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Abstract

Molecular chaperones, also known as heat-shock proteins, refold misfolded proteins and help other proteins reach their native

conformation. Thanks to these abilities, some chaperones, such as the Hsp90 protein or the chaperonin GroEL, can buffer the

deleterious phenotypic effects of mutations that alter protein structure and function. Hsp70 chaperones use a chaperoning mech-

anism different from that of Hsp90 and GroEL, and it is not known whether they can also buffer mutations. Here, we show that they

can. To this end, we performed a mutation accumulation experiment in Escherichia coli, followed by whole-genome resequencing.

Overexpression of the Hsp70 chaperone DnaK helps cells cope with mutational load and completely avoid the extinctions we observe

in lineages evolving without chaperone overproduction. Additionally, our sequence data show that DnaK overexpression increases

mutational robustness, the tolerance of its clients to nonsynonymous nucleotide substitutions. We also show that this elevated

mutational buffering translates into differences in evolutionary rates on intermediate and long evolutionary time scales. Specifically,

we studied the evolutionary rates of DnaK clients using the genomes of E. coli, Salmonella enterica, and 83 other gamma-proteo-

bacteria. We find that clients that interact strongly with DnaK evolve faster than weakly interacting clients. Our results imply that all

three major chaperone classes can buffer mutations and affect protein evolution. They illustrate how an individual protein like a

chaperone can have a disproportionate effect on the evolution of a proteome.
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Introduction

Robustness is one of the fundamental properties of living sys-

tems (de Visser et al. 2003; Wagner 2005; Masel and Siegal

2009; Fares 2015). This property describes the ability of a

biological system to preserve its phenotype in a particular en-

vironment despite perturbations that it encounters. The ro-

bustness of a system against perturbations that are

environmental (e.g., a change in temperature) is referred to

as environmental robustness, whereas robustness against per-

turbations caused by genetic mutations receives the name of

mutational or genetic robustness. Molecular chaperones (Ellis

1987) are one of the best-known sources of both types of

robustness (Fares 2015). Chaperones, also called heat-shock

proteins, assist proteins in reaching their native conformations,

prevent protein aggregation, and refold misfolded proteins

(Young et al. 2004; Hartl and Hayer-Hartl 2009; Hartl et al.

2011). Thanks to these roles, chaperones can restore the

native conformation of proteins destabilized by environmental

perturbations, thus providing environmental robustness to or-

ganisms coping with stressful conditions. Because some
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chaperones can buffer the deleterious effects of mutations

that affect protein folding, they are also a source of mutational

robustness. In the context of protein evolution, chaperones

are able to increase a protein’s mutational robustness because

they alter the mapping from protein genotypes into protein

phenotypes, that is, into the structures that proteins form

(Rutherford 2003). Specifically, they increase the number of

amino acid sequences that fold into the same structure and

that can perform the function associated with this structure.

There are three main chaperone systems, which are the

Hsp90 system, the Hsp70 system, and the Hsp60 system (or

chaperonins), of which the bacterial GroEL is a prominent

member (Hartl et al. 2011). Overwhelming evidence shows

that Hsp90 and GroEL can buffer mutations (Bogumil and

Dagan 2012), but whether the same holds for any major

chaperone from the Hsp70 system is to our knowledge un-

known. A recent study has shown that RNA chaperones—

they help RNA molecules to fold properly, and comprise a

class of chaperones different from these three systems—can

also buffer deleterious mutations in Escherichia coli (Rudan

et al. 2015).

Pioneering work carried out by Rutherford and Lindquist

(1998) showed that inhibition of the chaperone Hsp90 can

unveil cryptic genetic variation—genotypic variation without

phenotypic variation—in the fruit fly Drosophila melanogaster.

Subsequently, similar observations have been made in the

plant Arabidopsis thaliana (Queitsch et al. 2002), the yeast

Saccharomyces cerevisae (Cowen and Lindquist 2005) and

the fish Astyanax mexicanus (Rohner et al. 2013). Further sup-

port was provided by Burga et al. (2011), who found that high

induction of Hsp90 during development of the nematode

Caenorhabditis elegans reduced the penetrance of certain

mutations. Additionally, Lachowiec et al. (2013) found that

paralogs of duplicated kinase-coding genes that encode a

substrate of Hsp90 (i.e., a Hsp90 “client”) in Saccharomyces

cerevisiae often evolve faster than paralogs encoding noncli-

ents. In general, the rate at which nonconservative substitu-

tions—those that alter physicochemical properties of amino

acids—accumulate is especially accelerated in Hsp90 clients

(Pechmann and Frydman 2014).

Multiple studies also demonstrate mutational buffering me-

diated by the bacterial chaperonin GroEL. For example, Fares

et al. (2002) showed that overexpressing GroEL considerably

improved the fitness of E. coli strains with a high load of del-

eterious mutations, a pattern that was also observed later in

Salmonella enterica (Maisnier-Patin et al. 2005). Moreover,

GroEL overexpression in E. coli increases the ability of GroEL

client proteins to tolerate mutations (Tokuriki and Tawfik

2009; Bershtein et al. 2013; Wyganowski et al. 2013;

Sabater-Muñoz et al. 2015), as well as their ability to undergo

adaptive evolution (Tokuriki and Tawfik 2009; Wyganowski

et al. 2013). Buffering of destabilizing mutations accelerates

the evolutionary rates of GroEL clients (Bogumil and Dagan

2010; Warnecke and Hurst 2010; Williams and Fares 2010;

Pechmann and Frydman 2014).

While no Hsp70 chaperone has been directly implicated in

mutational buffering, pertinent circumstantial evidence exists.

For example, DnaK—the major bacterial Hsp70 chaperone—

is overexpressed together with GroEL in S. enterica lineages

with reduced fitness caused by the accumulation of deleteri-

ous mutations (Maisnier-Patin et al. 2005). In addition, D.

melanogaster populations showing inbreeding depression,

where increased homozygosity exposes recessive deleterious

mutations, significantly up-regulate the expression of Hsp70

compared with outbred populations (Pedersen et al. 2005).

