
Lat. Am. J. Phys. Educ. Vol. 8, No. 2, June 2014 255 http://www.lajpe.org 
 

Quantum Mechanics of the Solar System 
 
 

L. Acedo 
Instituto Universitario de Matemática Multidisciplinar, 
Universitat Politécnica de Valencia, Camino de Vera  
s/n, 46022, Valencia, Spain Universty, Street 1 No. 100.  
 
E-mail: luiacrod@imm.upv.es 
 
(Received 9 January 2014, accepted 16 June 2014) 
 
 

Abstract 
According to the correspondence principle, as formulated by Bohr, both in the old and the modern quantum theory, 
the classical limit should be recovered for large values of the quantum numbers in any quantum system. However, 
this classical limit of quantum theory is not so straightforward as in the interface of other generalizations of classical 
mechanics and other domains. In particular, relativistic kinematics and mechanics reduce to Newtonian equations by 
simple algebra in the case of bodies moving with small velocities compared to the speed of light in vacuum. In this 
paper we consider the correspondence limit to the two-body problem in gravitational physics, the limit in which both 
the principal and the angular quantum numbers, N, L are very large. In this limit, we compare with the classical 
elliptical orbits and we find that the macroscopic coherent quantum states correspond to the statistical average of 
every classical state compatible with conservation laws for the total energy and angular momentum. We also consider 
the perturbed Kepler problem with a central perturbation force proportional to the inverse of the cube of the distance 
to the central body. The exact solution for the quantum eigenstates shows that the first order perturbation to the 
energy eigenvalues are obtained classically as the temporal orbital average of the perturbation potential. 
 
Keywords: Rydberg states, Kepler problem, Orbital perturbations. 
 

Resumen 
 
De acuerdo con el principio de correspondencia, tal como fue formulada por Bohr, tanto en la vieja y en la moderna 
teoría cuántica, el límite clásico se debe recuperar para valores grandes de los números cuánticos en cualquier sistema 
cuántico. Sin embargo, este límite clásico de la teoría cuántica no es tan sencillo como en la interfaz de otras 
generalizaciones de la mecánica clásica y otros dominios. En particular, la cinemática relativista y la mecánica se 
reducen a las ecuaciones de Newton por álgebra simple, en el caso de los cuerpos que se mueven con velocidades 
pequeñas en comparación con la velocidad de la luz en el vacío. En este artículo se considera el límite de la 
correspondencia con el problema de los dos cuerpos de la física gravitacional, el límite en el que tanto el número 
cuántico principal como los números cuánticos angulares, N, L son muy grandes. En este límite, se compara con las 
órbitas elípticas clásicas y se encontró que los estados cuánticos coherentes macroscópicos corresponden al promedio 
estadístico de cada estado clásico compatible con las leyes de conservación de la energía total y el momento angular. 
También se considera que el problema de la perturbación de Kepler con una fuerza de perturbación central 
proporcional a la inversa del cubo de la distancia al cuerpo central. La solución exacta para los estados cuánticos 
propios muestra que la perturbación de primer orden a los valores propios de energía es obtenida clásicamente como 
la media orbital temporal de la potencial perturbación. 
 
Palabras clave: estados de Rydberg, problema de Kepler, perturbaciones orbitales. 
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I.INTRODUCTION  
 
The discovery of new phenomena beyond the domain of 
validity of physical theories usually requires the 
formulation of new theories encompassing both the 
classical applications of the former theory and the novel 
ones. In a purely empirical way the new theory must reduce 
to the original by producing the same predictions in the 
restricted domain in which the old theory has proven right 
for a long time. This commonly, but not necessarily, 

implies that, mathematically, these two di erent theories 
coincide in the smaller domain of the previous one. 

However, this not means that the novel theory is 
conceptually equivalent because, despite their formal 
correspondence, both theories could base their predictions 
on very di erent standpoints. This evolution of physical 
theory has taken place many times in the history of science. 

A well-known example is the case of special relativity 
and its reduction to classical mechanics in the limit of small 
velocities compared to the speed of light. In this limit, 
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Lorenz transformations become Galilean transformations 
and the total energy of a moving body reduce to the 
classical expression for the kinetic energy save for the rest 
energy term, the last one being a characteristic prediction of 
special relativity [1]. 

