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Abstract

In this paper, we present an approach to multilingual Spoken Language Un-
derstanding based on a process of generalization of multiple translations,
followed by a specific methodology to perform a semantic parsing of these
combined translations. A statistical semantic model, which is learned from
a segmented and labeled corpus, is used to represent the semantics of the
task in a language. Our goal is to allow the users to interact with the system
using other languages different from the one used to train the semantic mod-
els, avoiding the cost of segmenting and labeling a training corpus for each
language. In order to reduce the effect of translation errors and to increase
the coverage, we propose an algorithm to generate graphs of words from dif-
ferent translations. We also propose an algorithm to parse graphs of words
with the statistical semantic model. The experimental results confirm the
good behavior of this approach using French and English as input languages
in a spoken language understanding task that was developed for Spanish.
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1. Introduction

Spoken Language Understanding (SLU) is an important challenge in
human-machine interaction systems (Hahn et al., 2010; Raymond and Ric-
cardi, 2007; Tür and Mori, 2011). In particular, SLU is a key component of
Spoken Dialog Systems. Although many of the SLU systems are rule-based,
there has been a growing interest in statistical modelization, which has pro-
vided good results (Maynard and Lefèvre, 2001; Segarra et al., 2002; He and
Young, 2006; Lefèvre, 2007; De Mori et al., 2008). Statistical models have
the advantages that they can be automatically learned from training sam-
ples and can accurately modelize the variability of semantics in spontaneous
speech. Unfortunately, however, it is necessary to have a segmented and la-
beled training corpus that in most cases must be manually generated. This
is a very time-consuming task which makes the adaptation of SLU systems
to different tasks or languages difficult and expensive. In order to address
this problem, many efforts have been made to develop semi-supervised and
unsupervised learning techniques for semantic modelization (Tür et al., 2005;
Ortega et al., 2010). These techniques can help to learn models from unla-
beled corpora, in some cases taking advantage of the large amount of data
that can be extracted from the web and other linguistic resources (Tür et al.,
2011; Heck and Hakkani-Tür, 2012).

When the problem is to adapt a SLU system that was developed for
one language to another language, it would be desirable to take advantage
of the effort made for the original language and not have to replicate the
work for the other language. This issue has also been addressed in other
areas of Natural Language Processing such as Part-Of-Speech (POS) tagging
(Täckströ et al., 2013). In this work, a projection of POS annotation from
English to other resource-poor languages is done.

The multilingual approaches to SLU can be grouped in two classes, so-
called test-on-source and train-on-target. In the test-on-source approach,
there is a SLU system developed for a source language and the test are
utterances in another language. The process consists of translating the test
sentence into a sentence in the source language and performing the SLU of
this translated sentence by using the SLU system in the source language.
In the train-on-target approach, a new SLU model is trained in the target
language, which is the language in which the test utterances are pronounced.
To do this, it is necessary to translate the training corpus from the original
language to this new language and to learn the corresponding SLU models.
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It must be noted that the translation of the training corpus not only consists
of the translation of the sentences but also in the segmentation and semantic
labeling of the training sentences into this new language. Once we have a
model in this target language, the understanding process can be solved as in
the monolingual SLU because the input utterance and the models are in the
same language. Some works that focus on the adaptation of SLU systems to
other languages have been presented in the last few years (Servan et al., 2010;
Lefèvre et al., 2010; Jabaian et al., 2013; Calvo et al., 2012; Garćıa et al.,
2012). The work presented in this paper addresses the problem of developing
a multilingual SLU system that avoids the effort of manually relabeling the
corpus in other languages. In a previous work, we studied the possibility of
translating the training corpus to learn models in the target language (Garćıa
et al., 2012), which is a train-on-target strategy.

In this work, we propose an approach to multilingual Spoken Language
Understanding where there is a SLU system in a source language and the
user turns are translated from the target language into this source language,
which is a test-on-source strategy. An essential aspect to ensure the viability
of systems of this kind is the performance of the translation process. If we use
Statistical Machine Translation (SMT) systems, such as MOSES (Koehn and
et al., 2007), it is necessary to have a parallel corpus in both languages that
must be specifically designed for the domain, and this corpus is not always
easy to obtain. On the other hand, we could use general-purpose translators
that can be found on the web. The problem is that these translators often
generate many errors; however, by using different translators and combining
these translations, we may be able to correct the errors as well as improve
the coverage. This is why we have focused our work on obtaining good
mechanisms to combine different translations and on determining how to
process them in the semantic module of a multilingual Spoken Dialog System.
The SLU system presented here is based on a decoupled architecture in which
there is a first phase consisting of the translation process and a second phase
that corresponds to the semantic decoding process. In order to be able to
recover errors generated in the translation phase, multiple hypotheses are
conveyed to the second phase by means of a graph.

We have developed an algorithm to obtain a graph of translations from
the sentences generated by the translation process in the first phase. This
graph represents a finite language that is a generalization of the translated
sentences. In other words, the language represented by the graph not only
contains all the sentences generated by the translation process, but it also
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contains other additional sentences. For the second phase, the semantic
decoding, we have developed a graph-parsing algorithm that supplies the
best path in the graph of translations according to the stochastic semantic
model.

In summary, our work proposes a test-on-source strategy to adapt SLU
systems developed for one language to another language with the following
main contributions:

• The use of two alternative translation processes to obtain different
translations of the user utterance: we propose the use of general-
purpose web translators and also the use of a SMT system (MOSES)
estimated from a parallel corpus.

• The construction of a graph of words from these different translations
using a proposed graph-construction algorithm.

• The application of a graph-parsing algorithm that supplies the best
path in the graph of words according to the understanding model.

We have applied this approach to the SLU module of a Spoken Dialog
System for the DIHANA task (Bened́ı et al., 2006), which consists of an
information system about train timetables and fares in Spanish. To evaluate
the multilingual approach, we have acquired a French and English corpus for
testing, which consists of written and spoken sentences.

