Document downloaded from:

http://hdl.handle.net/10251/81392

This paper must be cited as:
Castaño Sansano, MA.; Ruiz Garcia, ML.; Elena Fito, SF.; Hernandez Fort, C. (2011).
Population differentiation and selective constraints in Pelargonium line. Virus Research. 155(1):274-282. doi:10.1016/j.virusres.2010.10.022.

The final publication is available at
http://doi.org/10.1016/j.virusres.2010.10.022

Copyright Elsevier

Additional Information

Population differentiation and selective constraints in Pelargonium line pattern virus

Aurora Castaño, Leticia Ruiz, Santiago F. Elena, Carmen Hernández*

Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia). CPI, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain

* Corresponding author. Mailing address: Carmen Hernández, Instituto de Biología Molecular y Celular de Plantas, (Consejo Superior de Investigaciones CientíficasUniversidad Politécnica de Valencia). CPI, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain

Phone: +34963877869 Fax: +34963877859 E-mail: cahernan@ibmcp.upv.es

Abstract

The genomic structure of Pelargonium line pattern virus (PLPV), a tentative member of a proposed new genus within the family Tombusviridae, has been recently determined. However, little is known about the genetic variability and population structure of this pathogen. Here, we have investigated the heterogeneity of PLPV isolates from different origins by sequence analysis of a 1817 nt fragment encompassing the movement (p7 and p9.7) and coat protein genes as well as flanking segments including the complete 3^{\prime} untranslated region. We have evaluated the selective pressures operating on both viral proteins and RNA genome in order to asses the relative functional and/or structural relevance of different amino acid or nucleotide sites. The results of the study have revealed that distinct protein domains are under different selective constraints and that maintenance of certain primary and/or secondary structures in RNA regulatory sequences might be an important factor limiting viral heterogeneity. We have also performed covariation analyses to uncover potential dependencies among amino acid sites of the same protein or of different proteins. The detection of linked amino acid substitutions has permitted to draw a putative network of intra- and interprotein interactions that are likely required to accomplish the different steps of the infection cycle. Finally, we have obtained phylogenetic trees that support geographical segregation of PLPV sequences.

Keywords: Pelargonium line pattern virus, family Tombusviridae, genetic variability, selective constraints, covariation analysis

1. Introduction

In general, RNA viruses are known to generate high levels of genetic variation that allow them to evolve rapidly facilitating their successful adaptation to new environments. The low fidelity of the viral encoded RNA dependent-RNA polymerases (RdRps), that may lack proofreading functions, has been proposed as the main underlying source for most variation (Agol, 2006; Castro et al., 2005; Holland et al., 1982; Sanjuán et al. 2010; Steinhauer and Holland, 1986). Nevertheless, the molecular composition of viral populations is not the direct result of the error rate of viral RdRps. In the case of plant RNA viruses, other factors play a major role in structuring genetic diversity of pathogen populations, including selection and genetic bottlenecks as those that occur during both systemic infection (French and Stenger, 2003; Li and Roossinck, 2004; Sacristán et al., 2003) and horizontal transmission by vectors (Ali et al., 2006; Betancourt et al., 2008). These other factors may lead to a considerable genetic stability as it has been reported for many different plant RNA viruses that appear more genetically stable than their animal counterparts (García-Arenal et al., 2001, 2003). This could be due to a combination of intrinsically lower rates of mutation, as suggested by recent and more accurate estimates (Malpica et al., 2002 Sanjuán et al., 2009; Tromas and Elena, 2010), and a reduced fixation rate of advantageous non-synonymous mutations because of weaker immune selection (García-Arenal et al., 2001). The identification and manipulation of factors that regulate the composition of the viral populations may offer a new set of tools to predict or control emerging diseases.

Pelargonium line pattern virus (PLPV) is a major geranium (Pelargonium spp.) pathogen in Spain, where prevalence rates above 50% have been reported (Alonso and Borja, 2005). The virus has also been detected in distinct European countries and it likely has a worldwide distribution (Bouwen and Maat, 1992; Franck and Loebenstein, 1994;

Stone, 1980). The frequent symptomless condition of PLPV infections (Alonso and Borja, 2005) compromise regulatory inspections and might have contributed to the spread of the virus. The factors that influence the appearance of symptoms, characterized by yellow-green spots and line patterns on the leaves, remain unclear but they are likely a combination of the viral isolate, the environmental conditions and the geranium cultivar.

PLPV virions are isometric in shape and hold a single stranded RNA molecule. Cloning and sequencing of genomic RNA (gRNA) together with reverse genetic experiments have recently allowed determination of the genome organization of PLPV (Castaño and Hernández, 2005, 2007; Castaño et al., 2009). The gRNA comprises 3883 nt and contains five open reading frames (ORFs) flanked by an unusually short untranslated region (UTR) of 6 nt at the 5^{\prime} end and by a 246 nt long UTR at the 3^{\prime} end. The two 5'-proximal ORFs encode proteins essential for replication, p27 and its readthrough product p87 (the viral RdRp). Two small overlapping ORFs, located at the middle of the genome, encode proteins involved in viral movement (p 7 and p 9.7), while the 3^{\prime} 'proximal ORF encodes the coat protein (p37 or CP). The two replication proteins are translated directly from the gRNA whereas the movement and encapsidation proteins are translated from the unique PLPV subgenomic RNA (sgRNA) of 1.7 kb detected in infected tissue (Castaño et al., 2009).

PLPV taxonomic status has not been fully clarified yet. It was formerly considered as a tentative member of the genus Carmovirus but recent results supported its inclusion into a prospective new genus (Pelarspovirus) in the family Tombusviridae (Castaño and Hernández, 2005; Castaño et al., 2009; Stuart et al., 2006). Other tentative species of the prospective genus would be Pelargonium ringspot virus (PelRSV), Pelargonium chlorotic ring pattern virus (PCRPV) and Elderberry latent virus (ELV), that, as PLPV, produce only one sgRNA (Kinard and Jordan, 2002) in contrast with typical carmoviruses that generate two (Lommel et al., 2005). The distribution and importance of the two PLPV-
related, pelargonium-infecting viruses, PelRSV and PCRPV, is unknown as detection surveys for these pathogens are lacking. Nevertheless, the presence of PCRPV in at least two European countries has been recorded (Lisa et al., 1996; Ruiz et al., 2008) and PelRSV was reported to cause serious problems to geraniums in Germany (Lesemann and Adam, 1994).

The extent of PLPV variability remains to be ascertained as, so far, only the complete sequence of a German isolate, that from which the genomic organization of the virus was deduced (Castaño and Hernández, 2005; Castaño et al., 2009), and a partial sequence of an American isolate, corresponding to the CP gene (Accession No. AY038067), have been reported. Sequence information for other tentative members of the proposed genus Pelarspovirus is even scarcer. Indeed, only the primary structure of PCRPV genome has been fully determined while just the CP sequences of PelRSV and ELV are available.

