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 10 
Abstract— Tangent and Corner Vertices Detection (TCVD) is a method to detect corner vertices and tangent points in 11 

sketches using parametric cubic curves approximation, which is capable to detect corners with a high accuracy and a 12 

very low false positive rate, and also to detect tangent points far above other methods in literature. In this article, we 13 

present several improvements to TCVD method in order to establish mathematical conditions to detect corners and 14 

make the obtaining of curves independent from the scale, what increases the success ratio in transitions between lines 15 

and curves. The new conditions for obtaining corners use the radius as the inverse of the curvature, and the second 16 

derivative of the curvature. For the detection of curves, a new descriptor is presented, avoiding the parameters 17 

dependent of scale used in TCVD method. 18 

In order to obtain the performance of the implemented improvements, several tests have been carried out using a 19 

dataset which contains sketches more complex than those used for validation of TCVD algorithm (sketches with more 20 

curves and tangent points and sketches of different sizes). For corners detection, the accuracy obtained was pretty 21 

similar to that obtained with the previous TCVD, however, for curves and tangent points detection the accuracy 22 

increases significantly. 23 

Index Terms— Corner vertices detection, tangent points detection, sketch recognition, stroke segmentation, curvature 24 

functions, natural interfaces 25 

———————————————————— 26 

 27 

1 INTRODUCTION 28 

n the field of industrial design, the first stages of design are very important. It is in here where 29 

ideas are expressed freely by means of basically hand drawn sketches, and later, these ideas are con-30 

verted into 3D prototypes that finally are manufactured as products. Actually, sketching is a well 31 

established part of the engineering culture, but the current available tools for Computer Aided 32 

Sketching (CAS) supported by commercial CAD (Computer Aided Design) applications are not yet 33 

as usable as traditional paper-and-pencil, owing to the lack of many necessary functionalities and 34 

flexibility [1]. 35 
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Thus, once conceptual design has been completed, sketches are converted into 3D models in CAD 36 

applications, but not directly, that is, in commercial CAD applications, models are created from per-37 

fect outlined sketches, not from hand-drawn sketches, and therefore all the effort in the first stages of 38 

design cannot be exploited. This happens mainly because commercial CAD applications do not pro-39 

vide sketching tools (CAS), and in some CAD applications that do, the functionality is very limited, 40 

as in the case of ProEngineer (from Parametrics Technology Corporation), SIEMENS NX 10 (the for-41 

merly Unigraphics, from Siemens Industry Software) or Catia (from Dassault Systèmes). In some of 42 

them every time the user sketches something, a pop-up menu comes up to solve ambiguities, asking 43 

the user to choose the correct option since the system has not been capable to segment or interpret 44 

the intended sketched shape. Other application that provides a hand-drawn sketch user interface is 45 

AutoCAD 360, from Autodesk, developed for smartphones, tablets or desktop devices, which pre-46 

sents a poor recognition system and a worse user intent design capture when introducing sketches. 47 

In here, many evident curves in sketches are approximated to straight lines instead of arcs and most 48 

of the times the final shape is completely different to the intended one. Besides, none of the applica-49 

tions mentioned above discusses the intended tangency in the sketches, but we have to keep in mind 50 

that most products have smooth transitions in their outline, so it is essential to solve the task of find-51 

ing tangent points with accuracy. 52 

The limitations or lacks on the CAS tools provided are related to the poor segmentation of the 53 

sketch drawn, that has a lot to do with the efficiency for finding corners and tangent points, feature 54 

that is generalised for nearly any kind of commercial CAD software that supports sketching. And it 55 

is this feature which makes, consequently, conceptual design stages are completely detached from 56 

the rest of the stages of design. Thus, to achieve interfaces that support natural human-computer 57 

interaction it is necessary to develop intelligent techniques for finding corners and tangent points in 58 

hand-drawn sketches and so for the automatic recognition of sketches that allows users drawing as 59 

they naturally would without any constraints, like introducing the sketches in a particular order or 60 

requiring a previous training by the user to learn a set of specified symbols or shapes [2]. 61 

Thereby, these techniques have to deal with the problem of drawing complex shapes in a single 62 

stroke, being a stroke (or sketch) a continuous sequence of points between the two pen-down and 63 

pen-up events. In order to support this feature, it is necessary to split the stroke/sketch into its con-64 

stituent primitives, what involves the development of techniques capable of finding corners and 65 

tangent points in the stroke. Once the corners and tangent points are found, the stretches between 66 
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them could be approximated to primitives’ straight lines or curves; hence, user intent design could 67 

be captured maintaining the tangency between lines and curves or between curves, as applicable. 68 