2. Related work

2.1. Using graphs of words for monolingual SLU

The most extended approach to Spoken Language Understanding consists
of an in-cascade architecture in which the SLU module is fed with the output
of the Automatic Speech Recognizer (ASR). Most of the SLU methods are
not designed to handle uncertainty in the input; they use just the 1-best
output provided by the ASR. However, there has been growing interest in
better exploiting the information that can be extracted from the ASR as well
as its n-best hypotheses, either in the form of a Word Lattice (WL) or in the
form of a Word Confusion Network (WCN).

Both WLs and WCNs are graph structures (with words attached to their
arcs) that represent the uncertainty of the recognition process. The dif-
ference between them lies in their structure: while WLs can have different
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topologies, in a WCN all the arcs must go from one node to the following
one. Nevertheless, it is possible to convert a WL into a WCN, following the
algorithm explained in Hakkani-Tür et al. (2006).

It is also possible to build a Word Lattice from a set of n-best sentences.
For example, an automaton (which in this case is equivalent to a WL) that
represents the finite language that includes the same n sentences, is presented
in Daciuk et al. (2000). However, it might be interesting to generalize this
language according to the structures that appear in the n-best sentences. Fol-
lowing this idea, a Grammatical Inference algorithm can be used to generate
an automaton that represents an extra-language induced from the original
set of n sentences.

An approach to SLU that is based on finite state transducers is presented
in Raymond et al. (2006). A combination of a word-to-concept transducer
and a lattice of words (generated by the ASR) is proposed. The output of the
system is a weighted n-best list of hypotheses. The weights of the hypotheses
are obtained from the acoustic, linguistic, and semantic confidence measures.
The experimentation shows that this approach, which involves dealing with
multiple input hypotheses as well as with variability in the lexical realization
of concepts, provides good performance.

In Hakkani-Tür et al. (2006), a postprocess of the lattices generated by the
ASR is performed in order to obtain a better representation of the variability
of the different hypotheses supplied by the ASR. This is done by constructing
WCNs from a combination of sub-lattices. This way, an accurate general-
ization of the input hypotheses to the understanding process as well as a
reduction in the size of the input networks provide a better performance of
the SLU system.

Recently, some works that adapt statistical discriminative approaches to
deal with weighted networks as input have been presented. In Henderson
et al. (2012), an application of Support Vector Machine (SVM) classifiers to
directly process WCNs in a single pass is proposed. The authors show that
this approach outperforms the results obtained with one input hypothesis
and with n-best hypotheses.

The good results obtained by using Conditional Random Fields (CRFs)
for SLU have prompted some authors to extend the CRF techniques to ac-
cept WCNs as input (Tur et al., 2013). They use the WCNs for both CRF
training and decoding. This approach is based on the idea that the WCNs
have a special topology according to which every arc must go from one node
to the following one. Hence, each set of arcs between two nodes can be seen
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as a “bin”, the size of which can be limited beforehand to avoid WCNs that
are too large. Then, the linear prediction functions of the CRF model can
be expressed in terms of all the possible n-grams induced by neighboring
bins. Moreover, the use of WCNs for training allowed the authors to mod-
elize the uncertainty incorporated by the ASR process and led them to an
improvement in the experimental results.

Another interesting work (Deoras et al., 2013) is around joint decoding of
words and semantic tags on word lattices. They demonstrated significant im-
provements in both recognition and semantic tagging accuracy over cascade
approach.

2.2. Multilingual SLU

In Jabaian et al. (2013), different approaches based on both test-on-source
and train-on-target strategies are proposed and applied to the MEDIA cor-
pus. MEDIA (Devillers et al., 2004) is a corpus for hotel reservation and
tourist information in French. In this work the source language is French
and the target language is Italian. They study the possibility of infering
stochastic translators from a small subset of aligned sentences, which also
permits translating the semantic labeling. For the SLU process, they use
CRFs and Statistical Machine Translation models. They provide similar
results by considering test-on-source and train-on-target.

In Garćıa et al. (2012), a train-on-target approach was applied to the
MEDIA corpus, with Spanish as the target language. In this work, different
general-purpose web translators are used for the translation of the training
sentences; that is, no specific translation models are learned for the task.
Using two kinds of semantic modelization (CRFs, and a two-level statistical
model), the authors show that the reduction in system performance from
monolingual to multilingual is lower than 15%. In Misu et al. (2012) a train
on target approach is presented in which a set of training samples for training
the SLU models in the target language are collected and selected in a semi-
supervised way.

In He et al. (2013), an adaptive training to address the problem of mis-
matching between training/testing conditions is proposed. This mismatch is
due to the fact that the training corpus into the original language is usu-
ally composed of clean data, while the input sentences (after recognition and
translation) are noisy data. The authors propose an approach that does not
need any training data in the other language. It consists of first translat-
ing the training corpus into the second language and then translating the
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sentences back to the original language. This way, the new training corpus
is enriched by the distortions generated by the translation process. In their
experiments with the ATIS corpus in English and Chinese, the authors show
that this method improves the results of systems trained with only clean
data.

Recently, Stepanov et al. (2013) presented a study of the effect of us-
ing corpora of domains that are different from those of the SLU system
domain (e.g news versus conversations) for training the translation mod-
els. This happens because it is difficult to have in-domain corpora when we
have to learn models for new tasks, and it is usual to search for corpora
on the web or in other repositories. The authors propose some adaptation
techniques to obtain more accurate translations taking into account the in-
domain characteristics. They work with the LUNA corpus (Italian-Spanish
and Italian-Turkish) (Dinarelli et al., 2009), and they use general-purpose
web translators (such as Google translator) and stochastic translators that
are specifically learned for the task, using MOSES.

3. The proposed architecture for multilingual SLU

To address the multilingual SLU problem, we propose a sequential ar-
chitecture in which the communication between its different modules is per-
formed by means of graphs that represent multiple hypotheses. This way,
mistakes made in an earlier module of the system (where the knowledge rep-
resented in the other modules is not taken into account) can be recovered
afterwards when more information is available. Our approach for minimizing
these errors consists of providing more than a single hypothesis among the
different parts of the process and weighting them in a convenient form. A
compact and homogeneous way of transmitting this information is via graphs
of linguistic units, which will vary based on the information available at each
moment.