In this work, we have studied the genetic variability among ten PLPV isolates recovered from naturally infected geranium plants which were collected in four countries at different times. We have obtained data that have allowed inferring selective constraints acting on PLPV genome and/or encoded products and that suggest geographical segregation of PLPV sequences. Additionally, covariation analyses have unveiled potential protein interactions and have pointed to particular amino acids as candidates to be involved in intra- and/or interprotein contacts.

2. Materials and methods

2.1. Viral isolates

Field PLPV isolates were obtained from geranium plants collected at distinct geographical locations over four years (2000-2004). Sap from the original plants was
used to pass the virus into the experimental host C. quinoa by mechanical inoculation and the viral population was recovered from this infected material. The isolates were designed with the first letters of the country of origin followed by a number to distinguish isolates from the same country (Table 1). PLPV isolate PV-0193, obtained from the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany) and characterized previously (Castaño and Hernández, 2005, 2007), was included in the sequence analyses for comparison purposes.

2.2. Reverse transcription, PCR amplification, cloning and sequencing

Total RNA preparations were obtained from infected C. quinoa leaves by phenol extraction and lithium precipitation (Verwoerd et al., 1989) and used as templates for reverse transcription (RT) reactions with Superscript II-RT (Invitrogen) and primer CH60 (5^{\prime}-CCGGATCCCGGGCAGATCAGGGGGGTGGGTTAC-3'), complementary to the 3^{\prime} terminus of the viral sequence (nt 3859-3883) with a SmaI site (underlined) and a BamHI site (in italics) at the 5^{\prime} terminus. RT products were PCR amplified with the Expand High Fidelity PCR System (Roche) and primers CH60 and CH17 (5'-GAAAATGGCCTTCTACGGGGAC-3'), homologous to nt 2067-2088 of the PLPV genome. After an initial denaturation step at $94^{\circ} \mathrm{C}$ for 2 min , PCR was performed for 35 cycles each of 30 sec at $95^{\circ} \mathrm{C}, 30 \mathrm{sec}$ at $60^{\circ} \mathrm{C}$ and 3 min at $68^{\circ} \mathrm{C}$, followed by an extension step of 10 min at $68{ }^{\circ} \mathrm{C}$. The resulting RT-PCR products were separated by electrophoresis in 1\% agarose gels, eluted and cloned into the pGEM-T easy vector (Promega) or the plasmid pTZ19R (Fermentas). Two clones for each DNA fragment were selected for sequencing with an ABI PRISM DNA sequencer 377 (Perkin-Elmer).

2.3. Sequence analysis

Multiple sequence alignments were constructed using MUSCLE (Edgard, 2004). For coding regions, translated amino acid sequences were first aligned and used as guide to built protein-coding nucleotide sequence alignments by concatenating codons using PAL2NAL (Suyama et al., 2006). The best-fitting model of nucleotide substitution was identified by MODELTEST (Posada and Crandall, 1998) as the general reversible GTR + Γ_{4} model, with the frequency of each substitution type and the gamma distribution of among-site rate variation with four rate categories estimated from the empirical data. Recombination was ruled out as a potential confounding factor by using GARD (Kosakovsky Pond et al., 2006) and RDP (Martin et al., 2005) algorithms. A maximum likelihood tree was constructed using the above model of nucleotide substitution and its statistical significance was evaluated by bootstrap (upon 10,000 pseudoreplicates) using PHYML (Guindon and Gascuel, 2003). MEGA4 (Tamura et al., 2007) was used for computing within- and among-population nucleotide diversities (standard errors were computed by the bootstrap method based on 1000 pseudoreplicates) as well as for performing Tajima's relative rates test (Tajima, 1993)

2.3.1. Identification of adaptive evolution in PLPV genomes

It is generally assumed that synonymous substitutions accumulate neutrally, at rate d_{S} per synonymous site, because they have no effect on the amino acid composition of proteins and, henceforth, may not affect protein folding and functioning. In contrast, nonsynonymous substitutions, occurring at rate d_{N} per nonsynonymous site, involve amino acid replacements and are more likely to affect, for bad or for good, the folding and function of proteins. The intensity of selection, ω, can thus be evaluated as the ratio $\omega=d_{N} / d_{S}$. Values of $\omega<1$ indicate purifying (i.e., negative) selection that results in
elimination of detrimental mutations from virus populations. A value of $\omega=1$ represents selective neutrality, i.e., mutations stay in the population at frequencies which are only governed by genetic drift. Finally, values of $\omega>1$ are indicative of directional (i.e., positive) selection, resulting in fixation of advantageous mutations (Sharp, 1997). Here, we have used the several maximum likelihood Bayesian methods available in the HYPHY packaged (Kosakovsky Pond and Frost, 2005) as implemented in the www.datamonkey.org server. Each ORF was separately analyzed. Only sites identified by at least half of the six methods available will be reported.

2.3.2. Molecular covariation within and among proteins

Selection not necessarily acts on single amino acids but it may operate on groups of amino acids in a concerted manner. This being the case, changes in one amino acid should appear associated to changes in the other members of the interaction group. Two different methods were used to evaluate the presence of coevolving amino acids within any given protein. First the Bayesian graphical model implemented in SPIDERMONKEY (Poon et al., 2007) and available online in the datamonkey server. Second, the mutual information content (MIC) approach described in Codoñer et al. (2006). For this second approach, significance P-values were computed, based on a million permutations, as the fraction of shuffles with a MIC value greater than or equal to the observed value. To minimize the number of false positives, the FDR method was applied (Benjamini and Hochberg, 1995). Only sites predicted to covary by both methods will be reported. Intermolecular covariation was only evaluated using the second methodology.

The secondary structure of selected regions of PFBV genome was predicted using MFOLD version 3.1 (www.bioinfo.rpi.edu/applications/mfold) (Mathews et al., 1999; Zucker, 2003).

3. Results

3.1. Genetic diversity in coding and non-coding regions of PLPV genome

The primary structure of a total of 18 PLPV cDNAs, 1817 nt in length and derived from nine isolates (Table 1), was determined, and the resulting sequences were combined with the two additional ones previously characterized from a German isolate (Castaño and Hernández, 2005, 2007), producing a total dataset of 20 sequences which encompassed part of the RdRp gene, the complete $\mathrm{p} 7, \mathrm{p} 9.7$ and CP genes as well as the 3^{\prime} UTR.