The chaperones from the Hsp70 system are very conserved

from bacteria to humans (Powers and Balch 2013). They play a

central role in proteome integrity, and are involved both in co-

and post-translational folding (Hartl et al. 2011). In bacteria,

the Hsp70 chaperone DnaK (together with GroEL and the

Trigger Factor) is one of the main molecular chaperones,

where it is the central hub in the chaperone network of the

cytosol (Bukau and Walker 1989; Calloni et al. 2012). It inter-

acts with at least ~700 mostly cytosolic proteins (Calloni et al.

2012). The DnaK interactome was characterized by the isola-

tion of DnaK interactors using immobilized metal affinity chro-

matography, followed by liquid chromatography mass

spectrometry. These regular clients of DnaK are enriched for

proteins with low intrinsic solubility, proteins that tend to be

members of hetero-oligomeric complexes and/or proteins that

show a high density of hydrophobic patches flanked by pos-

itive residues (Calloni et al. 2012). DnaK is highly expressed

constitutively and essential at 42 �C (Bukau and Walker 1989;

Calloni et al. 2012). During its ATP-dependent reaction cycle,

DnaK interacts with the Hsp40 co-chaperone DnaJ, which

determines the client binding specificity of DnaK (Straus

et al. 1990; Hoffmann et al. 1992), and the nucleotide ex-

change factor GrpE (Hartl et al. 2011). The chaperone system

formed by these three proteins can both fold nascent proteins

and refold denatured proteins. It does so by binding to ex-

posed hydrophobic patches in unfolded or partially folded

protein substrates, thus preventing detrimental interactions

with other polypeptides in the crowded cellular milieu. By suc-

cessively binding and releasing a protein substrate in a cyclic

process that consumes ATP, the chaperone system DnaK–

DnaJ–GrpE allows the substrate to gradually explore its com-

plex folding energy landscape (Hartl and Hayer-Hartl 2009;

Hartl et al. 2011). For some proteins (~20% of the total pro-

teome), several of these bind-release cycles are enough to

achieve the native conformation. However, other proteins

(~10% of the total proteome) still require the downstream

chaperone system GroEL/ES (Hartl et al. 2011). The impor-

tance of the DnaK–DnaJ–GrpE system in the bacterial chaper-

one network is obvious from its strong conservation across

bacteria, except for two species from the order Aquificales

that have lost the entire system, and individual losses of
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dnaJ and grpE in obligate endosymbionts that have experi-

enced considerable genome reductions (Warnecke 2012).

Most mutations affecting proteins are neutral or deleteri-

ous (Eyre-Walker and Keightley 2007), and functionally impor-

tant mutations often destabilize proteins (Tokuriki et al. 2008;

Wyganowski et al. 2013). If DnaK buffers destabilizing muta-

tions, then the deleterious effects of mutations in highly inter-

acting (strong) clients should be lower than in sporadic (weak)

clients, where they should be lower than in nonclients. In

other words, the more strongly a protein’s integrity depends

on DnaK, the higher should be its tolerance to mutations, and

the lower the signature of purifying selection that purges

those mutations. With this reasoning in mind, we here use

laboratory experiments to evaluate the effect of DnaK buffer-

ing on the evolution of its client proteome on short evolution-

ary time scales. We complement our experimental

observations with sequence analyses to study the effect of

DnaK on intermediate and long evolutionary time scales.

Results

Experimental Evolution of E. coli under DnaK
Overexpression

To study the effect of DnaK overexpression on protein evolu-

tion experimentally, we performed mutation accumulation ex-

periments similar to those we reported recently for the

chaperonin GroEL, but for DnaK overexpression (Sabater-

Muñoz et al. 2015). Briefly, we initiated 68 parallel and inde-

pendent clonal lines of evolution, all of which derived from the

same hypermutable clone (E. coli K12 MG1655 �mutS)

(Sabater-Muñoz et al. 2015) (fig. 1A). Cells of the 68 lines

all harbored the plasmid pKJE7, which contains the operon

dnaK–dnaJ–grpE under the control of the L-arabinose-induc-

ible araB promoter PBAD (Nishihara et al. 1998). We refer to

this strain as DnaK+. We evolved 60 of the 68 DnaK+lines

through repeated single-cell bottlenecks in the presence of

the inducer, to ensure overexpression of DnaK, as well as of

the cochaperone DnaJ and the nucleotide exchange factor

GrpE. All evolving lineages were passaged after 24 hours of

incubation. Because of the bottlenecks to which we exposed

the populations, genetic drift was strong and the efficiency of

selection was weak during the experiment, such that nonle-

thal mutations are free to accumulate (Barrick and Lenski

2013). We evolved 30 of the 60 clonal lines at 37 �C, and

the other 30 at 42 �C. The higher temperature serves to in-

crease the deleterious effect of destabilizing mutations in the

bacterial proteome (Bukau and Walker 1989). Finally, the re-

maining 8 DnaK+lines were evolved in the absence of inducer,

and therefore without DnaK overexpression (4 lines at 37 �C

and the other 4 at 42 �C).

At each of the two temperatures, we additionally evolved 8

control clonal lines founded from the same parental strain,

but carrying a pKJE7-derived plasmid where the operon

dnaK–dnaJ–grpE is deleted (fig. 1B). Cells of all 16 control

lines therefore cannot overexpress DnaK, even though their

growth medium contains L-arabinose (DnaK� lines). At each

temperature, half of the lines evolved in the presence of L-

arabinose, whereas the other half evolved in medium devoid

of this expression inducer. In total, we evolved 86 bacterial

populations: 68 DnaK+lines and 16 DnaK� lines. We stopped

the evolution experiment after 85 single-cell bottlenecks, or

~1,870 generations (assuming conservatively ~22 generations

per daily growth cycle).