The SLU problem can be approached by finding the sequence of concepts
Ĉ that corresponds to the meaning of a given utterance A. Considering a
stochastic modelization of the semantics, this can be expressed as:

Ĉ = argmax
C

p(C|A) (1)

Let u be the user’s language, and let s be the language in which the
original SLU system was trained. Let Ws be the sequence of words in the
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Figure 1: General architecture of the multilingual SLU system.

language s corresponding to the utterance A. By considering this variable,
Equation 1 can be rewritten as:

Ĉ = argmax
C

max
Ws

p(Ws, C|A) (2)

Applying the Bayes’ Rule, the probability of this equation can be rewrit-
ten as:

Ĉ = argmax
C

max
Ws

p(A|Ws, C) · p(Ws, C)

p(A)
(3)

Making a reasonable assumption about the independence of the variables
A and C, and taking into account that the maximization is independent from
p(A), Equation 3 can be rewritten as:

Ĉ = argmax
C

max
Ws

p(A|Ws) · p(Ws, C) (4)

To obtain the best sequence of concepts Ĉ, we adopt the test-on-source
approach, following a decoupled architecture which sequentially applies the
different knowledge sources (Figure 1). First, the input provided by the
user in the language u is recognized and translated into the language s by
means of a Speech Translation process. In order to minimize the effects of
errors made in this stage, the output of the speech translation process is
a graph of words that represents a set of possible translations of the input
sentence and its probability p(A|Ws). Then, this graph is processed by a
Semantic Decoding process which works in the language s and is able to
deal with graph representations. The output of the Semantic Decoder is a
semantic interpretation of a translation of the original sentence based on the
probability p(Ws, C).
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3.1. Speech translation

In this work, we propose two methods for implementing the architecture
described. Both methods differ in the way that the Speech Translation pro-
cess is performed. The first one is based on the combination of outputs from
a set of general-purpose web translators (Figure 2); in the second one, a
Statistical Machine Translation system (MOSES) is trained using an auto-
matically collected task-dependent parallel corpus (Figure 3). However, both
implementations share the SLU system in the system’s language s, which is
able to accept graph representations as input and processes them in order to
obtain a semantic representation of a translation of the user sentence.

In both methods, the Speech Translation process starts with the recogni-
tion of the input utterance by means of an ASR. Then the output of the ASR
is translated into the the system’s language s by using one of the following
strategies.

The first option, which uses general-purpose web translators, is shown in
Figure 2. We use a set of translators because we are interested in transmit-
ting the variability generated by different translations of the user sentence,
thereby increasing the coverage of the system and minimizing the effect of
the errors made in this step. The second option for the translation process
consists of training a task-dependent SMT system (Figure 3). The problem
in this case is how to collect the parallel corpus needed to train this system.
The process for obtaining this parallel corpus is discussed in Section 4. As it
happened with the first option, it is convenient to provide more than a single
translation of the user sentence in order to reduce the impact of translation
errors in the forthcoming modules. Therefore, when the second option is
performed, the n-best translations are obtained from the SMT system.

A third module concludes the Speech Translation process in both meth-
ods: the Graph of Words Builder module. This module brings together the
multiple outputs provided by the previous module and builds a graph of
words. This graph not only represents the sentences supplied by the transla-
tors, it also represents a reasonable generalization of them. Hence, building
the graph of words this way constitutes a Grammatical Inference process in
which the syntactic structures of the original sentences are generalized. Ev-
ery string Ws that belongs to the language of the graph is weighted with its
probability of being a translation of the original utterance A, which is the
first term of Equation 4. As a result of the generalization process, the se-
mantic decoder can consider and analyze some sentences that were not in the
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Figure 2: Architecture based on the combination of the outputs of general-purpose web
translators.

Figure 3: Architecture based on a MOSES translator.

original set of translations but that are made of pieces of them. In the exam-
ple in Figure 4, the translation ”puede repetir a qué hora sale el primero” is
the most correct for the input French sentence ”pouvez-vous répéter à quelle
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heure part le premier” and can be obtained from the graph of words.

3.2. Semantic Decoding

The Semantic Decoding process is common to both implementations of
the Speech Translation process (see Figure 2 and Figure 3). It provides
a semantic interpretation of the input utterance, which is chosen from the
language represented by the graph of words. In other words, it takes a
weighted graph of words as input and provides a sequence of words and
its semantic interpretation as output. This sequence of words is one of the
paths in the input graph, and the semantic interpretation is represented as
a segmentation and labeling in terms of concepts of this sequence of words.

This Semantic Decoding process works in two steps, which are performed
taking into account the information of a stochastic semantic model that is
trained in the system language s. Let Ws be the translated sentence, the
probability p(Ws, C) is calculated by considering the stochastic semantic
model:

p(Ws, C) = p(Ws|C) · p(C) (5)

The stochastic semantic model provides a language model of concepts,
which allows to compute p(C), and a model that associates word sequences
to sequences of concepts, p(Ws|C). The first step of the Semantic Decoding
process builds a graph of concepts from the input graph of words. We call it a
graph of concepts because its arcs are labeled with pairs (sequence of words,
concept). To obtain these arcs, a Dynamic Programming (DP) algorithm is
performed.

Let C be the set of concepts, and let c ∈ C be a concept. This DP
algorithm takes into account both the probability p(A|Ws) provided by the
graph of words, and the probability of a sequence of words between posi-
tions m and n, Wm,n

s , given a concept p(Wm,n
s |c), which is supplied by the

stochastic semantic model. It is worth noting that, in this case, the con-
ditional probability of a sequence of words attached to a concept c given
that concept, p(Wm,n

s |c) is equivalent to the conditional probability of this
sequence of words given the full sequence of concepts C, since in the final
result there will not be any overlapping between the sequence of words asso-
ciated to the concepts. Therefore, every word of the final result will be only
attached to one concept. This graph of concepts is a concise representation
of the possible semantic interpretations of the sentences encoded in a graph
of words.
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The second step of the Semantic Decoding process takes a graph of con-
cepts and analyzes it in order to find the best sequence of concepts Ĉ. In
order to fulfill Equation 4, the probabilities represented in the graph of con-
cepts are combined with the probability of the sequence of concepts p(C).
Hence, Ĉ can be obtained by searching for the path in the graph of con-
cepts that maximizes Equation 4. The result of this step is not only the best
sequence of concepts, it is also a translation of the input utterance and a
segmentation of it in terms of concepts.