Genetic distances between each pair of sequences ranged from 0.001 to 0.081 . The maximum values were found between pairs of sequences from isolates sampled during different years at different countries (e.g., pair SPA3-USA1 or SPA3-ITA4), and the minimal values were detected for pairs of sequences of a given isolate, as they could differ by just 1 nt (e.g., sequences from isolate ITA2). The nucleotide diversity for the whole population was 0.055 ± 0.007 (Table 2), which was similar to nucleotide diversity estimates of populations of other plant viruses (García-Arenal et al., 2001). Nucleotide diversity calculated independently for each of the coding and non-coding regions included in the analysis ranged from 0.035 ± 0.008 to 0.062 ± 0.009, with the highest diversity corresponding to the CP gene and the lowest to the 3^{\prime} UTR (Table 2). Remarkably, the sequence of two genomic segments were strictly conserved in all
isolates, one encompassing nt 3642-3707 and corresponding to a 5^{\prime}-portion of the 3^{\prime} UTR, and the other comprising nt 2240-2279 and matching the leader sequence of the PLPV sgRNA plus short flanking stretches (Castaño and Hernández, 2005). Consistent with the principle that transitions are biochemically more likely than transversions, transition mutations were much more frequent than transversions, with the maximum composite likelihood estimate of the overall transitions to transversions rates ratio being 3.116. This excess also occurs when purines (5.616) or pyrimidines (7.239) are considered separately. A similar observation has been previously made for many other viruses (Liang et al., 2002; Mansky and Temin, 1995; Rico et al., 2006; Schneider and Roossinck, 2001; Tromas and Elena, 2010; Vartanian et al., 1997).

Nucleotide diversity was also estimated between and within PLPV subpopulations, considering a subpopulation as the group of isolates that were originally collected from a given country (Germany, Spain, USA and Italy). Between subpopulation diversity values considering either the complete 1817 nt region, individual ORFs or the 3^{\prime} UTR were greater than within subpopulation diversity values (Table 2), suggesting that there is significant differentiation of population according to the country from which the isolates were sampled.

To gain a better insight into the relationships between all PLPV isolates, a maximum likelihood phylogenetic tree was constructed from the nucleotide sequences included in the study. The results revealed two major groups of PLPV sequences: group I included all Spanish sequences and group II embraced sequences from Italy, Germany and USA which were divided into three clusters according with their geographical distributions (Fig. 1). When the analysis was performed with amino acid sequences deduced from any of the individual genes, the same phylogenetic groups were defined though the statistical significance of the internal nodes was, in general, lower than that obtained using the complete nucleotide sequences (data not shown).

3.2. Selective constraints on coding regions

The direction and intensity of selective constraints operating in each coding region was evaluated using the ω rates ratio statistic. The estimated average ω values were 0.109 (95% IC: $0.057-0.187$) for the partial RdRp gene, 0.188 (95% IC: $0.112-0.292$) for the p 7 gene, 0.201 ($95 \% \mathrm{IC}: 0.131-0.293$) for the p 9.7 gene, and 0.096 ($95 \% \mathrm{IC}: 0.073-0.123$) for the CP gene. Thus the ω ratio was significantly below one for the PLPV ORFs included in the analysis, indicating that all of them are under purifying selection. We sought next identifying which particular amino acid sites were under purifying or directional selective constraints. To do so, ω was estimated for each position in the alignments. For the partial RdRp, four sites were detected under negative selection (T711, L732, N760, I763). In the case of p 7 , one site was detected to be under negative selection (S23) and another one under positive selection (S5). Curiously, the latter site overlapped with one of those found under negative selection in the $\operatorname{RdRp}(\mathrm{N} 760)$. Concerning p9.7, 10 amino acid sites were found to be under negative selection and 27 sites were found in the case of CP. Such sites were mainly concentrated in the central and N -terminal region of p9.7 and CP , respectively (Fig. 2 and data not shown).

3.3. Structural conservation of potential RNA regulatory sequences

The PLPV genomic region under study (nt 2067-3883) contains at least two segments that are presumed to play a key role in regulation of viral replication/transcription: the 3^{\prime} UTR and the promoter for synthesis of the PLPV sgRNA (in the minus strand). Though the latter one has not been experimentally defined, it is expected to embrace an stretch of about 100 nt preceding the initiation site of PLPV sgRNA (nt 2251; Castaño and

Hernández, 2005), in line with that reported for subgenomic promoters of related viruses (Li and Wong, 2006; Wang and Simon, 1997; Wang et al., 1999). Such promoters may fold into hairpin-like structure and this type of conformation seems to be critical for the mechanism of transcription of sgRNAs (Li and Wong, 2006; Wang et al., 1999). Secondary structure predictions showed that the putative PLPV subgenomic promoter might also adopt a hairpin-like conformation with a small lateral branch. Interestingly, the sequence variation detected in this segment when comparing isolates, essentially maintained the predicted folding since most mutations were located in single stranded regions or, when affecting double stranded regions, they were compensatory or located at the base of loops or stems (Fig. 3A).

Concerning the 3^{\prime} UTR, it is expected to contain structural elements critical for viral replication and, most probably, also for translation on the basis of that found in other members of family Tombusviridae (Batten et al., 2006; Fabian and White, 2006; Fabian et al., 2003; Pogany et al., 2003; Sarawaneeyaruk et al., 2009; Stupina et al., 2008; Turner and Buck, 1999; Wang and Wong, 2004). The key role of the 3^{\prime} UTR during the infectious cycle implies that strong constraints may operate on the region to preserve its functionality that will likely depend on certain primary, secondary and/or tertiary RNA structures. In line with this view, the 3^{\prime} UTR showed a value of genetic diversity that, remarkably, was lower than those calculated for ORFs and, moreover, the nucleotide sequence of a 5^{\prime}-proximal segment of this region was strictly conserved in all isolates as indicated above. In silico analysis showed that the 3^{\prime} UTR may fold into a series of stemloops that was basically conserved in the different variants (Fig. 3B). Remarkably, a 5'proximal stem-loop was formed by the conserved segment whereas the 3^{\prime}-adjacent stemloop concentrated most of the heterogeneity found in the non-coding region (Fig. 3B). Collectively, the results suggested that conservation of specific conformations in regulatory sequences confer selective advantages to the viral RNA.

