

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://www.inderscience.com/info/inarticle.php?artid=75963

http://hdl.handle.net/10251/81444

Inderscience

González Toñánez, M.; Cernuzzi, L.; Pastor López, O. (2016). A navigational role-centric
model oriented web approach - MoWebA. International Journal of Web Engineering and
Technology. 11(1):29-67. doi:10.1504/IJWET.2016.075963.

 Int. J. , Vol. x, No. x, xxxx 1

 Copyright © 200x Inderscience Enterprises Ltd.

A navigational role-centric model oriented Web approach -

MoWebA

Magalí González, Luca Cernuzzi
Catholic University of Asuncion, Asuncion, Paraguay

mgonzalez@uca.edu.py, lcernuzz@uca.edu.py

Oscar Pastor

Polytechnic University of Valencia, Valencia, Spain

opastor@dsic.upv.es

Abstract: This study presents MoWebA, a navigational role-centric model driven development

(MDD) proposal for Web applications development. The approach was conceived considering a

previous study of Web Methods and analysing some open issues. This article presents the

fundamentals of the proposal; the methodological aspects for modelling and transformation

processes; and the defined notations/techniques for modelling and transformation tasks, including

their abstract and concrete syntax definitions.

We include a summary of the validation experiences and main results, and a comparison against

other related proposals, in order to highlight the main contributions of MoWebA.

Keywords: Model Driven Architecture; model driven development; web application; web

methodologies; navigational models.

1 Introduction and Motivation

Web development has motivated the so-called “Web Engineering” [1] [2], which focuses

on methodological Web proposals, in order to improve the quality of the Web

development process and the final product. Current Web methods centre on developing

techniques and/or models needed to define the design processes, and on providing tools to

support them [3], following the MDD (Model Driven Development) approach in many

cases [4]. Some methods have tool support for generating automatic prototypes (e.g.

VisualWADE for OO-H [5]), but only a few, such as WebRatio for WebML, have

automation tools tested in industrial settings. There are various quantitative and

qualitative studies that show how MDD practices contribute to increase the efficiency and

effectiveness in software development [6] [7].

The study of Web methods and the classification proposed by Schwinger and Koch

[8], as well as our previous experiences and that of different authors [9] [10] [11] [12],

reveal some concerns. Below we list those more important from our point of view.

The first concern establishes that “Navigational oriented modelling could help

simplify the models for Web Applications”. Navigation has been identified as a critical

and fundamental feature within Web Engineering [13] [14]. Nevertheless, navigational

models are usually not the starting point of the modelling process. In some situations,

navigational models do not provide an appropriate syntax to model common behaviours

of current Web Systems, such as the dynamic navigation behaviour observed during

users’ interaction, or inter-intra contextual navigation. Most of the methodologies

mentioned in the literature (UWE [15], WebML [16], OOWS [17], OO-H [18], OOHDM

 Int. J. , Vol. x, No. x, xxxx 2

 Copyright © 200x Inderscience Enterprises Ltd.

[19]) start the design of navigational models from the conceptual (i.e., structural) model.

However, the way in which the information is arranged and structured in the organization,

is not necessarily the way external users need to access it [9]. Thus, deriving the

navigational model from the structural model may be useful in order to organise the

information content, but this does not model users’ interaction in all their dimensions.

Modelling the Navigational perspective according to the way in which user wishes to

explore the application (i.e. functional-oriented modelling) helps to obtain friendly and

easy to access navigational paths. Therefore, the open issue is to find alternative ways to

model the navigational perspective better fitting the requirements of users’ interaction and

making user navigation more adherent to its mental model.

A second concern is that the “adoption of standards will facilitate interoperability

between models, methods, transformations rules, and tools”. In recent years,

methodologies such as UWE [15], WebML [16], W2000 [20], OOWS [17]; and tools

such as Acceleo (http://www.acceleo.org), AndroMDA (http://www.andromda.org),

Olivanova (http://www.sosyinc.com), Optimal J (http://www.compuware.com), ArcStyler

(http://www.markosweb.com/www/arcstyler.com), among others, have partially adapted

their models, processes and/or transformation languages to the Model Driven

Architecture - MDA [21]; MDA propose using several standard languages to follow

MDD. Without adopting MDA approach in all its potential, the methodologies tend not to

take advantage of the efficiency and effectiveness in Web engineering. Despite UWE

being the only methodology whose models and processes completely follow the MDA

approach, their code generation tools require additional adjustments for a complete

transformation (e.g. UWE4JSF which works in the Eclipse environment and generates

JSF applications requiring additional adjustments for some java classes, libraries,

stylesheets, among others). For the semi-automatic generation of Web applications some

other approaches were implemented and are currently under evaluation

(http://uwe.pst.ifi.lmu.de/). In any case, it is an open line of research how to take profit

from the adoption of standards, transformation tools, and the thorough MDA potential in

Web engineering.

Finally, the third concern is the belief that “taking into account evolution of Web

environments is very important for improving the development of current Web

applications”. In fact, current Web applications evolve very fast (considering

technologies, platforms, architectures, diversity access devices, among others) and

methodologies need to be flexible in order to consider these Web tendencies. Normally,

methodologies try to do this by extending their modelling notations (e.g. RIAs proposal

for WebML [11]) at the level of Platform Independent Model (PIM). In doing so, the

platform independent models (PIMs) are not technology/platform independent anymore,

and they are becoming increasingly complex to understand and manage. The consequence

is a loss of portability of the models. Therefore, the open issue is to find alternative ways

to assure the easy evolution of Web application as well as preserving the independence of

the PIM and the portability of models for different platforms.

MoWebA (Model Oriented Web Approach) try to respond to the previous concerns

and their related open issues. It adopts the MDD approach in every phase and the

corresponding supporting tools trying to offer more efficiency and effectiveness in Web

applications development; it offers an innovative proposal for the navigational

perspective; and it considers the new technological tendencies in Web Applications.

The main contributions of MoWebA are: i) providing a view of navigation, more

function-oriented (i.e. behavioural-oriented) than data-oriented, trying to better capturing

the requirements of users interaction; ii) considering almost all the modelling process,

starting from the navigational model instead of the conceptual/data model; iii) providing

 Int. J. , Vol. x, No. x, xxxx 3

 Copyright © 200x Inderscience Enterprises Ltd.

an architectural level of modelling definition titled ASM – Architectural Specific Model,

in order to facilitate the evolution of applications. In this study, we present the dimensions

and the processes of MoWebA and its use in different experiences paving the way for a

more rigorous validation of the proposal.

The rest of the article is organised as follows: section 2 presents a general overview

of the MoWebA proposal; section 3 presents the MoWebA modelling process; section 4

includes the MoWebA transformation process; section 5 explains some experiences of

MoWebA; section 6 presents related works. Finally, we present the conclusions and

future works in section 7.

2 The Model Oriented Web Approach - MoWebA

MoWebA defines methodological aspects (processes, stages, work products,

dimensions) and complements these aspects with an entire environment, including

modelling and transformation tools, automatic code generation, use of standards, and

layered architecture, among others. For this reason, we refer to MoWebA as a

"Navigational role-centric Model-Based Approach to Web Application Development".

Figure 1 shows the MoWebA dimensions: phases, levels and aspects.

Figure 1 MoWebA dimensions

The phases dimension covers the modelling and transformation processes. MoWebA

adopts the MDA approach by identifying three different abstractions for modelling: the

problem space, covered by CIM (Computational Independent Model) and PIM (Platform

Independent Model) models; the solution modelling space, covered by ASM

(Architectural Specific Modelling) and PSM (Platform Specific Modelling) models; and

the source code definition, covered by ISM (Implementation Specific Model) and Manual

code. The levels dimension deals with complementary perspectives to be considered in

every phase (content, business logic, navigation, presentation, users). Finally, the aspects

dimension addresses the structure and behaviour considerations for each perspective.

MoWebA defines two main complementary processes: one related to the modelling

activities and the other to the transformation activities. As shown in Figure 1, the

horizontal axis represents the MoWebA transformation process. To formalize the

 Int. J. , Vol. x, No. x, xxxx 4

 Copyright © 200x Inderscience Enterprises Ltd.

modelling and transformation processes, it adopts the MOF language for abstract syntax

definition, and the UML profile extension for a precise definition of the modelling

language.