This procedure is also known as segmentation process. 69 

Regarding to the segmentation process, the TCVD method was presented by Albert et al. [3] as the 70 

best and more accurate current method to find corners and tangent points in hand-drawn sketches 71 

compared to others in literature. The main advantage of TCVD method was the use of the approxi-72 

mation of the sketch to parametric cubic curves, allowing finding tangent points with high accuracy, 73 

what makes TCVD a good method to find corners and tangent points in hand-drawn sketches with 74 

an All-or-Nothing Accuracy of 96% and 92% for corners and tangent points, respectively. Still, TCVD 75 

has some limitations. One of the most important drawbacks is the scale dependence, making it diffi-76 

cult to distinguish between large radius curves and straight lines. Other lack found in TCVD is the 77 

use of a threshold when finding corners. This threshold (based on the radius of curvature at 78 

neighbouring points) was defined heuristically. The main objective of this work is to solve the draw-79 

backs found in TCVD method, to which end two improvements have been implemented. The first 80 

one has consisted in establishing a discriminatory function (based on the derivatives of the curva-81 

ture) instead of a heuristic threshold when finding corners; and the second one has consisted in in-82 

troducing some key parameters independent of the scale when finding curves. 83 

Regarding to other related works in literature, a revision of most relevant methods to understand 84 

the sketched user input has been already done by Albert et al. [3], concluding that the detection of 85 

the tangent points in the stroke is a key feature, because the geometry of sketches has to be approxi-86 

mated to their corresponding primitives in order to create the out-lined section to later generate ac-87 

curate 3D models that capture the user intent design. In engineering design, most of the models have 88 

tangent transitions between planar-curved surfaces or curved-curved surfaces, what makes essential 89 

the detection of the designer intention in the sketches, that is, the finding of tangent points, and al-90 

though some interesting works have been carried out, the segmentation of sketched shapes still re-91 

mains unsolved. 92 

Among these methods is that of Yu [4] and Hse et al. [5] which used segmentation and primitive 93 

approximation to find points between straight lines and curves. The work presented by Paulson and 94 

T. Hammond in [6] also split the stroke and then recognised its primitives, and the works presented 95 

by Alvarado and Davis [7] and Hammond and Davis [8] recombined later the primitives using some 96 

geometrical rules. Sarkar et al. [9] first segmented the strokes before facing the corner finding using 97 
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genetic algorithms to fit digital curves to lines and arcs. Zhang et al. [10] extracted the primitives by a 98 

connected segment performing a growing process from a seed-segment and utilised relationships 99 

between them to refine the control parameters. Nguyen and Debled-Rennesson [11] applied two 100 

methods, the method based on a fixed parameter (the width of considered maximal blurred seg-101 

ments) and the method based on a multi-width approach without thresholds, obtaining only corners 102 

since curves were always fitted to lines. 103 

More important methods were those presented in the following works. In [12] Wolin et al. devel-104 

oped the ShortStraw algorithm to find corners in strokes. This algorithm was found to be highly 105 

accurate in both total correct corners and all-or-nothing corner accuracy, but the main problem was 106 

that strokes only contained straight lines. An improvement of this algorithm was presented by Xiong 107 

and La Viola [13], called IStraw, which overcame some limitations and attempted to reduce the lacks 108 

maintaining its computational complexity and extending the ShortStraw to deal with strokes con-109 

taining curves. This algorithm obtained significant improvements in all-or-nothing corner accuracy 110 

compared to ShortStraw, but did not consider tangent points in strokes. Although Pu and Gur [14] 111 

used mathematical curves to approximate the stroke, their method presented two important incon-112 

veniences. First it did not distinguish between corner vertices and tangent points, and second it per-113 

formed a high post-process of refinement, remaining the number of false positive detections very 114 

high. 115 

Other technique, that Herold and Stahovich [15] called ClassySeg, begun by identifying a set of 116 

candidate segment windows, each comprising a curvature maximum and its neighbouring points. 117 

Then, features were computed for each point in each window based on curvature and other geomet-118 

ric properties, most of them adapted from numerous prior segmentation approaches. These features 119 

were used to train a statistical classifier to identify which candidate windows contained true segment 120 

points. Although this approach is more oriented to classify symbols in different domains (being a 121 

very tedious and complex method since many techniques have to be combined and also a non intui-122 

tive previous training has to be made for each domain), authors also tested this technique to segment 123 

sketches on a data set of ten pen strokes including curves, but again only corner points were present, 124 

that is, there was no tangency in the sketches. 125 

But as usual, all previous reviewed methods did not deal with tangent points. In sum, many re-126 

search works just deal with polyhedral models, or reconstruct 3D models from simple sketches of 127 

isolated lines or arcs (like in [6]), because the main lack of obtaining curved models from sketches, 128 
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necessary in most of engineering models, is that segmentation algorithms are not capable of detect-129 

ing smooth transitions from straight lines to curves or between curves, and those that try to detect 130 

this kind of transitions are not robust, mainly due to the bad results obtained or to the high number 131 

of false positives they reach. 132 

The TCVD method seems to be the most advanced and accurate method to segment hand-drawn 133 

sketches finding corners and tangent points in sketches including curves, contrary what said in [15]. 134 