3.4. Variability in PLPV proteins

The sequence heterogeneity was unevenly distributed in the PLPV proteins. The Cterminal portion of the RdRp inferred from the amplified genomic region was not taken in consideration to analyze variability distribution as it represented only $\sim 1 / 6$ of the complete replication molecule. In the case of $\mathrm{p} 7,6$ out of the 10 polymorphic positions detected were located in the first third of the protein (N-terminal 20 amino acids) despite the corresponding coding sequence overlapped in part with that of RdRp gene (data not shown). An amino acid replacement mapped at the putative RNA binding domain of p 7 (V30I) but it did not affect basic residues which have been found essential for RNA binding in other carmoviruses (Marcos et al., 1999; Navarro et al., 2006). The variability of p9.7 also concentrated at the N -proximal half of the molecule as 12 out of the 17 polymorphic positions were detected within the N -terminal 40 amino acid residues of the protein (Fig. 2A), although most of the corresponding coding sequence overlaps with p 7 gene. As reported for other members of the family Tombusviridae (Lommel et al., 2005), three different structural domains can be distinguished in the PLPV CP: (i) R, the Nterminal internal domain which contains many positively charged residues and must interact with RNA, (ii) S , the shell domain which forms a barrel structure made up of β strands and constitutes the capsid backbone and, (iii) P , the protruding C -terminal domain. Analysis of the distribution of the heterogeneity in PLPV CP revealed that the percentage of polymorphic positions in the P domain (18.09\%) was higher than in the R (10.95%) or $\mathrm{S}(13.12 \%)$ domains. A stretch within the R domain was absolutely conserved in all isolates (from A14 to N46) probably because structural and/or functional constraints. Supporting the existence of such constraints, a high proportion of the sites predicted to be under negative selection were located in this stretch (Fig. 2B).

Next, as an additional test for the effect of selection, we analyzed the possible existence of covariation groups within and between proteins (Fig. 4). Firstly, we focused on covariations within-proteins. Regarding the partial RdRp , three amino acid residues showed significant covariation, S704N-E713A-S745A. In the case of p 7 , two covariation groups were detected S8T-V30I and S11I-L43I, whereas three covariation groups were observed for p9.7, Y3C-V6A, S16L-S39L and N24S-G88R (Fig. 4). The covariation that affected amino acids at positions 16 and 39 distinguished sequences from German isolate PV-0193, which showed the combination S16, S39, from those of the remaining isolates, that exhibited L residues at both positions. Up to eight covariation groups were detected for the CP, prominent among which was I10L-T64M, that differentiated the Spanish sequences (bearing the combination L10, M64) from those with other geographical origins (combination I10, T64). The analysis was extended to detect covarying positions between proteins. Remarkably, amino acid residues of p 7 covaried with amino acid residues of the other three proteins included in the study. Thus, the p7 covariation S11IL43I was significantly linked to RdRp substitution N760S and this linkage distinguished Italian isolates (with the combination RdRp S760, p7 I11, I43) from the remaining ones (with the combination RdRp N760, p7 S11, L43). In addition, the amino acid replacement V30I in p7 was linked to the amino acid replacement D32S in p9.7 and to the covarying group I10L-T64M in CP, and the corresponding combinations (p7 I30, p9.7 S32, CP L10, M64 versus p7 V30, p9.7 D32, CP I10, T64) segregated the Spanish isolate from the rest, further highlighting geographical distinctions between isolates. Finally, the covarying group S16L-S39L of p9.7 was linked to the amino acid substitution T 236 N of CP according to the programs employed, though visual inspection of alignments allowed to detect a strict association also with S213N/K (Fig. 2B). Indeed, the combination of S16, S39 in p9.7 and S213, T236 in CP was specific for the PV-0193 sequences whereas the remaining isolates showed the combination L16, L39 in p9.7 and N/K213, N236 in CP (Fig. 2B).

4. Discussion

In this work, the extent and structure of genetic diversity in PLPV have been explored by sequence analysis of an 1817 nt fragment (representing about 50% of the complete viral genome) of ten viral isolates sampled from four distinct geographical areas. Nucleotide diversity of the whole population was relatively low but in the range of those estimated for other plant viruses (Fraile et al., 1996, 1997; García-Arenal et al., 2001; Moya et al., 1993; Rodríguez-Cerezo et al., 1991; Rubio et al., 2001; Font et al., 2007). Diversity values among isolates collected in the same country were lower than those found among isolates of different countries suggesting a significant clustering of isolates by country of origin, a postulate supported by phylogenetic analysis. As the sample size of the present study is relatively small, characterization of new PLPV isolates is required to confirm whether genotype distribution into phylogroups related with geographical areas certainly reflects the structure of the viral population at global scale.

The relatively low genetic diversity found for PLPV suggested that negative selection is restricting the number of molecular variants. Consistently, ω values estimated for coding regions pointed to purifying selection as the predominant evolutionary pressure operating on such genome segments likely to preserve the encoded amino acid sequences. The smallest ω value was recorded for the CP, though it was similar to those of other plant viruses (García-Arenal et al., 2001; Font et al., 2007). CP in related viruses has been involved in other functions besides genome encapsidation, such as virus movement and suppression of RNA silencing (Genovés et al., 2006; Martínez-Turiño and Hernández, 2009; Thomas et al., 2003; Turina et al., 2000), which could explain the
strong negative selection observed. Examination of selective constraints on particular amino acids showed, as expected, a strong bias among the number of sites under negative and positive selection (42 versus 1). Only sites under purifying selection were detected in the portion of the RdRp included in the analysis, despite such portion did not comprise any of the eight motifs conserved in the RdRps (Koonin and Dolja, 1993). Regarding p7, the unique negatively selected site was located in the putative RNA-binding motif of the protein but it did not correspond to any of the basic residues that are presumably critical for RNA-binding capability (Marcos et al., 1999; Navarro et al., 2006). In the case of p9.7, 9 out of the 10 negatively selected sites concentrated in the central part of the molecule (codons 29 to 54) which essentially matched the region that connects the two hydrophobic domains that, according to that reported for related proteins (Navarro et al., 2006; Saurí et al., 2005; Vilar et al., 2002), must be involved in membrane association. Concerning the $C P$, almost $2 / 3$ of the negatively selected sites (17/27) were located within the N -terminal 66 residues that constitute the R domain; however, only two of them corresponded to basic residues which are likely critical for RNA-binding capability suggesting that, as likely occurs in the case of p 7 , selection is acting on the preservation of the proper conformation of the RNA-binding motif. Moreover, the S and P domains showed identical number of negatively selected sites (5 each) despite the general trend to conservation of the former one in family Tombusviridae (Lommel et al., 2005).