From a pedagogical point of view this is a very useful 
derivation because it allows us to gain confidence in the 
new theory by retrieving the well-known results of the 
previous theory subsumed into the most recent one. Hence, 
a correspondence principle appears in any scientific 
revolution or generalization between the modern theory and 
the previous one subsumed by it. The reasons for the 
existence of such a principle are clear: if the previous 
theory has been successful till the discovery of anomalies in 
another domain, it means that, in that domain at least, is 
formally correct. So, the new theory should reduce to it to 
avoid conflict with previous experiments. 

In cases of radical conceptual departure from the 
classical theory, such as it has occurred with quantum 
mechanics, the application and interpretation of the 
correspondence principle is not an intuitively simple task. 

of the atom, the correspondence with the classical limit was 
proposed to be achieved for large values of the quantum 
numbers [2]. After the emergence of the modern 

principle was adapted to them. However, the physical state 
in quantum mechanics is represented by a complex wave 
function interpreted in terms of the probability of finding 

 
This is very di erent from the concepts of Newtonian 

mechanics in terms of particles following clearly-defined 
trajectories in space. 

Another important step in the correspondence of 
quantum mechanics with classical physics was made by 
Ehrenfest in 1927 with the proof of the following theorem 
for a system with Hamiltonian H = p2/(2m) + V (x): 

 

.d xm p
dt

                             (1) 
 

( ) .d p dV x
dt dx

                              (2) 
 

 
Where <x> and <p> are the expectation values for the 
position and the momentum, respectively. This equation 

the classical force as the expectation value of the potential 
gradient. The classical limit is assumed nowadays to 
emerge as a consequence of quantum decoherence, a 
process in which the superposition states loss the coherence 
of their phase angles by the irreversible interaction with the 
environment [4]. Consequently, pure quantum states cannot 
be held in macroscopic systems because the thermal 
interactions with the environment make them to lose their 
coherence. Nevertheless, the demand of the quantum 
computing project requires that coherence in quantum states 
should be maintained as long as possible because quantum 
computations rely on the superposition properties of 

quantum states. As early as 1999, Nakamura et al. obtained 
1 µs coherence times for the two-level states of 
superconducting electrodes joined with Josephson junctions 
to a reservoir [5]. 

Another field where quantum mechanics has been 
applied to macroscopic systems is quantum cosmology. In 
1967, the so-called Wheeler-DeWitt equation was proposed 
in the context of canonical quantum gravity as a model for 
the wave function of the Universe as a whole [6]. So, 
macroscopic quantum states are interesting in themselves 
both as a practical tool with possible engineering 
applications (as in the case of quantum computing). Also 
from a fundamental point of view, the analysis of 
macroscopic quantum states also shed light on the 
conceptual problems of quantum mechanics as a 
replacement of classical deterministic mechanics. 

The study of the classical limit of the hydrogen atom 
was performed by Brown in 1973, who recovered the 
classical circular orbits for large n [7]. Experimental work 
on Rydberg wave-packets was even performed in the 
nineties of the past century and many similarities with 
classical behaviour was found [8, 9]. 

In this paper we revisit the two-body problem (pure 
Kepler problem and a problem with perturbations) with the 
to
interpretation in connection with classical physics. This 
example could be of real pedagogical interest for students 
because it covers subjects ranging from classical and 
quantum mechanics and the theory of perturbations and 
goes beyond the hackneyed quantum harmonic oscillator 
used in most texts. 

The paper is organized as follows: In Section 2 we 

equation in the limit of large principal, n, and angular, l, 
quantum numbers. We show that circular orbits correspond 
to l = n l = n/2 we discuss the statistical average 
correspondence among the available elliptical orbits, for 
fixed energy and angular momentum, and the quantum 
eigenstate. In Section 3 we analyze the e ect of a 
perturbing potential V (r /(2r2), where V (r) is the 
perturbation for unit mass and  is a small constant. The 

the eigenvalues of the energy and the classical theory of 
perturbations is also discussed. Finally, some remarks and 
conclusions are given in Section 4. 
 
