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Abstract: This study presents MoWebA, a navigational role-centric model driven development 

(MDD) proposal for Web applications development. The approach was conceived considering a 

previous study of Web Methods and analysing some open issues. This article presents the 

fundamentals of the proposal; the methodological aspects for modelling and transformation 

processes; and the defined notations/techniques for modelling and transformation tasks, including 

their abstract and concrete syntax definitions.  

We include a summary of the validation experiences and main results, and a comparison against 

other related proposals, in order to highlight the main contributions of MoWebA. 

 

Keywords: Model Driven Architecture; model driven development; web application; web 

methodologies; navigational models.   

1 Introduction and Motivation 

Web development has motivated the so-called “Web Engineering” [1] [2], which focuses 

on methodological Web proposals, in order to improve the quality of the Web 

development process and the final product. Current Web methods centre on developing 

techniques and/or models needed to define the design processes, and on providing tools to 

support them [3], following the MDD (Model Driven Development) approach in many 

cases [4]. Some methods have tool support for generating automatic prototypes (e.g. 

VisualWADE for OO-H [5]), but only a few, such as WebRatio for WebML, have 

automation tools tested in industrial settings. There are various quantitative and 

qualitative studies that show how MDD practices contribute to increase the efficiency and 

effectiveness in software development [6] [7].  

The study of Web methods and the classification proposed by Schwinger and Koch 

[8], as well as our previous experiences and that of different authors [9] [10] [11] [12], 

reveal some concerns. Below we list those more important from our point of view. 

The first concern establishes that “Navigational oriented modelling could help 

simplify the models for Web Applications”. Navigation has been identified as a critical 

and fundamental feature within Web Engineering [13] [14]. Nevertheless, navigational 

models are usually not the starting point of the modelling process. In some situations, 

navigational models do not provide an appropriate syntax to model common behaviours 

of current Web Systems, such as the dynamic navigation behaviour observed during 

users’ interaction, or inter-intra contextual navigation. Most of the methodologies 

mentioned in the literature (UWE [15], WebML [16], OOWS [17], OO-H [18], OOHDM 
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[19]) start the design of navigational models from the conceptual (i.e., structural) model. 

However, the way in which the information is arranged and structured in the organization, 

is not necessarily the way external users need to access it [9]. Thus, deriving the 

navigational model from the structural model may be useful in order to organise the 

information content, but this does not model users’ interaction in all their dimensions. 

Modelling the Navigational perspective according to the way in which user wishes to 

explore the application (i.e. functional-oriented modelling) helps to obtain friendly and 

easy to access navigational paths. Therefore, the open issue is to find alternative ways to 

model the navigational perspective better fitting the requirements of users’ interaction and 

making user navigation more adherent to its mental model. 

A second concern is that the “adoption of standards will facilitate interoperability 

between models, methods, transformations rules, and tools”. In recent years, 

methodologies such as UWE [15], WebML [16], W2000 [20], OOWS [17]; and tools 

such as Acceleo (http://www.acceleo.org), AndroMDA (http://www.andromda.org), 

Olivanova (http://www.sosyinc.com), Optimal J (http://www.compuware.com), ArcStyler 

(http://www.markosweb.com/www/arcstyler.com), among others, have partially adapted 

their models, processes and/or transformation languages to the Model Driven 

Architecture - MDA [21]; MDA propose using several standard languages to follow 

MDD. Without adopting MDA approach in all its potential, the methodologies tend not to 

take advantage of the efficiency and effectiveness in Web engineering. Despite UWE 

being the only methodology whose models and processes completely follow the MDA 

approach, their code generation tools require additional adjustments for a complete 

transformation (e.g. UWE4JSF which works in the Eclipse environment and generates 

JSF applications requiring additional adjustments for some java classes, libraries, 

stylesheets, among others). For the semi-automatic generation of Web applications some 

other approaches were implemented and are currently under evaluation 

(http://uwe.pst.ifi.lmu.de/). In any case, it is an open line of research how to take profit 

from the adoption of standards, transformation tools, and the thorough MDA potential in 

Web engineering. 

Finally, the third concern is the belief that “taking into account evolution of Web 

environments is very important for improving the development of current Web 

applications”. In fact, current Web applications evolve very fast (considering 

technologies, platforms, architectures, diversity access devices, among others) and 

methodologies need to be flexible in order to consider these Web tendencies. Normally, 

methodologies try to do this by extending their modelling notations (e.g. RIAs proposal 

for WebML [11]) at the level of Platform Independent Model (PIM). In doing so, the 

platform independent models (PIMs) are not technology/platform independent anymore, 

and they are becoming increasingly complex to understand and manage. The consequence 

is a loss of portability of the models. Therefore, the open issue is to find alternative ways 

to assure the easy evolution of Web application as well as preserving the independence of 

the PIM and the portability of models for different platforms. 

MoWebA (Model Oriented Web Approach) try to respond to the previous concerns 

and their related open issues. It adopts the MDD approach in every phase and the 

corresponding supporting tools trying to offer more efficiency and effectiveness in Web 

applications development; it offers an innovative proposal for the navigational 

perspective; and it considers the new technological tendencies in Web Applications. 

The main contributions of MoWebA are: i) providing a view of navigation, more 

function-oriented (i.e. behavioural-oriented) than data-oriented, trying to better capturing 

the requirements of users interaction; ii) considering almost all the modelling process, 

starting from the navigational model instead of the conceptual/data model; iii) providing 
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an architectural level of modelling definition titled ASM – Architectural Specific Model, 

in order to facilitate the evolution of applications. In this study, we present the dimensions 

and the processes of MoWebA and its use in different experiences paving the way for a 

more rigorous validation of the proposal. 

The rest of the article is organised as follows: section 2 presents a general overview 

of the MoWebA proposal; section 3 presents the MoWebA modelling process; section 4 

includes the MoWebA transformation process; section 5 explains some experiences of 

MoWebA; section 6 presents related works. Finally, we present the conclusions and 

future works in section 7. 

2     The Model Oriented Web Approach - MoWebA 

MoWebA defines methodological aspects (processes, stages, work products, 

dimensions) and complements these aspects with an entire environment, including 

modelling and transformation tools, automatic code generation, use of standards, and 

layered architecture, among others. For this reason, we refer to MoWebA as a 

"Navigational role-centric Model-Based Approach to Web Application Development". 

Figure 1 shows the MoWebA dimensions: phases, levels and aspects.  

 
Figure 1 MoWebA dimensions 

The phases dimension covers the modelling and transformation processes. MoWebA 

adopts the MDA approach by identifying three different abstractions for modelling: the 

problem space, covered by CIM (Computational Independent Model) and PIM (Platform 

Independent Model) models; the solution modelling space, covered by ASM 

(Architectural Specific Modelling) and PSM (Platform Specific Modelling) models; and 

the source code definition, covered by ISM (Implementation Specific Model) and Manual 

code. The levels dimension deals with complementary perspectives to be considered in 

every phase (content, business logic, navigation, presentation, users). Finally, the aspects 

dimension addresses the structure and behaviour considerations for each perspective. 