On the other hand, the variability patterns found in regulatory sequences of the viral RNA, such as the putative subgenomic promoter or the 3^{\prime} UTR, support the existence of structural constraints that prevent the loss of their functionality. In the case of the subgenomic promoter, besides its predicted role in transcriptional regulation, it completely overlaps the 3^{\prime}-portion of the RdRp gene (in the minus strand) and thus the same stretch is expected to have a dual function as coding and as regulatory sequence, which should considerably restrict heterogeneity. Accordingly, the mean of nucleotide
diversity in this region was lower than in other coding regions (Table 2) and, moreover, the nucleotide substitutions did not disrupt the predicted hairpin-like structure that is presumably required for the promoter function (Fig. 3A), suggesting that conservation of this conformation significantly influences the profile of naturally occurring mutations. Regarding the 3^{\prime} UTR, the variability data support that maintenance of a specific folding composed by a series of stem-loops might limit its sequence heterogeneity. Different members of family Tombusviridae have been reported to contain in this region cis elements critical for viral replication, such as promoters and repressors for minus strand synthesis (Na and White, 2006; Pogany et al., 2003; Stupina and Simon, 1997; Zhang et al., 2004a, 2004b), and others relevant for gene expression, such as translational enhancers that promote cap independent translation, since the viruses of this family are characterized by non-blocked 5^{\prime}-termini (reviewed by Kneller et al., 2006). An element of this type has been proposed to be present in the 3^{\prime} UTR of PLPV RNAs (Fabian and White, 2006) which, remarkably, would be embedded in the 5^{\prime}-proximal stem-loop that is strictly conserved in all isolates (Fig. 3B) providing indirect evidence for its functional significance.

Population diversity studies with other members of the family Tombusviridae have also highlighted conservation of structural motifs in both regulatory RNA sequences and encoded proteins. Specifically, analysis of the genetic heterogeneity of Carnation mottle virus (CarMV) and Pelargonium flower break virus (PFBV), two members of the genus Carmovirus, has revealed that the pattern of natural variability preserves the conformation of putative replication cis-acting signals (Cañizares et al., 2001; Rico et al., 2006). Regarding proteins, different degrees of variation have been found when comparing equivalent products of PFBV, CarMV and PLPV though some common tendencies are noticeable. Among them, it is noteworthy mentioning the high conservation of the RNA binding motif of the small movement protein (or of the protein
itself in the case of PFBV) or the considerable sequence flexibility in the N -terminal region of the large movement protein.

Correlated amino acid mutation analysis has been widely used to infer functional interactions between different sites in a protein or between distinct proteins (e.g.: Altschuh et al., 1987; Codoñer et al., 2006; Hoffman et al., 2003; Larson et al., 2000; Thomas et al., 1996). The study of PLPV genetic variability has allowed identification of groups of amino acids that covary both within and between PLPV proteins, revealing a putative network of interactions that is likely needed for maintenance of proper protein folding and for driving the viral RNA from replication to cell-to-cell/systemic translocation. Though the exact mechanism that account for inter-cellular transport of carmo-like viruses is not yet known, it is not unlikely to require a physical interaction among CP and movement proteins as reported for other plant viruses (Akamatsu et al., 2007; Kim et al., 2004; Liu et al., 2001; Sánchez-Navarro and Bol, 2001; SánchezNavarro et al., 2006; Takeda et al., 2004). Consistently with this view, we have detected covariations between the PLPV movement proteins, p7 and p9.7, and the CP. More intriguing is the covariation found between the RdRp and the p7. Evidence for interaction between the viral polymerase and the movement protein has been obtained for Cucumber mosaic virus which has led to the suggestion that both proteins cooperate in regulating the intercellular movement of progeny viral RNA by an unknown mechanism (Hwang et al., 2005), a possibility that could also apply to PLPV. Future work will be aimed at corroborating the inferred interactions and at assessing whether the covarying amino acids identified in this work are actually involved in protein-protein contact interfaces as suggested from the present results.

Acknowledgements

We are indebted to Dr. Jan van der Meij (Ball Flora Plant, Chicago) for providing PLPV isolate from USA, and to Dr. Marisé Borja (Fundación Promiva, Madrid) for the Spanish isolates and for valuable comments in the course of this work. We thank to Dr. Selma Gago (IBMCP, Valencia) for critical reading of the manuscript. We are also grateful to Dolores Arocas and Isabella Avellaneda for excellent technical assistance. This research was supported by grants BFU2006-11230 and BFU2009-11699 from Ministerio de Ciencia e Innovación (MICINN, Spain), ACOM09/040 from Generalitat Valenciana (to C.H.), and by grant BFU2009-06993 (MICINN) (to S.F.E.). A.C. was recipient of predoctoral fellowships from the Generalitat Valenciana and from CSICFundación Bancaja and L.R. received a postdoctoral contract from the Juan de la Cierva program of MEC.

References

Agol, V.I., 2006. Molecular mechanisms of poliovirus variation and evolution, in: Domingo, E. (Ed.), Quasispecies: concepts and implications for virology. Current topics in microbiology and immunology, vol. 299. Springer, Heidelberg, Germany, pp. 211-259.

Akamatsu, N., Takeda, A., Kishimoto, M., Kaido, M., Okuno, T., Mise, K., 2007. Phosphorylation and interaction of the movement and coat proteins of Brome mosaic virus in infected barley protoplasts. Arch. Virol. 152, 2087-2093.

Ali, A., Li, H., Schneider, M.L., Sherman, D.J., Grey, S., Smith, D., Roossinck, M.J., 2006. Analysis of genetic bottlenecks during horizontal transmission of Cucumber mosaic virus. J. Virol. 80, 8345-8350.

Altschuh, D., Lesk, A.M., Bloomer, A.C., Klug, A., 1987. Correlation of co-ordinated amino acid substitutions with function in viruses related to Tobacco mosaic virus. J. Mol. Biol. 193, 693-707.

Alonso, M., Borja, M., 2005. High incidence of Pelargonium line pattern virus infecting asymptomatic Pelargonium spp. in Spain. Eur. J. Plant Pathol. 112, 95-100.

Batten, J.S., Desvoyes, B., Yamamura, Y., Scholthof, K.B., 2006. A translational enhancer element on the 3'-proximal end of the Panicum mosaic virus genome. FEBS Lett. 580, 2591-2597.

Benjamini Y, Hochberg Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B 57, 289-300.

Betancourt, M., Fereres, A., Fraile, A., García-Arenal, F., 2008. Estimation of the effective number of founders that initiate an infection after aphid transmission of a multipartite plant virus. J. Virol. 82, 12416-12421.

Bouwen, I., Maat, D.Z., 1992. Pelargonium flower-break and Pelargonium line pattern viruses in the Netherlands; purification, antiserum preparation, serological identification, and detection in pelargonium by ELISA. Neth. Plant Pathol. 98, 141156.

Cañizares, M.C., Marcos, J.F., Pallás, V., 2001. Molecular variability of twenty-one geographically distinct isolates of Carnation mottle virus (CarMV) and phylogenetic relationship within the Tombusviridae family. Arch. Virol. 146, 2039-2051

Castaño, A., Hernández, C., 2005. Complete nucleotide sequence and genome organization of Pelargonium line pattern virus and its relationship with the family Tombusviridae. Arch. Virol. 150, 949-965.