 
II.  
 

gravitational potential V (r G M m/r, where M is the 
mass of the central body, m is the mass of the orbiting body 
(assuming M >> m) and r is the distance among the bodies 
centers modelled as point-like or spherical. Mathematically 
speaking, the gravitational and electrostatic potential are the 
same. For this reason in Bohr and Sommerfeld models of 
the old quantum theory the hydrogen atom was described as 
a miniature solar system supplemented with quantization 
rules. In this paper we pursue the inverse analogy to 
describe a solar system as a macroscopic atom. Energy 
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eigenvalues of the two-body problem depend only on the 
principal quantum number, n, while the angular momentum 
eigenvalue is proportional to the angular quantum number, l: 
 

2
02n

GMmE
n a

.                                (3) 

 
J l .                                      (4)   

 
Where a0 is  
 

2

0 2a
GMm

.                               (5) 

 
If we consider the values of the masses for the Sun, M = 
1.989 × 1030 kg, and the Earth, m = 5.972 × 1024, we get 
from Eq. (5) that the Bohr radius is a0 = 9.27 × 10  m, 
many orders of magnitude smaller than the Planck length. 

As the mean distance of the orbiting particle to the 
force center is given by rn = n2a0. If we take rn as the mean 
Earth-Sun distance, i. e., r = 149.6 × 106 km we find n  4 × 
1073 for the principal quantum number. These values are 
extremely large but, as we will soon see, even for n = 100 
the essential features of the classical limit are unveiled. 

Another important relation for the orbital eccentricity, 
, is obtained from the classical relation of  with the total 

energy and angular momentum of the planet [10] as 
follows: 

 
2 2

2 2

2 /1 1
( )

J E m l
GMm n

.                        (6) 

 
Where we have used Eq. (3). Notice that Eq. (6) is the same 

 the atom. The 

[11, 12] and they are usually expressed as the product of a 
radial part, Rn,l(r) and an angular part, Fn,l,m( , ), i. e., n,l,m 
= Rn,l(r)Fl,m( , ) with: 
 

 
Where ( )q

pL x are the Laguerre polynomials of order p, q 
[13] and the normalization coefficients are given by: 
 

,n lA

 
The normalization condition for the radial function is: 
 

2
,

0

( ) 1n lR r r dr .                                 (9) 

 

The angular part is expressed in terms of the spherical 
harmonics for any central potential [11]: 
 

,
(2 1)( )!

( , ) ( , ) (cos ) .
4 ( )!

p p ip
l p l l

l l pF Y P e
l p

(10) 

 
Where the last identity expresses the relation of the 
spherical harmonics with the associated Legendre 
polynomials, Pl

p(cos ), we have used p instead of m for the 
magnetic quantum number to avoid confusion with the 

Yl
p( , 

)|2 is proportional to the probability density for finding the 
particle in the solid angular interval d d . As we are 
concerned with states analogous to macroscopic orbits we 
will restrict to the case with n, l large and a magnetic 
quantum number p = l. In Fig. 1 we show a plot of the 
angular factor of the probability distribution for n = l = p = 
20. The distance to the origin is a measure of the 
probability density in the direction ,  where  is the polar 
angle and  is the azimuth. We notice that even for these 
relatively small values of the quantum numbers the 
confinement of the orbit to the plane perpendicular to the z 
axis is quite apparent. The reason for that confinement is 
clear from the identity: 
 

,
(2 1)(2 )!( , ) sin .

4
l

l l
l lY                    (11) 

 
Which implies that the angular factor in the probability 
function decays very fast except for  = /2, i. e., for the 
plane perpendicular to the z axis. So, we have shown that 
for l = p large the quantum state is restricted to a plane. In 
the following we will analyze the radial contribution to the 
probability function in order to elucidate the relation with 
classical orbits. 
 
 
A. Case l=n-1 and circular orbits 
 
This case has been recently studied by Keeports [14] but we 
describe it here in some detail for completeness.  