The work presented here intends to improve this method, solving the two lacks found: the use of a 135 

heuristic threshold when finding corners and the scale dependence, making it difficult to distinguish 136 

between large radius curves and straight lines. 137 

This article is organised as follows: In section 2 a brief description of the TCVD method is done. 138 

Section 3 explains in detail the stages of the TCVD method that have been revised and improved. 139 

Section 4 describes the experimental work carried out comparing the results obtained from the origi-140 

nal TCVD to those obtained after improvements proposed. Finally, section 5 and 6 reports the con-141 

clusions and further work, respectively. 142 

 143 

2 THE TCVD METHOD 144 

The TCVD method [3] uses the radius, as the inverse of the curvature, as a way to find corners in 145 

hand-drawn strokes. The radius allows setting more intuitively the value of thresholds (a small 146 

threshold for corner vertices and a larger one for arcs or curves) than the curvature, since for exam-147 

ple, we understand better a radius value of 100 pixels than a value of 0.01 for curvature. To distin-148 

guish between straight lines and curves, as discrete radius is not stable in hand-drawn sketches, 149 

TCVD method obtained a piecewise parametric curve approximation of the stroke, and calculated 150 

the radius function from the mathematical expressions of the parametric curves in order to segment 151 

the stroke, getting the entities in the stroke and keeping the points of tangency between them. 152 

This method has six differentiated stages. A brief description of each of them is laid out below: 153 

1. Computing the discrete radius function. Where first, the digitised stroke is resampled 154 

and the noise removed. Second, the tangent vector at each point is calculated from differ-155 

ences between coordinates of its neighbouring points, and the curvature at each point is 156 

obtained from differences of the tangent angle between neighbouring points. Finally, the 157 

radius at each point is calculated. 158 

2. Corner vertices detection. The corner vertices are located at points with local minima of 159 
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the radius, and with a radius sufficiently smaller than the points of its environment. 160 

3. Piecewise parametric curves approximation. The resampled points between pairs of cor-161 

ners are approximated by means of piece-wise cubic curves until the distance from every 162 

approximated point to the resampled point does not exceed a threshold. When the dis-163 

tance is greater, the sequence of points is halved and the process is subsequently applied 164 

to both sides, forcing two curves to have the same tangent at the common point (the cen-165 

tral point when the previous sequence is divided). 166 

4. Computing the analytic radius function. The tangent vector at each point is calculated 167 

from derivative of piece-wise cubic curves, then, the curvature at each point is obtained 168 

from derivative of the tangent angle, and finally the radius at each point is calculated. 169 

5. Straight lines and curves detection. A point lies on a candidate curve if the radius at that 170 

point is less than a threshold, otherwise the point belongs to a straight line. Therefore, a 171 

sequence of consecutive candidate curve points is definitely a curve if the distance be-172 

tween the points and the straight line from first sequence point to last one is greater than 173 

a threshold. 174 

6. Tangent points detection. The tangent points are located at points of transition from 175 

straight lines to curves (and vice versa), and at points of transition between curves of ra-176 

dius with different sign, if corner vertices are not previously placed in such transitions. 177 

3 REVISION OF TCVD METHOD. IMPROVEMENTS 178 

In this work, we have implemented two improvements to the TCVD method. The first improve-179 

ment is related to the corner vertices detection stage (Stage 2 of TCVD method, See Fig. 1) that con-180 

sists on the establishment of a discriminatory function to clearly differentiate corner vertices avoid-181 

ing further refinements. This function is based on the radius function (as the inverse of the curvature) 182 

and on the second derivative of the curvature. The calculation of the first and second derivative of 183 

the curvature (C’ and C” respectively) has been carried out at the end of Stage 1. The second im-184 

provement is related to the lines and curves detection stage (Stage 4), where the main objective is to 185 

make the obtaining of curves independent of the scale. 186 

The modifications proposed to TCVD method are represented in the flowchart of Figure 1. The 187 

following sections describe in deep these improvements. 188 

189 
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 192 
Figure 1. Flowchart of the modifications proposed to TCVD method. Only stages 1, 2 and 4 have 193 

been affected. The parameters used at each stage appear between parentheses after the number and 194 

the name of the stage 195 

3.1 NEW DISCRIMINATORY FUNCTION FOR CORNER VERTICES 196 

The main objective is to establish a new scientific discriminatory function instead of the heuristics 197 

used in TCVD method to detect corners. 198 

The functions involved in the obtaining of corners are the first and second derivatives of the cur-199 

vature and the radius. The curvature measures the changes in the direction of the tangent vector. 200 

