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Brain Oscillations in a Random Neural

Network
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Abstract

It is well-known that rhythmic patterns of neural activity appear
both in the normal and abnormal function of the brain. Apart from the
standard bands of electric oscillations found in the electroencephalo-
gram (EEG): from alpha (8-12 Hz) to delta waves (1-4 Hz), synchro-
nized firing of neural populations characterize some complex cognitive
functions such as memory, attention and consciousness. In the case
of electrocardiograms (ECG) it is usually recognized that oscillations
can be understood as the limit cycle of an underlying non-linear pro-
cess in heart dynamics. However, the situation is not so clear for EEG
and the origin and purpose of neural oscillations are still the subject
of a heated debate.

Our model is a version of the standard SIRS model from epidemi-
ology in which susceptible, infected and recovered sites represent qui-
escent, firing and refractory neurons, respectively. Here we show that,
in a SIRS random network epidemic model for neural activity, self-
sustained oscillations appear in a restricted parameter region of the
transition probabilities. This could explain the role of synchronized
oscillations as a discriminant process for internal or external stimuli
in brain dynamics.

Keywords: Neural oscillations, Stochastic neural models, Random networks

∗e-mail: luiacrod@imm.upv.es

1

https://www.researchgate.net/profile/Jose_Morano?el=1_x_100&enrichId=rgreq-d950fbfc765525f7dd5fd02a01728ca3-XXX&enrichSource=Y292ZXJQYWdlOzI1NzI5NjQwNztBUzoyMzMyOTgyNTc1MTA0MDFAMTQzMjYzNDA0NzM0Mw==
https://www.researchgate.net/profile/Luis_Acedo?el=1_x_100&enrichId=rgreq-d950fbfc765525f7dd5fd02a01728ca3-XXX&enrichSource=Y292ZXJQYWdlOzI1NzI5NjQwNztBUzoyMzMyOTgyNTc1MTA0MDFAMTQzMjYzNDA0NzM0Mw==


1 Introduction

The history of electroencephalography (EEG) begins with Hans Berger who
discovered in 1929 that between electrodes attached to the human scalp a
potential difference in the mV range could be detected by means of a precision
galvanometer [1]. He observed that a rhythmic pattern with a frequency of
8-12 Hz was recorded from subjects with their eyes closed (Alpha rhythm
or Berger’s wave). After opening their eyes the frequency increased to 12-30
Hz (Beta rhythm). Alpha power was larger with eyes closed than with eyes
open, and it was associated with a relaxed brain.

In his work, Berger was inspired by the findings of the surgeon Richard
Caton who in 1875 measured electrical potentials on the cortex of labora-
tory animals. The discovery of intracranial measures of electrical activity
preceded by half a century the epoch-making Berger’s discovery. The im-
portance of Berger’s method is that, being an extracraneal and non-invasive
technique, could develop into a very useful monitoring and diagnosing tool
for neurologists and psychiatrists.

EEG discovery was ignored for almost a decade. Most researchers thought
that these small currents were artifacts of the experimental apparatus and
the human body. The work of Berger was eventually recognized and EEG
developed into a field with vast applications in Neurological Diagnosis, Ex-
perimental Psychology and Psychiatry [2]. In 1937, A. Lee Loomis and his
collaborators classified the different stages of sleep in relation with the EEG
signals [3]. At that time, it was clear that during sleep the EEG pattern
suffered changes that could be recognized by counting the number of zero
crossings (as a qualitative measure of frequency) and its amplitude. These
transitions are:

• Stage 1: As observed by Berger during awareness the brain produces the
alpha wave with a mixture of frequencies in the range 8-12 Hz. This
is a fast rhythm with low amplitude. When the individual becomes
drowsy the pattern changes to the theta wave with lower frequencies
in the range 4-7 Hz.

• Stage 2: In this stage the basal EEG is sporadically interrupted by
K-complexes (high-voltage peaks around 100 µV occurring with a pe-
riodicity of 1.0-1.7 minutes) and the so-called sleep spindles or sigma
waves with a frequency 13-17 Hz appearing every 0.5-1.5 seconds.
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• Stage 3: This is the most deep stage of sleep. It is characterized by delta
waves ranging from 0.5 to 2 Hz and an amplitude from the negative to
the positive peak around 75 µV. The small frequency of these waves
has suggested the name “slow-wave” sleep for this stage.