We consider the radial probability distribution, |rRnl(r)|2, 
in the case of maximum angular quantum number, l = n 
1. This correspond to the probability of finding the particle 
in the interval r, r + dr. Moreover, as discussed before we 
know that this probability will only be non-negligible in the 
plane  = /2 as occurs in classical physics. From Eq. (7) 
and the properties of Laguerre polynomials [15] we find: 
 

2 2 2 /
, 1 2

1( )
(2 1)!

n n
n nR e

n n
                 (12) 

 
Where  = r/a0 is the distance to the origin measured by 

origin is then given by: 
 

0

 
And, similarly, the variance is found to be  
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And consequently,  
 

 
And the radial probability distribution becomes sharper and 
sharper as n increases.  

In Figure 2 a density plot of 2 2
, ( )n lR  for n=50 and 

l=49 shows this behavior. 
So, the quantum state becomes a circular orbit. 

 
2 2 2

, 1 0( ) ( )n nr R r r n a ,  as n   
 

probability of finding the particle is uniform along the 
circular path. Classically we can interpret this result as a 
consequence of the uniform velocity with which the particle 
traverses its orbit. We can obtain the correspondent 
classical velocity from the quantum solution from the 
probability flux [11]: 
 

 .                       (15)   

 
Where Im denotes the imaginary part. Consequently, the 
only contribution to Eq. (15) comes from the imaginary 

have:    
 

 
Where we have used Eq. (13) and we have also taken into 
account that  = /2 for non-negligible values of the 
distribution function.  is the unit azimuthal vector in the 
plane  = /2, i. e., this is a unit vector tangential to circular 
orbits. A velocity vector can now be obtained as the 
quotient of the probability flux and the probability density 
as follows: 
 

* 2
0

j l GMv
mn a a

.                (17) 

 
Notice that the last step is deduced from Eq. (5) and the 
classical angular momentum per unit mass for the circular 
orbit given by /l m GMa . 

So, we finally deduce the velocity for the particle which 
traverses the classical circular orbit. In this interpretation, 
the quantum probability corresponds to the probability of 
finding, at a random time, the particle at a given point of 
the orbit. This temporal interpretation of quantum states in 

the limit of large quantum numbers is usually applied in the 
case of the harmonic oscillator [12]. In the next section, we 
will show that we can understand elliptical orbits in the 
same way. 

 
FIGURE 1. A slice of the three-dimensional plot for the square 
modulus of the spherical harmonic with l = p = 20. The distance of 
the surface to the origin is proportional to the probability density 
in that particular direction. The height of the parallelepiped is a ten 
per cent of the other two sides. 
 

 
FIGURE 2. Density plot for the probability density with n=50, 
l=p=49. 
 
B. Case l < n-1 and elliptical orbits 
 
In this case we should find a relationship with classical 
elliptical orbits. In Fig. 3 we have plotted the probability 

2 2
,( ) ( )n lP r r R r for finding the particle between two close 

spheres of radii r and r+d r in the case n=50, l=n/2. For 
these values, the corresponding eccentricity is 3 / 2 . 
The classical orbits are given by [16]: 
 

2(1 )
1 cos
ar .                               (18) 

 
A classical interpretation of the asymptotic quantum state 
for large n, and l < n 
temporal average over all possible elliptic orbits compatible 
with conservation laws, i. e., all orbits with the same 
angular momentum and total energy. In Fig. 4 we plot ten 
orbits with eccentricity = 0.8 whose semi-major axes are 
displaced an angle /5 with respect to those of their 
neighbouring orbits. 
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FIGURE 3. Radial probability density (n=50, l=25) for finding 
the orbiting particle. 
 
 
We see from Fig. 4 that every point between the circles of 
radii between the perihelion, rmin = a ), and the 
aphelion, rmax = a(1 + ), belongs to the intersection of two 
rotated elliptical orbits. That point corresponds to opposite 
orbital angles or true anomalies:  . So, the 
probability of finding the particle at a randomly chosen 
instant t should be proportional to the time spent by the 
particle in the angular interval ,  + d : 
 

2( )
( )

d dP d r
T TJ

.                     (19) 

 
Where we have taken into account the relation of the 
angular velocity with the angular momentum (per unit 

2( ) /J r . We 
should also consider the expression of the angular 
momentum (per unit mass) in terms of the orbital geometric 
parameters, i. e., the semi-major axis and the orbital 
eccentricity [16]: 
 

2(1 )J a GM .                         (20) 
 