Finally, the segmentation obtained in this second step is converted into a
standard frame representation by discarding semantically irrelevant segments
and reordering the rest of the segments in a canonical way. This process is
done by the Frame Converter module shown in Figure 1.

4. Automatically learning a task-dependent translation system

The use of SMT systems requires the availability of a large enough amount
of parallel training data to adequately train the parameters of the transla-
tion models. However, obtaining task-specific training data by translating
the original data by hand is very expensive and time-consuming. A solution
to this problem is to use several general-purpose web translators to automat-
ically translate the task-specific training sentences into another language.

In (Garćıa et al., 2014) we presented an approach that attempts to take
advantage of these translation resources in order to train a task-dependent
translation system. In other words, given the training sentences in the SLU
system language s, these sentences are translated to the user language u by
using several general-purpose web translators. This way, we build a parallel
corpus where each sentence has different translations associated to it. From
this parallel corpus, we train a SMT model (using MOSES) that is specific for
the task. It should be noted that by means of this process, the learned trans-
lator can represent and modelize the variability generated by the different
general-purpose web translators; however it could include some translation
errors.

Due to the difficulty of the problem, we cannot guarantee that the best
translation obtained by this SMT model is consistent with the meaning of
the original sentence. Therefore, it is convenient for the SMT system to
supply more than one hypothesis to the SLU module. Moreover, we do not
think that separately processing the n-best translated sentences (for each
input sentence) generated by the translator is the best solution; it would be
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better to adequately combine segments of different translations. Thus, we
have developed an algorithm to build a graph of words from the set of n-best
translated sentences as described in the following section.

5. Generation of the graphs of words

The process for generating a graph of words in the system language from
a set of translations is as follows:

1. Alignment of the alternative translations. The set of translated sen-
tences is processed using a Multiple Sequence Alignment (MSA) algo-
rithm resulting in an alignment matrix.

2. Construction of the graph of words. From the alignment matrix, a
graph of words that represents a generalization of the multiple trans-
lated sentences is obtained.

A Multiple Sequence Alignment (MSA) algorithm generates an alignment
of sequences of symbols that minimizes the global number of edit operations
among all the sequences. Although some of the MSA algorithms were orig-
inally developed for the alignment of sequences of biological elements, they
can be adapted to other tasks like speech recognition or translation (Sim
et al., 2007; Bangalore et al., 2001). The approach presented in this paper
uses this kind of algorithm to obtain an alignment of the set of translated sen-
tences, and this alignment is post-processed to generate the graph of words.
Specifically, we have adapted the ClustalW MSA algorithm (Larkin et al.,
2007), considering that the set of symbols are the words and that all symbol
substitutions are equiprobable.

An example of an alignment matrix generated by our adaptation of the
ClustalW MSA algorithm is shown in Figure 4. Each row in the matrix rep-
resents an aligned sentence, and the columns represent the synchronization
points. The special symbol ’-’ represents that no word of the sentence has
been aligned in this position with any other word of the other sentences.
From this alignment, we build a graph of words representing not only the
translated sentences but also an extra-language that includes the regularities
or common segments of words as well as alternative translations of some seg-
ments. In the example in Figure 4, the language represented by the graph
of words includes the sentence ”puede repetir a qué hora sale el primero”,
which is not in the set of translated sentences
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source sentence pouvez-vous répéter à quelle heure part le premier
(could you repeat what time the first one departs at)

poded a qué hora sale el premier
(1) puede repetir a qué hora marcha el primero

multiple poded a qué hora sale el premier
translations puede repetirse a qué hora parte el primero

pueda repetirse a qué hora parte el primero
puede me repetir a qué hora marcha el primero

(2)
- - poded a qué hora sale el premier

puede - repetir a qué hora marcha el primero
alignment - - poded a qué hora sale el premier
matrix puede - repetirse a qué hora parte el primero

pueda - repetirse a qué hora parte el primero
(3) puede me repetir a qué hora marcha el primero

Figure 4: Steps for obtaining the graph of words from the original sentence ”pouvez-vous
répéter à quelle heure part le premier”, (”could you repeat what time the first one departs
at”).

To build this graph of words from the alignment matrix, the following
algorithm is used:

1. A set of nodes N (corresponding to the columns of the matrix plus one
for the initial node) is created.

2. If it does not already exist, an arc is created for each cell in each
row that contains a word. The origin node of this arc is the one that
represents the column of the previous word in the same sentence. The
destination node of the arc is the one that represents the column to
which the cell belongs. The arc is labeled with the word in the cell
and its frequency is set to 1. If the arc already exists, its frequency is
increased by 1.

3. The frequencies of the arcs are normalized to represent probabilities.
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Thus, the product of the weights of all the arcs in a full path repre-
senting the sentence Ws in the system language may be considered to
be the probability p(A|Ws).

6. Semantic decoding

As stated in Section 3.2, the Semantic Decoding is completed in two steps.

6.1. Step 1

Since every arc in the graph of words is labeled with a word, any path
between any pair of nodes represents a segment of words. Some of these
segments Wm,n

s are semantically relevant to one or more concepts of the
set of concepts C defined for the task. Therefore, it is possible to build a
new graph in which the nodes are the same as the graph of words and the
arcs are labeled with sequences of words and the concept to which they are
associated. Also, each of these arcs can be weighted with a combination
of the probability of the path in the graph of words, p(A|Wm,n

s ), and the
probability of the segment given a concept, p(Wm,n

s |c).
To compute the probability of a sequence of words given a concept p(Wm,n

s |c),
a stochastic model of the lexical structures in the target language associated
to each concept is needed. Training an n-gram language model (LM) for each
concept (i.e. the set {LMc | c ∈ C }) fulfills this requirement. In order to
estimate these LMs, it is necessary to have a segmented and labeled training
corpus. For our semantic decoding algorithm, we have represented these LMs
as stochastic finite state automata.