Frequencies of EEG patterns are commonly associated with a subcortical
pacemaker located at the thalamus. This has been critized recently as a
fallacy in EEG research [4]. An explanation of EEG must resort to models
of brain dynamics.

Mathematical models of the brain as a set of units with connections that
determine their evolution has been already proposed. The so-called cellular
automata have been studied as a model of cortical physiology in a rough
model by Hoffmann [5] and also as a way to disclose spatio-temporal patterns
of activity in the hippocampal network [6]. Models of neural populations
motivated by the confluence of the theory of cellular automata defined upon
networks have developed as a field onto itself known as Neuropercolation [7].

Recently, one of us proposed a stochastic cellular automata model defined
upon a complete graph as a simple model of brain structure and studied the
fluctuations in global activity in comparison with EEG [8, 9]. The complete
graph is, apparently, a very simple structure for a brain but a complete set
of connections between compartments in the brain has also been proposed as
a reasonable model predicting some invariances observed between different
species [10].

Nevertheless, the number of synapses that a typical neuron in the hu-
man cortex projects towards their neighbours is on the range of 7000–12000
[11]. Consequently, a more realistic cellular automata model of the brain
should be defined upon a more sparse network: random network [12] or a
Watts–Strogatz network [13]. The computational effort to simulate a cellular
automata model in a significatively large system incorporating, at least, one
million nodes is vast and will require the implementation of a distributed
computing solution.

In this paper, we follow this natural path towards complexity on mathe-
matical models of the brain by defining a stochastic cellular automata model
on a random network. The states of the sites in the network should corre-
spond to the basic behavior of neurons: resting neurons in which the interior
of the cell have a negative potential (about -70 mVolts) which respect to the
exterior of their membrane, firing neurons in which a visual, auditory or me-
chanical stimulus (sensory neurons) or the opening of ligand-gated sodium
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channels by the action of neurotransmitters induces the depolarization of the
interior of the cell and the development of an action potential that propa-
gates along the axons, and refractory neurons which remain inactive after
repolarizations for a short time of several milliseconds. These states are par-
allel to the classic susceptible-infected-recovered-susceptible (SIRS) model of
mathematical epidemiology. Following this line of thought we will propose a
SIRS model upon a random network as an improved cellular automata model
for brain dynamics.

Taking into account the complexity of these networks and that a number
N = 106 nodes was considered, it is obvious that a single computer approach
to this problem is out of the question. On the other hand, we have developed
a distributed computing solution by means of a client-server TCP program
that allows the server to send tasks and retrieve results. This first solution
was initially used in the University Intranets. Later on, the standard BOINC
protocol for distributed computing throughout the World Wide Web was also
applied. A previous implementation of this system for the propagation of the
Respiratory Syncytial Virus epidemic has already been studied [14].

The computing power of the distributed solutions allowed us to explore
the parameter space of the random network for more than 20 years of comput-
ing time in a single computer. In a confined region of the parameter space we
have obtained endogenous oscillations in the activity of the network. Brain
oscillations have been observed in the human brain and it is thought that
they are associated with memory, attention and even consciousness [15]. But
also in the mini-brains of insects these oscillations have been studied in con-
nection with odour-encoding in locusts [16], bees [17] and Drosophila flies
[18].

Regular behavior of physiological signals is usually mathematically ex-
plained within the paradigm of limit cycles and attractors. For example,
Clifford and McSharry have recently proposed a model to generate electro-
cardiogram, blood pressure and respiration signals based upon a system of
three non-linear differential equations [19]. However, the role of brain os-
cillations as an encoding internal language of brain requires a very different
origin.

The paper is organized as follows: The random neural network model is
defined in Section 2. In Section 3 we discuss the different behavior obtained
with a network of N = 106 nodes and a degree of connectivity that ranges
from k = 10 to k = 500. In Section 4 the results are discussed and some
remarks for future work are given.
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2 The Random Neural Network Model

The emergent science of networks provides several standard alternatives to
implement the network substrate. The most traditional is based upon the
pioneer work of Erdös and Rényi [12], the so-called random graphs where
connections among the pairs of subjects are created with the same proba-
bility. Alternative models are the scale-free networks [20] or the small-world
networks of Watts and Strogatz [13]. The small-world phenomenon, i. e., ev-
ery pair of nodes are connected through a path which crosses a small amount
of neighbours, is found in many social networks linked by friendship, collab-
oration or other social links.