The modelling process includes the necessary activities to get all the diagrams for the

complete specification of the system-to-be (considering the problem space, architecture/s,

and destination platform/s). This process considers the CIM, the PIM, the ASM and the

PSM with their corresponding modelling activities. CIM definition covers the late

requirements identification, focusing on functional requirements specifications. PIM

specification is based on five models, offering a strong separation of concerns: Domain,

Logic, Navigation, Presentation, and User. The ASM enriches the models with

information for a specific architecture (e.g. Rich Internet Applications, Service Oriented

Applications, REST, among others) and the PSM contemplates information for a target

platform (e.g. a specific language, or a framework).

The transformation process, on the other hand, is related to the steps, techniques, and

tools, which allow M2M (i.e., model-to-model) and/or M2T (i.e., model-to-code)

transformations. This process is based on the MDA approach, and implies steps and

activities for transforming specification in order to go through each MoWebA phase (i.e.,

CIM/PIM-ASM/PSM, ASM/PSM-ISM/Manual adjustments). The CIM/PIM-ASM/PSM

transformation is done in a semi-automatic way (i.e., introducing some manual

adjustments), by defining the metamodels for specific architecture or platform, and the

corresponding mapping rules for PIM-ASM/PSM transformations. The ASM/PSM-ISM

transformation corresponds to the automatic transformation from the models to the

application code. Since real experiences have shown that sometimes manual adjustments

are necessary, we consider a “Manual adjustment” phase, where additional code can be

added to adapt the application. Finally, the transformation process is done iteratively,

allowing an incremental application development.

The next sections detail the modelling and transformation processes of MoWebA.

3 MoWebA Modelling Process

This section starts by presenting a general overview of the stages and activities, and then

going into details for each stage, considering diagrams, notations and tasks involved. To

clarify the proposal, we use as an example a Web-based Academic System. The system

supports teachers, students, staff and the general public, and covers a range of basic

functions such as: student registrations processing, courses monitoring, and school,

department and career management. Teachers have sufficient privileges to manage the

courses they are in charge of and provide students with information regarding their

current status. Students have the required privileges to track the courses they are enrolled

in and also access their current academic status. Finally, the system should provide the

facility to perform administrative tasks such as faculty, course, department, and subject

management.

The modelling process includes the CIM, PIM, ASM and PSM specification and

systematized in seven stages (see Figure 3).

Stages 1 through 6 are oriented to CIM and PIM definitions, based on the dependency

relationships between the different models, the level of granularity of the modelling task,

and the type of modelling to be done; these stages are done manually. MoWebA adopts

the Use Case model for CIM definition, focusing on modelling the functional

requirements of the system-to-be. For PIM definition, MoWebA proposes the following

models: i) Entity Model; ii) Navigational Model; iii) Behavioural Model; iv) Presentation

 Int. J. , Vol. x, No. x, xxxx 5

 Copyright © 200x Inderscience Enterprises Ltd.

Model; and v) User Model. Each model is composed of one or more diagrams. Figure 2

presents the dependency relationships between the different models.

Figure 2 Diagrams in MoWebA

Stage 1 is related to the requirements analysis. The artefact produced in this stage is a

Use Case diagram representing the functional, navigational and usability requirements, as

well as potential users of the application. Stage 2 corresponds to the navigational

structure, role and domain definition. In this stage a Navigational Tree Diagram is

defined to organise the system basic functionalities in a hierarchical way. The Role and

Zone diagrams are created considering the potential users identified at stage 1. An Entity

diagram defines the structure and the static relationships between classes identified in the

problem domain. Stage 3 defines the navigational behaviour for each node through the

Node diagram. Stage 4 defines which elements are going to be displayed on every

presentation page using the Content diagram. The pages structure (positions of headers,

menus, footers, among others) is also defined through the Structure diagram. In addition,

structural composition of business process and transactional procedures are defined with

the Logic diagram. In Stage 5 the main activity is to personalise the models through the

Adaptation model. MoWebA proposes Source and Rules diagrams to model different

kinds of adaptations (i.e. adaptive). Stage 6 proposes a detailed definition of each service

or action identified at Logic and Content diagrams using the Service diagram.

Stage 7 contemplates the architectural and platform aspects. This stage is done in a

semi-automatic way. It proposes an enrichment of existing models in order to consider

aspects related to the final architecture of the system (e.g. RIAs, SOAs, REST),

specifying the ASM diagram. The next step proposes to add platform specific information

(e.g. Ruby on Rails, Python, PHP, Java), specifying the PSM diagrams.

 Int. J. , Vol. x, No. x, xxxx 6

 Copyright © 200x Inderscience Enterprises Ltd.

Figure 3 Modelling Process

The modelling process is an iterative and incremental process, allowing for diagram

refinement. Next sub-sections describe the different stages of the modelling process.

3.1 Stage 1: Identify Potential Users and Functional Requirements

As a first stage, we need to specify the main goal of the system. In the example, the main

goal could be stated as follow: “To develop a Web-Based Application for academic

management of a University in order to process student registrations, course monitoring,

and school, department and career management; oriented to students, professors and

administrators”.

Early requirements are out of the scope of MoWebA. However, we assume that the

designer may use specification scenario based techniques that already exist in order to get

a good understanding of the problem domain [22]. MoWebA covers the Use Case

Diagram with the identification of the different actors and a list of functions associated to

the actors (see Figure 4).

In this classification, there are some similar or common functions that should be re-

organised or re-grouped. In the next stage, we will refine the potential users, identify the

domain model and define a navigational structure based on the functionalities defined in

this stage.

 Int. J. , Vol. x, No. x, xxxx 7

 Copyright © 200x Inderscience Enterprises Ltd.

Figure 4 The Use Case diagram for the Academic System

3.2 Stage 2: Specify Navigational Structure, User roles and Domain

This stage defines the following artefacts: Navigational Tree, Role-Zone and Entity.

Navigation in MoWebA covers both structural and behavioural aspects. The

structural aspects are modelled in this stage in terms of “navigable nodes” and their

relationships. A “Navigable Node” is a functional unit of the system, and the navigation is

“the change from one navigational node to another as a result of an invocation from the

user or an external agent”. Therefore, navigation occurs when an external agent interacts

through the invocation of a “Navigational Node”.

Figure 5 Navigational Tree for the Web-based Academic System

 Int. J. , Vol. x, No. x, xxxx 8

 Copyright © 200x Inderscience Enterprises Ltd.

The Navigational Tree diagram represents the application’s navigational space and it

is composed of zero or more navigational elements. These elements may be nodes or

links. A navigational node connects to other nodes by means of relationships, called hard

links, which denote a hierarchy in the Navigational Tree. The Navigational Tree is

defined following four activities: i) analyse the use cases defined at stage 1; ii) analyse

the actors diagram for a functional unit hierarchy definition; iii) define an initial point for

the hierarchical structure; and iv) create a structure considering the relationships between

Use Cases and actors. Figure 5 shows an example of a Navigational Tree.

The Navigational Tree has remarkable differences with other approaches in the

fundamental concept of the “navigable node”. The most mentioned methodologies in the

literature create the navigational structure from the conceptual model. This has two

important implications: i) the level of granularity of navigational elements are directly

related to structural elements (e.g. classes); and, ii) navigation is obtained considering the

way information is structured (e.g. classes relationships), not the way it is accessed. In the

case of MoWebA, navigation structure is defined considering the functional units as the

granularity level, and navigation paths are defined considering hard links between the

units, defining though the navigation from the way users interact with the system. With

this approach it is possible to model a functional-oriented navigational structure, and to

generate several exploration levels, which represent menus and sub-menus, keeping the

user located by using "breadcrumbs" and "history of navigation".

However, hard links are not sufficient to specify the navigational structure of an

application, because there are situations in which navigation through a different context

will be necessary (e.g. once authenticated, the user must specify the destination node). To

meet this need, we define the softLink, which will be specified in the Node diagram

(section 3.3).