Evolving Lineages Tend to Go Extinct in the Absence of
DnaK Overexpression

One of the first indications that DnaK overexpression could be

buffering deleterious mutations accumulated during the evo-

lution experiment is the observed pattern of extinctions

(fig. 1). Some evolving lines went extinct, presumably due to

high levels of mutational load, and remarkably, all extinctions

occurred in lines that were not overexpressing DnaK. They

were either DnaK� lines or DnaK+evolved in the absence of

the inducer. More specifically, 75% of the DnaK� lines (12 of

16) went extinct before the end of the evolution experiment

(fig. 1B). Among the DnaK+lines, 62.5% of the lines (5 of 8)

evolving in the absence of the inducer went extinct, whereas

none of the 60 lines evolving in the presence of the inducer

experienced any extinction (fig. 1A). This observation strongly

suggests that overexpressing the chaperone DnaK has in-

creased the robustness of the cells to the accumulation of

deleterious mutations, helping them cope with mutational

load.

Overexpressing DnaK Increases the Robustness to
Nonsynonymous Mutations of DnaK Clients

In order to study the effect of DnaK buffering on genome

evolution, we sequenced the genomes of some lines at the

end of the evolution experiment, after 85 passages, and com-

pared them to the ancestral genome, which we had se-

quenced in a previous study (Sabater-Muñoz et al. 2015).

Among the clonal lines evolved in the presence of the inducer

L-arabinose, we randomly selected for sequencing 3

DnaK+lines evolved at 37 �C, and another 3 at 42 �C. We

also sequenced the only two surviving control DnaK� lines

evolved with L-arabinose in the medium, each at a different

temperature. Although all sequenced lines evolved in the pres-

ence of the inducer, only DnaK+lines are able to overexpress

the chaperone.

In order to evaluate if a significant difference existed in the

mutation rate (or generation time) between the sequenced

DnaK+and DnaK� lines, we compared the number of accu-

mulated synonymous mutations between them (supplemen-

tary table S1, Supplementary Material online). We observed

an average number of 78 synonymous mutations per

DnaK+line and 66 synonymous substitutions per DnaK� line,

The Chaperone DnaK Is a Source of Mutational Robustness GBE
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which is not significantly different (binomial test, P = 0.359;

supplementary table S1, Supplementary Material online). We

also did not observe any significant difference in the number

of accumulated nonsynonymous mutations (binomial test,

P = 0.646; table 1), the number of indels (binomial test,

P = 0.332; supplementary table S1, Supplementary Material

online), or the ratio of transitions to transversions (�2 test,

P = 0.273; supplementary table S1, Supplementary Material

online).

We also verified that DnaK was still overexpressed at

the end of the experiment in the 8 sequenced lines.

The overexpression of DnaK may be energetically costly, just

as is the case for the chaperonin GroEL (Fares et al. 2002;

Sabater-Muñoz et al. 2015). In principle, this cost could

favor the accumulation of mutations that lead to a decrease

in the expression of DnaK during the evolution experiment,

especially if the energetic cost of overproducing the chaper-

one is greater than the benefits derived from mutational buff-

ering (Sabater-Muñoz et al. 2015). However, we observed

that for the sequenced lines the overexpression of DnaK

was maintained through the mutation accumulation experi-

ment at both 37 �C and 42 �C (fig. 2; supplementary fig. S1,

FIG. 1.—Mutation accumulation experiment. Evolutionary history of the populations evolved in this study from the first daily transfer or single-cell

bottleneck (T0) until the end of the evolution experiment (T85). We constructed two strains derived from an ancestral Escherichia coli K-12 MG1655 strain

lacking the mismatch repair gene mutS. The DnaK+strain harbours the ~15-copy plasmid pKJE7 that contains the DnaK/DnaJ/GrpE chaperone system under

the control of the promoter PBAD inducible by L-arabinose (Nishihara et al. 1998). The DnaK� strain contains a control pKJE7-derived plasmid where the

operon dnaK–dnaJ–grpE has been deleted. We evolved in parallel multiple independent populations of both strains through single-cell bottlenecks under the

effect of strong genetic drift at two different temperatures (37 �C and 42 �C). At each temperature we evolved some populations in the presence of

L-arabinose (L-ara+), and some in the absence of this expression inducer (L-ara–). (A) During the evolution of 68 DnaK+populations, five out of eight lines

evolving in the absence of inducer went extinct (indicated by a cross). None of the 60 lines evolving under DnaK overexpression experienced any extinction.

(B) Of the 16 independent DnaK� populations, 12 populations went extinct. We finished the evolution experiment after 85 single-cell bottlenecks (T85), or

~1,870 generations.
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Supplementary Material online). In the presence of the inducer

L-arabinose, all DnaK+lines overexpressed DnaK not only at

the start of the evolution experiment, but also at the end,

except for one of the DnaK+lines evolved at 42 �C.

However, this loss of overexpression occurred towards the

end of the experiment and even then DnaK was still over-

expressed for most of the daily growth cycle of this line (sup-

plementary fig. S2, Supplementary Material online). In no line

did we observe overexpression in the absence of the inducer.

The control DnaK� lines always exhibited wild-type expression

levels of DnaK.

In the genomes of the evolved DnaK+lines, we first studied

the incidence of nonsynonymous nucleotide substitutions

among DnaK clients and nonclients (table 1). In this analysis,

we considered as nonclients all proteins from the E. coli pro-

teome that are not part of a set of 674 DnaK clients deter-

mined by Calloni et al. (2012), and analyzed the lines evolved

at 37 �C and 42 �C independently. To improve statistical

power, we combined mutations across DnaK+lines evolved

at the same temperature after classifying them according to

whether they affect DnaK clients or nonclients. If DnaK is

buffering deleterious mutations, we would expect a higher

proportion of mutations affecting clients in the lines evolved

under DnaK overexpression.

In the DnaK� line evolved at 37 �C, ~14% of nonsynon-

ymous mutations (17 out of 125) affected DnaK clients.