The cytoarchitecture of the human cortex is charaterized, in general, by
stratified layers of neurons. This basic structure is already present at birth
but dendritic arbors develop and grow during the first two years. It is known
that the details of this fine substructure develops throughout many years
[21, 22]. In our approach, we are more interested in the topological properties
of these networks and we should ignore the stratified architecture. We should
choose the Erdös-Rényi random network model charaterized by a Poisson
distribution of contacts among nodes with a mean value k.

Random networks are characterized by the number of sites or nodes
(N = 106 in our simulations) and the average number of contacts of ev-
ery individual, k (called the degree of this node). Consequently, the number
of links in the network is given by Nk/2. These links are randomly assigned
to pairs of nodes with the obvious rule that, at most, only a link can connect
two nodes.

By following this algorithm we have checked that a Poisson distribution
for the degree of the nodes (with N = 106 and k = 10) is obtained as shown
in Figure 1.

Once the random network is generated we apply an evolution algorithm
in order to analyze the number of active neurons as a function of time. As the
initial state we consider only a small fraction of firing neurons. All quiescent
neurons are then checked iteratively and they start to fire at time step t+ 1
with probability α for every contact with a firing neuron at time t. The
average time a neuron remains in the firing state is 1/ν whereas the average
refractory time is 1/γ. These firing and refractory times are intrinsic to the
neuron structure and we assume that they follow a Poisson distribution with
the aforementioned averages 1/ν and 1/γ.

In our stochastic model we are simulating the transmission of action po-
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Figure 1: Fraction of nodes with degree k, P (k), vs the degree k in a network
with N = 106 nodes and average value 〈k〉 = 10. The solid line is the exact
Poisson distribution and the circles are the simulation results. An average
over 50 realizations of the network building was performed.
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tentials from neuron to neuron as a stochastic process. In practice, neurons
integrate the signals received from the axon projections of their neighbors,
this is the basic idea of the so-called integrate-and-fire models. If a certain
threshold is reached the quiescent neuron start to fire. In our model this
collective effect is captured by the independent stochastic interations of a
quiescent neuron with their firing networks in its neighborhood. If we have
F (t) firing neurons in contact with a given quiescent neuron at time t the
probability for this neuron to start firing at t+1 is F (t)α and, consequently,
increase linearly with the number of firing neurons in their topological vicin-
ity.

It is difficult to ascribe a definite value to α according to our present un-
derstanding of brain physiology. However, some recent physiological studies
have revealed that the levels of glutamic acid, the main excitatory neuro-
transmitter in the cerebral cortex, increase after sleep deprivation in rats
[23, 24, 25, 26]. The measurements of cerebral glucose utilization by means
of the positron emission tomography technique also reveal a decline in sev-
eral areas of the brain during sleep [27]. These observations are consistent
with a scenario in which the homeostatic equilibrium of neurotransmitters is
different between sleep states and the awaken state and could be mimicked
by adjusting the values of α.

In the case of external stimuli that promote the opening of sodium chan-
nels in sensory neurons the role of α is clearer as a probability that measures
the increase of firing probability of the stimulated neurons. Furthermore, the
mean firing time, 1/ν, and the mean refractory time, 1/γ, can, in principle,
be obtained from the physiology of a single neuron. Values of the refractory
period around 0.8-1.1 ms were reported early in the literature [28]. The fir-
ing phase should be comprised between the polarization and depolarization
stages where the spike train is generated and should be much shorter.

In our study we should consider the values 1/ν = 10 and 1/γ = 200.
Similar results are obtained for other proportions between ν and γ. In the
next Section we will analyze the behavior found with special interest in the
periodic oscillations of the brain activity.