MoWebA defines two main complementary processes: one related to the modelling 

activities and the other to the transformation activities. As shown in Figure 1, the 

horizontal axis represents the MoWebA transformation process. To formalize the 
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modelling and transformation processes, it adopts the MOF language for abstract syntax 

definition, and the UML profile extension for a precise definition of the modelling 

language.  

The modelling process includes the necessary activities to get all the diagrams for the 

complete specification of the system-to-be (considering the problem space, architecture/s, 

and destination platform/s). This process considers the CIM, the PIM, the ASM and the 

PSM with their corresponding modelling activities. CIM definition covers the late 

requirements identification, focusing on functional requirements specifications. PIM 

specification is based on five models, offering a strong separation of concerns: Domain, 

Logic, Navigation, Presentation, and User. The ASM enriches the models with 

information for a specific architecture (e.g. Rich Internet Applications, Service Oriented 

Applications, REST, among others) and the PSM contemplates information for a target 

platform (e.g. a specific language, or a framework). 

The transformation process, on the other hand, is related to the steps, techniques, and 

tools, which allow M2M (i.e., model-to-model) and/or M2T (i.e., model-to-code) 

transformations. This process is based on the MDA approach, and implies steps and 

activities for transforming specification in order to go through each MoWebA phase (i.e., 

CIM/PIM-ASM/PSM, ASM/PSM-ISM/Manual adjustments). The CIM/PIM-ASM/PSM 

transformation is done in a semi-automatic way (i.e., introducing some manual 

adjustments), by defining the metamodels for specific architecture or platform, and the 

corresponding mapping rules for PIM-ASM/PSM transformations. The ASM/PSM-ISM 

transformation corresponds to the automatic transformation from the models to the 

application code. Since real experiences have shown that sometimes manual adjustments 

are necessary, we consider a “Manual adjustment” phase, where additional code can be 

added to adapt the application. Finally, the transformation process is done iteratively, 

allowing an incremental application development.  

The next sections detail the modelling and transformation processes of MoWebA. 

3  MoWebA Modelling Process 

This section starts by presenting a general overview of the stages and activities, and then 

going into details for each stage, considering diagrams, notations and tasks involved. To 

clarify the proposal, we use as an example a Web-based Academic System. The system 

supports teachers, students, staff and the general public, and covers a range of basic 

functions such as: student registrations processing, courses monitoring, and school, 

department and career management. Teachers have sufficient privileges to manage the 

courses they are in charge of and provide students with information regarding their 

current status. Students have the required privileges to track the courses they are enrolled 

in and also access their current academic status. Finally, the system should provide the 

facility to perform administrative tasks such as faculty, course, department, and subject 

management. 

The modelling process includes the CIM, PIM, ASM and PSM specification and 

systematized in seven stages (see Figure 3).  

Stages 1 through 6 are oriented to CIM and PIM definitions, based on the dependency 

relationships between the different models, the level of granularity of the modelling task, 

and the type of modelling to be done; these stages are done manually. MoWebA adopts 

the Use Case model for CIM definition, focusing on modelling the functional 

requirements of the system-to-be. For PIM definition, MoWebA proposes the following 

models: i) Entity Model; ii) Navigational Model; iii) Behavioural Model; iv) Presentation 
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Model; and v) User Model. Each model is composed of one or more diagrams. Figure 2 

presents the dependency relationships between the different models. 

 

 

Figure 2 Diagrams in MoWebA 

Stage 1 is related to the requirements analysis. The artefact produced in this stage is a 

Use Case diagram representing the functional, navigational and usability requirements, as 

well as potential users of the application. Stage 2 corresponds to the navigational 

structure, role and domain definition. In this stage a Navigational Tree Diagram is 

defined to organise the system basic functionalities in a hierarchical way. The Role and 

Zone diagrams are created considering the potential users identified at stage 1. An Entity 

diagram defines the structure and the static relationships between classes identified in the 

problem domain. Stage 3 defines the navigational behaviour for each node through the 

Node diagram. Stage 4 defines which elements are going to be displayed on every 

presentation page using the Content diagram. The pages structure (positions of headers, 

menus, footers, among others) is also defined through the Structure diagram. In addition, 

structural composition of business process and transactional procedures are defined with 

the Logic diagram. In Stage 5 the main activity is to personalise the models through the 

Adaptation model. MoWebA proposes Source and Rules diagrams to model different 

kinds of adaptations (i.e. adaptive). Stage 6 proposes a detailed definition of each service 

or action identified at Logic and Content diagrams using the Service diagram. 

Stage 7 contemplates the architectural and platform aspects. This stage is done in a 

semi-automatic way. It proposes an enrichment of existing models in order to consider 

aspects related to the final architecture of the system (e.g. RIAs, SOAs, REST), 

specifying the ASM diagram. The next step proposes to add platform specific information 

(e.g. Ruby on Rails, Python, PHP, Java), specifying the PSM diagrams.  
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Figure 3 Modelling Process 

The modelling process is an iterative and incremental process, allowing for diagram 

refinement. Next sub-sections describe the different stages of the modelling process.  

3.1  Stage 1: Identify Potential Users and Functional Requirements 

As a first stage, we need to specify the main goal of the system. In the example, the main 

goal could be stated as follow: “To develop a Web-Based Application for academic 

management of a University in order to process student registrations, course monitoring, 

and school, department and career management; oriented to students, professors and 

administrators”.  

Early requirements are out of the scope of MoWebA. However, we assume that the 

designer may use specification scenario based techniques that already exist in order to get 

a good understanding of the problem domain [22]. MoWebA covers the Use Case 

Diagram with the identification of the different actors and a list of functions associated to 

the actors (see Figure 4). 

In this classification, there are some similar or common functions that should be re-

organised or re-grouped. In the next stage, we will refine the potential users, identify the 

domain model and define a navigational structure based on the functionalities defined in 

this stage. 
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Figure 4 The Use Case diagram for the Academic System 

3.2  Stage 2: Specify Navigational Structure, User roles and Domain   

This stage defines the following artefacts: Navigational Tree, Role-Zone and Entity.  

Navigation in MoWebA covers both structural and behavioural aspects. The 

structural aspects are modelled in this stage in terms of “navigable nodes” and their 

relationships. A “Navigable Node” is a functional unit of the system, and the navigation is 

“the change from one navigational node to another as a result of an invocation from the 

user or an external agent”. Therefore, navigation occurs when an external agent interacts 

through the invocation of a “Navigational Node”.  

 

Figure 5 Navigational Tree for the Web-based Academic System 
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The Navigational Tree diagram represents the application’s navigational space and it 

is composed of zero or more navigational elements. These elements may be nodes or 

links. A navigational node connects to other nodes by means of relationships, called hard 

links, which denote a hierarchy in the Navigational Tree. The Navigational Tree is 

defined following four activities: i) analyse the use cases defined at stage 1; ii) analyse 

the actors diagram for a functional unit hierarchy definition; iii) define an initial point for 

the hierarchical structure; and iv) create a structure considering the relationships between 

Use Cases and actors. Figure 5 shows an example of a Navigational Tree.  