Compared with this proportion when DnaK is not overex-

pressed, the proportion of mutations in clients in the

DnaK+lines was significantly higher (56 out of the total 288

mutations, ~19%; binomial test: P = 0.006; fig. 3A). Similarly,

compared with the DnaK� line evolved at 42 �C, where ~13%

of all mutations affected DnaK clients (15 out of 114 muta-

tions), the DnaK+lines showed significantly more mutations in

clients (71 out of 384 total mutations, ~18%; binomial test:

P = 0.003; fig. 3A). These results suggest that overexpressing

DnaK does indeed increase the robustness of its clients to

amino acid replacements. Temperature itself had no signifi-

cant effect on the fraction of all mutations affecting DnaK

clients in DnaK+lines (Fisher’s exact test: odds ratio F = 1.06,

P = 0.77) and DnaK� lines (Fisher’s exact test: odds ratio

F = 1.04, P = 0.999).

Strong DnaK Clients Accumulate More Nonsynonymous
Mutations than Weak Clients

Next, we studied if strongly interacting DnaK clients are more

robust to mutations than weakly interacting clients, as evi-

denced by the pattern of mutations fixed in the mutation

accumulation experiment under DnaK overexpression. To

assess how strongly a protein depends on DnaK for folding,

we used recent experimental proteomic data which deter-

mined how strongly 668 DnaK-interacting proteins interact

with DnaK by measuring the fraction of cellular protein

bound to DnaK at 37 �C, a property that correlates with chap-

erone dependency for folding and maintenance and residence

time of the protein on DnaK (Calloni et al. 2012). In a �dnaK

E. coli strain, strong clients are more prone to form aggregates

than weak clients, indicating that the relative enrichment of a

protein on DnaK is a good proxy for the dependence upon

DnaK for folding (Calloni et al. 2012). We consider as strong

clients those with a relative enrichment factor on DnaK within

the third quartile of the distribution of DnaK dependency

(N = 167), and weak clients those within the first quartile

(N = 167). Therefore, strong clients include those clients with

the highest DnaK dependency, whereas weak clients include

clients with the lowest chaperone dependency.

In the DnaK+lines evolved at 37 �C, we found more non-

synonymous substitutions in strong clients (21 mutations) than

in weak clients (4 mutations) (table 1). Considering the

number of nonsynonymous sites in strong clients (43,731

sites) and weak clients (41,238 sites), this difference was sig-

nificant (Fisher’s exact test: F = 4.95, P = 0.001; fig. 3B). At

42 �C, the results were similar, with 33 mutations in strong

clients and 6 in weak clients (Fisher’s exact test: F = 5.12,

P = 1.9�10� 5; fig. 3B; table 1). In conclusion, at both tem-

peratures, client proteins that are more dependent upon

DnaK for folding accumulate significantly more mutations

than less dependent clients.

DnaK Accelerates Protein Evolution On Intermediate and
Long Evolutionary Time Scales

We wanted to find out if the DnaK-mediated mutational buff-

ering we observed on the short time scales of laboratory evo-

lution has also left signatures on longer evolutionary time

Table 1

Distribution of Nonsynonymous Nucleotide Substitutions among DnaK

Client and Nonclient Proteins After ~1,870 Generations of Evolution

in Mutation Accumulation Experiments Conducted at 37 �C and 42 �C

Temperature Linea Number of mutations

Clients Nonclients

Strongb Weakc Total

37 �C DnaK+ #1 3 0 12 50

DnaK+ #2 7 2 19 91

DnaK+ #3 11 2 25 91

DnaK� 12 1 17 108

42 �C DnaK+ #1 11 1 22 95

DnaK+ #2 13 3 27 103

DnaK+ #3 9 2 22 115

DnaK� 11 1 15 99

aExperimental evolution lines sequenced in this study. For each temperature,
we sequenced three lines overexpressing the DnaK–DnaJ–GrpE chaperone system
(DnaK+lines) and a control line where this system is expressed at wild type levels
(DnaK� line).

bStrong clients are those with a high relative enrichment factor on DnaK
within the third quartile of the distribution.

cWeak clients are those with a low relative enrichment factor on DnaK within
the first quartile of the distribution.

The Chaperone DnaK Is a Source of Mutational Robustness GBE

Genome Biol. Evol. 8(9):2979–2991. doi:10.1093/gbe/evw176 Advance Access publication August 6, 2016 2983

 at U
PV

A
 on January 9, 2017

http://gbe.oxfordjournals.org/
D

ow
nloaded from

 

http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw176/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw176/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw176/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw176/-/DC1
Deleted Text: <sup>--</sup>
Deleted Text: <sup>--</sup>
Deleted Text: to 
Deleted Text: to 
Deleted Text: <sup>--</sup>
Deleted Text: <sup>--</sup>
Deleted Text: <italic>c</italic>
Deleted Text: <italic>a</italic>
Deleted Text: <italic>m</italic>
Deleted Text: <italic>n</italic>
Deleted Text: <italic>m</italic>
Deleted Text: <italic>w</italic>
Deleted Text: <italic>c</italic>
Deleted Text: while 
Deleted Text: <italic>a</italic>
Deleted Text: <italic>p</italic>
Deleted Text: <italic>e</italic>
Deleted Text: <italic>i</italic>
Deleted Text: <italic>l</italic>
Deleted Text: <italic>e</italic>
Deleted Text: <italic>t</italic>
Deleted Text: <italic>s</italic>
http://gbe.oxfordjournals.org/


scales. To this end, we determined two measures of evolu-

tionary rates for protein-coding genes from gamma-proteo-

bacteria. The first, nonsynonymous divergence among one-

to-one orthologs of E. coli and S. enterica, is relevant for in-

termediate evolutionary time scales. The second, protein

(amino acid) distance among orthologous proteins found in

85 gamma-proteobacterial genomes (including E. coli and S.

enterica), is relevant for long time scales. We employ protein

distance instead of nonsynonymous distance because amino

acid replacements are less sensitive than nucleotide substitu-

tions to the expected loss of phylogenetic signal between se-

quences of distantly related taxa. To assess how strongly a

protein depends on DnaK for folding, we use the relative en-

richment of the protein on DnaK as a proxy for the depen-

dence of the protein upon DnaK for folding (Calloni et al.