Figure 6 Navigational Tree metamodel and UML Profile

To formalize the modelling and transformation processes, we used the MOF language

for the abstract syntax definition, and UML profile extension for the concrete syntax of

the modelling language. The MOF definition specifies MoWebA in terms of a

metamodelling language, allowing the definition of concepts in a more rigorous way.

Figure 6 shows the navigational tree metamodel and the corresponding UML profile. In

this case, only two stereotypes (<<node>> and <<hLink>>) are necessary.

The Role diagram represents the hierarchy of user roles, that is, groups of users that

can access the same functionalities. For this diagram MoWebA proposes the use of the

UML actors stereotyped with <<role>>.

The Zone diagram represents contexts containing certain behavioural profiles in

relation to each other. The zones provide system designers the possibility to explicitly

define different contexts with multiple roles assumed by users. There may be several

zones defined in a system, each one accessed by several roles, and, in turn, users could

 Int. J. , Vol. x, No. x, xxxx 9

 Copyright © 200x Inderscience Enterprises Ltd.

have more than one role. For example we define a zone in which both students and

teachers can access (e.g. subjects or career) and, a different zone for managers (e.g.

department). Moreover, the zone could be relative, that is, dependent on a domain class

indicating that for a user to assume a certain role, additional information is needed (e.g. at

the "Academic" zone, which is accessed by Professor and Student roles, each user would

take at most one of these roles for each subject; see Figure 7).

Figure 7 Example of Zone Diagram

To complete the Role and Zone modelling task, it is necessary to define roles/zones

access privileges on the elements of the system by establishing a dependency relationship

between a <<role>> or a <<zone>> and elements of another diagram (i.e. nodes access

privileges in Navigational Tree diagram). A relationship implies that the elements are

available for the specified role/zones assigned. Such relationships would be refined in the

next stages of other diagrams (logic, presentation, among others). In Figure 5 the node

"Course tracking" has privileged access to the "Academic" zone, indicating that both

students and teachers have access to that node. The same privileges are inherited by the

nodes below in the hierarchy, maintaining access restricted to students and teachers.

Figure 8 Zone and Role metamodel and UML Profile

Figure 8 presents the zone and role metamodel and UML profile. A role diagram is

composed of one or more RD elements, which could be specialized in “User”, “Role” and

“Zone”. Each zone can be composed in one or more roles which could have

 Int. J. , Vol. x, No. x, xxxx 10

 Copyright © 200x Inderscience Enterprises Ltd.

attributeRoles. The zones could be aggregated by other zones, and roles can be defined in

a hierarchy.

For the Entity diagram definition, MoWebA adopts the UML class diagram, where

each class is stereotyped with <<entity>>. Entities, attributes and relationships are

identified by the functionalities description of stage 1.

A simple example of an Entity diagram is shown in Figure 9.

Figure 9 Simplified entity diagram for the Web-based Academic System

Figure 10 Entity Diagram metamodel and UML Profile

Figure 10 presents Entity metamodel and UML Profile that includes a new stereotype

(<<entity>>).

3.3 Stage 3: Specify Navigational Behaviour

Each node in the Navigational tree must have an associated Navigational Node diagram

representing its navigational behaviour. The Node diagram is defined using the UML

State diagram.

There are three categories of states: flow states, virtual states and final states. Flow

states are transient and as such, they are visited only momentarily to create linkages with

other elements of the diagram. Flow states can be further classified into four types: 1)

initial states, 2) pseudo states, 3) junctions, 4) and service states, which model the

 Int. J. , Vol. x, No. x, xxxx 11

 Copyright © 200x Inderscience Enterprises Ltd.

services provided by the node. Virtual states represent stationary states indicating the fact

that the navigation flow remains in a "virtual point" within a node, waiting for an

interaction from an external agent. In stage 4, each virtual state will be linked to a

presentation page.

Figure 11 Node Diagram for the Authentication tree node.

The transitions between two states (o state nodes) are specialized in two sub-types:

the control flow transitions and the hyperlinks. The control flow models the natural

control transfer that occurs between two states, without requiring an external user

interaction. The hyperlink models a transition between two states resulting from an

invocation of an internal link, which leads to an interaction between the user and the

system. A control flow transition can only have a flow state as source, and any type of

state as target (e.g. the transition between the service "Login" and "Error Message"). The

hyperlink transition can only have a virtual state as source, and any state as target (e.g. the

transition between "Entering data" and service "Login"). Hyperlinks defined in the node

diagram correspond to possible internal navigations, triggered by user interactions. The

final state can be connected to another node in the navigational tree; if there is such

linkage, it defines a soft link (sLink). This will allow navigation to a unit not directly

linked to the functional node of the navigational tree structure.

Figure 11 shows an example for the authentication process in which the user has to

type a user name and a password (“Entering data” virtualState), then a login service is

executed to validate data, and finally, depending on the results, an error message will

appear (“Error Message” virtualState) or a soft link will take the user to the root node of

the system (“sLinkNode=Show details of careers”).

The Node diagram allows modelling navigational behaviour aspects obtained from

dynamic interactions with the user.

As shown in Figure 12, a node diagram is composed of ND Elements (node diagram

elements). The ND Elements are classified into State and Transition. States in turn are

specialized into FlowState, FinalState and VirtualState. On the other hand, Transitions

can be classified as sLink, HyperLink, or ControlFlow. Finally, a number of relationships

between the elements have been defined indicating associations that must be considered

in order to comply with the different proposed constraints.

 Int. J. , Vol. x, No. x, xxxx 12

 Copyright © 200x Inderscience Enterprises Ltd.

Figure 12 Node Diagram metamodel and UML Profile.

In the corresponding UML Profile definition, it is possible to notice that the

<<state>> stereotype is an extension of the State UML metaclass. The <<transition>>

stereotype is an extension of the Transition UML metaclass, and the <<sLink>>

stereotype is an extension of the FinalState UML metaclass. This figure also shows that

<<virtualState>> and <<service>> are specializations of <<state>>, and <<transition>> is

specialized in <<hyperlink>> and <<controlFlow>>. Finally, the association between

<<virtualState>> and <<presentationPage>> establishes that for each <<virtualState>> of

the Node Diagram there should be a <<presentationPage>>. The association between

<<sLink>> and <<node>> allows modellers to link a destination node to a final state in

the Node diagram.

3.4. Stage 4: Specify Logic Behaviour and Presentation

To consider the behavioural modelling, MoWebA defines two diagrams: Logic Behaviour

and Service diagrams. The Logic Behaviour diagram encapsulates and structures all the

behaviour actions (business processes and transactional procedures) that affect the

system. This is done by defining classes stereotyped with <<process>> and

<<valueObjects>>. The "process" class encapsulates business processes that represent

complex transactions and are associated through a dependent relationship with one or

more classes of the Entity diagram. These dependency relationships imply that the

partners are accessed by the operations defined in the process. On the other hand, the

"valueObjects" class encapsulates data, and depends on one or more entities, containing a

subset of attributes defined in the dependent classes. Every service identified in other

diagrams, should also be included into the Logic Behaviour diagram as a service for some

process. Furthermore, value objects provide domain visibility to the presentation layer.

This means that access to the domain has to be done by appropriate value objects defined

at the logic behaviour layer. The other behavioural diagram, called Service diagram, will

be explained in stage 6.

A simplified example of Logic Behaviour diagram is shown in Figure 13

representing a logic process called “Authentication” which is conformed of two services

(login, logout). It is important to notice that the “login” service has been already defined

 Int. J. , Vol. x, No. x, xxxx 13

 Copyright © 200x Inderscience Enterprises Ltd.

at the Navigational Node diagram “Authentication” (see Figure 11). In Figure 13 , we

define two <<valueObject>> elements, SubjectVO and CareerVO. Notice the dependency

between entities and value objects (e.g. SubjectVO and the Subject entity).

Figure 13 Logic Behaviour Diagram

Figure 14 Logic Behaviour metamodel and UML Profile

The LD Elements of the Logic Behaviour metamodel (see Figure 14) are classified

into ValueObjects and TProcess. The ValueObjects are composed of Attributes, and the

TProcess of Services which can be defined in other diagrams (e.g. services defined in the

node diagram).