When faster it changes the bigger the curvature is (in absolute value). In the computer display, where 201 

Stages: 



8 

the reference system is levorotatory, the curvature is positive when the turn is clockwise. The radio is 202 

the inverse of the curvature, where an infinite radius will correspond to a curvature of value zero 203 

(straight line). 204 

The first derivative of the curvature is the slope of the curvature. The zero crosses correspond to 205 

points where the slope changes its sign, that is, to the local minimum and maximum values of the 206 

curvature. The second derivative measures the changes of the curvature. Then, when faster the cur-207 

vature changes the bigger the second derivative is. Thus, for curves of constant curvature, although 208 

it is high, the second derivative will be zero and for corners it will be a high value. 209 

 

a) 

 

b) 

 

c) 

 

d) 

Figure 2. Functions for the stroke sample of Figure 1: a) Original stroke; b) Angle values; c) Curva-210 

ture (C), first derivative of the curvature (C’) and second derivative of the curvature (C”) superim-211 

posed; and d) Radius  212 

For this stroke, the functions obtained after filtering are shown in Fig. 2. As we can see in Fig. 2b, 213 

the angle clearly shows sharp changes of 90 º (labelled as ‘1’ and ‘3’) which correspond to the two 214 

corners in the stroke. Also a smooth transition of 90º between the two corners (labelled as ‘2’) corre-215 

sponds to the curve in the stroke. In the curvature function (Fig. 2c) we can observe the two maxi-216 

mum values (in absolute value) corresponding to the corners, and between them, we can see the 217 

intermediate values of the curvature corresponding to the curve. The zero crosses in the derivative of 218 

the curvature (C’) correspond to maximum values of the curvature function, and the maximum val-219 

ues in the second derivative of the curvature (C”) correspond to stroke points where the curvature 220 
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changes fast (corners) whereas for the curve (almost constant curvature) the value of C” can be con-221 

sidered zero. 222 

The graphs of Figure 3 show a set of 3561 values of the second derivative of the curvature C” (Y 223 

axis) with respect the radius values (X axis), both in absolute values, obtained from the zero crosses 224 

of the first derivative of curvature of a set of 200 strokes (belonging to the training set used). Such 225 

maximums are distributed in 469 corners (blue colour) and 3092 non corners (red colour). Only con-226 

flictive radius values are shown (<=100 pixels). 227 

 
a) 

 
b) 

 
c) 

Figure 3. C” values (Y axis) respect to radius values (X axis) of corners (blue) and non corners (red) 228 

including different thresholds for the training set of 200 strokes: a) Constant threshold for radius; b) 229 

Constant threshold for C”; and c) Quadratic threshold for C” 230 

In order to separate corner vertices from non corner vertices, several functions can be proposed. In 231 

Fig. 3a, a threshold for radius has been chosen (equivalent to a curvature threshold, which is com-232 

mon in many sketch recognition methods) remaining a large number of false positives and false 233 

negatives of corner vertices, thus requiring ulterior refinement process of the corners detection. In 234 

Fig. 3b, a threshold for C” is chosen, and the number of false positive and false negative corners 235 

found is lower than in Fig. 3a, so we can say that C” is more appropriate than C to separate corner 236 

from non corner vertices. In Fig. 3c, a quadratic function for C” is chosen, being the results much 237 

better. The proposed discriminatory function of C” depending on the radius results as follows: 238 
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    0

2

0 "·" CRRKRC threshold     (1) 

 239 

So that a vertex found will be a corner if its |C”| value is upper than the C”threshold in (1). Where K 240 

is a constant, C”0 is the lowest value found for the second derivative of the curvature and R0 is the 241 

radius value for C”0 (see Fig. 4). 242 

 
a) 

 
b) 

Figure 4. a) Zones where the corners (blue) and non corners (red) are positioned; and b) Several 243 

shapes of discriminatory functions depending of the constant K (opening) and the values of C”0 and 244 

R0 as the coordinates for positioning the function 245 

In our case, the K, R0 and C”0 values have been obtained using an implementation of the optimisa-246 

tion algorithm Simulated Annealing [16] for the data set proposed of 3561 values. The values ob-247 

tained after the optimisation process are shown in Table 3. 248 

Figure 5 shows the result, applying this discriminatory function, for a sample of a stroke that con-249 

tains three corner vertices and one curve of a quite small radius. This sample has been chosen to 250 

show how this threshold is able to distinguish corners from curves with small radius. 251 

 

a) 

 

b) 
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c) 