2012). We note that this interaction strength is more likely

to have remained unchanged during the divergence of E. coli

and S. enterica, than during the divergence of all the other 83

gamma-proteobacterial species we analyzed.

We find a strong and highly significant positive association

between DnaK dependency and the rate of nonsynonymous

substitutions for S. enterica and E. coli (Spearman’s rank

correlation coefficient, r= 0.367, N = 627, P< 2.2�10� 16;

fig. 4A). This indicates that the stronger the interaction of a

protein with DnaK, the faster the protein evolves. The same

pattern is obtained at the larger time scales of protein dis-

tances for 85 gamma-proteobacterial genomes (r= 0.257,

N = 311, P = 4.4�10� 6; fig. 4B). Gene expression level,

which is the most important determinant of protein evolution-

ary rates, at least in unicellular organisms (Pál et al. 2001;

Drummond et al. 2005; Zhang and Yang 2015), is a possible

confounding factor in this analysis. For example, using codon

usage bias (CUB) as a proxy for gene expression, we observe

that genes with higher CUB show lower nonsynonymous di-

vergence (r=�0.558, N = 1014, P< 2.2�10� 16), protein

distance (r=�0.255, N = 3159, P< 2.2� 10� 16) and DnaK

dependency (r=�0.262, N = 627, P = 2.5� 10� 11).

However, the association between DnaK dependency and

evolutionary rate cannot be solely explained by this confound-

ing factor: A partial correlation analysis shows that the asso-

ciation still holds after controlling for CUB, both on

intermediate time scales (r= 0.295, N = 627, P =

1.2�10� 14) and long time scales (r= 0.229, N = 311,

P = 3.8�10� 5). We use CUB instead of gene expression

FIG. 2.—DnaK abundance at the beginning and the end of the mutation accumulation experiment. We measured the abundance of the chaperone

DnaK for the 8 sequenced lines evolved trough 85 single-cell bottlenecks (~1,870 generations) at 37 �C or 42 �C. For comparison, we also measured the

abundance of the chaperone in the ancestral DnaK+and DnaK� strains at both temperatures. We determined DnaK levels in the presence and absence of the

inducer L-arabinose (L-ara+and L-ara–, respectively), as described in Materials and Methods (“Verification of DnaK overexpression”), via the intensity of the

DnaK band in a Western blot. The evolved lines did not lose the ability to overexpress DnaK in the presence of the inducer L-arabinose except for a DnaK+line

evolved at 42 �C (line #2), which explains the decrease in the average DnaK abundance at the end of the evolution experiment. However, this loss of

overexpression occurred late in the evolution experiment, and it is not even complete for most of the daily growth cycle of this line (supplementary fig. S2,

Supplementary Material online). The height of the bars indicates mean DnaK abundance across two experimental replicates per strain and condition. Error

bars represent 1 SD of the mean.
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data here for two main reasons. First, we can compute CUB

for all 631 DnaK clients in our data set, whereas expression

data is only available for 457 clients. Second, gene expression

data has been measured in just one environment and one

strain of E. coli, whereas CUB is the result of selective pressures

imposed by many different environments over long periods of

time. Nonetheless, the association between evolutionary rate

and DnaK dependency still holds after correcting for gene

expression directly (supplementary information section 1.1,

Supplementary Material online). Together, these results indi-

cate that the chaperone DnaK affects protein evolution in

accordance with the mutational buffering hypothesis.

Importantly, this effect is not only independent of CUB and

gene expression, but also of other biological factors, such as

essentiality and number of protein–protein interactions

(supplementary information section 1.2 and table S2,

Supplementary Material online).

In a subsequent analysis, we find that clients evolve more

slowly than nonclients (supplementary fig. S3 and supplemen-

tary information section 1.3, Supplementary Material online).

This last difference cannot be explained by the number of

protein–protein interactions, by essentiality, or by CUB as con-

founding factors (supplementary information section 1.3 and

supplementary tables S3 and S4, Supplementary Material

online). The reason for this observation could be that clients

are intrinsically less robust to mutations than nonclients due to

some general physicochemical difference. For example,

Calloni et al. (2012) found that DnaK clients have generally

low solubility, often belong to heterooligomeric complexes,

and are prone to misfolding. However, in accordance with

the mutational buffering hypothesis we observe that strong

clients evolve faster than weak clients (fig. 5; supplementary

information section 1.3, Supplementary Material online). The

accelerated evolution of strong clients compared with weak

clients exactly mirrors the greater accumulation of nonsynon-

ymous mutations in strong clients during the evolution exper-

iment (fig. 4B).

DnaK-Mediated Acceleration of Protein Evolution Is
Independent of GroEL Buffering

The ability of DnaK to facilitate the accumulation of nonsynon-

ymous mutations in DnaK clients resembles the well-studied

mutational buffering by the chaperonin GroEL (Fares et al.

2002; Tokuriki and Tawfik 2009; Bershtein et al. 2013;

Wyganowski et al. 2013; Sabater-Muñoz et al. 2015).

Additionally, the observed correlation between DnaK depen-

dency and protein evolutionary rates is similar to the previously

FIG. 3.—Nonsynonymous mutations accumulated in DnaK clients. (A) The proportion of nonsynonymous mutations that affect DnaK clients is signif-

icantly higher in DnaK+lines that overexpress DnaK than in the control DnaK� lines that do not express the chaperone at such high levels. This is observed

both for lines evolved at 37 �C and 42 �C. We combined mutations across DnaK+lines evolved at the same temperature. The significance of the difference in

the proportions was evaluated using a binomial test. (B) At both temperatures, strong clients have accumulated significantly more nonsynonymous

substitutions than weak clients in DnaK+lines. Strong clients include those clients with the highest DnaK dependency, whereas weak clients include clients

with the lowest chaperone dependency. Statistical significance was evaluated using Fisher’s test.
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reported acceleration of protein evolution by GroEL (Bogumil

and Dagan 2010; Williams and Fares 2010). We therefore

removed known GroEL clients from our data set to investigate

if our observations are independent of the effect of GroEL on

mutation accumulation and evolutionary rates. We defined

the GroEL interactome in E. coli as the union of two previously

reported sets of DnaK interactors (Kerner et al. 2005; Fujiwara

et al. 2010). Of the 253 GroEL clients that comprise the GroEL

FIG. 4.—DnaK accelerates protein evolution on intermediate and long evolutionary time scales. Scatter-plots showing the relationship between DnaK

dependency (calculated as a relative enrichment factor that indicates the fraction of cellular protein bound to DnaK at 37 �C, horizontal axis) and the degree

of divergence over (A) intermediate time scales, measured as nonsynonymous divergence (Spearman rank correlation coefficient, r= 0.367, N = 627,