Given the acyclic nature of the graphs of words, it is possible to establish
a topological order between their nodes. This topological order allows these
graphs to be processed from left to right.

Formally, we define a graph of concepts GC = (NGC , EGC) built from a
graph of words GW = (NGW , EGW ) and the set of LMc for each c ∈ C as:

• NGC = NGW

• EGC = {(i, j,W i,j
s , c, wgt) | wgt > wgt′ ∀(i, j,W ′i,j

s , c, wgt′)},
where the 5-tuple (i, j, W i,j

s , c, wgt) represents an arc in the graph
of concepts, where i and j are respectively the source and the ending
nodes of the arc (i < j); W i,j

s is a sequence of words associated to a
path from node i to node j in the graph of words; c is the concept to
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which the sequence of words is associated; and wgt is the weight of the
arc, defined as wgt = p(A|W i,j

s ) · p(W i,j
s |c).

We can build this set of arcs EGC without any loss of information in the
following way. For each concept c ∈ C and each state qc in the automaton
representing LMc, the path in the graph of words that maximizes p(A|W i,j

s ) ·
p(W i,j

s |c) for any pair of nodes i, j with i < j, arriving to the state qc, must be
found. This can be done by means of the following Dynamic Programming
(DP) algorithm:

M(i, j, qc) =

1 if i = j ∧ qc is the initial state of LMc

0 if i = j ∧ qc is not the initial state of LMc

0 if i > j
max

∀a∈EGW :dest(a)=j
∀(q′c,wd(a),qc)∈LMc

M(i, src(a), q′c) · p(q′c,wd(a), qc) · wt(a)

otherwise

(6)

Where a is an arc in the graph of words and dest(a) refers to the destination
node of the arc a in the graph, src(a) refers to its source node, and wd(a)
and wt(a) refer to the word and the weight attached to the arc, respectively.
Also, (q′c,wd(a), qc) represents a transition from the state q′c to the state qc
labeled with wd(a) in the automaton LMc. Thus, M(i, j, qc) represents the
best path in the graph of words GW that starts in the node i, ends in the
node j, and its underlying sequence of words reaches the state qc of the model
LMc.

To compute Equation 6, a DP matrix must be filled. It is important for
the DP algorithm to keep track of the words that constitute the paths that
maximize the expression.

Once the DP matrix has been filled, the set of arcs of the graph of concepts
can be obtained as follows:

∀i, j, i < j ∈ NGC ,∀c ∈ C :
(i, j,W i,j

s , c, wgt) ∈ EGC if wgt = max
qc∈LMc

M(i, j, qc)
(7)

where W i,j
s represents the sequence of words underlying the path in the graph

of words that satisfies the maximization given i, j, and c. This definition
allows us to find the set of paths between each pair of nodes i, j in the graph
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of words that maximizes the combined probability of the translation and
semantic models for each of the concepts of the task. Figure 5 shows a piece
of a graph of concepts GC = (NGC , EGC) for the DIHANA task.

6.2. Step 2

The final step for the semantic decoding consists of finding the best se-
quence of concepts Ĉ. This is now equivalent to finding the full path in the
graph of concepts that maximizes the combined probability of the path and
the sequence of concepts, p(C), associated to the path. The probability p(C)
can be computed by means of a LM of sequences of concepts. This best
path in the graph not only provides the best sequence of concepts Ĉ, it also
provides the sentence associated to it and a semantic segmentation of this
sentence.

It is worth noting that no data in the user language is required to perform
this semantic decoding procedure since the semantic model is trained only
with data in the target language. This allows this methodology to be easily
ported to many languages.

Figure 5: A piece of a graph of concepts (probabilities omitted for clarity).

7. The corpus

7.1. DIHANA corpus

We have evaluated this methodology in the framework of the DIHANA
task (Bened́ı et al., 2006). The goal of the DIHANA task is to access a Spoken
Dialog System by phone to ask for information about railway timetables
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and fares. For training and testing purposes, a corpus of 900 dialogs in
Spanish acquired by 225 speakers using the Wizard of Oz technique was
generated, with a total of 6,229 user turns (10.8 hours of speech uttered).
The vocabulary has a size of 811 words, and the average number of words
per turn is 7.6. Three scenarios were defined and posed to the speakers:

• In the first scenario, the aim of the user is to obtain the timetables for
a one-way trip.

• In the second scenario, the users were told to obtain the price of the
tickets (and optionally the timetables) of one-way trains.

• The third scenario was analogous to the second one but for a round
trip.

In order to use this corpus for SLU tasks, a semantic labeling was per-
formed. Thirty semantic labels were defined, and all the user turns were
manually and completely segmented and labeled in terms of these labels.
The labeling process as well as the definition of the set of semantic labels
itself were developed in such a way that each sentence is associated to a se-
quence of semantic labels and a segmentation of it in terms of these labels
(one semantic label per segment).

For example, the sentence in Spanish ”Me podŕıa decir los horarios de
trenes para Barcelona este jueves?” (”Could you tell me the train timetables
to Barcelona next Thursday?”) would be segmented this way (the special
symbols <> denote a question about the concept that is between the sym-
bols):

me podrı́a decir (Could you tell me): courtesy

los horarios de trenes (train timetables): <time>

para Barcelona (to Barcelona): destination city

este jueves (next Thursday): date

Then, a set of rules translates this intermediate representation in terms of
frames, which consist of a set of concepts and their associated attribute-value
pairs. This is performed by the Frame Converter module in Figure 1. Since
the intermediate language is close to the frame representation, this module
only requires a small set of rules to construct the frame. This process consists
of the following: the deletion of irrelevant segments of the input sentence; the
reordering of the relevant concepts and attributes that appeared in the user
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sentence following an order which has been defined a priori; the automatic
instantiation of certain task-dependent values, etc.

For example, the sentence ”Me podŕıa decir los horarios de trenes para
Barcelona este jueves?” (”Could you tell me the train timetables to Barcelona
next Thursday?”) is translated as follows:

(HOUR)

Destination-City : Barcelona

Departure-Date: [Thursday-2014-11-12]

Table 1 shows some characteristics of the semantically labeled corpus.