 

d) 

Figure 5. a) Stroke sample and its segmentation; b) Curvature (C) and second derivative of the curva-252 

ture (C”) overlapped; c) Radius; and d) |C”| values (Y axis) respect to the radius values (X axis) for 253 

points of minimum radius (dots) and C”threshold (green curve) 254 

As we can see from Fig. 5c, the radius of the real curve of the stroke (last sharpen peak) is lower 255 

(and wider) than those from the first two corners. In Fig. 5d are represented the values of C’’ for the 256 

minimums of radius of the stroke. Blue dots correspond to corners (above the threshold) and the red 257 

dot corresponds to a real curve (below the threshold). The values obtained for the curvature and 258 

radius functions and for C” threshold are depicted in Table 1. The corresponding segmented stroke 259 

appears in Fig. 5a, where the straight lines are represented in red and the curve in blue. The three 260 

intermediate corners found (and the two ends of the stroke) are represented in magenta colour and 261 

the two tangent points that limit the curve are represented in cyan. 262 

Table 1. Results obtained for the minimum values of R for the stroke of Fig. 5a 263 

Point R |C”|  C”threshold Description 

1 49.4 0.0053 > 0.0046 Corner 45º 
2 25.9 0.0130 > 0.0054 Corner 45º 
3 18.4 0.0227 > 0.0133 Corner 90º 
4 19.2 0.0080 < 0.0135 Curve 

3.2 CURVES DETECTION 264 

This improvement has been introduced in order to make the curve detection independent of the 265 

scale. 266 

In the earlier TCVD method, the curve detection algorithm determined that a point lied on a curve 267 

candidate if the radius at that point was less than a threshold (MAX_CURVE_RADIUS), otherwise 268 

the point belonged to a straight line. Therefore, a sequence of consecutive curve points was definitely 269 

a curve if the distance between the points and the straight line from the first sequence point to the 270 

last one was greater than a threshold (MIN_DIST_CA). This way of detecting curves leads to a high 271 

dependence on the scale, causing misdetections when analysing the same shapes having different 272 
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sizes. 273 

To avoid the problem of size requirement, the parameters proposed are: The Angle swept by the 274 

tangent vector to the stroke; and the Ratio between the major and minor radius values within the 275 

curve. In the case of the angle, this parameter informs about a minimum value from which the curve 276 

is appreciable. In the case of the ratio, the value is a maximum, because when the entity to check is a 277 

straight line, this value increases considerably. The values of these parameters were determined by 278 

using the Simulated Annealing technique mentioned previously (see Table 3). 279 

The algorithm proposed (in pseudo-code) for curves detection is shown in Fig. 6. 280 

#Find minimum local values of radius between each pair of corners found. Each minimum is consid-281 

ered the initial point of a candidate for a curve, and will be a CURVE SEED. 282 

#For each CURVE SEED, do: 283 

#Grow curve on both sides, adding neighbouring points to the curve, as three conditions are 284 

met: 285 

#The radius ratio of the current added point divided by the radius ratio of the curve 286 

seed is below the fixed parameter MAX_RADIUS_RATIO  287 

#The current added point is not a corner (a corner has not been reached) 288 

#The radius of the current added point keeps its sign (it is not an inflexion point) 289 

#If two candidate for a curves, from different starting curve seeds and with the radius of the 290 

same sign, join, then both curves belonging to different curve seeds will be chained 291 

#When no more points are added (growing process ends), the sequence of points candidate to a 292 

curve, will be definitely considered a curve if the absolute value of the angle swept by the tan-293 

gent vector to the stroke between both ends of the sequence is above the parameter 294 

MIN_CURVE_ANGLE 295 
 296 

Figure 6. Algorithm proposed for curves detection 297 

To illustrate better how the curve detection algorithm operates independent of the scale, the 298 

stroke of Fig. 7a has been chosen. This stroke consists of two straight lines and two curves with very 299 

different radius but with similar angles. This sample will prove that neither the arc length nor the 300 

radius differences between the two curves are important to segment both as curves. 301 

Figure 7 shows, both in the stroke (Fig. 7a) and in the graph of the radius (Fig. 7b), the growing 302 

process of the curves, starting from the seeds or points with minimum radius. The values that do not 303 

appear in the graph of the radius correspond to absolute values extremely high (curvature almost 304 

zero) of the straight lines. The bigger curve presents radius values about 500 pixels, whereas the 305 

small curve presents radius values about 65 pixels (in absolute values). The curves from the first four 306 
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seeds join and the curves from the last two seeds also. 307 

 

 

a) 

 

b) 

Figure 7. a) Original stroke; and b) Radius values. Both figures show the location of the seeds in the 308 

original stroke and in the radius values, respectively 309 

Figure 8a shows the angle of the tangent vector of the previous stroke, which rotates in each curve 310 