P< 2.2� 10� 16), and (B) long time scales, measured as protein (amino acid) distance (r= 0.257, N = 311, P = 4.4�10� 6) (vertical axes). Solid lines

represent the best fit to the points. Note the logarithmic scale on both axes.

FIG. 5.—Strong clients evolve faster than weak clients. (A) We find that strong clients evolve faster than weak clients on intermediate evolutionary time

scales, measured as the rate of nonsynonymous substitutions (Wilcoxon rank-sum test, P< 2.2�10� 16). (B) On long evolutionary time scales, we also find

that strong clients evolve faster than weak clients (Wilcoxon rank-sum test, P = 2.3�10� 3). The thick horizontal line in the middle of each box represents the

median of the data, whereas the bottom and top of each box represent the 25th and 75th percentiles, respectively. Note the logarithmic scale on the y-axis

in (A).

Aguilar-Rodrı́guez et al. GBE

2986 Genome Biol. Evol. 8(9):2979–2991. doi:10.1093/gbe/evw176 Advance Access publication August 6, 2016

 at U
PV

A
 on January 9, 2017

http://gbe.oxfordjournals.org/
D

ow
nloaded from

 

http://gbe.oxfordjournals.org/


interactome, there are 122 proteins that are also clients of

DnaK.

The observation that DnaK overexpression increases the

proportion of nonsynonymous substitutions affecting DnaK

clients is still significant after removing GroEL clients.

Combining mutations from the DnaK+lines evolved at 37 �C

and 42 �C we find that ~16% of mutations (97 out of 621)

affected DnaK clients, which is significantly higher than what

we find in the DnaK� lines (28 out of 230 mutations, ~12%;

binomial test: P = 0.01). Similarly, considering the number of

nonsynonymous sites in strong clients (36,026 sites) and weak

clients (33,047 sites) after removing GroEL clients, we still find

that strong DnaK clients accumulate more nonsynonymous

substitutions than weak clients (Fisher’s exact test: odds

ratio F = 4.7, P = 2� 10� 5). Finally, the positive association

between DnaK dependency and evolutionary rates still holds

after removing GroEL clients and controlling for CUB in a par-

tial correlation analysis, both on intermediate time scales

(r= 0.318, N = 511, P = 3.9�10� 14) and long time scales

(r= 0.226, N = 240, P = 3.6�10� 4).

Discussion

We show how the overexpression of the DnaK–DnaJ–GrpE

chaperone system over the course of a mutation accumulation

experiment increases the proportion of nonsynonymous sub-

stitutions affecting DnaK clients. In addition, strong clients

accumulate more nonsynonymous mutations than weak cli-

ents. Additional evidence of mutational buffering by DnaK is

provided by the observation that evolving lines overproducing

this chaperone avoid extinction after experiencing 85 single-

cell bottlenecks. Recently, we obtained similar results in hyper-

mutable E. coli cells evolving in identical conditions but

overproducing the GroEL-GroES chaperonin system

(Sabater-Muñoz et al. 2015). There, we observed that lines

evolving with high levels of GroEL were not only less prone to

extinction under strong genetic drift than control lines, but

also that they were accumulating significantly more indels

and replacements between amino acids belonging to different

physicochemical categories.

We also find that DnaK-mediated mutational buffering has

left a trace in DnaK clients during the divergence of 85 differ-

ent gamma-proteobacterial species over much longer evolu-

tionary time scales than those explored in our laboratory

evolution experiment. We find that clients that depend

more on DnaK for folding tend to evolve faster than less in-

teracting clients. Similar chaperone-mediated accelerations of

protein evolution have been observed in GroEL clients

(Bogumil and Dagan 2010; Williams and Fares 2010) and

Hsp90 clients (Lachowiec et al. 2013; Pechmann and

Frydman 2014). However, we notice that DnaK clients

evolve slower than proteins not known to be DnaK interactors

(Calloni et al. 2012). This is likely the result of important phys-

icochemical differences between clients and nonclients.

For example, clients are prone to aggregation and misfolding

(Calloni et al. 2012), which may make them intrinsically less

robust to destabilizing mutations.

Despite the great differences in the mechanism of chaper-

one action between the three major chaperone families—cha-

peronins, Hsp90 chaperones and Hsp70 chaperones—(Young

et al. 2004; Hartl et al. 2011; Bogumil and Dagan 2012; Kim

et al. 2013), at least some of their members seem to have

qualitatively comparable effects on protein evolution. But pro-

tein chaperones are not the only chaperones that can increase

the mutational robustness of their substrates: A recent study

has found that some RNA chaperones can buffer deleterious

mutations in E. coli and therefore affect RNA evolution (Rudan

et al. 2015). These chaperones, which are completely unre-

lated to protein chaperones, are RNA-binding proteins that

facilitate the proper folding of RNA molecules. Elucidating to

what extent the buffering mechanisms of all these chaperones

differ is an important future direction of enquiry.

Thanks to their fostering of mutational robustness, chaper-

ones can facilitate evolutionary innovations (Rutherford 2003),

even though we do not study such innovations here. The in-

crease in the mutational robustness of a protein caused by

chaperone interactions reduces the efficiency of purifying se-

lection in purging mutations in the protein. Thanks to chap-

erone-mediated buffering, many such mutations are neutral

and can persist in a population. Importantly, these cryptic ge-

netic variants may include preadaptive mutations that can

generate evolutionary innovations in new environments

(Tokuriki and Tawfik 2009; Wyganowski et al. 2013). To illu-

minate if and how DnaK can increase the ability to evolve

functional innovations of its client proteome will also be an

interesting subject for future work.