Table 1: Characteristics of the semantically labeled corpus.

Number of user turns: 6,229
Total number of words: 47,222
Vocabulary size: 811
Average number of words per user turn: 7.6
Total number of semantic segments: 18,588
Average number of words per semantic segment: 2.5
Average number of segments per user turn: 3.0
Average number of samples per semantic unit: 599.6

7.2. Multilingual DIHANA corpus

In the test-on-source approach to Multilingual Spoken Language Under-
standing, the input test sentences are translated to the original language of
the SLU system. This means that the SLU module should be fed by a trans-
lation module that translates the input utterances. One option is to develop
a good-performance task-specific Machine Translation system, since mistakes
during the translation process can produce many errors in the SLU output
(see Section 4).

This task-specific Machine Translation system must be estimated from
a parallel corpus. In (Garćıa et al., 2014), we presented a method to ob-
tain a parallel corpus using general-purpose web translators; specifically, we
presented how to obtain two parallel French-Spanish and English-Spanish
corpora, from the original corpus in Spanish, the DIHANA corpus.
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Since these translators usually make many errors, our proposal was based
on the combination of several of them. Because several hypotheses are gen-
erated by different translators, there are more possibilities for the correct
translation to appear in one of the translated sentences or in a combination
of them. Therefore, the input test sentences are translated into the original
language of the SLU system using the different general-purpose web transla-
tors. This way we have several hypotheses for each sentence in the parallel
corpus. An example is shown in Figure 6.

Spanish:
Quisiera horarios para el próximo sábado a Barcelona por la ma~nana

French:
Serait planifier pour le samedi matin à Barcelona

J’aimerais planifier pour samedi prochain à Barcelona le matin

Il voulait horaires pour le prochain samedi à Barcelona par le matin

Il voudrait des horaires pour samedi prochain à Barcelona le matin

English:
I would like schedule for Saturday morning to Barcelona

I would like to schedule for next Saturday to Barcelona in the morning

It wanted schedules for next Saturday to Barcelona in the morning

Would want schedules for next Saturday to Barcelona in the morning

Figure 6: Example of multiple translations.

8. Experiments and results

The Spanish corpus was split into a training set of 4,889 turns, a devel-
opment set of 340 turns and a test set of 1,000 turns. Both the development
and test sentences were manually translated into English and French. All of
the English development and test sentences were uttered by English native
speakers. For the French dataset, 500 of the test sentences were uttered by
native French speakers. The names of Spanish cities were changed for names
of cities in English and French, respectively. The word error rates obtained
by the Google speech recognizer were 17.6 for Spanish, 20.0 for English and
19.5 for French.

We performed a series of experiments under the test-on-source strategy for
Multilingual Spoken Language Understanding, where the stochastic semantic
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model was learned using the training corpus in Spanish, and the English test
set and the French test set were used for testing. For each test set, three
kinds of experiments were performed: a first series of experiments where
the Speech Translator was based on the combination of outputs from a set of
four general-purpose web translators (Bing, Google, Lucy, Opentrad), Figure
2; a second series of experiments where the Speech Translator was based
on a Statistical Machine Translation system (MOSES), Figure 3, that was
estimated using an automatically collected task-dependent parallel corpus
(see Section 4); and, a third series where the Speech Translator was based
on the combination of the general-purpose translators and MOSES.

For all the experimentation, we used Witten-Bell bi-grams for both lan-
guage models: the models for the sequences of words for each concept and
the model for the sequences of concepts.

Some meausures were defined in order to evaluate the system:

• CER (Concept Error Rate) is measured as the minimum edit distance
(insertions, deletions, and substitutions) between the sequence of con-
cepts in the hypothesis and the sequence of concepts in the reference,
normalized by the length of the concepts at the reference. This measure
is calculated from the output of the Semantic Decoder, Figure 1.

• FSER (Frame-Slot Error Rate) is measured as the minimum edit dis-
tance (insertions, deletions, and substitutions) between the slots of the
frames in the hypothesis and the slots of the frames in the reference,
normalized by the number of slots at the reference. Slots refer to con-
cepts and their associated attribute-value pairs. This measure is cal-
culated from the output of the Frame Converter, Figure 1.

As we explained at the end of Section 3.2, the Frame Converter takes the
output of the Semantic Decoder and generates the understanding output in
terms of frames. This process is done by discarding semantically irrelevant
segments and reordering the rest of the segments in a canonical way.

For reference purposes, the monolingual Spanish SLU results for the out-
put of the Google speech recognizer were 14.2 of CER and 12.8 of FSER.

In order to evaluate the quality of the translations from English and
French into Spanish using semantic knowledge, we show results using the
WER and BLEU standard scores. Both measures were taken from the sen-
tence obtained after the understanding process (the output of the Semantic
Decoder).
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8.1. Experiments with general-purpose web translators

Table 2 shows the results of the first series of experiments for English
(general-purpose web translators) considering the correct transcription of
the utterances and the output of the ASR.

Table 2: Results for English using general-purpose web translators

Text Speech
Translators CER FSER WER BLEU CER FSER WER BLEU

1000 24.1 15.2 45.6 35.2 35.9 28.8 55.0 25.2

0100 24.5 17.5 47.0 37.0 39.7 33.0 56.5 28.6

0010 32.3 19.6 52.3 25.6 40.8 33.1 58.4 21.7

0001 31.9 26.5 54.2 20.6 40.4 38.3 59.8 18.3

best-SemLM 26.4 18.6 50.9 25.3 35.3 30.3 56.7 21.2

1100 20.7 11.9 43.2 40.5 32.2 25.9 52.4 30.9

1010 21.7 12.9 43.5 38.4 32.1 27.1 51.9 28.9

1001 22.1 14.4 43.5 36.8 32.7 27.6 52.7 27.3

0110 20.8 11.8 44.1 38.8 33.5 27.2 52.6 30.8

0101 24.0 18.1 45.3 37.9 34.4 30.1 53.7 30.0

0011 28.1 19.6 48.2 29.0 37.0 30.6 55.7 24.3

1110 19.2 10.6 42.5 41.1 29.9 25.0 51.6 31.9

1101 21.0 12.8 42.5 40.6 32.6 26.5 51.6 31.4

1011 21.5 13.9 43.5 38.2 31.4 26.2 51.8 30.0

0111 19.9 12.2 42.8 39.6 30.7 25.2 51.2 31.4

1111 20.8 12.9 43.6 39.2 31.8 26.3 53.1 30.9

The first column (labeled as Translators) represents the different combi-
nations of the four translators used. For example, the last row (labeled as
1111) represents the use of the four translators for generating the graph of
words that was used as input for the semantic decoding module. The five
first rows can be considered as baseline for the rest of experiments because
only one translator is used; the fifth row (best-SemLM) shows the results
when the best translator, according to the semantic LM, is selected for each
sentence.