The Navigational Tree has remarkable differences with other approaches in the 

fundamental concept of the “navigable node”. The most mentioned methodologies in the 

literature create the navigational structure from the conceptual model. This has two 

important implications: i) the level of granularity of navigational elements are directly 

related to structural elements (e.g. classes); and, ii) navigation is obtained considering the 

way information is structured (e.g. classes relationships), not the way it is accessed. In the 

case of MoWebA, navigation structure is defined considering the functional units as the 

granularity level, and navigation paths are defined considering hard links between the 

units, defining though the navigation from the way users interact with the system. With 

this approach it is possible to model a functional-oriented navigational structure, and to 

generate several exploration levels, which represent menus and sub-menus, keeping the 

user located by using "breadcrumbs" and "history of navigation". 

However, hard links are not sufficient to specify the navigational structure of an 

application, because there are situations in which navigation through a different context 

will be necessary (e.g. once authenticated, the user must specify the destination node). To 

meet this need, we define the softLink, which will be specified in the Node diagram 

(section 3.3). 

  

Figure 6 Navigational Tree metamodel and UML Profile 

To formalize the modelling and transformation processes, we used the MOF language 

for the abstract syntax definition, and UML profile extension for the concrete syntax of 

the modelling language. The MOF definition specifies MoWebA in terms of a 

metamodelling language, allowing the definition of concepts in a more rigorous way. 

Figure 6 shows the navigational tree metamodel and the corresponding UML profile. In 

this case, only two stereotypes (<<node>> and <<hLink>>) are necessary. 

The Role diagram represents the hierarchy of user roles, that is, groups of users that 

can access the same functionalities. For this diagram MoWebA proposes the use of the 

UML actors stereotyped with <<role>>.  

The Zone diagram represents contexts containing certain behavioural profiles in 

relation to each other. The zones provide system designers the possibility to explicitly 

define different contexts with multiple roles assumed by users. There may be several 

zones defined in a system, each one accessed by several roles, and, in turn, users could 
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have more than one role. For example we define a zone in which both students and 

teachers can access (e.g. subjects or career) and, a different zone for managers (e.g. 

department). Moreover, the zone could be relative, that is, dependent on a domain class 

indicating that for a user to assume a certain role, additional information is needed (e.g. at 

the "Academic" zone, which is accessed by Professor and Student roles, each user would 

take at most one of these roles for each subject; see Figure 7). 

 

Figure 7 Example of Zone Diagram 

To complete the Role and Zone modelling task, it is necessary to define roles/zones 

access privileges on the elements of the system by establishing a dependency relationship 

between a <<role>> or a <<zone>> and elements of another diagram (i.e. nodes access 

privileges in Navigational Tree diagram). A relationship implies that the elements are 

available for the specified role/zones assigned. Such relationships would be refined in the 

next stages of other diagrams (logic, presentation, among others). In Figure 5 the node 

"Course tracking" has privileged access to the "Academic" zone, indicating that both 

students and teachers have access to that node. The same privileges are inherited by the 

nodes below in the hierarchy, maintaining access restricted to students and teachers. 

  

Figure 8 Zone and Role metamodel and UML Profile 

Figure 8 presents the zone and role metamodel and UML profile. A role diagram is 

composed of one or more RD elements, which could be specialized in “User”, “Role” and 

“Zone”. Each zone can be composed in one or more roles which could have 
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attributeRoles. The zones could be aggregated by other zones, and roles can be defined in 

a hierarchy. 

For the Entity diagram definition, MoWebA adopts the UML class diagram, where 

each class is stereotyped with <<entity>>. Entities, attributes and relationships are 

identified by the functionalities description of stage 1. 

A simple example of an Entity diagram is shown in Figure 9. 

 

Figure 9 Simplified entity diagram for the Web-based Academic System 

 

  

Figure 10 Entity Diagram metamodel and UML Profile 

Figure 10 presents Entity metamodel and UML Profile that includes a new stereotype 

(<<entity>>). 

 

3.3  Stage 3: Specify Navigational Behaviour 

Each node in the Navigational tree must have an associated Navigational Node diagram 

representing its navigational behaviour. The Node diagram is defined using the UML 

State diagram. 

There are three categories of states: flow states, virtual states and final states. Flow 

states are transient and as such, they are visited only momentarily to create linkages with 

other elements of the diagram. Flow states can be further classified into four types: 1) 

initial states, 2) pseudo states, 3) junctions, 4) and service states, which model the 
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services provided by the node. Virtual states represent stationary states indicating the fact 

that the navigation flow remains in a "virtual point" within a node, waiting for an 

interaction from an external agent. In stage 4, each virtual state will be linked to a 

presentation page. 

 

Figure 11 Node Diagram for the Authentication tree node. 

The transitions between two states (o state nodes) are specialized in two sub-types: 

the control flow transitions and the hyperlinks. The control flow models the natural 

control transfer that occurs between two states, without requiring an external user 

interaction. The hyperlink models a transition between two states resulting from an 

invocation of an internal link, which leads to an interaction between the user and the 

system. A control flow transition can only have a flow state as source, and any type of 

state as target (e.g. the transition between the service "Login" and "Error Message"). The 

hyperlink transition can only have a virtual state as source, and any state as target (e.g. the 

transition between "Entering data" and service "Login"). Hyperlinks defined in the node 

diagram correspond to possible internal navigations, triggered by user interactions. The 

final state can be connected to another node in the navigational tree; if there is such 

linkage, it defines a soft link (sLink). This will allow navigation to a unit not directly 

linked to the functional node of the navigational tree structure.  

Figure 11 shows an example for the authentication process in which the user has to 

type a user name and a password (“Entering data” virtualState), then a login service is 

executed to validate data, and finally, depending on the results, an error message will 

appear (“Error Message” virtualState) or a soft link will take the user to the root node of 

the system (“sLinkNode=Show details of careers”). 

The Node diagram allows modelling navigational behaviour aspects obtained from 

dynamic interactions with the user. 

As shown in Figure 12, a node diagram is composed of ND Elements (node diagram 

elements). The ND Elements are classified into State and Transition. States in turn are 

specialized into FlowState, FinalState and VirtualState. On the other hand, Transitions 

can be classified as sLink, HyperLink, or ControlFlow. Finally, a number of relationships 

between the elements have been defined indicating associations that must be considered 

in order to comply with the different proposed constraints. 
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Figure 12 Node Diagram metamodel and UML Profile. 

In the corresponding UML Profile definition, it is possible to notice that the 

<<state>> stereotype is an extension of the State UML metaclass. The <<transition>> 

stereotype is an extension of the Transition UML metaclass, and the <<sLink>> 

stereotype is an extension of the FinalState UML metaclass. This figure also shows that 

<<virtualState>> and <<service>> are specializations of <<state>>, and <<transition>> is 

specialized in <<hyperlink>> and <<controlFlow>>. Finally, the association between 

<<virtualState>> and <<presentationPage>> establishes that for each <<virtualState>> of 

the Node Diagram there should be a <<presentationPage>>. The association between 

<<sLink>> and <<node>> allows modellers to link a destination node to a final state in 

the Node diagram. 