In summary, we analyzed the evolution of proteins that are

subject to DnaK-assisted folding on short, intermediate, and

long evolutionary time scales through a combination of exper-

imental and comparative approaches. Most of our evidence

indicates that the bacterial chaperone DnaK can buffer muta-

tions in its client proteins, and that these proteins therefore

evolve faster than in the absence of DnaK-mediated folding.

This is, to our knowledge, the first demonstration that a

member of the Hsp70 family can buffer the effect of muta-

tions, with long-term consequences on protein evolution

(Bogumil and Dagan 2012). Through its role in protein folding,

an individual chaperone such as DnaK can have a dispropor-

tionate effect on proteome evolution, and thus on genome

evolution.

Materials and Methods

Bacterial Strains and Plasmids

We obtained E. coli K-12 substr. MG1655 �mutS::FRT from

Ivan Matic (Université Paris Descartes, INSERM U1001, Paris,

France) through Jesús Blázquez (Centro Nacional de
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Biotecnologı́a, CSIC, Madrid, Spain) (Sabater-Muñoz et al.

2015). In this E. coli strain, the gene encoding the protein

MutS has been deleted. This protein is a component of the

mismatch repair system that recognizes and binds mispaired

nucleotides so that the mispairing can be corrected by two

further repair proteins, MutL and MutH. The strain MG1655

�mutS has a predicted mutation rate that is 1000-fold higher

than the wild type (Turrientes et al. 2013), which ensures that

a sufficient number of mutations occur during the mutation

accumulation experiment. We transformed this strain with the

plasmid pKJE7 (Takara, Cat. #3340), which contains an

operon encoding DnaK, and its co-chaperones DnaJ and

GrpE under the regulation of a single promoter inducible by

L-arabinose (Nishihara et al. 1998). We generated a control

strain by transforming the same �mutS strain with a plasmid

that lacks the operon dnaK–dnaJ–grpE but is otherwise iden-

tical to pKJE7. We refer to this plasmid as pKJE7-DEL(dnaK–

dnaJ–grpE). This control plasmid was derived from the plasmid

pKJE7 by removal of the operon dnaK–dnaJ–grpE with a re-

striction digest using BamHI and SpeI, followed by religation,

after obtaining permission for plasmid modification from

Takara.

Evolution Experiment

We evolved 68 clonal lines of the hypermutable E. coli �mutS

strain containing pKJE7 (DnaK+lines) and 16 lines containing

the control plasmid pKJE7-DEL(dnaK–dnaJ–grpE) (DnaK�

lines) by daily passaging them through single-cell bottlenecks

on solid LB medium (agar plates; Pronadisa #1551 and #1800)

supplemented with 20 mg/ml of chloramphenicol (Sigma-

Aldrich #C0378) (fig. 1). Except for 8 DnaK+lines and 8

DnaK� lines, all the remaining lines were evolved in the pres-

ence of 0.2% (w/v) of L-arabinose (Sigma-Aldrich #A3256),

which induces the expression of DnaK/DnaJ/GrpE from the

plasmid pKJE7 but not from the control plasmid pKJE7-

DEL(dnaK–dnaJ–grpE). We passaged both the DnaK� and

DnaK+lines during 85 days or ~1,870 generations (conserva-

tively assuming ~22 generations per daily growth cycle),

except for those lines that went extinct before reaching the

end of the experiment. We evolved half of the DnaK+and

DnaK� lines under mild heat-stress (42 �C) whereas the

other half remained at 37 �C.

Verification of DnaK Overexpression

We grew the ancestral and evolved strains (DnaK+and DnaK–,

at 37 �C and 42 �C) from glycerol stocks in liquid LB medium

supplemented with 20 mg/ml of chloramphenicol in the pres-

ence or absence of the inducer L-arabinose (0.2%). After 24 h

of growth, we pelleted cells by centrifugation at 12,000 rpm.

We resuspended the pelleted cells in 100 ml lysis buffer (con-

taining 200 mM Tris–HCl pH 6.8, 10 mM DTT, 5% SDS, 50%

glycerol). To prepare a crude extract, we first boiled resus-

pended cells at 95 �C for 15 min. After the removal of cell

debris by centrifugation, we quantified soluble proteins using

the Bradford method (Bradford 1976). We loaded 1 mg of

total protein for each sample in SDS–PAGE gels (12.5% re-

solving gel). In addition, we loaded onto all gels samples from

the ancestral DnaK� and DnaK+strains grown in the presence

of inducer at 37 �C, as controls to facilitate inter-gel compar-

isons. We detected DnaK protein by Western blotting using as

primary antibody a mouse monoclonal antibody specific to E.

coli DnaK (Abcam #ab69617) at a 1:10,000 dilution, and as

secondary antibody a goat polyclonal (alkaline phosphatase-

conjugated) antibody specific to mouse IgG1 (Abcam

#ab97237). We scanned membranes after colorimetric detec-

tion of conjugated antibodies with the BCIP
�
/NBT-Purple

liquid substrate system (Sigma-Aldrich #BP3679), and used

ImageJ to quantify the intensity of DnaK bands on the

Western blots (Schneider et al. 2012). We used the control

samples to normalize abundances, which allow the compari-

son of DnaK levels across experiments.

We examined the change in DnaK levels along a daily cycle

of growth for a DnaK+line evolved at 42 �C (line #2, supple-

mentary fig. S2, Supplementary Material online) that showed

a lowed DnaK level after ~1,870 generations of mutation ac-

cumulation. After 24 h of exponential growth at 42 �C in

liquid LB medium supplemented with chloramphenicol, we

diluted the culture to OD ~0.3, and induced DnaK expression

by adding 10 mM of L-arabinose. We allowed the culture to

grow for another 24 h in the presence of this expression in-

ducer. Each hour, 1 ml of culture was removed and the DnaK

level following the protocol described earlier was measured.