The presentation is mainly aimed to facilitate the interaction with the outside world

and to provide the necessary elements for users to successfully perform tasks, such as

entering data, enabling processes and browsing. For the Presentation Model, MoWebA

considers the following aspects: the presentation content; the presentation structure; the

format of elements within each region; and the elements’ style. Thus, MoWebA defines

two presentation diagrams: Content and Structure diagrams.

The Content diagram allows modellers to specify the different elements that will be

presented to final users in each page. The diagram consists of a set of presentation pages,

each one related to a <<virtualState>> of the Node diagrams, which contain one or more

<<compositeUIElements>>. Each <<compositeUIElements>> class can have attributes

classified as follows: static attributes, which represent static information not related to

any other element of the different diagrams (e.g. the title of the web page or static text

 Int. J. , Vol. x, No. x, xxxx 14

 Copyright © 200x Inderscience Enterprises Ltd.

information); and binding attributes, which allows the transition from one state to another

(e.g. a submit button). The presentation classes can also display information from a

<<valueObject>> by establishing a dependency relationship between the class and a

"valueObject" defined in the Logical Layer diagram. Figure 15 shows the presentation

page "Subject Management" which is made up of two <<compositeUIElements>>:

SubjectMng and ShowCareers. The composite element ShowCareers, contains a DropBox

attribute to display all the available careers, and an association with the

<<compositeUIElement>> SubjectsMng, to display all available subjects of a specific

career. It is worth noting that the data that will be shown in the name attribute of

ShowCareers, is defined by the dependency relationship between ShowCareers and

CareersVO (this is also true for SubjectMng and SubjectVO). Finally, groupBy and

orderBy tagged values defined for SubjectMng allows grouping and ordering subjects by

semester.

Figure 15 Subject Management Presentation Page

Figure 16 Content metamodel and UML Profile

 Int. J. , Vol. x, No. x, xxxx 15

 Copyright © 200x Inderscience Enterprises Ltd.

Figure 16 shows the Presentation Diagram composed of one or more

PresentationPages, which aggregate different PD Elements. The PD Elements are

classified into UIElements and CompositeUIElements. UIElements in turn are specialized

into Anchor, TextInput, Button, Text, List, htmlText, Multimedia and ExternalLinks. Each

element has properties in order to model additional aspects related to constraints,

limitations, possible values, among others.

The Structure diagram is used for the definition of page areas (e.g. header, footer, or

menu areas). UML packages stereotyped with <<layout>> represent regions. Each region

can be composed of other sub-regions, and it is possible to define different layout

structures for the same application (e.g. one structure diagram for each different target

platform). It is also possible to define a basic content diagram for each region, which can

then be complemented with the diagrams defined for each <<virtualState>>. An example

of the latter is shown in Figure 15 and Figure 17. Figure 17 shows the basic content of the

rightLayout region that will show the latest news available (ShowNews class), and some

basic page information (RightElements class). On the other hand, Figure 15 shows the

Content diagram for the “Subject Management” <<virtualState>>. This diagram indicates

that the elements of the “SubjectMng” class will be placed in “RigthLayout” of the

Structure diagram, extending the basic content (news and basic information) of the region

with the specific content of this page (SubjectMng elements). ShowCareers class, on the

other side, will be placed in a different region of the Structure diagram ("BodyLayout").

Finally, to indicate the order in which presentation elements will be shown, a pair number

property is defined, where the first number sets the vertical order and the second number

the horizontal order.

Figure 17 Structure Diagram and example of a Content Diagram for the "RighLayout"

With respect to the presentation style, even though it is considered a relevant aspect

for the presentation layer, in our vision it is more reasonable to deal with style

specifications in the ISM phase. Reasons for this decision are the style being very

 Int. J. , Vol. x, No. x, xxxx 16

 Copyright © 200x Inderscience Enterprises Ltd.

changing and normally taken into account in the final stages of development; the lack of a

standard language at the modelling phase to specify this aspect and; the possibility to

separately differentiate style from other aspects, allowing modifications of the application

without changing any code (e.g. with CSS templates we could change the style at any

time, affecting the appearance of the application).

Figure 18 Structure Diagram metamodel and UML Profile

Figure 18 depicts the Structure Diagram metamodel, which is mainly composed of

LD Elements. The LD Elements are classified into Layout, which can be composed of

other layouts. The layouts define dimensions and positions properties.

3.5. Stage 5: Specify Personalisation

According to Weibelzahl, personalisation refers to both adaptability and adaptivity [23].

Adaptability requires user interaction in order to conceive personalisation (e.g. change

colors, or types). On the other hand, adaptivity allows personalisation considering other

factors without a direct user intervention (e.g. suggest list of books based on previous

purchases). In order to consider these concepts, MoWebA defines two diagrams:

Information Source and Rule diagrams.

Figure 19 Source Information Diagram for Web-based Academic System

The Information Source diagram models user information needs for adaptation. The

information sources refer to the system domain factors to be considered for rule

conditioning, (e.g. in the example, an information source could be the level of knowledge

 Int. J. , Vol. x, No. x, xxxx 17

 Copyright © 200x Inderscience Enterprises Ltd.

for specific users). The next step is to define associations between sources and users

considering the roles that they should play in the system. Therefore, we define a set of

information sources and associate them with a given role; these are stereotyped with

<<roleAttribute>>. The <<roleAttribute>> stereotype is used to establish relationships

between sources and roles, and it is possible to set default values to these attributes.

Figure 19 shows an example, we have defined two sources (Preference and Knowledge),

assigned roleAttributes to the Student, and assigned default values to these attributes

(language=English and level=beginner). Such default values could be changed at any

time in the future.

The Rules diagram allows the definition of “Condition-Action” rules that establish

under which conditions a rule must be triggered in order to perform a specific action. The

final result will be a dynamic adaptation of the system. An example of an adaptivity

personalisation is a rule defined to filter exercise examples, the filtering could be done

based on types of exercise that the student has already solved.

There are two types of rules: i) general rules (e.g. if language is set to “English”,

whenever a <<text>> element appears, it should be in English); and, ii) specific rules

applied to specific elements (e.g. even though the font type is set to “normal”, a specific

title of a page should be “large”).

Rules are specified using an OCL Expression as the tagged value of the class. For

example, in Figure 20, the general rule called “LanguageRule” has been defined for

<<compositeUIElements>> of the content diagrams, belonging to Academic Zone (i.e.,

the zone associated to the student and professor roles). The OCL expression defines a

condition related to the language attribute, triggering the selectContentLanguage action if

the default language is “English”. The behaviour of the selectContentLangage action

must be specified in some way. In order to do this we define a process in the logic layer

diagram called AdaptationService, and add the action selectContentLanguage as a

<<service>> operation. The detailed behaviour of the selectContentLanguage

<<service>> is then modelled in the service diagram, which will we be explained in the

next section.

Figure 20 Rule example for language definition

An Adaptation Diagram is composed of rules and sources (see Figure 21). For each

rule we can specify a series of properties (name, OCLExpression and rule type). The rules

can be associated to one or more roleAttributes of the role diagram, as well as one or

more compositeULElement of the content diagram.

 Int. J. , Vol. x, No. x, xxxx 18

 Copyright © 200x Inderscience Enterprises Ltd.

Figure 21 Adaptation metamodel and UML Profile

3.6. Stage 6: Detail Navigational, Logic, Adaptation and Presentation Services

Behavioural actions for each service specified at the navigational, logic, adaptation, and

presentation diagrams can be modelled through the MoWebA Services diagrams. The

Service diagrams use UML Activity diagrams enriched with OCL and Action Semanticsa.

For each service/action defined in the other diagrams, it is possible to create a Service

diagram that encapsulates the associated service behaviour. Services are defined in the

logic layer diagram and could be invoked by entities, rules, node or content diagrams

elements.

Figure 22 Adaptation Service

To specify behavioural actions we use a set of basic and fundamental constructors.