 

3.4. Stage 4: Specify Logic Behaviour and Presentation 

 

To consider the behavioural modelling, MoWebA defines two diagrams: Logic Behaviour 

and Service diagrams. The Logic Behaviour diagram encapsulates and structures all the 

behaviour actions (business processes and transactional procedures) that affect the 

system. This is done by defining classes stereotyped with <<process>> and 

<<valueObjects>>. The "process" class encapsulates business processes that represent 

complex transactions and are associated through a dependent relationship with one or 

more classes of the Entity diagram. These dependency relationships imply that the 

partners are accessed by the operations defined in the process. On the other hand, the 

"valueObjects" class encapsulates data, and depends on one or more entities, containing a 

subset of attributes defined in the dependent classes. Every service identified in other 

diagrams, should also be included into the Logic Behaviour diagram as a service for some 

process. Furthermore, value objects provide domain visibility to the presentation layer. 

This means that access to the domain has to be done by appropriate value objects defined 

at the logic behaviour layer. The other behavioural diagram, called Service diagram, will 

be explained in stage 6. 

A simplified example of Logic Behaviour diagram is shown in Figure 13  

representing a logic process called “Authentication” which is conformed of two services 

(login, logout). It is important to notice that the “login” service has been already defined 
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at the Navigational Node diagram “Authentication” (see Figure 11). In Figure 13 , we 

define two <<valueObject>> elements, SubjectVO and CareerVO. Notice the dependency 

between entities and value objects (e.g. SubjectVO and the Subject entity).  

 

Figure 13 Logic Behaviour Diagram 

  

Figure 14 Logic Behaviour metamodel and UML Profile 

The LD Elements of the Logic Behaviour metamodel (see Figure 14) are classified 

into ValueObjects and TProcess. The ValueObjects are composed of Attributes, and the 

TProcess of Services which can be defined in other diagrams (e.g. services defined in the 

node diagram).  

The presentation is mainly aimed to facilitate the interaction with the outside world 

and to provide the necessary elements for users to successfully perform tasks, such as 

entering data, enabling processes and browsing. For the Presentation Model, MoWebA 

considers the following aspects: the presentation content; the presentation structure; the 

format of elements within each region; and the elements’ style. Thus, MoWebA defines 

two presentation diagrams: Content and Structure diagrams. 

The Content diagram allows modellers to specify the different elements that will be 

presented to final users in each page. The diagram consists of a set of presentation pages, 

each one related to a <<virtualState>> of the Node diagrams, which contain one or more 

<<compositeUIElements>>. Each <<compositeUIElements>> class can have attributes 

classified as follows: static attributes, which represent static information not related to 

any other element of the different diagrams (e.g. the title of the web page or static text 
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information); and binding attributes, which allows the transition from one state to another 

(e.g. a submit button). The presentation classes can also display information from a 

<<valueObject>> by establishing a dependency relationship between the class and a 

"valueObject" defined in the Logical Layer diagram. Figure 15 shows the presentation 

page "Subject Management" which is made up of two <<compositeUIElements>>: 

SubjectMng and ShowCareers. The composite element ShowCareers, contains a DropBox 

attribute to display all the available careers, and an association with the 

<<compositeUIElement>> SubjectsMng, to display all available subjects of a specific 

career. It is worth noting that the data that will be shown in the name attribute of 

ShowCareers, is defined by the dependency relationship between ShowCareers and 

CareersVO (this is also true for SubjectMng and SubjectVO). Finally, groupBy and 

orderBy tagged values defined for SubjectMng allows grouping and ordering subjects by 

semester. 

 

 

Figure 15 Subject Management Presentation Page 

  

Figure 16 Content metamodel and UML Profile 
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Figure 16 shows the Presentation Diagram composed of one or more 

PresentationPages, which aggregate different PD Elements. The PD Elements are 

classified into UIElements and CompositeUIElements. UIElements in turn are specialized 

into Anchor, TextInput, Button, Text, List, htmlText, Multimedia and ExternalLinks. Each 

element has properties in order to model additional aspects related to constraints, 

limitations, possible values, among others. 

The Structure diagram is used for the definition of page areas (e.g. header, footer, or 

menu areas). UML packages stereotyped with <<layout>> represent regions. Each region 

can be composed of other sub-regions, and it is possible to define different layout 

structures for the same application (e.g. one structure diagram for each different target 

platform). It is also possible to define a basic content diagram for each region, which can 

then be complemented with the diagrams defined for each <<virtualState>>. An example 

of the latter is shown in Figure 15 and Figure 17. Figure 17 shows the basic content of the 

rightLayout region that will show the latest news available (ShowNews class), and some 

basic page information (RightElements class). On the other hand, Figure 15 shows the 

Content diagram for the “Subject Management” <<virtualState>>. This diagram indicates 

that the elements of the “SubjectMng” class will be placed in “RigthLayout” of the 

Structure diagram, extending the basic content (news and basic information) of the region 

with the specific content of this page (SubjectMng elements). ShowCareers class, on the 

other side, will be placed in a different region of the Structure diagram ("BodyLayout"). 

Finally, to indicate the order in which presentation elements will be shown, a pair number 

property is defined, where the first number sets the vertical order and the second number 

the horizontal order. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Structure Diagram and example of a Content Diagram for the "RighLayout" 

With respect to the presentation style, even though it is considered a relevant aspect 

for the presentation layer, in our vision it is more reasonable to deal with style 

specifications in the ISM phase. Reasons for this decision are the style being very 

 

 



   Int. J. , Vol. x, No. x, xxxx 16    

 

   Copyright © 200x Inderscience Enterprises Ltd. 

 

 

   

 

changing and normally taken into account in the final stages of development; the lack of a 

standard language at the modelling phase to specify this aspect and; the possibility to 

separately differentiate style from other aspects, allowing modifications of the application 

without changing any code (e.g. with CSS templates we could change the style at any 

time, affecting the appearance of the application). 

 

  

Figure 18 Structure Diagram metamodel and UML Profile 

Figure 18 depicts the Structure Diagram metamodel, which is mainly composed of 

LD Elements. The LD Elements are classified into Layout, which can be composed of 

other layouts. The layouts define dimensions and positions properties. 

 

3.5. Stage 5: Specify Personalisation 

According to Weibelzahl, personalisation refers to both adaptability and adaptivity [23]. 

Adaptability requires user interaction in order to conceive personalisation (e.g. change 

colors, or types). On the other hand, adaptivity allows personalisation considering other 

factors without a direct user intervention (e.g. suggest list of books based on previous 

purchases). In order to consider these concepts, MoWebA defines two diagrams: 

Information Source and Rule diagrams. 

 

 

Figure 19 Source Information Diagram for Web-based Academic System 

The Information Source diagram models user information needs for adaptation. The 

information sources refer to the system domain factors to be considered for rule 

conditioning, (e.g. in the example, an information source could be the level of knowledge 
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for specific users). The next step is to define associations between sources and users 

considering the roles that they should play in the system. Therefore, we define a set of 

information sources and associate them with a given role; these are stereotyped with 

<<roleAttribute>>. The <<roleAttribute>> stereotype is used to establish relationships 

between sources and roles, and it is possible to set default values to these attributes. 