90º. Figure 8b shows the segmented stroke, resulting in two curves and two straight lines separated 311 

by corners. Table 2 shows the features for both curves found in the stroke. 312 

 

a) 

 

b) 

Figure 8. a) Tangent vector angle values for the stroke of Figure 7a; and b) Segmented stroke with 313 

two curves (in blue) and two lines (in red) separated by corners 314 

Table 2. Extracted features for curves of the stroke of Figure 8 315 

Curves  Radius range Rmajor/Rminor Curve angle Description 

Big [370,600] 1.62 (<5) 105º (>30º) Real curve  
Small [-55,-79] 1.44 (<5) 109º (>30º) Real curve  

 316 

4 EXPERIMENTAL WORK AND RESULTS 317 

In order to evaluate the improvements made to TCVD, we have used a data set of 20 different 318 

shapes, with 9 shapes belonging to the data set established in [3] and an additional data set of 11 319 

different shapes containing more oriented engineering sketches with curves and tangencies (see Fig. 320 

9 for the outlined models of the different sketches used). For now, all the strokes are considered open 321 

shapes. The dataset contains 54 corners, 84 straight lines, 30 curves and 39 tangent points (including 322 
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five inflection points). 323 

324 

325 

326 

       327 

Figure 9. Strokes with straight lines (drawn in red), curves (drawn in blue), corner vertices (drawn 328 

in magenta) and tangent points (drawn in blue cyan) 329 

We collected data from 10 different users, and each user drew 5 times each shape, making a total 330 

of 1000 strokes. Each user drew each shape with different sizes. If a stroke was drawn wrong, that is, 331 

at first glance it did not correspond with the model, it was removed and redrawn. The training data-332 

set is formed with a stroke of each shape for each user (200 strokes) and the rest (800 strokes) are left 333 

for the test dataset. The sketched shapes, Data-set-train.rar and Data-set-test.rar are available in the 334 

Downloads section of the following address: http://www.cofilab.com. 335 

And in [3], the parameters used for this approach were optimised by means of Simulated Anneal-336 

ing algorithm in order to achieve best results, which is explained in detail in a previous work [17]. 337 

This process is based on the Simulated Annealing technique, which allows us tuning the parameters 338 

to improve the segmentation results, and where the parameters have been formulated as an optimi-339 

sation problem where the function cost is expressed as the number of errors in the segmentation of 340 

the training set. 341 

http://www.cofilab.com/
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The temporal cost is about 8 ms per shape using a computer with an Intel i5-4460 3.20 GHz and 342 

the operating system Windows 8.1, being about 90% for the Stage 3 (piecewise parametric curves 343 

approximation, see Fig. 1). 344 

The optimised parameters are in table 3, and these values are directly set in the TCVD algorithm. 345 

Table 3. Parameters and their default values of the improved TCVD algorithm 346 

TCVD Parameters Description 
Value 

from SA 

INTERSPACING_DISTANCE Interspacing distance between resampled points 3.5 

FILTER_WINDOW Window size for Gaussian filter 8 

DIRECTION_WINDOW Window size for stroke direction calculation 4 

K Constant of the quadratic threshold to determine 
which points are corners  

0.00001 

C”0 Lowest value of the quadratic threshold to de-
termine which points are corners 

0.0046 

R0 Radius value for C”0 in the quadratic threshold 
to determine which points are corners 

50 

MAX_DISTANCE Maximum distance between resampled points 
and parametric curve approximation 

3.0 

MAX_RADIUS_RATIO Maximum ratio between the maximum and the 
minimum radius along a curve 

5.3 

MIN_CURVE_ANGLE Minimum angle swept by the tangent vector 
angle along a curve 

34.7º 

MIN_LINE_LENGTH Minimum length of a straight line 41.8 

 347 

The following tables show the results for both original TCVD algorithm and the improved TCVD, 348 

called from now on TCVD-R (TCVD-Revised) to distinguish them. 349 

The tables 4-7 show the results separately for corners, lines, curves and tangent points, although 350 

the false positives (incorrect entities) and false negatives (entities not found) of different entities are 351 

related, as seen in Figure 10. The results are expressed in the measures “Accuracy” and “False Posi-352 

tive Rate”. The first measure is equal to the number of correct entities found divided by the total 353 

number of entities; and the second one is equal to the number of incorrect entities found divided by 354 

the total number of entities. The 20 shapes of the dataset contain 54 corners, 84 straight lines, 30 355 

curves and 39 tangent points, and the test dataset contains 40 strokes of each shape (800 strokes), that 356 

is: 2160 corners, 3360 straight lines, 1200 curves and 1560 tangent points. 357 

 358 
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Figure 10. Corner not found (false negative) which also generates one false curve and two false 359 

