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Abstract

The classic nonlinear Kermack-McKendrick model based upon a system of differen-
tial equations has been widely applied to model the rise and fall of global pandemic
and also seasonal epidemic by introducing a forced harmonic infectivity which would
change throughout the year. These methods work well in their respective domains of
applicability, and for certain diseases, but they fail when both seasonality and high
infectivity are combined. In this paper we consider a Susceptible-Infected-Recovered,
or SIR, model with two latent states to model the propagation and evolutionary
history of varicella in humans. We show that infectivity can be calculated from real
data and we find a nonstandard seasonal variation that cannot be fitted with a
single harmonic. Moreover, we show that infectivity for the present strains of the
virus has raised following a sigmoid function in a period of several centuries. This
could allow the design of vaccination strategies and the study of the epidemiology
of varicella and herpes zoster.

Key words: Compartmental models; Highly contagious diseases; Infectivity
evolution; varicella

1 Introduction

In their pioneering work of 1927, Kermack and McKendrick proposed a math-
ematical model for the evolution of infectious diseases based upon a system
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of differential equations [1,2]. In the original model three populations where
considered: Susceptibles, S, which are healthy but can be infected, Infected, I,
which have been communicated the bacteria or virus by contact with another
infected individual, and Recovered, R, i.e., those infected individuals who have
cleared the disease. The recovered individuals may become susceptible again
after a period of immunity, in such a case the model is known with the acronym
SIRS. Other combinations: SI, SIS or SIR have been considered. In some cases
a state of latency is also introduced. Latent individuals are already infected
by they have not developed the symptoms of the disease and they are usually
not infectious or their infectiveness is reduced.

A characteristic of many infectious diseases is that they show seasonal pat-
terns. Some examples are: Influenza [3], Respiratory Syncytial Virus or RSV
[4,5], Rotavirus disease [6] or varicella [7]. The factors of this seasonal be-
haviour are still unknown in many cases [8] and it is believed that several
concurrent agents may be acting. Seasonality of infections by RSV have been
associated to meteorological factors [9] such as temperature or humidity but
also to ultraviolet radiation [10]. Dushoff et al. proposed a dynamical reso-
nance mechanism for the amplification of oscillations in influenza pandemic
[11], later on Acedo et al. discussed the emergence of seasonal behaviour in
network models without external forcing [12]. Production of Vitamin D has
also been studied as a possible immunity factor in the seasonal variations of
influenza [13]. In any case, it is still unclear what of these factors are direct
causes of seasonality instead of mere correlates.

Concerning models based upon coupled differential equations and for the pur-
pose of capturing the seasonal behavior, it is usual to introduce a forcing term
in the transmission [4,5]. This term takes the form:

b = b0 + b1 cos
(

2πt

T
+ φ

)
, (1)

where T = 1 year, t is the time passed since the beginning of the year, usually
measured in weeks, and φ is an offset phase to be deduced by fitting the real
data. This oscillatory forcing of the infectivity allows very reasonable fitting
for the epidemiological data of RSV [4,5] but it do not work for other highly
contagious diseases as we will see in this paper and, in particular, for varicella,
where b must be deduced from the incidence of the disease if any reliable fitting
is to be found.

varicella is a highly contagious disease caused by the varicella Zoster Virus
(VZV) [7,14,15]. This virus is the responsible for both varicella and Herpes
Zoster and it has a very high prevalence in populations all around the world.
varicella affects mostly children and, in most cases, it is a benign infection.
Occasionally may complicate but it has a low death rate. However, it is more
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severe in adults [14].

The experiment we are going to perform will start retrieving and preparing
data of varicella cases, then a simple model will be built. Furthermore, we will
develop a procedure to calculate the values of the weekly transmission rate bt.
Thus, on the one hand we will see that the growing of the transmission rates of
any year can be written as the transmission rates in the year 1 (base case) by a
sigmoid function. On the other hand, we will prove that the approximation of
the transmission rates bt by a cosine seasonal forcing term as b0 +b1 cos(2πt+φ

52
)

will lead to a good approximation at the beginning but deteriorating soon as
the time goes on.

We will show that the transmission rate follows the same pattern over the years
and that the scale increases following a sigmoid behavior. Also, we show that,
sometimes, it is not possible to capture the seasonal behavior using seasonal
forcing terms in the transmission term and other strategies should be used.
We will illustrate this using data of varicella incidence.