7

https://www.researchgate.net/publication/222281344_Absolute_refractory_period_of_neurons_involved_in_MFB_self-stimulation?el=1_x_8&enrichId=rgreq-d950fbfc765525f7dd5fd02a01728ca3-XXX&enrichSource=Y292ZXJQYWdlOzI1NzI5NjQwNztBUzoyMzMyOTgyNTc1MTA0MDFAMTQzMjYzNDA0NzM0Mw==
https://www.researchgate.net/publication/14549030_Paradoxical_Sleep_Deprivation_Increases_the_Content_of_Glutamate_and_Glutamine_in_Rat_Cerebral_Cortex?el=1_x_8&enrichId=rgreq-d950fbfc765525f7dd5fd02a01728ca3-XXX&enrichSource=Y292ZXJQYWdlOzI1NzI5NjQwNztBUzoyMzMyOTgyNTc1MTA0MDFAMTQzMjYzNDA0NzM0Mw==
https://www.researchgate.net/publication/11390479_Increase_in_amino_acids_in_the_pons_after_sleep_deprivation_a_pilot_study_using_proton_magnetic_resonance_spectroscopy?el=1_x_8&enrichId=rgreq-d950fbfc765525f7dd5fd02a01728ca3-XXX&enrichSource=Y292ZXJQYWdlOzI1NzI5NjQwNztBUzoyMzMyOTgyNTc1MTA0MDFAMTQzMjYzNDA0NzM0Mw==
https://www.researchgate.net/publication/10904574_Increased_levels_of_tyrosine_hydroxylase_and_glutamic_acid_decarboxylase_in_locus_coeruleus_neurons_after_rapid_eye_movement_sleep_deprivation_in_rats?el=1_x_8&enrichId=rgreq-d950fbfc765525f7dd5fd02a01728ca3-XXX&enrichSource=Y292ZXJQYWdlOzI1NzI5NjQwNztBUzoyMzMyOTgyNTc1MTA0MDFAMTQzMjYzNDA0NzM0Mw==
https://www.researchgate.net/publication/7447118_Sleep_deprivation-induced_alterations_in_excitatory_synaptic_transmission_in_the_CA1_region_of_the_rat_hippocampus?el=1_x_8&enrichId=rgreq-d950fbfc765525f7dd5fd02a01728ca3-XXX&enrichSource=Y292ZXJQYWdlOzI1NzI5NjQwNztBUzoyMzMyOTgyNTc1MTA0MDFAMTQzMjYzNDA0NzM0Mw==


3 Neural Oscillations in the Random Net-

work

We have obtained a phase diagram of behavior in the α–k plane we have
tested 60,000 combinations of k (in the range 10-500) and the transmission
probability, α, of firing activity through the axons (0 ≤ α ≤ 0.005 with
0.00001 jumps). The values of the firing and refractory periods were taken
constant: 1/ν = 10 and 1/γ = 200. The number of neurons is N = 106.
Although this value is small even for a small region of the human brain it is
larger than the average number of neurons in the honey-bee (N ≃960,000)
which is the insect with the largest brain in relative size [29]. In the brain of
the insects the number of axonal projections per neuron is also smaller [30]
and a value of k around 500 should be reasonable.

The upper bound of our range k = 124 exceeds the capacity of most
computers and can only be simulated in the present-day standard 4GB RAM
computers. For this reason the case k = 500 was analyzed in a dedicated
12GB server.

The results are as follows: In the larger part of the explored α–k region the
system settles in a stationary state with very low or null activity. This occurs
after a transient of high activity (when the α probability is set to excessively
large values) or a fast decay for low values of α. For large values of α almost
all neurons become excited and, afterwards, they return to the refractory
state. Therefore, during the refractory time there are neither active neurons
nor quiescent neurons and the activity fades out rapidly. In a small region
of the α–k plane we find damped oscillatory or regular oscillatory behavior.
This region is confined within the two curves shown in Fig. 2 These curves
can be fitted numerically in term of exponential series as follows:

kup(α) = 22.56 + 626.40e−α/0.00036 + 180.64e−α/0.00174 (1)

kdown(α) = −2.54 + 740.27e−α/0.00041 + 100.46e−α/0.00387 , (2)

and the oscillations (damped or regular) are find only in the interval kdown(α) ≤
k ≤ kup(α). In Fig. 3 we have plotted the oscillations found for k = 500
and two close values of the excitation probability: α = 2.6 × 10−4 and
α = 2.9×10−4. We notice that the amplitude is different despite the variation
of α is only 3 × 10−5. Consequently, we have deduced that the neural ran-
dom network with high connectivity is a very sensitive device to discriminate
between different values of the excitation probability.