tangent points 360 

Table 4. Accuracy results for corner vertices 361 

 TCVD TCVD-R Improvement 

False Positives Corners 4 0  

False Negatives Corners 24 22  

Correct Corners Found (Total - False Negatives) 2136 2138  

Total Corners (54x40) 2160 2160  

Correct Corners Accuracy (Correct / Total) 98.9% 99.0% 0.1% 

False Positive Rate (False Positives / Total) 0.2% 0% 0.2% 

 362 

The fact that there is no false positive corners in TCVD-R means that the tuning of parameters is 363 

conservative, but it is the set of parameters that best performed. The majority of errors (false nega-364 

tives) occurs in the octagons, which are difficult to draw by hand and always have some ambiguous 365 

corners (Fig. 11a). In these cases, it is best to bend/emphasize (slightly) the sides of the polygon to 366 

highlight the corners (Fig 11b). Another important feature to emphasize the corners is to stop to 367 

change the direction at each of them to avoid making a small curve. Therefore, the speed is a feature 368 

that is often used in the literature; however, the speed may be slow without performing a corner, 369 

whereby it is not a very reliable feature. 370 

 
a) 

 
b) 

Figure 11. Ambiguous corners not found (false negative) and corners emphasised in octagons 371 

Table 5. Accuracy results for straight lines 372 

 TCVD TCVD-R Improvement 

False Positives Straight Lines 50 12  

False Negatives Straight Lines 14 15  

Correct Straight Lines Found (Total - False Negatives) 3346 3345  

Total Straight Lines (84x40) 3360 3360  

Correct Straight Lines Accuracy 99.6% 99.6% 0.0% 

False Positive Rate (False Positives / Total) 1.5% 0.4% 1.1% 

 373 

Table 6. Accuracy results for curves 374 

 TCVD TCVD-R Improvement 
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False Positives Curves 25 15  

False Negatives Curves 3 0  

Correct Curves Found (Total - False Negatives) 1197 1200  

Total Curves (30x40) 1200 1200  

Correct Curves Accuracy 99.8% 100% 0.2% 

False Positive Rate (False Positives / Total) 2.1% 1.3% 0.8% 

 375 

Table 7. Accuracy results for tangent points 376 

 TCVD TCVD-R Improvement 

False Positives Tangent Points 96 40  

False Negatives Tangent Points 16 16  

Correct Tangent Points Found (Total - False Negatives) 1544 1544  

Total Tangent Points (39x40) 1560 1560  

Correct Tangent Points Accuracy 99.0% 99.0% 0% 

False Positive Rate (False Positives / Total) 6.2% 2.6% 3.6% 

 377 

The above tables show that improvements do not seem very large. This is for two reasons: the re-378 

sults of the original TCVD were already very good, and there are many entities that are easy to rec-379 

ognise in which TCVD never fails. The results in corners finding are very similar because the heuris-380 

tic was very good (it also valuates the variation in radius values) and the size of the figure/shape 381 

does not affect the corners. Moreover, the improvement is greater in finding straight lines, curves 382 

and tangent points because the TCVD-R is more robust against the scale and the test dataset contains 383 

shapes of different sizes. 384 

The table 8 shows the “All-or-Nothing Accuracy“, which measures the number of correctly seg-385 

mented strokes (completely) divided by the total number of strokes. As in the previous tables, we see 386 

that the larger improvement is obtained in finding straight lines, curves and tangent points. The 387 

“All-or-Nothing Accuracy” measure is the most significant one because it means that the entire 388 

stroke is well recognised. 389 

Table 8. All-or-nothing accuracy for full strokes 390 

 TCVD TCVD-R Improvement 

Incorrect Strokes (only corners) 25 20  

Incorrect Strokes 80 46  

Correct Strokes (only corners) 775 780  

Correct Strokes 720 754  

Total Strokes 800 800  

All-or-Nothing Acc. (only corners) 96.9% 97.5% 0.6% 

All-or-Nothing Acc. 90.0% 94.3% 4.3% 

 391 

In order to check how accurate is the TCVD-R vs. TCVD method, they have also been tested with 392 

the shapes of the dataset drawn with a commercial CAD application (from now on, CAD set). In this 393 
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case, the All-or-Nothing Accuracy is 100% using the same set of parameters of the Table 3. 394 

To test the limits of the quadratic threshold function for corners, other CAD shapes have also been 395 

drawn: polygons of 10 and 12 sides, and squares and parallelograms with rounded corners (Fig. 12). 396 