Castaño, A., Hernández, C., 2007. Biological activity of transcripts from cDNA of Pelargonium line pattern virus. Acta Virol. 51, 271-274.

Castaño, A., Ruiz, L., Hernández, C., 2009. Insights into the translational regulation of biologically active open reading frames of Pelargonium line pattern virus. Virology 386, 417-426.

Castro, C., Arnold, J.J., Cameron, C.E., 2005. Incorporation fidelity of the viral RNAdependent RNA polymerase: a kinetic, thermodynamic and structural perspective. Virus Res. 107, 141-149.

Codoñer, F.M., Fares, M.A., Elena, S.F., 2006. Adaptative covariation between the coat and the movement proteins of Prunus necrotic ringspot virus. J. Virol. 80, 5833-5840.

Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797.

Fabian, M.R, Na, H., Ray, D., White, K.A., 2003. 3'-Terminal RNA secondary structures are important for accumulation of Tomato bushy stunt virus DI RNAs. Virology 313, 567-580.

Fabian, M.R., White, K.A., 2006. Analysis of a 3'-translation enhancer in a tombusvirus: a dynamic model for RNA-RNA interactions of mRNA termini. RNA 12, 1304-1314.

Font, M.I., Rubio, L., Martínez-Culebras, V., Jordá, C., 2007. Genetic structure and evolution of natural populations of viruses causing the tomato yellow leaf curl disease in Spain. Virus Res. 128: 43-51

Fraile, A., Malpica, J.M., Aranda, M.A., Rodríguez-Cerezo, E., GarcÍa-Arenal, F., 1996. Genetic diversity in tobacco mild green mosaic tobamovirus infecting the wild plant Nicotiana glauca. Virology 223, 148-155.

Fraile, A., Escriu, F., Aranda, M.A., Malpica, J.M., Gibbs, A.J., García-Arenal, F., 1997. A century of tobamovirus evolution in an Australian population of Nicotiana glauca. J. Virol. 71, 8316-8320

Franck, A., Loebenstein, G., 1994. Virus and virus-like diseases of pelargonium in Israel. Acta Hortic. 377, 31-39.

French, R., Stenger, D.C., 2003. Evolution of Wheat streak mosaic virus: dynamics of population growth within plants may explain limited variation. Annu. Rev. Phytopathol. 41, 199-214.

García-Arenal, F., Fraile, A., Malpica, J.M., 2001. Variability and genetic structure of plant virus populations. Annu. Rev. Phytopathol. 39, 157-186.

García-Arenal, F., Fraile, A., Malpica, J.M., 2003. Variation and evolution of plant virus populations. Int. Microbiol. 6, 225-232.

Genovés, A., Navarro, J.A., Pallás, V., 2006. Functional analysis of the five melon necrotic spot virus genome-encoded proteins. J. Gen. Virol. 87, 2371-2380.

Guindon, S., Gascuel, O., 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696-704.

Hoffman, N.G., Schiffer, C.A., Swanstrom, R., 2003. Covariation of amino acid positions in HIV-1 protease. Virology 314, 536-548.

Holland, J., Spindler, K., Horodyski, F., Grabau, E., Nichol, S, Van de Pol, S., 1982. Rapid evolution of RNA genomes. Science 215, 1577-1585.

Hwang, M.S., Kim S.H., Lee J.H., Bae, J.M., Paek, K.H., Park, Y.I., 2005. Evidence for interaction between the 2 a polymerase protein and the 3 a movement protein of Cucumber mosaic virus. J. Gen. Virol. 86, 3171-3177.

Kim, S.H., Kalinina, N.O., Andreev, I., Ryabov, E.V., Fitzgerald, A.G., Taliansky, M.E., Palukaitis, P., 2004. The C-terminal 33 amino acids of the Cucumber mosaic virus 3a protein affect virus movement, RNA binding and inhibition of infection and translation. J. Gen. Virol. 85, 221-230.

Kinard, G.R., Jordan, R., 2002. Genome organization of Pelargonium chlorotic ring pattern virus: further implications for Tombusviridae taxonomy. Acta Hortic. 568, 1727.

Kneller, E.L., Rakotondrafara, A.M., Miller, W.A., 2006. Cap-independent translation of plant viral RNAs. Virus Res. 119, 63-75.

Koonin, E.V., Dolja V.V., 1993. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol. Biol. 28, 375-430.

Kosakovsky Pond, S.L., Frost S.D.W., 2005. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22, 12081222.

Kosakovsky Pond, S.L., Posada, D., Gravenor, M.B., Woelk, C.H., Frost, S.D.W., 2006. Automated phylogenetic detection of recombination using genetic algorithm. Mol. Biol. Evol. 23, 1891-1901.

Larson, S.M., Di Nardo, A.A., Davidson, A.R., 2000. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions. J. Mol. Biol. 303, 433-446.

Lesemann, D.E., Adam, G., 1994. Electron microscopical and serological studies on four isometrical Pelargonium viruses. Acta Hortic. 377, 41-48

Li, H., Roossinck, M., 2004. Genetic bottlenecks reduce population variation in an experimental RNA virus population. J. Virol. 78, 10582-10587.

Li, W., Wong, S.M., 2006. Analyses of subgenomic promoters of Hibiscus chlorotic ringspot virus and demonstration of 5^{\prime}-untranslated region and 3^{\prime}-terminal sequences functioning as subgenomic promoters. J. Virol. 80, 3395-3405.

Liang, X.Z., Lee, B.T.K., Wong, S.M., 2002. Covariation in the capsid protein of Hibiscus chlorotic ringspot virus induced by serial passing in a host that restricts movement leads to avirulence in its systemic host. J. Virol. 76, 12320-12324.

Lisa, V., Vaira, A.M., Dellavalle, G., Masenga, V., Milne, R.G., 1996. Viruses of pelargonium in Italy. Acta Hortic. 432, 108-117.

Liu, H., Boulton, M.I., Oparka, K.J., Davies, J.W., 2001. Interaction of the movement and coat proteins of Maize streak virus: implications for the transport of viral DNA. J. Gen. Virol. 82, 35-44.

Lommel, S.A., Martelli G.P., Rubino L., Russo, M., 2005. Family Tombusviridae, in: Fauquet C.M., Mayo M.A., Maniloff J., Desselberger U., Ball, L.A. (Eds.). Eighth Report of the International Committee on Taxonomy of Viruses. Academic Press, San Diego, USA, pp. 907-936.

Malpica, J.M., Fraile, A., Moreno, I., Obies, C.I., Drake, J.W., García-Arenal, F., 2002. The rate and character of spontaneous mutation in an RNA virus. Genetics 162, 15051511.