The problem we are discussing is known in the literature as the inverse problem
in epidemiology, i. e., to find the forcing term from epidemiological data [16]. In
a recent work, Marinov et al. have proposed a generalized least square method
to find optimum values for the infectivity and recovery rates. However, these
values are assumed to be constant over the whole interval as they apply their
method to a short outbreak of influenza instead of considering the long term
evolution of a pandemic. A similar method was used by Leecaster et al. [17] to
study the variations from one year to another of the incidence of respiratory
syncytial virus (RSV) infections. The problem of the seasonal variations of
RSV have motivated many studies in which a relation to social factors, such
as school terms, or weather data is considered [4]. But none of these factors is
clearly statistically significant in the oscillations of the incidence of the disease.
For these reasons, Novotni and Weber proposed a stochastic optimization
method to deduce the infectivity function, β(t), from the incidence data. They
find that the dynamics of RSV can be modelled as “noisy limit cycles”. A
similar idea was proposed by Keeling et al. [19] to achieve an explanation of
the seasonality in measles and whooping cough as a consequence of a contact
rate governed by school terms.

The case of the inverse problem for highly contagious diseases, such as vari-
cella, is marked by a particular difficulty because every year a large proportion
of the cohort of children is infected. As a consequence the transmission rate
becomes very large and, apart from the seasonal variations, we must also
study the increase of the transmission rate year after year in such a way that
a stationary state is finally achieved. Starting from an initial state with no
recovered individuals we deduce the transmission rate from a deterministic
recursive method. The process is repeated for the following years until a sta-
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tionary seasonal infection rate is obtained. The results could then be used in
the simulation of vaccination strategies for which a systematic modelling is
still lacking.

To achieve these objectives we propose a new compartmental model with two
latent states of one week duration. By using this model to fit the incidence data
of varicella we estimate a non-sinusoidal temporal forcing term. We show that
the infectivity rate must rescale year after year keeping its seasonal variations
to allow the survival of the varicella strains. Moreover, it is found that the
global prefactor for the infectivity is a sigmoid function and that the evolution
to the stationary state takes four centuries, at least. This is compatible with
the known large history of the varicella-zoster virus (VZV) [20].

The paper is organized as follows. In Section 2 we describe the retrieval and
preparation of the data for varicella. In Section 3, we describe the model
building. In this section we also state a procedure to calculate the variable
transmission rates bt and study the patterns they follow. In Section 4, we
show that a seasonal forcing term does not perform as well as the variable
transmission rates. Finally, in Section 5, we present the conclusions.

2 Epidemiological data for varicella

The data on the number of infected individuals per week was obtained from a
report from Royal College of General Practitioners entitled: New RSC Com-
municable and Respiratory Disease Report for England & Wales, 36/2014 [21].
They averaged over a period of 10 years prior to the introduction of the vaccine
to get the data in Figure 1.

These data are very similar to the ones that appear in the varicella report
bulletin of the Community of Valencia 2012 [22].

We are going to use the data from UK because they are more regular (10 years
average) with the demographic data of the Community of Valencia. The total
population of Valencia is 5129266 with 47574 newborns in 2012. Note that the
incidence in Figure 1 correspond to reported cases, but the doctors assume
that around 95% of the cohort is infected by varicella every year. For future
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Fig. 1. Reported individuals infected with varicella per 105 as a function of the
week averaged over a period of ten years in UK. The epidemiological behavior of
the disease is markedly seasonal.

reference we list the number of cases in the 52 weeks of the year:

D = (862.036, 837.406, 852.185, 911.295, 999.962, 1113.26, 1137.89, 1197,

1201.92, 1236.41, 1349.7, 1315.22, 1384.18, 1379.26, 1349.7, 1364.48,

1320.15, 1251.18, 1241.33, 1320.15, 1305.37, 1251.18, 1256.11, 1187.15,

1054.15, 955.629, 950.702, 842.332, 748.739, 733.962, 669.925, 586.184,

551.702, 433.481, 344.814, 334.962, 310.333, 315.258, 359.592, 433.481,

487.665, 492.592, 487.665, 522.148, 551.702, 571.407, 586.184, 630.518,

724.109, 729.036, 610.814, 551.702).