The radius (in pixels) obtained at each corner or rounded corner is shown. The parameters obtained, 397 

which allow finding the corners of the decagon and the dodecagon, are shown in Table 9, and the 398 

quadratic threshold function is shown in Fig. 13. From now on, the CAD set plus decagon and do-399 

decagon it is called ‘CAD+ set’). 400 

 
a) 

 
b) 

 
c) 

 
d) 

 401 

Figure 12. Additional CAD shapes with the radius (in pixels) obtained at each corner or rounded 402 

corner 403 

 404 

Table 9. Parameters obtained by means of Simulated Annealing for the training set and for the 405 

‘CAD+’ set 406 

TCVD Parameters Training set CAD+ set 

K 0.000010 0.000007 

C”0 0.0046 0.0022 

R0 50 61 

 407 

 408 
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Figure 13. Comparison of the threshold obtained for the training set (green) and for the CAD+ set 409 

(blue) 410 

With the parameters obtained for the training set, the corners of the decagon and dodecagon are 411 

not found. Moreover, with the parameters obtained for the CAD+ set, a false corner is found at the 412 

rounded corner of radius 59 of Fig. 12d, this is because the curve is very short and the radius varies 413 

quickly (straight line – curve – straight line). The shape of Fig. 12c is well segmented with both sets 414 

of parameters. Once again, it is proved that the variation of the radius (or curvature) it is more sig-415 

nificant than its value. 416 

The executable version of the algorithm TCVD-R is available, as the shapes sets, in the Downloads 417 

section of the following address: http://www.cofilab.com. 418 

 419 

5. CONCLUSIONS 420 

The TCVD method is an important improvement in the field of the free-hand sketches recognition, 421 

being the main contribution of this method the detection of tangent points in strokes containing 422 

curves. The accuracy of TCVD obtaining corner vertices is higher than others found in literature 423 

mainly because it has very few false positives, but also TCVD is able to find curves and straight lines, 424 

which allows obtaining tangent points between curves and between curves and straight lines, even 425 

with very few false positives, making it unique in this field. Even so, two important improvements to 426 

this method have been implemented in the TCVD-R algorithm. 427 

The first improvement has consisted in establishing mathematical conditions to detect corners. In-428 

stead of a heuristic threshold, a discriminatory function is used to obtain corners avoiding further 429 

refinements, and it is based on the second derivative of the curvature as a quadratic function of the 430 

radius. The second improvement is the obtaining of curves independent from the scale by means of 431 

two parameters: the Ratio between the major and minor radius and the Angle swept by the tangent 432 

vector to the stroke. With these parameters the scale does not matter, it is important that the radius 433 

variation along the curve is not too high and that the curve turn a significant angle. 434 

The results in corners finding are very similar (the “All-or-Nothing Accuracy” for corners increas-435 

es 0.6%, from 96.9% to 97.5%) because the size of the strokes does not affect the corners, and also the 436 

previous heuristic was already pretty good (like the new discriminant function, it also evaluated 437 

more the variation in radius than the radius itself). However, it solves one of the common criticisms 438 

in [15] to corner finding techniques: the reliance on heuristics. Due to its reliance on the second de-439 

http://www.cofilab.com/
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rivative of the curvature rather than on the curvature, the TCVD-R has been able to distinguish be-440 

tween curves with a radius of 19 pixels and corners with a radius of 66 pixels. The improvement is 441 

greater in finding curves, straight lines and tangent points (the “All-or-Nothing Accuracy” increases 442 

4.3%, from 90.0% to 94.3%) because the test dataset contains shapes of different sizes and the TCVD-443 

R is more robust against the scale. The TCVD-R has also been tested with the same shapes of the 444 

dataset but drawn with a commercial CAD application. In this case, with the same set of parameters 445 

obtained for hand-drawn strokes used, the All-or-Nothing Accuracy is 100% both for corners and for 446 

curves, straight lines and tangent points. 447 

6. FURTHER WORK 448 

The next challenge is to perform the necessary extensions to deal with closed shapes. To achieve 449 

this aim, two new parameters are needed. First, a Distance threshold between the first and last points 450 

of the stroke to determine whether it is open or closed. Then, an Angle threshold to determine the 451 

continuity by comparing the direction of the tangent to the stroke at the first and last points. If the 452 

difference between both angles is greater than the threshold, there is a corner, otherwise, there will 453 

be a tangent point if the start and end entities are different (straight line and curve) or they are two 454 

curves with radius of opposite sign (inflection point). 455 

Another possible improvement could be to apply the TCVD-R to contours of objects detected by 456 

machine vision applications. In this case, the contours are always closed and, unlike closed strokes, 457 

the first and last points coincide accurately and continuity must be obtained as in the rest of points. 458 

This feature forces to perform all the stages (resampling, filtering, obtaining curvatures, curve fitting, 459 

etc.) for cyclic sequences of points. 460 
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