Figure 19 shows an example, we have defined two sources (Preference and Knowledge), 

assigned roleAttributes to the Student, and assigned default values to these attributes 

(language=English and level=beginner). Such default values could be changed at any 

time in the future. 

The Rules diagram allows the definition of “Condition-Action” rules that establish 

under which conditions a rule must be triggered in order to perform a specific action. The 

final result will be a dynamic adaptation of the system. An example of an adaptivity 

personalisation is a rule defined to filter exercise examples, the filtering could be done 

based on types of exercise that the student has already solved.  

There are two types of rules: i) general rules (e.g. if language is set to “English”, 

whenever a <<text>> element appears, it should be in English); and, ii) specific rules 

applied to specific elements (e.g. even though the font type is set to “normal”, a specific 

title of a page should be “large”). 

Rules are specified using an OCL Expression as the tagged value of the class. For 

example, in Figure 20, the general rule called “LanguageRule” has been defined for 

<<compositeUIElements>> of the content diagrams, belonging to Academic Zone (i.e., 

the zone associated to the student and professor roles). The OCL expression defines a 

condition related to the language attribute, triggering the selectContentLanguage action if 

the default language is “English”. The behaviour of the selectContentLangage action 

must be specified in some way. In order to do this we define a process in the logic layer 

diagram called AdaptationService, and add the action selectContentLanguage as a 

<<service>> operation. The detailed behaviour of the selectContentLanguage 

<<service>> is then modelled in the service diagram, which will we be explained in the 

next section.  

 

 

Figure 20  Rule example for language definition 

An Adaptation Diagram is composed of rules and sources (see Figure 21). For each 

rule we can specify a series of properties (name, OCLExpression and rule type). The rules 

can be associated to one or more roleAttributes of the role diagram, as well as one or 

more compositeULElement of the content diagram.  
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Figure 21 Adaptation metamodel and UML Profile 

3.6. Stage 6: Detail Navigational, Logic, Adaptation and Presentation Services 

Behavioural actions for each service specified at the navigational, logic, adaptation, and 

presentation diagrams can be modelled through the MoWebA Services diagrams. The 

Service diagrams use UML Activity diagrams enriched with OCL and Action Semanticsa. 

For each service/action defined in the other diagrams, it is possible to create a Service 

diagram that encapsulates the associated service behaviour. Services are defined in the 

logic layer diagram and could be invoked by entities, rules, node or content diagrams 

elements. 

 

Figure 22 Adaptation Service 

To specify behavioural actions we use a set of basic and fundamental constructors. 

The basic constructors represent actions, transitions and pseudo-states. Fundamentals 

constructors consist of action specializations classified into: CallBehaviorAction, 

representing a type of action that can invoke other behaviour; DomainAccessAction, 

representing access to the Entity model to perform an operation on it; and VariableAction, 

representing a special type of action whose implementation performs various operations 

                                                 
a http://www.omg.org/docs/ptc/02-01-09.pdf 
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on variables. Figure 22 shows the Service diagram for the selectContentLanguage action, 

invoked by the rule “languageRule” (see figure 20). 

Services allow the definition of behaviour actions at the modelling phase. In some 

situations a Service diagram can be very complicated, because of the complex logic that it 

represents. In this case the Service diagram definition could be avoided leaving the task 

of definition for the ISM phase.  

 

Figure 23 Service metamodel 

 

Figure 24 Service Profile 

The main idea of the service metamodel (see Figure 23) is to define specializations of 

Action, which will enable to define more complex behaviours in the metamodel. The 

metaclass CallBehaviorAction represents a special kind of action that can invoke other 

behaviours represented by an activity diagram, or a behaviour that will come built into the 

final platform destination. In the figure, there are listed others specialization of Action 

(variableAction, domainAccessAction and writePage), and their relationships with other 
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classes. The corresponding UML Profile for the Service metamodel is presented in Figure 

24. 

 

3.7. Stage 7: ASM and PSM definition 

Stage 7 is composed of two different models, which are generated in a semi-automatic 

way from the diagrams defined during the previous stages: the Architectural Specific 

Model (ASM) and the Platform Specific Model (PSM). ASM enriches the previous 

models with additional information related to the system architecture (e.g. RIAs, REST, 

among others). PSM is oriented to refine the models by adding information related to the 

platform and language selected for the final system (e.g. Java, .NET, PostgreSQL, among 

others). At this stage, we are moving from the conceptual definition (CIM/PIM models) to 

the solution definition (ASM/PSM models). 

It is important to mention that other approaches generally include architectural 

aspects at the conceptual modelling level, without making a clear distinction between the 

independent model and the architectural one. For example, in order to generate Rich 

Internet Applications - RIAs, current approaches extend their notations with additional 

primitives or patterns considered at the conceptual modelling phase (e.g. WebML RIA 

[24], UWE for RIA [25]). In MoWebA, the PIM could be used for different architectures 

(e.g. RIAs, REST, client-server, SOAs) since architectural aspects are not contemplated 

in this model. Therefore, MoWebA makes a clear separation between the conceptual 

space and architectural aspects, defining them on different modelling abstraction levels. 

In this way, our approach offers enough flexibility to evolve into different architectures 

starting from the same PIM model.  

 

Figure 25 Navigational Node applying the ASMRia model. 

The ASM model could be defined for the RIA architecture, obtaining an ASMRia. 

RIAs are web applications, which use data that can be processed both by the server and 

the client. The data exchange takes place in an asynchronous way, so that the client stays 

responsive while continuously recalculating or updating parts of the user interface. RIAs 

main characteristics are: data and page computation distribution, asynchronous 

communication between client and server, and enhanced user interface behaviour [11] 

[26]. In order to model these characteristics in an ASM Model, MoWebA defines a series 

of stereotypes and tagged values. As an example of an ASMRia model for the academic 

system, Figure 25 shows the navigational node diagram for the “Authentication” node. 
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The navigational node “Authentication” is stereotyped with <<richNode>>, meaning that 

everything inside this node will be executed mostly on the client side. Asynchronous 

communication is achieved for example by transitions modelled after the “Entering data” 

virtual state, since user validation is processed on the server. An example of a client side 

service could be “validatePass” stereotyped with <<clientService>>. This service should 

be invoked at the presentation layer when the user sets a password in order to validate 

security levels. 

 

Figure 26 ASMRia metamodel. 

Figure 26 shows a first version of the PSMRia metamodel. In this metamodel, we 

show the extensions made on different elements related to distribution (client/server) and 

duration of persistent data and services. We are working on a more complete definition of 

an ASMRia considering presentation patterns, synchronization, among other. 

The PSM model enriches the models with specific platform information as the MDA 

approach suggests. In this sense, we can have one or more PSM models depending on the 

target platform selected for the application. In the example, one of the target platforms is 

Ruby on Rails. For this purpose, we have defined a PSMRuby metamodel presented in 

Figure 28. In this figure it is possible to notice that presentation elements are redefined 

according to Ruby on Rails platform.  