Mansky, L.M., Temin, H.M., 1995. Lower in vivo mutation rate of Human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J. Virol. 69, 5087-5094.

Marcos, J.F, Vilar, M., Pérez-Payá, E., Pallás, V., 1999. In vivo detection, RNA-binding properties and characterization of the RNA-binding domain of the p7 putative movement protein from Carnation mottle carmovirus (CarMV). Virology 255, 354365.

Martin, D.P., Williamson, C., Posada, D., 2005. RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21, 260-262.

Martínez-Turiño, S., Hernández, C., 2009. Inhibition of RNA silencing by the coat protein of Pelargonium flower break virus: distinctions from closely related suppressors. J. Gen. Virol. 90, 519-525.

Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H., 1999. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911-940.

Moya, A., Rodríguez-Cerezo, E., García-Arenal, F., 1993. Genetic structure of natural populations of the plant RNA virus tobacco mild green mosaic virus. Mol. Biol. Evol. 10, 449-456.

Na, H., White, K.A., 2006. Structure and prevalence of replication silencer-3' terminus RNA interactions in Tombusviridae. Virology 345, 305-316.

Navarro, J.A., Genovés, A., Climent, J., Saurí, A., Martínez-Gil, L., Mingarro, I., Pallás, V., 2006. RNA-binding properties and membrane insertion of Melon necrotic spot virus (MNSV) double gene block movement proteins. Virology 356, 57-67.

Pogany, J., Fabian, M.R., White, K.A., Nagy, P.D., 2003. A replication silencer element in a plus-strand RNA virus. EMBO J. 22, 5602-5611.

Posada, D., Crandall, K., 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817-818.

Poon, A.F.Y., Lewis, F.I., Kosakowsky Pond, S.L., Frost, S.D.W., 2007. An evolutionary-network model reveals stratified interactions in the V3 loop of the HIV1 envelope. PLoS Comp. Biol. 3, e231.

Rico, P., Ivars, P., Elena, S.F., Hernández, C., 2006. Insights into the selective pressures restricting Pelargonium flower break virus genome variability and evidence of host adaptation. J. Virol. 80, 8124-8132.

Rodríguez-Cerezo, E., Elena, S.F., Moya, A., García-Arenal, F., 1991. High genetic stability in natural populations of the plant RNA virus tobacco mild green mosaic virus. J. Mol. Evol. 32, 328-332.

Rubio, L., Abou-Jawdah, Y., Lin, H.X., Falk, B.W., 2001. Geographically distant isolates of the Crinivirus, cucurbit yellow stunting disorder virus (CYSDV), show very low genetic diversity in the coat protein gene. J. Gen. Virol. 82, 929-933.

Ruiz, L., Castaño, A., Borja, M., Hernández, C., 2008. Pelargonium chlorotic ring pattern virus: first report in Spain. Plant Pathol. 57, 396.

Sacristán, S., Malpica, J.M., Fraile, A., García-Arenal, F., 2003. Estimation of population bottlenecks during systemic movement of Tobacco mosaic virus in tobacco plants. J. Virol. 77, 9906-9911.

Sánchez-Navarro, J.A., Bol, J. F., 2001. Role of the Alfalfa mosaic virus movement protein and coat protein in virus transport. Mol. Plant Microbe Interact. 14, 1051-1062.

Sánchez-Navarro, J.A., Herranz, M.C., Pallás, V., 2006. Cell-to-cell movement of Alfalfa mosaic virus can be mediated by the movement proteins of ilar-, bromo-, cucumo-, tobamo- and comoviruses and does not require virion formation. Virology 346, 66-73.

Sanjuán, R., Agudelo-Romero, P., Elena, S.F., 2009. Upper-limit mutation rate estimation for a plant RNA virus. Biol. Lett. 5, 394-396.

Sanjuán, R., Nebot, M.R., Chirico, N., Mansky, L.M., Belshaw, R. 2010. Viral mutation rates. J. Virol. 84, 9733-9748.

Sarawaneeyaruk, S., Iwakawa, H.O., Mizumoto, H., Murakami, H., Kaido, M., Mise, K., Okuno, T., 2009. Host-dependent roles of the viral 5' untranslated region (UTR) in RNA stabilization and cap-independent translational enhancement mediated by the 3' UTR of Red clover necrotic mosaic virus RNA1. Virology 391, 107-118.

Saurí, A., Saksena, S., Salgado, J., Jhonson, A.E., Mingarro, I., 2005. Double-spanning plant viral movement protein integration into the endoplasmic reticulum membrane is signal recognition particle-dependent, translocon-mediated, and concerted. J. Biol. Chem. 280, 25907-25912.

Schneider, W.L., Roossinck, M.J., 2001. Genetic diversity in RNA virus quasispecies is controlled by host-virus interactions. J. Virol. 75, 6566-6571.

Sharp, P.M., 1997. In search of molecular Darwinism. Nature 385, 111-112.

Steinhauer, D.A., Holland, J.J., 1986. Direct method for quantification of extreme polymerase error frequencies at selected single base sites in viral RNA. J. Virol. 57, 219-228.

Stone, O.M., 1980. Nine viruses isolated from pelargonium in the United Kingdom. Acta Hortic. 110, 177-182.

Stuart, G.W., Moffett, P.K., Bozarth, R.F., 2006. A comprehensive open reading frame phylogenetic analysis of isometric positive strand ssRNA plant viruses. Arch. Virol. 151, 1159-1177.

Stupina, V., Simon, A.E., 1997. Analysis in vivo of Turnip crinkle virus satellite RNA C variants with mutations in the 3^{\prime}-terminal minus-strand promoter. Virology 238, 470477.

Stupina, V.A., Meskauskas, A., McCormack, J.C., Yingling, Y.G., Shapiro, B.A., Dinman, J.D., Simon, A.E., 2008. The 3' proximal translational enhancer of Turnip crinkle virus binds to 60S ribosomal subunits. RNA 14, 2379-2393.

Suyama, M., Torrents, D., Bork, P., 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609-W612.

Tajima, F., 1993. Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135, 599-607.

Takeda, A., Kaido, M., Okuno, T., Mise, K., 2004. The C-terminus of the movement protein of Brome mosaic virus controls the requirement for coat protein in cell-to-cell movement and plays a role in long distance movement. J. Gen. Virol. 85, 1751-1761.

Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599.

Thomas, D.J., Casari, G., Sander, C., 1996. The prediction of protein contacts from multiple sequence alignments. Protein Eng. 9, 941-948.

Thomas, C.L., Leh, V., Lederer, C., Maule, A.J., 2003. Turnip crinkle virus coat protein mediates suppression of RNA silencing in Nicotiana benthamiana. Virology 306, 3341.