(2)

If we call I the weekly incidence vector given in Fig. 1 and we define s =
5129266 =

(∑52
j=1 Ij

)
/105 and e = 0.95× 47574/s, then the vector D is given

by D = 5129266 × e× I/105.

3 Mathematical modelling

In order to build the model to study the dynamics of varicella, we consider
the following 5 states in the week t: susceptible (St), latent of 1st week (L1

t ),
latent of 2nd week (L2

t ), infectious (It) and recovered (Rt).

A susceptible (healthy) individual gets infected by a successful contact with
an infected individual and becomes latent of the 1st week. After a week the
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individual becomes latent of the 2nd week. During the latency states the indi-
vidual is infected but not infectious. Then, after another week, the individual
becomes infectious and can infect susceptible individuals. This state lasts a
week and after this week, the individual recovers and has a permanent immu-
nity [14].

Even though reinfection of recovered individuals are possible, in this model
we assume that it does not occur. Second cases of varicella have been reported
after natural infection but they are uncommon [23]. Then, the dynamics of
the varicella spread can be modeled with the following system of difference
equations, t in weeks,

St+1 = St + µ− dSt − bt
StIt
PT
,

L1
t+1 = L1

t − dL1
t − L1

t + bt
StIt
PT

= bt
StIt
PT

− dL1
t ,

L2
t+1 = L2

t + L1
t − dL2

t − L2
t = L1

t − dL2
t ,

It+1 = It + L2
t − dIt − It = L2

t − dIt,

Rt+1 = Rt + It − dRt,

(3)

where bt is the transmission rate for week t, µ = 47574
52

= 914.885 is the weekly
number of newborns, PT = 5129266 is the total population in the Community
of Valencia (2012) and d the weekly death rate. In order to preserve the pop-
ulation (constant population) d = µ

PT
= 0.000178366. The model graphic flow

can be seen in Figure 2.

S L
1

I R

Transmission Recovering
1 week

L
2

1 week 1 week

b
t

S
t
×I

t

P
T

Fig. 2. Model graphic flow.

3.1 Determining the transmission rate per week bt, t ≥ 1

All the model parameters are known except for the transmission term, bt. Our
objective in this section is to find the values of the transmission rate which
allows the model to fit the real epidemiological data in Fig. 1.

In order to establish a feasible initial condition, taking D the vector of data
defined in (2), we are going to consider the following initial conditions:

• R0 = 0, that is, initially there are not recovered individuals.
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• I0 = D52 = 551.702, because, in order to obtain the first transmission rate
value b1 we need to start with the number of infected individuals corre-
sponding to the last week of December.

• Taking into account that I1 = D1 = 862.036 and from the model (3) I1 =
L2
0 − dI0, we obtain that L2

0 = 862.134.
• Now, taking into account that I2 = D2 = 837.406 and from the model (3)
I2 = L2

1 − dI1 and L2
1 = L1

0 − dL2
0, we have that L1

0 = 837.713.
• Finally, S1 = PT − L1

1 − L2
1 − I1 = 5127014.45.

With these initial conditions we guarantee that I0, I1 and I2, the three first
values of infected returned by the model, match the infected data D52, D1 and
D2.

Now, if we define the model output vector

Mt = (St, L
1
t , L

2
t , It, Rt), t ≥ 0, (4)

substituting the values of

M0 = (5127014.45, 837.713, 862.134, 551.702, 0),

into the model given by Eq. (3), we can obtain M1, and substituting M1 into
the model again, we obtain M2, and recursively, we can obtain Mt for t ≥ 0.
Using this recursion, we have that I3 = −0.448175 + 551.46b1 = D3, and
b1 = 1.54614. Also, using the value b1 and the recursion, I4 = −0.456081 +
861.514b2 = D4 and b2 = 1.05831. We can continue calculating the transmis-
sion rates bt using the values of the previously calculated bj, j < t, and the
recursion process. If we assume that the vector of infected D is the same for
every year, we can calculate 52 transmission rates (one peer week) for every
year. The transmission rates bt for the first year and for the year 1000 can be
seen in Figures 3 and 4.

It is noteworthy the similitude between transmission rates in Figures 3 and 4.
The same scaled behaviour is found in the intermediate years. Let us name
Yk the vector of 52 values of the calculated transmission rates in the year k.
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Fig. 3. Transmission rates per week for the first year. Observe that the only difference
between this figure and Fig. 4 is the scale (y-axis). In the intermediate years the
shape is the same with different scales.
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Fig. 4. The same as Fig. 3 but for the year 1000.

