝑅𝐷𝐷 − 𝑀𝑀𝑅𝑅𝐷𝐷 56.477% 61.939% 67.028% 
 

 

 
Figure 2 Mean improvements for different objective functions 

7. Validation and benchmarking of the computational experimentation 

To prove the goodness of the IAHS, the obtained results are compared with the values available in 
the literature performed by Ponz-Tienda, et al. (2013) with the Adaptive Genetic Algorithm (AGA), 
with the fifty instances solved to optimality by Ponz-Tienda, et al. (2016) with the Parallel Branch 
& Bound, and by Yeniocak (2013) with the efficient Branch and Bound. The first two 
benchmarking were solved for the Sum of Squares Optimization (SSQR) metric and the third for 
the Resource Idle Days and Maximum Resource Demand (RID-MRD) objective function. The 
compared results are displayed in Table 4, Table 5 and Table 6 respectively. 

Table 4 Compared improvements of IAHS vs Ponz-Tienda, et al. (2013) 

 𝐽𝐽30 𝐽𝐽60 𝐽𝐽120 
IAHS 18.656% 24.731% 30.200% 

AGA (Ponz-Tienda, et al. 2013) 18.165% 23.099% 27.858% 
Difference 0.491% 1.633% 2.342% 

Improved instances 394 477 479 
82.083% 99.375% 99.792% 

Matched instances 77 0 0 
16.042% 0.00% 0.00% 

Worsened instances 9 3 1 
1.875% 0.625% 0.208% 

 

Table 5 Compared improvements of IAHS vs Yeniocak (2013) 

 29 𝑝𝑝𝑟𝑟𝑡𝑡𝑆𝑆𝑙𝑙𝑒𝑒𝑚𝑚𝑠𝑠 𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚 𝐽𝐽30 
IAHS 51.116% 

Yeniocak (2013) 52.391% 
Difference 1.294% 

14 
 



Improved instances 1 
Matched instances 12 
Improved/matched 

instances 44.828% 

Average distance 3.597% 
 

Table 6 Comparison of IAHS vs Ponz-Tienda, et al. (2016) 

 50 𝑝𝑝𝑟𝑟𝑡𝑡𝑆𝑆𝑙𝑙𝑒𝑒𝑚𝑚𝑠𝑠 𝑓𝑓𝑟𝑟𝑡𝑡𝑚𝑚 𝐽𝐽30 
IAHS 11.694% 

Ponz-Tienda, et al. (2016) 11.895% 
Difference 0.201% 

Matched instances to 
optimal 

45/50 
90.000% 

Average distance to 
optimality 0.235% 

 

8. Discussion of results 

The IAHS is faster with better overall results than other metaheuristics providing 0.491%, 1.632% 
and 2.342% better average values, improving 394, 477, 479 instances and matching 77, 0, 0 
instances from the j30, j90 and j120 sets, respectively. Additionally, from the 480 instances of each 
of the sets, only nine instances from j30, three instances from j60 and one instance from j120 
offered worse values than previous benchmarking with Adaptive Genetic Algorithm (AGA) (Ponz-
Tienda, Yepes, Pellicer, & Moreno-Flores, 2013). The efficiency of the IAHS algorithm is 
especially relevant for the j60 and j120 sets, presenting an absolute difference of 1.633% and 
2.342% points respectively. The absolute difference of 0.491% of the IAHS compared to the AGA 
for the j30 set seems to be small, but the 82.083% of improved instances and the 90.000% of 
matches to optimality, proves the goodness of the IAHS in order to avoid the premature 
convergence and the relapse into local optimums. 

The efficiency of the IAHS is especially outstanding for the Sum of Squares Optimization (SSQR) 
metric, matching 45 instances equivalent to 90.000% and an average distance to optimality of 
0.235% for the 50 instances solved by Ponz-Tienda, et al, (2016). For the Sum of Differences of 
Consecutive Daily Resources (SDCDR) and the Sum of Squares of Differences of Consecutive 
Daily Resources (SSDCDR) conclusions cannot be draw because there are no previous values with 
these metrics. 

The Resource Idle Days and Maximum Resource Demand (RID-MRD) is less efficient than other 
metrics from a computational point of view. Nevertheless, IAHS is able to enhance one instance 
from the Yeniocak´s benchmark (Yeniocak, 2013) developed by applying an efficient Branch and 
Bound algorithm with three hours of time limit for j30 instances vs an average of five seconds 
required by the IAHS. 

The shapes and maximum resource requirements differ depending on the applied metric, in such a 
way that the Sum of Squares Optimization (SSQR) metric provides a near rectangle shape with the 
overall less resource demand along the project. The other metrics present near bell shapes with 
different high peak demands. The Resource Idle Days and Maximum Resource Demand (RID-
MRD) metric present a high hill bell shape with the maximum resource demand. Between the two 
extreme metrics, Sum of Squares Optimization (SSQR) and Resource Idle Days and Maximum 
Resource Demand (RID-MRD), the Sum of Differences of Consecutive Daily Resources (SDCDR) 
can be used for a bell shape with lowest resource demand, or the Sum of Squares of Differences of 
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Consecutive Daily Resources (SSDCDR) can alternatively be used for a less resource demand more 
near to planar. 