M 
third law is also given as: 
 

3/2 1/22T a .                           (21) 
 
By substitution of Eqs. (18), (20) and (21) into Eq. (19) we 
find:  
 

2 3/2

2

(1 )( )
2 (1 cos )
dP d .                   (22) 

 
It is more convenient for comparison with the quantum 
probability distribution to perform a variable change from  
to r. So, we use Eq. (18) again to find: 
 

*
j Jv

r
.                            (25) 

 
This is a consequence of the orbital average over all 
elliptical orbits with the same energy and angular 
momentum. As displayed in Fig. 4, every point belongs to 
two elliptical orbits in such a way that the average of the 
radial motion is zero and only the transverse velocity 
appears after the average over orbits has been performed. 
 

 
 
FIGURE 4. A set of ten elliptical orbits ( =0.8) sharing the same 
plane and uniformly rotated. 
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FIGURE 5. The classical probability distribution for elliptical 
orbits (solid line) versus the smoothed quantum prediction for 
n=1000, l=500 (circles). Dashed areas correspond to the excluded 
classical regions. 
 
 
III. CORRESPONDENCE FOR CLASSICAL 
ORBIT PERTUBATIONS  
 
In this section, we consider a radial perturbation of the 
classical Newtonian potential and its e ect on quantum 
stationary states in the correspondence limit. As the 
perturbation theory in quantum mechanics cannot be 
applied to very large values of the quantum numbers we 
will propose a problem with exact solution. We consider 
the Kepler problem with a 1/r3 perturbation force term 
corresponding to the potential: 
 

2( )
2

GMm mV r
r r

.                           (26) 

 
Where  is a small quantity. The radial part of the wave-
function, u(r)=r R(r), verifies the following equation: 
 

 
It is usually convenient to rewrite this radial equation in 
terms of non-dimensional parameters. We define a non-
dimensional distance to the origin, , and a parameter, , as 
follows: 
 

2

8mE r .                              (28) 

 

2
GMm m

E
.                          (29) 

 
This way we find that Eq. (27) can be casted into non-
dimensional form as: 
 

 

structure that the radial equation for the standard hydrogen 
atom problem. The only difference arising from the extra 
term  in the denominator of the effective angular 
momentum potential. To solve this equation the standard 
approach resorts to the study of its behaviour in the limits 
of large and small 

2 are negligible and we have 
/2( )u e . For small values of  the -2 term dominates 

suggested. By direct substitution we find: 
 

( 1) ( 1)k k l l .                         (31) 
 
Whose solution for k is: 
 

21 (2 1) 4
1

2 2 1
l

k l
l

.         (32) 

 
Where the approximation is obtained on the assumption 
that  << 1. The standard change for the radial equation is 
then, /2( ) ( )ku f e and ( )f satisfies the second-
order differential equation: 
 

2

2 (2 ) ( ) ( ) 0d f dfk k f
d d

.        (33) 

 
Whose solution is obtained by series expansion: 
 

0

( ) j
j

j
f a .                             (34) 

 
By inserting Eq. (34) into Eq. (33) we deduce that the 
coefficients ja , 0,1,2,...j  are obtained through the 
following recurrence relation: 
 

1 ( 1)( 2 )j
k ja

j j k
 ,    j          (35) 

 
It is well-known that ja should be zero for some j because 
otherwise the series in Eq. (35) describes the exponential 

not normalizable. If 0ja  for some j  the series in ( )f  
is finite and we have a polynomial solution. This condition 
will be written as: 
 

( 1)k n l .                         (36) 
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This condition implies that Eq. (33) is verified by the 
associated Laguerre polynomials 2 1

1( ) ( )k
n lf L . From the 

definition of  in Eq. (28) we find the perturbed energy 
levels: 
 

2 3

, 2 2

( ) 1
2n l

GM mE .                          (37) 

 
Notice that in the unperturbed case , 0 , n  and we 

(26) breaks angular momentum degeneracy and the energy 
levels now depend also on l . For small perturbations 

1we can approximate this expression to find the ratio 
on the energy levels perturbations and Bohr levels as 
follows: 
 

, 2( )n l

n

E
O

E nl
.                      (38) 