 

Figure 27 Content Diagram for the “Entering Data” virtual state. 
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Figure 27 presents a Content diagram with a PSMRuby extension for a Ruby on Rails 

platform. 

 

Figure 28 PSM Ruby Metamodel 

 

The ASM and the PSM can be defined and included into the model as plug-in 

extensions. Indeed, to consider emerging Web Technologies, MoWebA proposes to 

define a new ASM and/or PSM metamodel. 

 

4     MoWebA Transformation Process 

The transformation process implies steps and activities for transformation specification in 

order to go through each MoWebA phase (CIM/PIM-ASM/PSM, ASM/PSM-

ISM/Manual). This process aims to define intermediate specific models before the final 

implementation (see Figure 29).  

 

 

 

Figure 29 MoWebA transformation process 
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The transformation process is based on metamodels (PIM-ASM-PSM 

transformation). The PIM-ASM/PSM phase is done in a semi-automatic way; since 

sometimes the information to be added requires human intervention (e.g. in RIAs, the 

modeller needs to specify where services will be executed, on the client or on the server). 

The automation of this process is done using a MDD standard such as QVT, along with a 

tool that supports this standard (e.g. Operational QVT). An example of the QVT 

transformation rule is shown in Figure 30. In this figure, the QVT transformation rule is 

defined by using the Relation language, in order to transform the MoWebA Entity 

Diagram (which corresponds to the input model) in a PSMPostgres (which corresponds 

to the output model) diagram. Input and output diagrams vary according to each specific 

QVT transformation rule. 

 

 

 

 

 

 

 

 

 

Figure 30 QVT definition to obtain the PSMPostgres diagram 

The ASM/PSM-ISM phase is done automatically by using open source tools (e.g. 

Acceleo, AndroMDA). The input models of this phase are the PSMs obtained at the 

previous phase, and the output will be se source code. 

We refer to the final implementation of the System as ISM. The ISM will contain 

code for every platform selected and the bridges between them, in order to get a 

functional system ready to be deployed. We have experienced two types of ISM obtained 

by defining transformation rules with two different tools: AndroMDA and Acceleo. 

 

Figure 31 The Web Based System transformation process 

top relation EntityToTable { 

 prefix, eName : String; 

 checkonly domain entityDiagram 
entity:Entity { 

  name = eName 

 }; 
 enforce domain PSMPostgres 

table:Table { 

  name = eName 
 }; 

 where { 

  prefix = ’’; 

  RecordToColumns(entity, 

table, prefix); 

 } 
} 

 

relation RecordToColumns { 

 checkonly domain entityDiagram 

record:Record { 
  fields = field:Field { } 

 }; 

 enforce domain PSMPostgres 
table:Table { }; 

 primitive domain prefix:String; 

 where { 
  FieldToColumns(field, 

table); 

 } 

} 
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In order to implement the MoWebA transformation rules, we defined a series of 

modules (shown in Figure 32). For reasons of space, we will only explain in detail the 

Source and Rule models, defined for the Adaptation code generation phase. 

The transformation process for our Web Academic System example is shown in 

Figure 31. 

The Academic System was generated using the Acceleo Tool. Acceleo is considered 

a template-based M2T (model to text) transformation open source MDD tool, which 

adopts the MTL (Model to Text Language) standard for transformation rules definitionb. 

This tool was created in 2006 as a part of the Eclipse Modelling Project (EMP)c. The 

Acceleo code generation process considers the following steps: 

1. Code generator project creation 

2. Input models inclusion (XMI files) 

3. Modules definition and templates creation 

4. Associated services creation 

5. Code Generation 

6. Project depuration 

7. Generators modules exportation 

 

Figure 32 Acceleo modules definition for MoWebA 

Modules are considered as partial or full implementations of transformation rules for 

a specific platform. They can be executed as plug-ins of Eclipse to generate an application 

in the target platform. Modules are composed of templates, services and queries written in 

the Java programming language. Templates use a specific syntax composed of tags. 

                                                 
b http://www.omg.org/spec/MOFM2T/1.0/PDF 
c http://www.eclipse.org/modeling/ 
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Queries are used to extract information from the model, which can return values or 

collections. Java services are used to define complex or common operations that can be 

accessed by the different templates defined within the module. 

The Adaptation transformation rules are composed of the Source and Rule modules. 

The Source module contains templates defined for information source generation and the 

Rule module corresponds to the adaptation rules processing. 

The Source module is composed of the following templates: 

• generateTableSource: creates the database tables with the parameters defined in 

the information source model. 

• loadSources: generates a file with SQL sentences to insert possible values 

defined in enumerations. 

• generateTableSourceType: generates Ruby files for modules in order to 

manipulate the database tables.  

• generateSourcesForRoleAttribute: associates a user with a specific role, and 

information sources with default values defined in the model. 

The next figure shows the generateTableSourceType template. 

 

Figure 33 generateTableSourceType.mtl template 

The Rule model, on the other side is composed of: 

• generalRuleTransformation: is applied to the rule classes stereotyped with 

<<rule>> and isGeneral=True. This template is composed of auxiliary templates: 

getOclExpression, to retrieve the OCL expression; getSource, to identify the 

source referencing; and sourceType, to identify the source type. 

• applyGeneralRule.mtl: is defined to apply the general rule to the presentation 

elements. 

• specificRuleTransformation.mtl: analyses the specific rules, retrieving the OCL 

expressions, sources and actions.  
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• applySpecificRule.mtl: applies the specific rule to the presentation elements 

associated to it. 

The next figure shows the generalRuleTransoformation.mtl template. 

 

Figure 34 generateRuleTransformation.mtl template 

 

Figure 35 An example of a generated page 

Figure 35 shows an example of a page of the Web Academic System resulting from 

the transformation process. In this figure we can visualize some parts generated from the 

MoWebA models (e.g. from the navigational tree, node content, and roles and zones 

diagrams).  

Navigational Map. 

Generated from the 

Navigational Tree 

Diagram 

Breadcrumbs. 

Serves as a 
complement to the 
Navigational Map 

Node Content. 

This displays the 

implementation of each 

node 

Role and User. 

Generated from Roles and 
Zones models 
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5     Adopting MoWebA: some experiences 

MoWebA has been used for modelling and generating different types of applications by 

novice and experienced modellers and developers. Experienced modellers were already 

familiar the UML notation and Web methodologies (e.g. UWE, WebML, OOWS, or 

OOHDM), while developers were experienced with different programing languages.  

These experiences, which are summarized in Table 1, are proofs of concepts in 

academic and industrial settings. They have offered insights for improving specific 

aspects of the processes and of different models of MoWebA. In addition, they are paving 

the way for a more rigorous validation of the proposal in which we are currently working. 

The experiences relied on two types of validation instruments (i.e. interviews and 

questionnaires) in order to identify strengths and weaknesses. 