Thus, for the corresponding years in Figures 3 and 4, we have

Y1 = (1.54614, 1.05831, 1.19564, 1.30826, 1.2508, 1.19935, 1.08201, 1.0892,

1.13053, 1.09748, 1.12306, 1.02543, 1.03006, 0.989696, 0.961239, 0.931224,

0.914087, 1.00498, 1.04881, 1.01353, 0.956981, 0.914934, 0.847843, 0.76574,

0.806154, 0.80458, 0.78904, 0.777545, 0.801159, 0.788765, 0.757366, 0.652099,

0.592862, 0.611884, 0.721567, 0.921517, 1.08203, 1.40794, 1.55937, 1.38113,

1.13437, 1.07969, 1.12951, 1.18181, 1.13244, 1.15294, 1.27853, 1.25504,

0.977829, 0.769101, 1.19343, 1.38424),

Y1000 = (30.7048, 21.0123, 23.7385, 25.9828, 24.8597, 23.8569, 21.5452,

21.7114, 22.5621, 21.9381, 22.4828, 20.5643, 20.6929, 19.9145, 19.3745,

18.7982, 18.4756, 20.3378, 21.2573, 20.5726, 19.4496, 18.6192, 17.2717,

15.6075, 16.4338, 16.404, 16.0827, 15.8384, 16.3083, 16.0411, 15.3833,

13.227, 12.0036, 12.3621, 14.5462, 18.5349, 21.7144, 28.1964, 31.1729,

27.5659, 22.6053, 21.4815, 22.4401, 23.4476, 22.4395, 22.818, 25.2771,

24.7952, 19.3053, 15.1674, 23.5041, 27.2568).

(5)
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Now, our goal is to study how the weekly transmission rates grow year by
year. To do that, we run the recursion 1500 years and with the transmission
rates obtained, we build the matrix G = (Yk/Y1)

1500
k=2 of size 1499 × 52, where

the division Yk/Y1 is componentwise. We have drawn the vector columns of
length 1499 of the matrix G for the first and the last week of the year in Fig.
5. We see that the growth of the weekly transmission rates follows a sigmoid.

0 500 1000 1500
0
2
4
6
8

10
12
14
16
18
20

 

 Y
k/Y

1

year

Fig. 5. Growth of the transmission rates for the first (dotted line) and the last week
(dashed line) of the year. Notice the sigmoid shape of the graphs and the small
differences among them.

Then, if we consider the general sigmoid function ft = a
e−bt+c

, we are going
to find the a, b and c that make ft to fit the best with the weekly data of
each column of G. The resulting 52 values of a, b and c obtained are drawn in
Figures 6-8.

0 10 20 30 40 50
1.041

1.042

1.043

1.044
 

  a

week

Fig. 6. Weekly values of a that make ft to fit the best with the weekly data of each
column of G.

Looking at the Figs. 6-8, we can see that the shape of the values of a and c
are the same. In fact, the componentwise difference between the values of a
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Fig. 7. The same as Fig. 6 but for b.
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Fig. 8. The same as Fig. 6 but for c.

and c are all constant equal to 0.990767. Also, the graph of b is constant equal
to 0.00927584.

Consequently, the values of a, b and c are very similar for each week. If we take
the mean of the 52 values of a, b and c we get: Am = 1.04266, γ = 0.00927584
and ζ = 0.0518882, respectively. Then, an accurate approximation to the 52
weekly values of the transmission rate for year k > 1 will be

Ŷk =
Am

e−γk + ζ
Y1, k > 1. (6)

The forced transmission rate for varicella given by Eq. (6) in terms of the
infectivity deduced from the first year in Eq. (5) provides a very precise fitting
of the seasonal pandemic obtained by replicating the incidence in Fig. 1 and
Eq. (2). However, the functional form of this seasonal infectivity as shown in
Figs. 3 and 4 is rather complicated. In the next section, we study the varicella
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model with a simplified transmission rate (seasonal forcing term) where the
infectivity is approximated by a single harmonic with a sigmoidal prefactor.