The basic constructors represent actions, transitions and pseudo-states. Fundamentals

constructors consist of action specializations classified into: CallBehaviorAction,

representing a type of action that can invoke other behaviour; DomainAccessAction,

representing access to the Entity model to perform an operation on it; and VariableAction,

representing a special type of action whose implementation performs various operations

a http://www.omg.org/docs/ptc/02-01-09.pdf

 Int. J. , Vol. x, No. x, xxxx 19

 Copyright © 200x Inderscience Enterprises Ltd.

on variables. Figure 22 shows the Service diagram for the selectContentLanguage action,

invoked by the rule “languageRule” (see figure 20).

Services allow the definition of behaviour actions at the modelling phase. In some

situations a Service diagram can be very complicated, because of the complex logic that it

represents. In this case the Service diagram definition could be avoided leaving the task

of definition for the ISM phase.

Figure 23 Service metamodel

Figure 24 Service Profile

The main idea of the service metamodel (see Figure 23) is to define specializations of

Action, which will enable to define more complex behaviours in the metamodel. The

metaclass CallBehaviorAction represents a special kind of action that can invoke other

behaviours represented by an activity diagram, or a behaviour that will come built into the

final platform destination. In the figure, there are listed others specialization of Action

(variableAction, domainAccessAction and writePage), and their relationships with other

 Int. J. , Vol. x, No. x, xxxx 20

 Copyright © 200x Inderscience Enterprises Ltd.

classes. The corresponding UML Profile for the Service metamodel is presented in Figure

24.

3.7. Stage 7: ASM and PSM definition

Stage 7 is composed of two different models, which are generated in a semi-automatic

way from the diagrams defined during the previous stages: the Architectural Specific

Model (ASM) and the Platform Specific Model (PSM). ASM enriches the previous

models with additional information related to the system architecture (e.g. RIAs, REST,

among others). PSM is oriented to refine the models by adding information related to the

platform and language selected for the final system (e.g. Java, .NET, PostgreSQL, among

others). At this stage, we are moving from the conceptual definition (CIM/PIM models) to

the solution definition (ASM/PSM models).

It is important to mention that other approaches generally include architectural

aspects at the conceptual modelling level, without making a clear distinction between the

independent model and the architectural one. For example, in order to generate Rich

Internet Applications - RIAs, current approaches extend their notations with additional

primitives or patterns considered at the conceptual modelling phase (e.g. WebML RIA

[24], UWE for RIA [25]). In MoWebA, the PIM could be used for different architectures

(e.g. RIAs, REST, client-server, SOAs) since architectural aspects are not contemplated

in this model. Therefore, MoWebA makes a clear separation between the conceptual

space and architectural aspects, defining them on different modelling abstraction levels.

In this way, our approach offers enough flexibility to evolve into different architectures

starting from the same PIM model.

Figure 25 Navigational Node applying the ASMRia model.

The ASM model could be defined for the RIA architecture, obtaining an ASMRia.

RIAs are web applications, which use data that can be processed both by the server and

the client. The data exchange takes place in an asynchronous way, so that the client stays

responsive while continuously recalculating or updating parts of the user interface. RIAs

main characteristics are: data and page computation distribution, asynchronous

communication between client and server, and enhanced user interface behaviour [11]

[26]. In order to model these characteristics in an ASM Model, MoWebA defines a series

of stereotypes and tagged values. As an example of an ASMRia model for the academic

system, Figure 25 shows the navigational node diagram for the “Authentication” node.

 Int. J. , Vol. x, No. x, xxxx 21

 Copyright © 200x Inderscience Enterprises Ltd.

The navigational node “Authentication” is stereotyped with <<richNode>>, meaning that

everything inside this node will be executed mostly on the client side. Asynchronous

communication is achieved for example by transitions modelled after the “Entering data”

virtual state, since user validation is processed on the server. An example of a client side

service could be “validatePass” stereotyped with <<clientService>>. This service should

be invoked at the presentation layer when the user sets a password in order to validate

security levels.

Figure 26 ASMRia metamodel.

Figure 26 shows a first version of the PSMRia metamodel. In this metamodel, we

show the extensions made on different elements related to distribution (client/server) and

duration of persistent data and services. We are working on a more complete definition of

an ASMRia considering presentation patterns, synchronization, among other.

The PSM model enriches the models with specific platform information as the MDA

approach suggests. In this sense, we can have one or more PSM models depending on the

target platform selected for the application. In the example, one of the target platforms is

Ruby on Rails. For this purpose, we have defined a PSMRuby metamodel presented in

Figure 28. In this figure it is possible to notice that presentation elements are redefined

according to Ruby on Rails platform.

Figure 27 Content Diagram for the “Entering Data” virtual state.

 Int. J. , Vol. x, No. x, xxxx 22

 Copyright © 200x Inderscience Enterprises Ltd.

Figure 27 presents a Content diagram with a PSMRuby extension for a Ruby on Rails

platform.

Figure 28 PSM Ruby Metamodel

The ASM and the PSM can be defined and included into the model as plug-in

extensions. Indeed, to consider emerging Web Technologies, MoWebA proposes to

define a new ASM and/or PSM metamodel.

4 MoWebA Transformation Process

The transformation process implies steps and activities for transformation specification in

order to go through each MoWebA phase (CIM/PIM-ASM/PSM, ASM/PSM-

ISM/Manual). This process aims to define intermediate specific models before the final

implementation (see Figure 29).

Figure 29 MoWebA transformation process

 Int. J. , Vol. x, No. x, xxxx 23

 Copyright © 200x Inderscience Enterprises Ltd.

The transformation process is based on metamodels (PIM-ASM-PSM

transformation). The PIM-ASM/PSM phase is done in a semi-automatic way; since

sometimes the information to be added requires human intervention (e.g. in RIAs, the

modeller needs to specify where services will be executed, on the client or on the server).

The automation of this process is done using a MDD standard such as QVT, along with a

tool that supports this standard (e.g. Operational QVT). An example of the QVT

transformation rule is shown in Figure 30. In this figure, the QVT transformation rule is

defined by using the Relation language, in order to transform the MoWebA Entity

Diagram (which corresponds to the input model) in a PSMPostgres (which corresponds

to the output model) diagram. Input and output diagrams vary according to each specific

QVT transformation rule.

Figure 30 QVT definition to obtain the PSMPostgres diagram

The ASM/PSM-ISM phase is done automatically by using open source tools (e.g.

Acceleo, AndroMDA). The input models of this phase are the PSMs obtained at the

previous phase, and the output will be se source code.

We refer to the final implementation of the System as ISM. The ISM will contain

code for every platform selected and the bridges between them, in order to get a

functional system ready to be deployed. We have experienced two types of ISM obtained

by defining transformation rules with two different tools: AndroMDA and Acceleo.

Figure 31 The Web Based System transformation process

top relation EntityToTable {

 prefix, eName : String;

 checkonly domain entityDiagram
entity:Entity {

 name = eName

 };
 enforce domain PSMPostgres

table:Table {

 name = eName
 };

 where {

 prefix = ’’;

 RecordToColumns(entity,

table, prefix);

 }
}

relation RecordToColumns {

 checkonly domain entityDiagram

record:Record {
 fields = field:Field { }

 };

 enforce domain PSMPostgres
table:Table { };

 primitive domain prefix:String;

 where {
 FieldToColumns(field,

table);

 }

}

 Int. J. , Vol. x, No. x, xxxx 24

 Copyright © 200x Inderscience Enterprises Ltd.

In order to implement the MoWebA transformation rules, we defined a series of

modules (shown in Figure 32). For reasons of space, we will only explain in detail the

Source and Rule models, defined for the Adaptation code generation phase.

The transformation process for our Web Academic System example is shown in

Figure 31.

The Academic System was generated using the Acceleo Tool. Acceleo is considered

a template-based M2T (model to text) transformation open source MDD tool, which

adopts the MTL (Model to Text Language) standard for transformation rules definitionb.