 

Application 
 Aspects considered 

Type Teama Profiles Type of project Analysis 

On-line Course  e-learning 
2EM 
1ED 

Professionals 
Thesis students 

Academic Interview 

University 

Administration 
Admininstration 12NM Students Academic Interview 

Aquatic Birds 

Portal 
Management 4EM Professionals Real project Interview 

Academic 

System 

e-learning 
2 EM 

2 ED 
Professionals Academic Interview 

Laboratory 
Management 

Management 

3 EM 

3D  

12 NM 

Thesis students 

Thesis students 

Students 

Academic Questionnaire 

Budget 

execution 
Administration 

4 NM  

4 MD 

Students 

Advance students 
Real project Interview 

Surveys Interactive 3 NM Students Real project Interview 

Social Network Community 
12 MM 

12 MD 

Advance students 

Advance students 
Academic Interview 

a. Team: Level E (Experienced), N (New), M (Medium); Type M (Modeler), D (Developer) 

Table 1 Experiences with MoWebA 

For a more objective analysis, Table 2 summarizes the diverse characteristics of these 

applications. Some characteristics are related to the complexity of applications and 

modelling elements, and others to the development process. A summary of the most 

important considerations arising from these experiences are presented below:  

• A first positive aspect is that Navigational structures considered were easy to model, 

and easy to understand by subjects. For example, the Academic System is composed of 

35 navigational nodes, with a mean of 3 virtual states per node, where each virtual state 

represents a page. Having a global hierarchical view of the system with 35 elements is 

more manageable than 105 pages.  

• The node diagrams were helpful to identify behavioural and presentation elements more 

easily. We could note that for each navigational node there were identified, in average, 

2 to 3 services and 3 to 4 virtual pages. Thus, it is possible to decompose the overall 

navigational structure into smaller parts, taking into account the specific behavioural 

navigation for each functional element.  

• The CIM/PIM phase was standardized, and could be modelled with any tool that 

supports UML 2.0 (e.g. Magic Draw and Papyrus). The generated models were 

exported to the XMI format in order to integrate them with Acceleo and AndroMDA. 



   Int. J. , Vol. x, No. x, xxxx 28    

 

   Copyright © 200x Inderscience Enterprises Ltd. 

 

 

   

 

Even though it was possible to work with different tools, some details had to be 

considered, especially specially when defining tagged values. 

 

Application 

Modelling aspects analyzed Development aspect considered 

UC 
Node

s 

Cl

ass

es 

Pres. 

Page

s 

Servi

ces 

Develop 

time 

Target 

Platform 

Tool adopted 

On-line course 
 

32 28 23 59 48    

University Admin 

 
98 92 72 247 248    

Aquatic Birds Portal 95 109 25 266 83    

Academic System 20 35 22 105 93 6 months Ruby on Rails Acceleo 

Lab Management 15 17 13 28 19 4 months PHP AndroMDA 

Budget execution 27 19 16 79 26 6 months PHP-Zend Acceleo 

Surveys 12 21 14 35 25 6 months PHP-Zend Acceleo 

Social Network 17 38 12 40 26 4 months Ruby on Rails Acceleo 

Table 2 Aspects of MoWebA adoption in the different experiences 

• The automation was performed using two different tools: AndroMDA and Acceleo. On 

average, the automatic generation percentages for each layer were the following: data 

layer, 100%; logic layer, 61%; navigational layer, 100%; and presentation layer, 73%. 

The reason for logic layer not being totally generated is that some services were 

difficult to model because of their behavioural complexity; therefore they had to be 

added manually. With respect to presentation, there are some aspects related to style 

(e.g. fonts, colours, among others) that can only be defined manually.  

• MoWebA allows the modelling of diverse types of Web Applications. Even though, 

special characteristics e.g., such as RIAs or REST, need further specification For this 

reason, in order to add RIA characteristics to our Web Academic System example, we 

had to define the ASMRia model.  

• One of the limitations we encountered was that services were sometimes difficult to 

model, but despite services not being totally defined, the PIM could be defined almost 

completely. We noticed that for service definition it was necessary to have knowledge 

in Action Semantics and OCL, but most of the modellers were not as experienced with 

these, as they are with UML. However, considering all the services defined in models 

for the different applications we saw that only 8.6% of the services were complex, while 

most of them were medium (30.5%) or simple (60.9%) services. 

Furthermore, the transformation rules defined using AndroMDA and Acceleo, made 

it possible to generate code for three different target platforms: PHP, Python and Ruby on 

Rails.  

In addition to the experiences with different types of applications, some modelling 

experiences with different user profiles (i.e., expert, and novice modellers) were also 

carried out. An interesting experience was carried out with two groups, one formed 

entirely by students and the other entirely by MDD experts, for analysing the quality of 

the MoWebA models. It was focused on studying different perspectives such as 

simplicity, abstraction, ease of use, among others, adopting the GQM approach [27]. The 

results were quite positive, although there were some difficulties with the modelling, 

especially for the service diagrams, because of their complexity. 
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6     Related Works and discussions on MoWebA 

Schwinger and Koch classified the Web methods following different paradigms [8]: 

data-oriented, hypertext-oriented, object-oriented and software-oriented. In this work, we 

present an improvement over the Web method classification Table proposed by 

Schwinger and Koch. First, by considering new trends in methodologies, we propose the 

MDD-oriented paradigm as a new category. Second, we believe that the paradigms are 

not totally independent and therefore a methodology could be classified in more than one 

paradigm. Third, we eliminate some methodologies that are no longer in use. 
 

Method 

Classification 

Hypertext-

oriented 

Data-

oriented 

Object-

oriented 

Software-

oriented 

MDD-

oriented 

W2000 [20] X  X   

Hera [28]  X    

WebML [16]  X   X 

WSDM [9] X   X  

OOHDM [19]  X X X  

UWE [15]  X X  X 

OO-H [18]  X X  X 

OOWS [17]  X X  X 

WAE2 [29]     X 

WebSA [12]   X  X 

MoWebA X  X  X 

UWA [30] [31] X  X  X 

Table 3. Web Method Classification 

Next, we present a discussion of MoWebA for each concern in comparison with 

related works. 

C1: Navigational Oriented Modelling could help to simplify the models for Web 

Applications. 

In MoWebA the Navigational model is the central and starting point for modelling 

(see stage 2). This approach is an alternative way to model the navigational perspective 

better fitting the requirements of users’ interaction and making user navigation more 

adherent to its mental model. From the first experiences, it seems to support modellers in 

defining functions oriented to navigational structures, thus simplifying user orientation. 

Other similar interesting approaches are: UWA (based on W2000) and WSDM. 

However, in UWA navigation and services are derived from the information model. 

Despite deriving the navigational model from the structural model may be useful in order 

to organise the information content, it does not model users’ interaction in all their 

dimensions, as already presented in the introduction section. The WSDM proposal 

regarding the navigational structure (i.e. function oriented) is quite similar to the 
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MoWebA approach. However, some differences are: i) the navigational model is more 

complex (e.g. including a great amount of constructors); ii) the method does not use a 

standard notation and it does not support automation tools (refers to the second concern); 

and, consequently iii) the evolution of technologies is difficult to manage (refers to the 

third concern).  