4 Simplified seasonal forcing term

Let us consider the seasonal forcing term

βt = b0 + b1 cos(
2πt+ φ

52
), t ≥ 1. (7)

We have calculated b0, b1 and φ such that βt provides a least-squares fit of the
data for Y1 in Eq. (2). The obtained results are b0 = 1.03095, b1 = 0.216799
and φ = 0.200717. In Fig. 9 we compare the fitting harmonic function in Eq.
(7) with the transmission rates derived for the model during the first year.
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0.8

1.0

1.2

1.4

1.6
 

 b t

week

Fig. 9. Best fitting of the seasonal forcing term βt, 1 ≤ t ≤ 52 (solid line) to the
vector data Y1 (dashed line).

An approximate expression for the infectivity in the week t of year k, Bk,t can
be given by:

Bk,t = Am
e−γk+ζ

βt

= Am
e−γk+ζ

(b0 + b1 cos(2πt+φ
52

)), k > 1, 1 ≤ t ≤ 52,
(8)

where we have replaced the Y1 values by the approximation given by the
harmonic function in Eq. (7). Now, we can iterate the discrete equations of
the model in Eq. (3) to analyze the evolution of the epidemic according to the
infectivities of Eq. (6) and the approximation of Eq. (8).
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Fig. 10. Evolution of the seasonal incidence of the varicella epidemic using two
models for the infectivity. The solid line is the real averaged data for UK as given
in Eq. (2), the dots are the prediction obtaining by iterating the equations of the
model with the infectivity given in Eq. (6) after 400 years, the dashed line (dotted
line) corresponds to the simplified model with the approximate infectivity in Eq.
(8) after one year (twelve years).

We have plotted the results in Fig. 10. The predictions of the original model
with the sigmoidal modulation of the infectivity fitting in Eq. (6) are stable
and very accurate even after 400 years of evolution. However, if we use the
harmonic approximation with sigmoidal prefactor in Eq. (8) the predictions
deteriorate very fast.

Consequently, we have shown that varicella, and probably other infectious
diseases with high infectivity, cannot simply be modelled with harmonic sea-
sonal forcing. The detailed calculation of the transmission rate deduced from
the data is required for stable predictions in the long run. Moreover, in these
diseases the infectivity should grow year after year in the initial stages of
the pandemic in order to adapt to the diminishing proportion of susceptible
individuals.

5 Conclusions

In this paper, we have shown that a SIR model with latency cannot fit some
seasonal diseases with high infectivity if a cosine variation of the infectivity is
assumed. A procedure to deduce the infectivity week after week from real data
on the number of infectious individuals has been discussed. This procedure
has been applied to the varicella epidemic to obtain a nonstandard seasonal
infection rate. Using this rate it was possible to fit the seasonal pandemic
and keep it stable in the predictions for several centuries (assuming constant
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population).

Moreover, starting from an initial condition with few or no recovered individ-
uals, we have shown that the envelope of the infectivity in different years is a
sigmoidal function whose parameters were given explicitly for our case.

varicella is a very contagious disease caused by the varicella-Zoster Virus,
whose closest relatives in the evolutionary tree are other alphaherpesviruses
from which they evolved around 120 million years ago [24]. Although, it can
infect other primates, it is only a pandemic in humans so its recent evolution is
closely related to that of the hominid species. In our study we have suggested
that the VZV virus should have changed in a period of several centuries before
achieving a stationary state in its relation to the host. Taking into account
the long history of the virus we should consider this numerical result with
caution. Firstly, the population has grown exponentially in the last centuries
implying larger cohorts of newborns every year susceptible to be infected by
VZV. Recovery from varicella is not total because re-emergence in the form
of shingles also happens in the adult population. It is known that a single
individual with developed shingles could initiate an epidemic of varicella [24].
Consequently, this kind of latency could help to keep the virus circulating
without, necessarily, a sigmoidal increase of its infectivity.

In a future work we will take into account these factors: non-constant pop-
ulation and infections of children caused by outbreaks of shingles in adults.
This model could be applied to the impact of varicella vaccination programs in
the control of the manifestations of shingles. The technique developed in this
paper can also be applied to other seasonal infectious diseases: RSV, influenza
and others which are, conventionally, studied using harmonic forcing.

The computations carried out in this paper and the figures can be obtained
in a Mathematica [25] notebook, downloading it from http://franchi.imm.

upv.es/seasonal/Varicella_TR.nb.
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