This tool was created in 2006 as a part of the Eclipse Modelling Project (EMP)c. The

Acceleo code generation process considers the following steps:

1. Code generator project creation

2. Input models inclusion (XMI files)

3. Modules definition and templates creation

4. Associated services creation

5. Code Generation

6. Project depuration

7. Generators modules exportation

Figure 32 Acceleo modules definition for MoWebA

Modules are considered as partial or full implementations of transformation rules for

a specific platform. They can be executed as plug-ins of Eclipse to generate an application

in the target platform. Modules are composed of templates, services and queries written in

the Java programming language. Templates use a specific syntax composed of tags.

b http://www.omg.org/spec/MOFM2T/1.0/PDF
c http://www.eclipse.org/modeling/

 Int. J. , Vol. x, No. x, xxxx 25

 Copyright © 200x Inderscience Enterprises Ltd.

Queries are used to extract information from the model, which can return values or

collections. Java services are used to define complex or common operations that can be

accessed by the different templates defined within the module.

The Adaptation transformation rules are composed of the Source and Rule modules.

The Source module contains templates defined for information source generation and the

Rule module corresponds to the adaptation rules processing.

The Source module is composed of the following templates:

• generateTableSource: creates the database tables with the parameters defined in

the information source model.

• loadSources: generates a file with SQL sentences to insert possible values

defined in enumerations.

• generateTableSourceType: generates Ruby files for modules in order to

manipulate the database tables.

• generateSourcesForRoleAttribute: associates a user with a specific role, and

information sources with default values defined in the model.

The next figure shows the generateTableSourceType template.

Figure 33 generateTableSourceType.mtl template

The Rule model, on the other side is composed of:

• generalRuleTransformation: is applied to the rule classes stereotyped with

<<rule>> and isGeneral=True. This template is composed of auxiliary templates:

getOclExpression, to retrieve the OCL expression; getSource, to identify the

source referencing; and sourceType, to identify the source type.

• applyGeneralRule.mtl: is defined to apply the general rule to the presentation

elements.

• specificRuleTransformation.mtl: analyses the specific rules, retrieving the OCL

expressions, sources and actions.

 Int. J. , Vol. x, No. x, xxxx 26

 Copyright © 200x Inderscience Enterprises Ltd.

• applySpecificRule.mtl: applies the specific rule to the presentation elements

associated to it.

The next figure shows the generalRuleTransoformation.mtl template.

Figure 34 generateRuleTransformation.mtl template

Figure 35 An example of a generated page

Figure 35 shows an example of a page of the Web Academic System resulting from

the transformation process. In this figure we can visualize some parts generated from the

MoWebA models (e.g. from the navigational tree, node content, and roles and zones

diagrams).

Navigational Map.

Generated from the

Navigational Tree

Diagram

Breadcrumbs.

Serves as a
complement to the
Navigational Map

Node Content.

This displays the

implementation of each

node

Role and User.

Generated from Roles and
Zones models

 Int. J. , Vol. x, No. x, xxxx 27

 Copyright © 200x Inderscience Enterprises Ltd.

5 Adopting MoWebA: some experiences

MoWebA has been used for modelling and generating different types of applications by

novice and experienced modellers and developers. Experienced modellers were already

familiar the UML notation and Web methodologies (e.g. UWE, WebML, OOWS, or

OOHDM), while developers were experienced with different programing languages.

These experiences, which are summarized in Table 1, are proofs of concepts in

academic and industrial settings. They have offered insights for improving specific

aspects of the processes and of different models of MoWebA. In addition, they are paving

the way for a more rigorous validation of the proposal in which we are currently working.

The experiences relied on two types of validation instruments (i.e. interviews and

questionnaires) in order to identify strengths and weaknesses.

Application
 Aspects considered

Type Teama Profiles Type of project Analysis

On-line Course e-learning
2EM
1ED

Professionals
Thesis students

Academic Interview

University

Administration
Admininstration 12NM Students Academic Interview

Aquatic Birds

Portal
Management 4EM Professionals Real project Interview

Academic

System

e-learning
2 EM

2 ED
Professionals Academic Interview

Laboratory
Management

Management

3 EM

3D

12 NM

Thesis students

Thesis students

Students

Academic Questionnaire

Budget

execution
Administration

4 NM

4 MD

Students

Advance students
Real project Interview

Surveys Interactive 3 NM Students Real project Interview

Social Network Community
12 MM

12 MD

Advance students

Advance students
Academic Interview

a. Team: Level E (Experienced), N (New), M (Medium); Type M (Modeler), D (Developer)

Table 1 Experiences with MoWebA

For a more objective analysis, Table 2 summarizes the diverse characteristics of these

applications. Some characteristics are related to the complexity of applications and

modelling elements, and others to the development process. A summary of the most

important considerations arising from these experiences are presented below:

• A first positive aspect is that Navigational structures considered were easy to model,

and easy to understand by subjects. For example, the Academic System is composed of

35 navigational nodes, with a mean of 3 virtual states per node, where each virtual state

represents a page. Having a global hierarchical view of the system with 35 elements is

more manageable than 105 pages.

• The node diagrams were helpful to identify behavioural and presentation elements more

easily. We could note that for each navigational node there were identified, in average,

2 to 3 services and 3 to 4 virtual pages. Thus, it is possible to decompose the overall

navigational structure into smaller parts, taking into account the specific behavioural

navigation for each functional element.

• The CIM/PIM phase was standardized, and could be modelled with any tool that

supports UML 2.0 (e.g. Magic Draw and Papyrus). The generated models were

exported to the XMI format in order to integrate them with Acceleo and AndroMDA.

 Int. J. , Vol. x, No. x, xxxx 28

 Copyright © 200x Inderscience Enterprises Ltd.

Even though it was possible to work with different tools, some details had to be

considered, especially specially when defining tagged values.

Application

Modelling aspects analyzed Development aspect considered

UC
Node

s

Cl

ass

es

Pres.

Page

s

Servi

ces

Develop

time

Target

Platform

Tool adopted

On-line course

32 28 23 59 48

University Admin

98 92 72 247 248

Aquatic Birds Portal 95 109 25 266 83

Academic System 20 35 22 105 93 6 months Ruby on Rails Acceleo

Lab Management 15 17 13 28 19 4 months PHP AndroMDA

Budget execution 27 19 16 79 26 6 months PHP-Zend Acceleo

Surveys 12 21 14 35 25 6 months PHP-Zend Acceleo

Social Network 17 38 12 40 26 4 months Ruby on Rails Acceleo

Table 2 Aspects of MoWebA adoption in the different experiences

• The automation was performed using two different tools: AndroMDA and Acceleo. On

average, the automatic generation percentages for each layer were the following: data

layer, 100%; logic layer, 61%; navigational layer, 100%; and presentation layer, 73%.

The reason for logic layer not being totally generated is that some services were

difficult to model because of their behavioural complexity; therefore they had to be

added manually. With respect to presentation, there are some aspects related to style

(e.g. fonts, colours, among others) that can only be defined manually.

• MoWebA allows the modelling of diverse types of Web Applications. Even though,

special characteristics e.g., such as RIAs or REST, need further specification For this

reason, in order to add RIA characteristics to our Web Academic System example, we

had to define the ASMRia model.

• One of the limitations we encountered was that services were sometimes difficult to

model, but despite services not being totally defined, the PIM could be defined almost

completely. We noticed that for service definition it was necessary to have knowledge

in Action Semantics and OCL, but most of the modellers were not as experienced with

these, as they are with UML. However, considering all the services defined in models

for the different applications we saw that only 8.6% of the services were complex, while

most of them were medium (30.5%) or simple (60.9%) services.

Furthermore, the transformation rules defined using AndroMDA and Acceleo, made

it possible to generate code for three different target platforms: PHP, Python and Ruby on

Rails.

In addition to the experiences with different types of applications, some modelling

experiences with different user profiles (i.e., expert, and novice modellers) were also

carried out. An interesting experience was carried out with two groups, one formed

entirely by students and the other entirely by MDD experts, for analysing the quality of

the MoWebA models. It was focused on studying different perspectives such as

simplicity, abstraction, ease of use, among others, adopting the GQM approach [27]. The

results were quite positive, although there were some difficulties with the modelling,

especially for the service diagrams, because of their complexity.