8

https://www.researchgate.net/publication/222835587_Menzel_R_Giurfa_M_Cognitive_architecture_of_a_mini-brain_the_honeybee_TRENDS_in_Cognitive_Sciences?el=1_x_8&enrichId=rgreq-d950fbfc765525f7dd5fd02a01728ca3-XXX&enrichSource=Y292ZXJQYWdlOzI1NzI5NjQwNztBUzoyMzMyOTgyNTc1MTA0MDFAMTQzMjYzNDA0NzM0Mw==
https://www.researchgate.net/publication/7437842_Structure_of_the_mushroom_bodies_of_the_insect_brain?el=1_x_8&enrichId=rgreq-d950fbfc765525f7dd5fd02a01728ca3-XXX&enrichSource=Y292ZXJQYWdlOzI1NzI5NjQwNztBUzoyMzMyOTgyNTc1MTA0MDFAMTQzMjYzNDA0NzM0Mw==


����� ����� ���� ����� ����� �����
�

��

���

���

��

��

���

���

���

���

���

 

 

k

α

Figure 2: Upper and lower curves delimiting the region where regular oscilla-
tory or damped oscillatory behavior of brain activiry is found. The number
of neurons is N = 106. Firing and refractory times were 1/ν = 10 and
1/γ = 200, respectively.
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Figure 3: Number of firing neurons in the random network, I(t), measured in
units of 10,000 for an average degree of each node k = 500 and α = 2.6×10−4

(solid line), α = 2.9 × 10−4 (dotted line). Oscillatory behaviour is observed
in these two cases.
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In experiments with insects it has been found that intrinsic oscillations
around 20 Hz are induced by different odours. These oscillations are gen-
erated as a global pattern involving feedback with the mushroom bodies
structures of the insect protocerebrum and they are not observed as local
field potentials recordings in the antennal lobes [16]. These oscillations have
also been observed in bees and they are regarded as the encoding in the neu-
ral assembly of the odour stimulus. These oscillations are different for very
similar odours (1-hexanol and 1-octanol), although the discriminant capacity
is impaired by the action of antagonists of the γ-aminobutyric acid receptors
such as picrotoxin [17]. In humans neural oscillations are related with cogni-
tive processes: memory encoding (theta wave), attention (alpha and gamma)
and conscious awareness of meaningful visual patterns (synchronous gamma
oscillations through separate brain areas).

4 Conclusions and Final Remarks

In this paper we propose a random network model for collective synchronous
behavior in the brain. We find that in a certain window of connectivity, k,
and excitation probability, α, regular endogenous oscillations appear. The
interesting fact is that in the past two decades increasing evidence has been
gathering of the presence of these oscillations even on simple insect proto-
cerebrums [17, 16, 18]. In these cases, oscillations are mainly elicited by
odour stimulation. Insects use these oscillations as an internal language that
encodes different odour stimuli.

These neural oscillations are also present in humans but, according to a
different evolutionary history, they are mainly related to memory, attention
and conscious awareness [15].

We have shown that oscillations are an intrinsic feature of networks with a
high number of nodes and high connectivity. We have been able to simulate
networks with N = 106 nodes and an average degree of connectivity up
to k =500. In order to speed up the calculations a distributed computing
solution has been developed under the basis of the BOINC (Berkeley Open
Infrastructure for Network Computing) infrastructure [31]. This way we
achieved more than 21 years of computing time in only three weeks.

We have shown that oscillations exhibit an extreme sensitivity in the α–k
diagram. This sensitivity increases with the average degree of the random
network. This fine tuning could explain the role of neural oscillations as a
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code to represent some stimuli and distinguish among them.
In the future we plan to study larger networks with a higher degree of

connectivity in order to approach the topological architecture of more com-
plex brains. Moreover, stratified layer of neurons could also be considered
because large portions of the cortex are organized this way.
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