Figure 3 displays the initial profile for instance “x2_1.rcp” of the j120 library; Figure 4, Figure 5, 
Figure 6 and Figure 7 show the levelled shapes for the analyzed metrics. For long-term construction 
projects, the Resource Idle Days and Maximum Resource Demand (RID-MRD) metric seem to be 
more desirable than other metrics, which are more suitable for short-term projects and discretionary 
by decision makers. Readers can compare the metrics for all the instances from the J120 library, 
because it offers the most glaring differences, with the app for Excel “J120 Metrics Visualizer” that 
can be downloaded from https://goo.gl/7Dcirl. 

 
Figure 3 Initial profile of resources (x2_1.rcp) 

 
Figure 4 Leveled profile with SSQR (x2_1.rcp) 

 

 
Figure 5 Leveled profile with SDCDR (x2_1.rcp) 

 

Max R1/R2/R3/R4 = 56 Initial/ (x2_1.rcp)

Max R1= 38 Initial/ (x2_1.rcp) Max R3= 41 Initial/ (x2_1.rcp)

Max R2= 56 Initial/ (x2_1.rcp) Max R4= 46 Initial/ (x2_1.rcp)
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Figure 6 Leveled profile with RID-MRD (x2_1.rcp) 

 
Figure 7 Leveled profile with SSDCDR (x2_1.rcp) 

9. Case study 

As a case study of implementation in the construction industry, a building project of 15 floors, three 
underground and 12 aboveground (Ponz-Tienda, Pellicer, Benlloch-Marco, & Andrés-Romano, 
2015; 2016), is used to illustrate the versatility and adaptability of the proposed IHSA. The problem 
has been solved, using the app exposed in section 6, for the four objective functions considered in 
this research: SSQR, RID-MRD, SDCDR and SSDCDR. 

The building project consist on 71 construction activities contemplating the widest possible set of 
conditions including continuity and discontinuity of flow relationships also known as point-to-point 
(Bokor & Hajdu, 2015) (Hajdu, 2015a; 2015b). The structure, masonry, facades and basements are 
overlapped processes with an additional lag of three, two and one weeks respectively (the first lag 
guarantees the concrete hardening for a proper formwork removal). The durations, relationships, 
weekly resource demand and continuity conditions of each task and process are shown in Table 7. 

Table 7 Example of application; durations, relationships and construction constraints (Ponz-Tienda, Salcedo-Bernal, & 
Pellicer, 2016) 

Activity 
Code Activity description 

 # of 
activities 

 Duration 
in weeks 

 Weekly 
resource 
demand 

 Continuity 
condition 

 Precedence Relationships 
     #1 #2 

1 Previous works  1  1  5  Yes  - - 
2 Excavations 0.0/-1.0  1  2  3  Yes  FS1-2(0) - 
3 Diaphragm-wall  1  8  5  Yes  FS2-3(0) - 
4 Excavations  1  6  5  Yes  FS3-4(0) - 
5 Rebars for foundation works  1  3  10  Yes  FS4-5(0) - 
6 Concrete foundation  1  1  5  Yes  FS4-5(0) - 
7 Structure 1 to 15  15  2  15  No  FS6-7(0) - 

Max R1/R2/R3/R4 = 49 RID-MRD/ (x2_1.rcp)

Max R1= 34 RID-MRD/ (x2_1.rcp) Max R3= 36 RID-MRD/ (x2_1.rcp)

Max R2= 49 RID-MRD/ (x2_1.rcp) Max R4= 27 RID-MRD/ (x2_1.rcp)
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8 Masonry works 1 to 12  12  1  5  No  Fl7-8(5,1,3) - 
9 Facades 1 to 12  12  2  10  No  Fl8-9(6,1,2)  
10 Paving works 1 to 12  12  1  5  No  Fl8-9(1,1,1)  
11 Office works 1 to 12  12  2  10  No  Fl9-11(3,1,0) Fl10-11(1,1,0) 
12 Reworks and finishing  1  1  10  Yes  FS11-12(0) - 
13 Delivery/reception  1  1  0  Yes  FS12-13(0) - 
𝐹𝐹𝑆𝑆𝑖𝑖−𝑗𝑗(𝑧𝑧) Finish to start relationship with z lag units from activity 𝑖𝑖 to 𝑗𝑗 
𝐹𝐹𝑙𝑙𝑖𝑖−𝑗𝑗(𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑗𝑗 , 𝑧𝑧) Flow relationship with z lag units from subactivity 𝑝𝑝𝑖𝑖 to 𝑝𝑝𝑗𝑗 
 

The values of the IAHS parameters used to solve the example of application are the same used for 
the computational experimentation and shown in Table 2 with only one session. The construction 
resource profiles of the building project, before (red line) and after (blue bars) the leveling process, 
for the four metrics are presented in Figure 8 to 11, and the values for the metrics are exposed in 
Table 8. It is important to note that the leveled value for the SSQR metric (30,068), provided by the 
IAHS algorithm, is the same as the optimal value obtained by Ponz-Tienda, et al. (2016), proving 
the goodness of the IAHS. 