 Int. J. , Vol. x, No. x, xxxx 29

 Copyright © 200x Inderscience Enterprises Ltd.

6 Related Works and discussions on MoWebA

Schwinger and Koch classified the Web methods following different paradigms [8]:

data-oriented, hypertext-oriented, object-oriented and software-oriented. In this work, we

present an improvement over the Web method classification Table proposed by

Schwinger and Koch. First, by considering new trends in methodologies, we propose the

MDD-oriented paradigm as a new category. Second, we believe that the paradigms are

not totally independent and therefore a methodology could be classified in more than one

paradigm. Third, we eliminate some methodologies that are no longer in use.

Method

Classification

Hypertext-

oriented

Data-

oriented

Object-

oriented

Software-

oriented

MDD-

oriented

W2000 [20] X X

Hera [28] X

WebML [16] X X

WSDM [9] X X

OOHDM [19] X X X

UWE [15] X X X

OO-H [18] X X X

OOWS [17] X X X

WAE2 [29] X

WebSA [12] X X

MoWebA X X X

UWA [30] [31] X X X

Table 3. Web Method Classification

Next, we present a discussion of MoWebA for each concern in comparison with

related works.

C1: Navigational Oriented Modelling could help to simplify the models for Web

Applications.

In MoWebA the Navigational model is the central and starting point for modelling

(see stage 2). This approach is an alternative way to model the navigational perspective

better fitting the requirements of users’ interaction and making user navigation more

adherent to its mental model. From the first experiences, it seems to support modellers in

defining functions oriented to navigational structures, thus simplifying user orientation.

Other similar interesting approaches are: UWA (based on W2000) and WSDM.

However, in UWA navigation and services are derived from the information model.

Despite deriving the navigational model from the structural model may be useful in order

to organise the information content, it does not model users’ interaction in all their

dimensions, as already presented in the introduction section. The WSDM proposal

regarding the navigational structure (i.e. function oriented) is quite similar to the

 Int. J. , Vol. x, No. x, xxxx 30

 Copyright © 200x Inderscience Enterprises Ltd.

MoWebA approach. However, some differences are: i) the navigational model is more

complex (e.g. including a great amount of constructors); ii) the method does not use a

standard notation and it does not support automation tools (refers to the second concern);

and, consequently iii) the evolution of technologies is difficult to manage (refers to the

third concern).

MoWebA, as other approaches like OOHDM and OOWS, also discriminates between

intra (e.g. hard and soft links) and inter-contextual (e.g. hyperlinks between states of the

Node diagram) navigations. However, it proposes their definition in a different way: i) the

concept underlying the soft links (i.e. navigate to an unrelated node in the Navigational

Tree) is quite singular of the MoWebA approach; and, ii) the incremental process

definition starts with the identification of the hard links in the Navigational Tree diagram

as a first step, and the hyperlinks and softLinks of the Node diagram as a second step.

This simplifies the overall understanding of the application structure and makes a

distinction between the different levels of navigation (see the first consideration in section

5).

C2: The adoption of standards will facilitate the interoperability between models,

methods, and transformation rules.

MoWebA, like other methodologies to some extent, adopts the MDD standards and

follows the object-oriented paradigm in every phase (e.g. UWE, OO-H, and OOWS).

MoWebA works with different tools and notations: i) it formalizes the processes by

applying the MOF metamodelling language; ii) it adopts UML profiles in XMI format to

allow modelling with different case tools; iii) it defines Model to Model transformation

rules for PIM-ASM/PSM, adopting QVT where the proposed ASM is RIA, and the

proposed PSMs are PHP, Ruby on Rails and PostgreSQL; and, iv) it defines Model to

Text (i.e. code generation) rules using the Java and ATL language with the support of two

different tools (AndroMDA and Acceleo). MoWebA adopts the MDA approach in all the

standards and in the entirely process trying to make profit from all the MDD potential for

Web engineering.

In our best knowledge, UWE is the only other methodology whose models and

processes completely follows the MDA approach, maintaining some differences regards

the other concerns. Moreover, another difference resides in the generation process. UWE

code generation process is done in a semi-automatic way, since the generated code

requires additional adjustments for obtaining the final application (e.g. UWE4JSF which

works in the Eclipse environment and generates JSF applications requiring additional

adjustments for some java classes, libraries, stylesheets, among others). MoWebA also

follows the semi-automation approach, but this is done in the PIM-ASM/PSM phase,

since human intervention is needed to decide some transformation rules (see section 4).

C3: Take into account the Evolution of Web environments for improving the

development of current Web applications.

MoWebA considers evolution in different aspects. At a more structural level,

considering the evolution of the architecture and the final implementing platform, to the

best of our knowledge an approach such as the one from MoWebA has not been

presented by any other methodology. MoWebA separates the PIM, ASM and PSM

models, in order to facilitate the evolution of applications. With this separation, a clear

distinction is made between what would be the problem space, presenting a model that is

completely independent of the target architecture or platform; and the solution space,

through the ASM, PSM and the final code. Such proposal, tend to facilitate the support of

Web development for the Web 2.0. In fact, for achieving dynamic web site, where the

users actively interact with the Web application, it is common to use technologies and

platforms like Web Services and RIAs, among others. Methodologies such as WebML

 Int. J. , Vol. x, No. x, xxxx 31

 Copyright © 200x Inderscience Enterprises Ltd.

and UWE propose extensions for RIAs (or other final platforms) during the PIM

modelling phase. However, such extensions reduce the reusability and portability of the

PIM. By contrast, MoWebA captures the requirements for specific platforms at the ASM

model according a semi-automated process. As a counterpart, to offer a greater reusability

of the PIM facilitating the architectural evolution of the Web applications, the MoWebA

approach requires some additional effort, including the need for metamodels and the

definition of the corresponding transformation rules, to achieve automatic transformations

on the proposed architecture or platform.

Moreover, the evolution concern is not only one for architectural/technological

issues, since the functional requirements of Web applications also evolve fast. MoWebA,

as well the other methodologies that adhere to the MDD approach, follows an incremental

process, facilitating such type of functional changes that are defined at the model level

which will then be transformed into code by using automated tools.

At a user adaptation level, in general, to cover the accessibility aspects, other

methodologies propose notations to model user groups (e.g. OOHDM and OO-H). These

are defined in MoWebA with the Zone diagram, which also allows setting different user

levels (groups of users that are defined by the roles, the roles related to each other through

the zones, and zones of the different levels that may arise). It is also possible to define

access privileges on different notational elements, identifying different levels of security.

Adaptation is also considered in other methodologies to allow personalisation strategies.

For example, UWE defines adaptation using the aspect paradigm. With the MoWebA

Adaptation model it is possible to cover adaptability and adaptivity, with the Source

Information and Rule diagrams. In addition, in the Presentation modelling stage of

MoWebA (see section 3.4), the separation between content and structure, allows more

adaptability. In most methodologies there is no such distinction.

Finally, the Presentation dimension is a critical aspect in Web Engineering and still

requires more effort to assure an adequate automatic generation. Some proposals consider

the separation of presentation and application logic to be necessary (e.g. UWE). Other

proposals indicate the importance of establishing a clear separation between application,

presentation and control logic, especially when multiple presentation channels should be

served by the same application logic [32] [33]. MoWebA considers these aspects with the

Logic (through value objects and services) and Node diagrams (through virtual and

service states). Nevertheless, future works are needed to deal with these open issues.

7 Conclusions and Future Work

This study presented MoWebA (Model Oriented Web Approach), a proposal for the

development of Web applications. MoWebA defines navigation from a behavioural point

of view, instead of a structural (data-oriented) one, trying to better capturing the

requirements of users’ interaction, and it considers navigation as the starting point of the

modelling process for Web applications. Moreover, it includes an appropriate syntax to

model the dynamic navigation observed during the users’ interaction and the inter-intra

contextual navigation. Another innovative contribution in MoWebA is the ASM –

Architectural Specific Model, which define an architectural level of modelling definition

separated from the PIM, in order to facilitate the evolution of applications. MoWebA

strongly adopts the standards proposed by MDD (languages, tools, architecture, among

others) in every phase. An important effort is devoted to personalisation aspects. Based

on the results of the various experiences performed, this study discusses the current

proposals, highlighting the contributions and weaknesses of MoWebA in each phase.