Table 2 shows the different measures (CER, FSER, WER, and BLEU)
both for correct transcription (text) and for the output of the ASR (speech).
It can be observed that in general, an increase in the number of translators
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(i.e. an increase in the number of hypotheses) provided better results in
terms of CER and FSER, as expected. It is clear that some translators were
more appropriate for the task than others, but, in general, the use of more
than one translator provided better results than those considered as baseline.
That is true even for the results of best-SemLM, where the best translator for
each sentence according to the semantic LM is selected. However, the use of
the combination of all translators did not provide the best results, Actually,
in the experiments the best results corresponded to the combination 1110.
This can be explained by the fact that some errors in the translation process
become redundant when they are produced by two or more translators, giving
high probability to these erroneous hypotheses.

It should be noted that there were better results in FSER than in CER.
This is because, in CER, there are some concepts that are not semantically
relevant in this task, such as ”courtesy” and ”null”, which are an important
source of errors. These concepts are ignored in the case of the frame repre-
sentation (measured as FSER), which only represents the relevant semantics
of the task. On the other hand, the BLEU and WER measures represent
how far the output sentence (after the translation and semantic decoding
process) is from the expected correct Spanish sentence. Although figures
are low, the important point is that many errors in words have no influence
on the semantics of the sentence. It is worth noting that when using more
translators the results in terms of BLEU and WER improve, which means
that the final translation is better.

As Table 2 also shows, when considering the output of the ASR, there
were, logically, more errors than when the correct transcription of the utter-
ance was considered. The tendency of the results depending on the number
of translators were similar to those with the correct transcriptions. That is,
an increase in the number of translators provided better results in terms of
CER and FSER.

Table 3 shows the results of the experiments with French as the input
language. The behavior of the system in terms of the number of translators
is similar to the experiments with English. In contrast to the English case,
the best combination in the French case was the use of all of the translators
(four translators, row 1111). The confidence intervals at the 95% confidence
level for the best results in Tables 2 and 3 are around ±1.5 for text and
±1.8 for speech. For all the experiments shown in this paper the confidence
intervals are similar to these.
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Table 3: Results for French using general-purpose web translators

Text Speech
Translators CER FSER WER BLEU CER FSER WER BLEU

1000 30.7 23.1 52.4 30.1 35.3 30.7 58.7 23.1

0100 33.0 25.4 54.6 27.8 37.3 33.5 61.2 22.7

0010 27.5 18.5 50.6 30.1 30.4 26.1 58.4 21.1

0001 30.6 20.0 54.3 24.5 32.4 27.3 61.5 17.7

best-SemLM 28.9 20.6 52.1 28.1 32.3 29.3 62.2 19.1

1100 26.3 18.9 50.1 34.0 31.1 26.9 55.9 28.2

1010 22.7 15.4 46.5 38.3 27.7 24.4 53.8 28.9

1001 23.9 16.6 49.3 33.8 28.5 24.9 56.2 27.0

0110 24.9 18.0 47.9 36.5 29.7 26.3 55.8 28.5

0101 23.3 16.7 48.9 34.4 28.8 24.8 55.9 27.1

0011 25.0 16.5 48.7 33.5 28.7 23.9 56.8 24.4

1110 21.6 14.4 45.9 39.7 26.2 21.7 53.1 32.3

1101 21.7 14.8 47.4 37.3 26.5 22.6 53.9 30.7

1011 21.2 13.7 45.8 38.7 26.3 22.0 53.3 30.7

0111 21.2 14.4 45.7 39.2 26.7 23.0 53.3 31.0

1111 20.2 13.2 45.7 39.9 24.8 20.8 52.3 33.1

8.2. Experiments with MOSES translator

The second series of experiments was done by using a MOSES machine
translator, that was learned as explained in Section 4. Although the MOSES
translator includes some of the variability generated by the four translators
used to obtain the training samples, we studied the system performance
considering the n-best hypotheses as the output of MOSES. Table 4 shows
the results for English (for correctly transcribed sentences, and for the ASR
output) and Table 5 shows the same experiments for French.

The results using this approach were similar or slightly worse than the
previous results. It is possible that the generalization learned by MOSES
from the training samples (there are not many samples) was not enough to
deal with some variability or errors in the test utterances.

In some cases, a slight improvement in the CER, when more than 1-best
hypothesis are used, can be observed. This improvement was not always
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Table 4: Results for English using MOSES

Text Speech
n-best CER FSER WER BLEU CER FSER WER BLEU

1 21.9 12.8 44.1 38.5 31.0 24.2 53.1 27.9

2 21.2 13.3 43.5 39.0 30.6 25.0 52.7 28.1

3 22.7 14.8 43.5 38.8 31.5 26.0 52.9 27.9

4 21.4 13.4 43.5 38.8 30.9 25.4 52.8 28.1

5 22.5 14.7 43.2 39.3 31.5 25.7 52.4 28.3

Table 5: Results for French using MOSES

Text Speech
n-best CER FSER WER BLEU CER FSER WER BLEU

1 21.9 15.2 45.8 37.4 27.4 23.1 51.5 31.0

2 21.8 15.1 45.8 37.5 26.8 22.1 51.4 31.4

3 21.6 14.7 45.8 37.6 26.3 21.8 51.2 31.4

4 21.6 15.0 45.6 37.8 26.2 21.7 51.1 31.6

5 21.6 14.8 45.4 38.1 26.0 21.7 51.0 31.7

translated to FSER, possibly because the variability introduced by the n-
best is not relevant for the frame representation, because it does not affect
attribute values. In any case, the approach using MOSES in the Speech
Translation process also provided successful results.