 
A. Classical energy perturbation 
 
Now we consider the effect of a classical perturbation given 

/ (2 )E GMm a . The time 
average of the perturbing potential in the unperturbed 
Keplerian orbit is given by: 
 

202
T dt

T r
.                         (39) 

 
Where T is the orbital period. This integral can be more 
readily calculated if we use the orbital equation and the 
equation of time in terms of the eccentric anomaly [15]: 
 

(1 cos )r a  ,                         (40) 
 

2 (1 cos )dt d
T

.                    (41) 

 
From Eqs. (39)-(41) we can perform the time integral over 
the eccentric anomaly: 
 

 
Where the semi-major axis is given by: 
 

2
2 2

0 2a n a n
GMm

.                        (43) 

 
A
radius, 0a , of the gravitational system. From Eqs. (6), (42) 
and (43) we can calculate the quotient among the 

perturbation and the energy of the original unperturbed 
orbit as follows: 
 

2

221
V m
E nl nlGMa

.        (44) 

 
Which coincides with the quantum result in Eq. (38) to first 
order in . 
 
 
IV. CONCLUSIONS 

 

development of quantum mechanics and its interpretation 
[17]. Even on the early quantum theory, Bohr was already 
interested in explaining the connection of the novel 
quantum conditions from a classical point of view. It was 
shown that the angular momentum quantization L n was 
compatible with the emission and absorption of photons 
with a frequency given as an integer multiple of 1/T, T 
being the orbital period for n large. This suggested a 
promising avenue to recover a result of classical 
electrodynamics, i. e., a charged orbiting body radiates with 
frequencies in multiples of the orbiting frequency. This 
frequency interpretation of the correspondence principle 
appeared very early in the development of the theory. In 
another interpretation, the intensity of the classical radiation 
was related to quantum emission probabilities. A third 
interpretation stated that every allowed transition by the 
quantum selection rules corresponds to one harmonic 
component of the classical motion [18]. 

In many texts of quantum physics, however, the 
correspondence principle takes a broader perspective as the 
convergence of the classical and quantum predictions in the 
case of large quantum states, i. e., those widely spread in 
space and corresponding to bodies of large mass. However, 
scarce dedication to this issue is given in textbooks, despite 
its pedagogical and conceptual interest and recent 
experimental developments on this subject [8, 9]. The one-
dimensional harmonic oscillator is usually the only system 
studied for large quantum numbers. 

In this paper we have analyzed the most important 

mechanics, i.e., the hydrogen atom, a single particle 
orbiting towards a center of mass attracted by Coulomb 
force. In the classical limit this problem should correspond 
to a Solar system problem and we expect to recover the 

probability density for small values of the quantum 
numbers. We have shown how for large values of the 
angular quantum number, l
probability density restricts the state to a plane in agreement 
with the classical property of planar motion in 
problem. Moreover, for large n the radial part is confined to 
a very precise radius and, consequently, the quantum state 
has a very narrow toroidal shape in correspondence with 
classical circular orbits. Classical orbital velocity can also 
be dedu
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probability density. 
A similar approach to the elliptical orbits lead to the 

conclusion that the quantum state in the macroscopic limit 
is the result of a time average over all orbits sharing the 
same invariants: energy and angular momentum. The 
quantum state resembles a flattened disk with an inner hole 
because the classical region r < a 
as the particle cannot be find at distances from the center 
smaller than the perihelion. 

Finally, we have shown that perturbations in the 
eigenvalue of the energy can be computed as time orbital 
averages of the perturbation potential over the unperturbed 
orbit of the Newtonian potential. We find that the 
correspondence with quantum eigenstates in t
problem is achieved as an average over all possible 
classical orbits with the same energy and angular 
momentum vector. The quantum probability density 
coincides then with the probability to find the particle in a 
given position at a randomly chosen instant of time. We 
show that in Quantum Mechanics all possible 
configurations have the same status of reality and coexist to 
define the stationary states. 

An interesting extension of this work would be the 
understanding of macroscopic quantum states in a classical 
gravitational field in General Relativity in order to disclose 
the correspondence principle for quantum fields in classical 
curved spacetime. Further work along this line is being 
carried out. 
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