 Int. J. , Vol. x, No. x, xxxx 32

 Copyright © 200x Inderscience Enterprises Ltd.

Results were quite encouraging, and stimulated new on-going experiences, case

studies and more rigorous experiments: Application of MoWebA and other

methodologies (UWE, OOHDM, OO-H, WebML) to the same real applications;

integration and refinement of rules definition in Acceleo; rules definition for other

platforms (for example, J2EE); PSMs definition for different platforms; and validation of

models.

Finally, we also consider that MoWebA has sufficient flexibility to support

innovative technologies, such as those typical of Web 2.0 (e.g. ASMRia extension). To

validate these considerations, proofs of concept and case studies that focus on building

applications with current technologies (e.g. RIAs, REST, cloud computing) that facilitate

development of Web 2.0 applications are being planned. We are also considering an

interesting future work, to compare the development time required using MoWebA with

regards to a) competing approaches and b) manually creating all the web apps without

using models; considering updates activities for evolution analysis.

References

[1] Y. Deshpande, S. Murugesan, A. Ginige, S. Hansen, D. Schwabe, M. Gaedke and B. White, “Web

Engineering,” Journal of Web Engineering, vol. 1 (1), pp. 3-17, 2002.

[2] R. Pressman and D. Lowe, Web Engineering: A Practitioner's approach, New York: McGraw-Hill, 2009.

[3] M. Mernik, J. Heering and A. Sloane, “When and how to develop domain-specific languages,” ACM

Computing Surveys (CSUR), vol. 37, no. DOI 10.1145/1118890.1118892, pp. 316-344, 2005.

[4] M. Brambilla, J. Cabot and M. Wimmer, Model-Driven Software Engineering in Practice, USA:

Morgan&Claypool, 2012.

[5] J. Gómez, A. Bia and P. A, “Tool Support for Model-Driven Development of Web Applications,” in Web
Information System Engineering - WISE, Berlin, 2005.

[6] R. Acerbis, A. Bongio, M. Brambilla, M. Tisi, S. Ceri and E. Tosetti, “Developing eBusiness Solutions

with a Model Driven Approach: The Case of Acer EMEA.,” in Proceedings of the 7th International
Conference Web Engineering (ICWE'07), Berlin, 2007.

[7] M. Blechar and D. Norton, “Trends in Model-Driven Development,” Gartner Research, Technical report,

4Q09-3Q10, ID Number: G00169442, Cited on page 3, 2009.

[8] W. Schwinger and N. Koch, “Modeling Web Applications,” in Web Engineering: a New Discipline for

Development of Web-Based Systems, New York, John Wiley, 2006, pp. 39-64.

[9] O. De Troyer and T. Decruyenaere, “Conceptual modelling of web sites for end-users,” World Wide Web,
vol. 3, no. 1, pp. 27-42, 1998.

[10] C. Cachero and N. Koch, “Conceptual Navigation Analysis: a Device and Platform Independent

Navigation Specification,” in 2nd Internationa Workshop on Web-oriented Software Technology -
IWWOST, Málaga, Spain, 2002.

[11] A. Bozzon, S. Comai, P. Fraternali and G. Toffetti, “Capturing RIA concepts in a web modeling language,”

in 15th International Conference on World Wide Web, New York, USA, 2006.

[12] S. Meliá, J. Gómez and N. Koch, “Improving Web Design Methods with Architecture Modeling,” in 6th

International Conference on Electronic Commerce and Web Technologies - EC-Web, Copenhagen, 2005.

[13] G. Rossi, O. Pastor, D. Schwabe and L. Olsina, Web Engineering: Modelling and Implementing Web
Applications, London: Springer, 2007.

[14] O. De Troyer and S. Casteleyn, “Exploiting Link Types during the Conceptual Design of Web Sites,”

International Journal of Web Engineering Technology, vol. 1, no. 1, pp. 17-40, 2003.

[15] N. Koch, A. Knapp, G. Zhang and H. Baumeiter, “UML-based Web Entineering, An Approach Based on

Standards,” in Web Engineering: Modeling and Implementing Web Applications, London, Springer, 2007,

pp. 157-192.

 Int. J. , Vol. x, No. x, xxxx 33

 Copyright © 200x Inderscience Enterprises Ltd.

[16] S. Ceri, P. Fraternalli and Bongio, “Web Modelling Language: A Modelling Language for Designing Web
Sites,” Computer Networks, vol. 33, no. 1, pp. 137-157, 2000.

[17] J. Fons, V. Pelechano, O. Pastor, P. Valderas and V. Torres, “Applying the OOWS Model-Driven

Approach for Developing Web Applications: The Internet Movie Database (IMDB) Case Study,” in Web
Engineering: Modeling and Implementing Web Applications, London, Springer, 2007, pp. 65-108.

[18] C. Cachero, J. Gómez and O. Pastor, “OO-HMethod: Un Método de Diseño de Lugares Web,” in IDEAS

2000, Cancún, 2000.

[19] D. Schwabe and G. Rossi, “An Object Oriented Approach to Web-Based Application Design,” Theory and

Practice of Object Systems, vol. 4, no. 4, pp. 207-225, 1998.

[20] L. Baresi, S. Colazzo, L. Mainetti and S. Morasca, "W2000: A Modelling Notation for Complex Web
Applications," in Web Engineering, Berling, Springer, 2006, pp. 335-364.

[21] “MDA Guide Version 1.0.1,” 2003. [Online]. Available: http://www.omg.org/docs/omg/03-06-01.pdf.

[22] B. Nuseibeh and S. Easterbrook, “Requirements Engineering: A Roadmap,” in 22nd International
Conference on Software Engineering - ICSE, Limerick Ireland, 2000.

[23] W. S, “Evaluation of Adaptive Systems,” in Dissertation Presented to the Faculty I of the University of

Trier, Trier, Germany, 2002.

[24] P. Fraternali, S. Comai, A. Bozzon and i. G. Toffett, “Engineering rich internet applications with a model-

driven approach,” ACM Trans. Web, vol. 4, no. 2, p. Article 7, 2010.

[25] N. Koch, M. Pigerl, G. Zhang and T. Morozova, “Patterns for the Model-Based Development of RIAs,” in
International Conference on Web Engineering (ICWE), San Sebastian, Spain, 2009.

[26] M. Busch and N. Koch, “Rich Internet Application. State of the Art,” Technical Report 0902.

Programming Software Engineering Unit (PST), Munchen, Germany, 2009.

[27] V. Basili, G. Caldiera and H. Rombach, “Goal Question Metric Approach,” in Encyclopedia of Software

Engineering, New York, John Wiley & Sons, 1994, pp. 528-532.

[28] G. Houben, F. Frasincar, P. Barna and R. Vdovjak, “Modeling User Input and Hypermedia Dynamics in
Hera,” in 4th Internationa Conference on Web Engineering, Munich, 2004.

[29] J. Conallen, Building Web Application with UML, 2nd Edition, Massachutsets, USA: Addison-Wesley,

2003.

[30] D. Distante, P. Pedone, G. Rossi and G. Canfora, “Model-Driven Development of Web Applications with

UWA, MVC and JavaServer Faces,” in Web Engineerign, Como, Springer Berlin Heidelberg, 2007, pp.

457-476.

[31] M. Bernardi, G. Di Lucca and D. Distante, “Model-driven fast prototyping of RIAs: From conceptual

models to running applications,” in 3rd International Conference on Advances in Computing,

Communications & Informatics, ICACCI 2015, Delhi, India, 2014.

[32] M. Book and V. Gruhn, “Fine-grained specification an control of data flows in web-based user interfaces,”

Journal of Web Engineering, vol. 8, no. 1, pp. 48-70, 2009.

[33] I. Horrocks, Constructing the User Interface with Statecharts, Bellingham, USA: Addison-Wesley
Professional, 1998.

 Int. J. , Vol. x, No. x, xxxx 1

 Copyright © 200x Inderscience Enterprises Ltd.