Tromas, N., Elena, S.F., 2010. The rate and spectrum of spontaneous mutations in a plant RNA virus. Genetics 185, 983-989.

Turina, M., Desvoyes, B., Scholthof, K.B., 2000. A gene cluster encoded by Panicum $\underline{\text { mosaic virus is associated with virus movement. Virology 266, 120-128. }}$

Turner, R.L, Buck, K.W., 1999. Mutational analysis of cis-acting sequences in the 3'- and 5'-untranslated regions of RNA 2 of Red clover necrotic mosaic virus. Virology 253, 115-124.

Vartanian, J.P., Plikat, U., Henry, M., Mahieux, R., Guillemot, L., Meyerhans, A., WainHobson, S., 1997. HIV genetic variation is directed and restricted by DNA precursor availability. J. Mol. Biol. 270, 139-151.

Verwoerd, T.C., Dekker, B.M.M., Hoekema, A., 1989. A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 17, 2362.

Vilar, M., Sauri, A., Monné, M., Marcos, J.F., von Heijne, G., Pérez-Payá, E., Mingarro, I., 2002. Insertion and topology of a plant viral movement protein in the endoplasmic reticulum membrane. J. Biol. Chem. 277, 23447-23452.

Wang, S., Carpenter, C.D., Simon, A.E., 1999. Minimal sequence and structural requeriments of a subgenomic RNA promoter for Turnip crinkle virus. Virology 253, 327-336.

Wang, J., Simon, A.E., 1997. Analysis of the two subgenomic RNA promoters for Turnip crinkle virus in vivo and in vitro. Virology 232, 174-186.

Wang, H.H., Wong, S.M., 2004. Significance of the 3 '-terminal region in minus strand RNA synthesis of Hibiscus chlorotic ringspot virus. J. Gen. Virol. 85, 1763-1776.

Zhang, G., Zhang, J., Simon, A.E., 2004a. Repression and derepression of minus-strand synthesis in a plus-strand RNA virus replicon. J. Virol. 78, 7619-7633.

Zhang, J., Stuntz, R.M., Simon, A.E., 2004b. Analysis of a viral replication repressor: sequence requirements for a large symmetrical internal loop. Virology 15, 90-102.

Zucker, M., 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406-3415.

FIGURE LEGENDS

Fig. 1. Minimum evolution unrooted phylogenetic tree inferred from nucleotide sequences derived from 10 isolates of PLPV (see Table 1). Phylogenetic analysis was conducted with programs included in the MEGA4 package. The numbers at the nodes are bootstrap support values based on 10,000 pseudoreplicates; only values $>50 \%$ are shown.

Fig. 2. Alignment of partial amino acid sequences of p9.7 (A) and CP (B) from different isolates of PLPV. The reference sequence derived from isolate PV-0193 (Castaño and Hernández, 2007) is shown at the top of the each alignment. Numbers above the reference sequence correspond to positions in the complete protein. Those residues conserved in all isolates are indicated by dots. The two amino acid sequences inferred from two cDNA clones selected from each isolate are shown. Underlined residues are under negative selection. In (A), the arrow demarcates the residues whose coding sequence overlaps with that of p 7 gene. The two predicted hydrophobic regions of the protein are depicted within brackets at the bottom. In (B), the domains of the CP at which the residues belong are indicated at the top.

Fig. 3. MFOLD-predicted RNA secondary structures of the putative subgenomic promoter (A) and the 3^{\prime} UTR (B) of PLPV. The distribution of polymorphic positions is indicated on the most stable folding of the reference sequence corresponding to isolate PV-0193 (Castaño and Hernández, 2007). Numbers denote positions in the PLPV gRNA. The minus strand is shown in (A).

Fig. 4. Covariations within and between p7, p9.7, CP and the partial RdRp. The residues covarying within a given protein are connected by solid lines and those covarying among proteins are connected by dashed lines.

d
$\cdot d$
$\cdot d$
$\cdot d$
d
әeuoz d
000Z
000Z
000Z
000Z
（s）」とə人

AY613852，EU835946
9ャ6乌と8กヨ
8Z6乙98กヨ
8Z6Z98กヨ ‘して6Z98กヨ
9Z6Z98กヨ ‘GZ6Z98กヨ
ャて6Z98กヨ ‘とて6ટ98กヨ
EU852921，EU852922
0て6て98กヨ ‘6レ6て98กヨ
8レ6ટ98กヨ＇9196ヤ8กヨ
LL6Z98กヨ＇9レ6Z98กヨ Gレ6て98กヨ ‘ャレ6て98กヨ

عเ6てG8กヨ ‘てL6てG8กヨ
」əqunu UoIsəગગヲ

2100 $\ddagger 69 L^{\circ} 0$			$200^{\circ} \mathrm{O} \mp \mathrm{SSO} 0^{\circ}$	
$97000 \mp 9 \varepsilon L^{\circ} 0$	$900^{\circ} 0$ 干 920 ${ }^{\circ}$	$200^{\circ} 0 \mp 600^{\circ}$	$800^{\circ} \mathrm{O} \mp \mathrm{SEO}^{\circ}$	¢
$\angle 100 \%$ S9 ${ }^{\circ} \mathrm{O}$	$\angle 00^{\circ} 0 \mp \angle D O^{\circ}$	ZOOO 0° ¢ S10	$600^{\circ} \mathrm{O}$ 干 290°	dO
$970^{\circ} 0 \mp 68 L^{\circ}$	LOOO 0 F $1+O^{\circ} 0$	ZOO＇0 \ddagger LIO＇O	$800^{\circ} 0$ 干 ZSO＊	L＇6d
$980^{\circ} 0 \mp \varepsilon 18^{\circ}$	6000 干 + ¢ 0°	EOOO 0 ¢ OLO	OLO＇O $\mp+50^{\circ}$	Ld
ZSO＇O \ddagger LSLOO	$\angle 00^{\circ} 0$ 干 LEO	EOOO $0^{\circ} \mathrm{OLO} 0^{\circ}$	$800{ }^{\circ} \mathrm{O}$ ¢ $1+0^{\circ} 0$	dypy
$\perp_{\mathcal{L}} /{ }^{\perp S_{\mathrm{Q}}}={ }^{1 S_{\mathrm{N}}}$ ио！ұеұиәәә！！ 	$S_{\mathcal{L}}-\perp_{\mathcal{L}}=1 S_{\mathcal{L}}$ suolpejndodqns buous ueәN	S_{11} suolpejndodqns u！पఫ！М иеәW	$\perp_{\mathcal{L}}$ uolpepndod ә．！ऐиヨ	
suol！e｜ndodqns se perəp！suoə uәәq 				

Fig. 1
(A)

(B)

Fig. 2
(A)

(B)

Fig. 3
dypy