8.3. Experiments combining general-purpose web translators and MOSES

With the intention of studying the complementarity of the two previous
proposals, we performed a new experimentation combining the output of all
the general-purpose web translators and the output of MOSES translator.
Table 6 shows the results of this combination for English and French.

These results outperform the results achieved in the two previous series of
experiments (subsections 8.1 and 8.2). Our approach for SLU, based on the
use of graphs, allows the combination of different kinds of translators, taking
advantage of the complementary information provided by each translator.
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Table 6: Results combining general-purpose web translators and MOSES

Text Speech
CER FSER WER BLEU CER FSER WER BLEU

English 19.3 11.2 41.2 42.8 28.8 23.3 50.2 33.7

French 19.5 12.1 44.8 41.1 22.9 19.0 51.6 35.3

8.4. Comparing results with CRFs

In order to compare the results obtained with other SLU approaches we
performed some experiments using a discriminative approach, Conditional
Random Fields. CRFs have been successfully used for SLU tasks (Hahn
et al., 2009). We defined a standard set of features that includes lexical
information, setting a window that incorporates the two previous and the
two following words. In this experimentation, the Speech Translation pro-
cess is done with the two approaches: using general-purpose web translators
and using MOSES. After the Speech Translation process, the understanding
process is done using CRFs.

Table 7 shows the results for English and French languages using general-
purpose web translators for the Speech Translation process.

Table 7: Results for text and speech using CRFs in both languages for the general-purpose
web translators

Text Speech
Translators CER FSER CER FSER

English

1000 24.5 17.4 33.7 29.3
0100 23.9 15.8 34.7 29.7
0010 31.2 22.2 37.3 31.0
0001 33.1 26.6 40.2 35.8

French

1000 30.1 24.3 33.6 31.3
0100 32.7 27.4 37.5 34.5
0010 26.2 22.2 30.4 31.1
0001 30.8 22.6 34.8 32.6

The best results of the Table 7 for each of the four experimentations
(English-text, English-speech, French-text and French-speech) slightly out-
perform our results using a single translator, the first 5 rows in Tables 2,

26



and 3. On the other hand, these best results of the Table 7 do not improve
the best results of the corresponding experiments of the approach presented
in this work, see Table 6. In terms of CER measure, the best results are
23.9, 33.7, 26.2, and 30.4 for CRFs and 19.3, 28.8, 19.5, and 22.9 for our
SLU approach. These results confirm our hypothesis that the use of various
translators, appropriately combined, improves the use of only one of them
separately even when CRFs are used for the understanding system, which
have become the most widely used method for SLU.

In order to better compare CRFs with the other approaches that accept
graph of words as input, we have performed another series of experiments
where CRFs are provided with multiple hypotheses, in spirit to (Deoras et al.,
2013). Table 8 shows the best results among all the possible combinations of
the four general-purpose translators.

Table 8: Results for CRFs provided with multiple hypotheses

best comb. CER FSER

English
Text 1100 22.1 16.3
Speech 1110 32.2 28.6

French
Text 0011 23.1 18.5
Speech 1011 28.9 28.6

Results show that using graph of words as input to the SLU system
improves the use of only one hypothesis also for CRFs, as expected. Even
so, the results are still lower than those of our SLU system (Table 6).

Finally, we have studied the behavior of the CRFs when the input is
provided by the 1-best of MOSES translator. Table 9 shows the results of
this approach for the English and the French languages.

Table 9: Results for text and speech using CRFs in both languages for the 1-best MOSES

CER FSER

English
Text 19.3 13.3
Speech 26.8 23.1

French
Text 21.8 16.1
Speech 24.7 23.5
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Attending the CER measure, our approach outperforms the CRF results
for French although they are lower for English-speech.

9. Conclusions

In this work, we propose a multilingual stochastic SLU system that takes
advantage of multiple translators. We have designed an architecture where
the communication between different modules is done by means of graphs.
This way, the intermediate modules have the capability of generalizing from
different hypotheses, which makes it possible to recover errors generated in
previous phases. To do this, a specific semantic-parsing algorithm has been
developed. We have proposed two test-on-source approaches for language
portability. Both methods differ in the way that the Speech Translation
process is performed. The first one is based on the combination of outputs
from a set of general-purpose web translators; in the second one, a Statistical
Machine Translation system is trained using an automatically collected task-
dependent parallel corpus. We have also studied the complementarity of
these two proposals by combining the output of all the general-purpose web
translators and the output of the Statistical Machine Translation system.

In all cases the manual effort to adapt the system to the new languages
is avoided, which was one of the objectives of the work. Consequently, an
advantage of this methodology is that it can be easily ported to many lan-
guages.

The results show that the performance of the systems is good enough,
taking into account that a translation process (usually a source of errors) is
embedded between the input sentence and the understanding module. The
results also show that the generalization inferred from the multiple trans-
lations and the inference algorithm to combine them permits some errors
generated in previous phases to be recovered. This is clear in the first group
of experiments, where the use of a combination of translations was better
than the use of each translator separately, which only considered one hy-
pothesis. On the other hand, although the BLEU and WER measured after
the translation and semantic decoding processes indicated a low performance
in terms of translation, the CER and FSER were satisfactory showing that
many errors in words have no influence on the final semantic decoding.
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Llúıs F. Hurtado received his Ph.D. degree in Computer Science from the
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Politècnica de València. He is the head of the Natural Language Engineering
and Pattern Recognition (ELiRF) research group at the same institution. He

33



has published over 100 papers in different conferences, workshops and jour-
nals being involved in many research projects. His main research interests
are focused on dialog systems, question answering and automatic learning.

Encarna Segarra received her Ph.D. degree in Computer Science from the
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