MoWebA, as other approaches like OOHDM and OOWS, also discriminates between 

intra (e.g. hard and soft links) and inter-contextual (e.g. hyperlinks between states of the 

Node diagram) navigations. However, it proposes their definition in a different way: i) the 

concept underlying the soft links (i.e. navigate to an unrelated node in the Navigational 

Tree) is quite singular of the MoWebA approach; and, ii) the incremental process 

definition starts with the identification of the hard links in the Navigational Tree diagram 

as a first step, and the hyperlinks and softLinks of the Node diagram as a second step. 

This simplifies the overall understanding of the application structure and makes a 

distinction between the different levels of navigation (see the first consideration in section 

5).  

C2: The adoption of standards will facilitate the interoperability between models, 

methods, and transformation rules. 

MoWebA, like other methodologies to some extent, adopts the MDD standards and 

follows the object-oriented paradigm in every phase (e.g. UWE, OO-H, and OOWS). 

MoWebA  works with different tools and notations: i) it formalizes the processes by 

applying the MOF metamodelling language; ii) it adopts UML profiles in XMI format to 

allow modelling with different case tools; iii) it defines Model to Model transformation 

rules for PIM-ASM/PSM, adopting QVT where the proposed ASM is RIA, and the 

proposed PSMs are PHP, Ruby on Rails and PostgreSQL; and, iv) it defines Model to 

Text (i.e. code generation) rules using the Java and ATL language with the support of two 

different tools (AndroMDA and Acceleo).  MoWebA adopts the MDA approach in all the 

standards and in the entirely process trying to make profit from all the MDD potential for 

Web engineering. 

In our best knowledge, UWE is the only other methodology whose models and 

processes completely follows the MDA approach, maintaining some differences regards 

the other concerns. Moreover, another difference resides in the generation process. UWE 

code generation process is done in a semi-automatic way, since the generated code 

requires additional adjustments for obtaining the final application (e.g. UWE4JSF which 

works in the Eclipse environment and generates JSF applications requiring additional 

adjustments for some java classes, libraries, stylesheets, among others). MoWebA also 

follows the semi-automation approach, but this is done in the PIM-ASM/PSM phase, 

since human intervention is needed to decide some transformation rules (see section 4). 

C3: Take into account the Evolution of Web environments for improving the 

development of current Web applications. 

MoWebA considers evolution in different aspects. At a more structural level, 

considering the evolution of the architecture and the final implementing platform, to the 

best of our knowledge an approach such as the one from MoWebA has not been 

presented by any other methodology. MoWebA separates the PIM, ASM and PSM 

models, in order to facilitate the evolution of applications. With this separation, a clear 

distinction is made between what would be the problem space, presenting a model that is 

completely independent of the target architecture or platform; and the solution space, 

through the ASM, PSM and the final code. Such proposal, tend to facilitate the support of 

Web development for the Web 2.0. In fact, for achieving dynamic web site, where the 

users actively interact with the Web application, it is common to use technologies and 

platforms like Web Services and RIAs, among others. Methodologies such as WebML 
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and UWE propose extensions for RIAs (or other final platforms) during the PIM 

modelling phase. However, such extensions reduce the reusability and portability of the 

PIM. By contrast, MoWebA captures the requirements for specific platforms at the ASM 

model according a semi-automated process. As a counterpart, to offer a greater reusability 

of the PIM facilitating the architectural evolution of the Web applications, the MoWebA 

approach requires some additional effort, including the need for metamodels and the 

definition of the corresponding transformation rules, to achieve automatic transformations 

on the proposed architecture or platform. 

Moreover, the evolution concern is not only one for architectural/technological 

issues, since the functional requirements of Web applications also evolve fast. MoWebA, 

as well the other methodologies that adhere to the MDD approach, follows an incremental 

process, facilitating such type of functional changes that are defined at the model level 

which will then be transformed into code by using automated tools. 

At a user adaptation level, in general, to cover the accessibility aspects, other 

methodologies propose notations to model user groups (e.g. OOHDM and OO-H). These 

are defined in MoWebA with the Zone diagram, which also allows setting different user 

levels (groups of users that are defined by the roles, the roles related to each other through 

the zones, and zones of the different levels that may arise). It is also possible to define 

access privileges on different notational elements, identifying different levels of security. 

Adaptation is also considered in other methodologies to allow personalisation strategies. 

For example, UWE defines adaptation using the aspect paradigm. With the MoWebA 

Adaptation model it is possible to cover adaptability and adaptivity, with the Source 

Information and Rule diagrams. In addition, in the Presentation modelling stage of 

MoWebA (see section 3.4), the separation between content and structure, allows more 

adaptability. In most methodologies there is no such distinction.  

Finally, the Presentation dimension is a critical aspect in Web Engineering and still 

requires more effort to assure an adequate automatic generation. Some proposals consider 

the separation of presentation and application logic to be necessary (e.g. UWE). Other 

proposals indicate the importance of establishing a clear separation between application, 

presentation and control logic, especially when multiple presentation channels should be 

served by the same application logic [32] [33]. MoWebA considers these aspects with the 

Logic (through value objects and services) and Node diagrams (through virtual and 

service states). Nevertheless, future works are needed to deal with these open issues.   

7     Conclusions and Future Work 

This study presented MoWebA (Model Oriented Web Approach), a proposal for the 

development of Web applications. MoWebA defines navigation from a behavioural point 

of view, instead of a structural (data-oriented) one, trying to better capturing the 

requirements of users’ interaction, and it considers navigation as the starting point of the 

modelling process for Web applications. Moreover, it includes an appropriate syntax to 

model the dynamic navigation observed during the users’ interaction and the inter-intra 

contextual navigation. Another innovative contribution in MoWebA is the ASM – 

Architectural Specific Model, which define an architectural level of modelling definition 

separated from the PIM, in order to facilitate the evolution of applications. MoWebA 

strongly adopts the standards proposed by MDD (languages, tools, architecture, among 

others) in every phase. An important effort is devoted to personalisation aspects. Based 

on the results of the various experiences performed, this study discusses the current 

proposals, highlighting the contributions and weaknesses of MoWebA in each phase.  
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Results were quite encouraging, and stimulated new on-going experiences, case 

studies and more rigorous experiments: Application of MoWebA and other 

methodologies (UWE, OOHDM, OO-H, WebML) to the same real applications; 

integration and refinement of rules definition in Acceleo; rules definition for other 

platforms (for example, J2EE); PSMs definition for different platforms; and validation of 

models. 

Finally, we also consider that MoWebA has sufficient flexibility to support 

innovative technologies, such as those typical of Web 2.0 (e.g. ASMRia extension). To 

validate these considerations, proofs of concept and case studies that focus on building 

applications with current technologies (e.g. RIAs, REST, cloud computing) that facilitate 

development of Web 2.0 applications are being planned. We are also considering an 

interesting future work, to compare the development time required using MoWebA with 

regards to a) competing approaches and b) manually creating all the web apps without 

using models; considering updates activities for evolution analysis. 
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