Whole-Genome Resequencing

We sequenced the genomes of 2 DnaK� and 6 DnaK+lines

after 85 single-cell bottlenecks. All of these lines evolved in the

presence of L-arabinose in the medium, although only

DnaK+cells are able to overexpress DnaK. Half of the se-

quenced DnaK� and DnaK+lines evolved at 37 �C, whereas

the other lines evolved at 42 �C. We used the genome se-

quence of the ancestral �mutS strain from which both the

DnaK+and DnaK� lines were derived from our previous study

(Sabater-Muñoz et al. 2015).

Specifically, for the evolved lines we performed paired-end

Illumina whole-genome sequencing. For DNA extraction, we

used the QIAmp DNA mini kit (Qiagen, Venlo [Pays Bas],

Germany) in a QiaCube automatic DNA extractor using bac-

terial pellets obtained from ~10 ml cultures. We constructed

multiplexed DNAseq libraries from each clonal evolution line

using the TrueSeq DNA polymerase chain reaction-free HT

sample preparation kit (Illumina). We performed paired-end

sequencing on an Illumina HiSeq2000 platform, using a

2� 100 cycles configuration.

We converted sequencing reads from Illumina quality

scores into Sanger quality scores. Subsequently, we used the

breseq v 0.24rc4 (version 4) pipeline (Deatherage and Barrick
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2014) for aligning the Illumina reads to our E. coli parental

genome and for identifying single nucleotide polymorphisms

and indels using bowtie2 (Langmead and Salzberg 2012). We

performed individual runs of breseq, with junction prediction

disabled but otherwise default parameters for each of the

evolved lines. We deposited the data from this project at the

NCBI Sequence Read Archive under the accession SRP074414.

Sequence Data

We obtained the complete genomes of E. coli K-12 MG1655

(NC_000913) and S. enterica serovar Typhimurium LT2

(NC_003197) from GenBank Genomes (ftp://ftp.ncbi.nih.

gov/genomes/Bacteria/). We also used a data set from

Williams and Fares (2010) that consists of 1092 multiple se-

quence alignments of conserved orthologous proteins from

85 gamma-proteobacterial genomes.

DnaK Dependency

We obtained information about DnaK clients from Calloni

et al. (2012). This study used quantitative proteomics to iden-

tify 674 DnaK interactors or client proteins. For 668 of these

proteins, the investigators calculated a relative enrichment

factor that indicates the fraction of cellular protein bound to

DnaK at 37 �C. We used this measure as a proxy for DnaK

dependency. We excluded from our analyses the transposases

InsC, InsH and InsL of the insertion sequences IS2, IS5 and

IS186, respectively. In the genome of E. coli K-12 MG1655

there are 6 copies of insC, 11 of insH and 3 of insL.

GroEL Dependency

We obtained information about 253 GroEL clients from

Kerner et al. (2005) and Fujiwara et al. (2010). Our set of

GroEL clients is the union of the slightly different GroEL inter-

actomes characterized in these two studies. We excluded

from our analyses the transposase insH of the insertion se-

quences IS5 and 3 clients reported by Kerner et al. (2005),

which are encoded on plasmids (SwissProt Accession

Numbers: P00810, P29368 and Q9339).

Orthology

We identified 3159 one-to-one orthologs in E. coli and S.

enterica genomes as reciprocal best hits (Tatusov et al.

1997) using the Basic Local Alignment Search Tool (BLAST,

i.e., BLASTP with an E-value cut-off of 10� 10). We identified

631 and 242 S. enterica orthologs to DnaK and GroEL clients,

respectively. We aligned each pair of orthologous proteins

with the Needleman–Wunsch dynamic programming algo-

rithm, using the Needle program from the EMBOSS package

(Rice et al. 2000). We translated the resulting alignments into

codon-based nucleotide alignments with PAL2NAL (Suyama

et al. 2006).

Evolutionary Rates

We estimated the rate of nonsynonymous substitutions (dN)

using the program codeml from the package PAML 4.7 (one-

ratio model M0) (Yang 2007). We calculated protein distances

for the gamma-proteobacterial alignments from Williams and

Fares (2010), using PROTDIST from the PHYLIP package

(Felsenstein 2005) and the Jones, Taylor and Thornton (JTT)

substitution matrix (Jones et al. 1992). We calculated an av-

erage distance for each cluster of orthologous proteins as the

mean of all pairwise distances.

Codon Usage Bias

We computed the Codon Adaptation Index (CAI) using the

program CAI from the EMBOSS package (Rice et al. 2000).

We calculated Codon Usage Bias (CUB) for each pair of E.

coli—S. enterica orthologs as the mean of the CAI values for

each pair of orthologs. We used CUB as a proxy for gene

expression.

Protein–Protein Interactions

We obtained the number of protein–protein interactions (PPI)

for each E. coli K-12 protein from Rajagopala et al. (2014). The

binary interactions considered for this study are a combination

of the following: (1) literature curated interactions supported

by multiple studies or methods and (2) interactions identified

by yeast two-hybrid (Y2H) screening. We removed interac-

tions involving DnaK or DnaJ.

Essentiality

We obtained data about gene dispensability for E. coli K-12 in

rich media from Baba et al. (2006).

Gene Expression

We obtained gene expression data for E. coli K-12 MG1655

grown in rich media (LB) at 37 �C from Chen and Zhang

(2013), where gene expression levels are measured as

number of RNA-seq reads per gene length.

Statistical Tests

We carried out all statistical analyses and plotted data with R

(R Development Core Team 2016) using the packages “base”,

“pcor”, “ggplot2”, “dplyr” and “gridExtra”.

Supplementary Material

Supplementary tables S1–S4, figures S1–S3, and supplemen-

tary information sections 1.1–1.3 are available at Genome

Biology and Evolution online (http://www.gbe.oxfordjour

nals.org/).
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