 

 
Figure 8 Resource profile of the example of application for SSQR metric 

 
Figure 9 Resource profile of the example of application for RID-MRD metric 
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Figure 10 Resource profile of the example of application for SDCDR metric 

 

 
Figure 11 Resource profile of the example of application for SSDCDR metric 

Table 8 Mean improvements for the different objective functions 

 
Before After 

𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅 31,418 30,068 
𝑅𝑅𝑅𝑅𝐷𝐷 − 𝑀𝑀𝑅𝑅𝐷𝐷 134 49 
𝑆𝑆𝐷𝐷𝐶𝐶𝐷𝐷𝑅𝑅 264 94 
𝑆𝑆𝑆𝑆𝐷𝐷𝐶𝐶𝐷𝐷𝑅𝑅 2,808 558 

10. Conclusions, limitations and recommendations for future research 

Resource efficiency is determinant to accomplish the objectives of a construction project. It reduces 
the resource variability while improving cost savings optimizing the project schedule sequences. 
Considering this difficulty, particularly important in the construction industry, the resource leveling 
problems (RLP) intends to optimize the construction project activities, minimizing the resource 
fluctuations. These fluctuations are impractical, inefficient and costly to construction sites; 
therefore, increasing the efficiency of the project sequence is one key factor to achieve the goals of 
the project. 

In order to measure the efficiency of the project sequence, different metrics has been proposed as 
the Sum of Squares Optimization (SSQR) method, which provides an ideal uniform shape. In 
construction projects, a bell-shaped resource profile would be better from a practical point of view. 
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Other metrics have also been developed as the Resource Idle Days (RID) metric, the Release and 
Re-Hire (RRH) metric or the Sum of Differences of Consecutive Daily Resources (SDCDR). Exact 
algorithms have been proposed to offer optimal solutions, but this kind of problems is non-regular 
NP-Hard; consequently, heuristic and metaheuristic algorithms are developed to find local optimal 
solutions with an acceptable computational effort. 

Therefore, the main contribution of this study to the body of knowledge in construction project 
management is the proposal of an innovative IAHS algorithm to deal with the RLP with multiple 
resources aiming to minimize resource fluctuations. This IAHS algorithm has been tested with the 
standard Project Scheduling Problem Library (PSPLIB) for four metrics that provide different 
levelled profiles from rectangular to bell shapes. The results have been compared with the 
benchmarks available in the literature presenting a complete discussion of results. Finally, a 
visualizer tool has been developed to compare the effects of applying different metrics on the J120 
library with the app for Excel “J120 Metrics Visualizer”. 

The IAHS algorithm is faster with better overall results than other metaheuristics. Additionally, 
from the 480 instances of each of the sets, only nine instances from j30, three instances from j60 
and one instance from j120 offered worse values than previous benchmarking. The efficiency of the 
IAHS algorithm is especially relevant for the j60 and j120 sets, presenting an absolute difference of 
1.633% and 2.342% points respectively. 

These results show that the IAHS algorithm is especially fitted for the Sum of Squares Optimization 
(SSQR) metric, matching 90.000% with an average distance to optimality of 0.265% for the 
instances solved by Ponz-Tienda, et al. (2016). The Resource Idle Days and Maximum Resource 
Demand (RID-MRD) is less efficient than other metrics from a computational point of view, and 
can be switched by the Sum of Squares of Differences of Consecutive Daily Resources (SSDCDR), 
which produces similar shapes requiring less computational effort. 

The results of the computational experimentation, with 5,760 solved instances from 30 to 120 
activities, has been generalized with an example of application of 71 construction activities 
contemplating the widest possible set of conditions including continuity and discontinuity of flow 
relationships also known as point-to-point relationships. The leveled value for the SSQR metric 
(30,068) is the same than the optimal value obtained by Ponz-Tienda, et al. (2016), proving the 
goodness and applicability of the IAHS in real construction projects finding the optimal in less than 
one second. 

The proposed IAHS algorithm for the RLP has been completely explained and implemented as a 
starting point in order to develop user-friendly and practical computer applications to provide 
realistic, fast and good solutions for construction project management. This way, in the future, the 
IAHS algorithm can be implemented in commercial applications including simultaneous calendars, 
generalized precedence relationships and discretional splitting of activities, helping practitioners to 
improve the planning and scheduling of complex construction projects. The proposed IAHS 
algorithm should be improved applying parallel computing to solve in “real time” optimization 
problems in commercial software for construction planning and scheduling. 
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Appendix: Supplementary data 

Supplementary data to this article (Pseudocodes) can be found online. 
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