

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://doi.org/10.1016/j.patcog.2016.10.024

http://hdl.handle.net/10251/81465

Elsevier

Albert Gil, FE.; Aleixos Borrás, MN. (2017). Improvements to the TCVD method to segment
hand-drawn sketches. Pattern Recognition. 63:416-426. doi:10.1016/j.patcog.2016.10.024.

 1

Improvements to the TCVD method to 2

segment hand-drawn sketches 3

F. Alberta, N. Aleixosa* 4

a Inter-University Research Institute for Bioengineering and Human Centered Technology, Universitat Politècnica de València, 5
Camino de Vera s/n, 46022-Valencia, España {fraalgi1,naleixos@dig.upv.es} 6

 7
* Corresponding author: naleixos@dig.upv.es, Tel.: +34 96 387 95 14, Fax: +34 96 387 75 19 8

 9
 10
Abstract— Tangent and Corner Vertices Detection (TCVD) is a method to detect corner vertices and tangent points in 11

sketches using parametric cubic curves approximation, which is capable to detect corners with a high accuracy and a 12

very low false positive rate, and also to detect tangent points far above other methods in literature. In this article, we 13

present several improvements to TCVD method in order to establish mathematical conditions to detect corners and 14

make the obtaining of curves independent from the scale, what increases the success ratio in transitions between lines 15

and curves. The new conditions for obtaining corners use the radius as the inverse of the curvature, and the second 16

derivative of the curvature. For the detection of curves, a new descriptor is presented, avoiding the parameters 17

dependent of scale used in TCVD method. 18

In order to obtain the performance of the implemented improvements, several tests have been carried out using a 19

dataset which contains sketches more complex than those used for validation of TCVD algorithm (sketches with more 20

curves and tangent points and sketches of different sizes). For corners detection, the accuracy obtained was pretty 21

similar to that obtained with the previous TCVD, however, for curves and tangent points detection the accuracy 22

increases significantly. 23

Index Terms— Corner vertices detection, tangent points detection, sketch recognition, stroke segmentation, curvature 24

functions, natural interfaces 25

———————————————————— 26

 27

1 INTRODUCTION 28

n the field of industrial design, the first stages of design are very important. It is in here where 29

ideas are expressed freely by means of basically hand drawn sketches, and later, these ideas are con-30

verted into 3D prototypes that finally are manufactured as products. Actually, sketching is a well 31

established part of the engineering culture, but the current available tools for Computer Aided 32

Sketching (CAS) supported by commercial CAD (Computer Aided Design) applications are not yet 33

as usable as traditional paper-and-pencil, owing to the lack of many necessary functionalities and 34

flexibility [1]. 35

I

mailto:naleixos@dig.upv.es

2

Thus, once conceptual design has been completed, sketches are converted into 3D models in CAD 36

applications, but not directly, that is, in commercial CAD applications, models are created from per-37

fect outlined sketches, not from hand-drawn sketches, and therefore all the effort in the first stages of 38

design cannot be exploited. This happens mainly because commercial CAD applications do not pro-39

vide sketching tools (CAS), and in some CAD applications that do, the functionality is very limited, 40

as in the case of ProEngineer (from Parametrics Technology Corporation), SIEMENS NX 10 (the for-41

merly Unigraphics, from Siemens Industry Software) or Catia (from Dassault Systèmes). In some of 42

them every time the user sketches something, a pop-up menu comes up to solve ambiguities, asking 43

the user to choose the correct option since the system has not been capable to segment or interpret 44

the intended sketched shape. Other application that provides a hand-drawn sketch user interface is 45

AutoCAD 360, from Autodesk, developed for smartphones, tablets or desktop devices, which pre-46

sents a poor recognition system and a worse user intent design capture when introducing sketches. 47

In here, many evident curves in sketches are approximated to straight lines instead of arcs and most 48

of the times the final shape is completely different to the intended one. Besides, none of the applica-49

tions mentioned above discusses the intended tangency in the sketches, but we have to keep in mind 50

that most products have smooth transitions in their outline, so it is essential to solve the task of find-51

ing tangent points with accuracy. 52

The limitations or lacks on the CAS tools provided are related to the poor segmentation of the 53

sketch drawn, that has a lot to do with the efficiency for finding corners and tangent points, feature 54

that is generalised for nearly any kind of commercial CAD software that supports sketching. And it 55

is this feature which makes, consequently, conceptual design stages are completely detached from 56

the rest of the stages of design. Thus, to achieve interfaces that support natural human-computer 57

interaction it is necessary to develop intelligent techniques for finding corners and tangent points in 58

hand-drawn sketches and so for the automatic recognition of sketches that allows users drawing as 59

they naturally would without any constraints, like introducing the sketches in a particular order or 60

requiring a previous training by the user to learn a set of specified symbols or shapes [2]. 61

Thereby, these techniques have to deal with the problem of drawing complex shapes in a single 62

stroke, being a stroke (or sketch) a continuous sequence of points between the two pen-down and 63

pen-up events. In order to support this feature, it is necessary to split the stroke/sketch into its con-64

stituent primitives, what involves the development of techniques capable of finding corners and 65

tangent points in the stroke. Once the corners and tangent points are found, the stretches between 66

3

 3

them could be approximated to primitives’ straight lines or curves; hence, user intent design could 67

be captured maintaining the tangency between lines and curves or between curves, as applicable. 68

This procedure is also known as segmentation process. 69

Regarding to the segmentation process, the TCVD method was presented by Albert et al. [3] as the 70

best and more accurate current method to find corners and tangent points in hand-drawn sketches 71

compared to others in literature. The main advantage of TCVD method was the use of the approxi-72

mation of the sketch to parametric cubic curves, allowing finding tangent points with high accuracy, 73

what makes TCVD a good method to find corners and tangent points in hand-drawn sketches with 74

an All-or-Nothing Accuracy of 96% and 92% for corners and tangent points, respectively. Still, TCVD 75

has some limitations. One of the most important drawbacks is the scale dependence, making it diffi-76

cult to distinguish between large radius curves and straight lines. Other lack found in TCVD is the 77

use of a threshold when finding corners. This threshold (based on the radius of curvature at 78

neighbouring points) was defined heuristically. The main objective of this work is to solve the draw-79

backs found in TCVD method, to which end two improvements have been implemented. The first 80

one has consisted in establishing a discriminatory function (based on the derivatives of the curva-81

ture) instead of a heuristic threshold when finding corners; and the second one has consisted in in-82

troducing some key parameters independent of the scale when finding curves. 83

Regarding to other related works in literature, a revision of most relevant methods to understand 84

the sketched user input has been already done by Albert et al. [3], concluding that the detection of 85

the tangent points in the stroke is a key feature, because the geometry of sketches has to be approxi-86

mated to their corresponding primitives in order to create the out-lined section to later generate ac-87

curate 3D models that capture the user intent design. In engineering design, most of the models have 88

tangent transitions between planar-curved surfaces or curved-curved surfaces, what makes essential 89

the detection of the designer intention in the sketches, that is, the finding of tangent points, and al-90

though some interesting works have been carried out, the segmentation of sketched shapes still re-91

mains unsolved. 92

Among these methods is that of Yu [4] and Hse et al. [5] which used segmentation and primitive 93

approximation to find points between straight lines and curves. The work presented by Paulson and 94

T. Hammond in [6] also split the stroke and then recognised its primitives, and the works presented 95

by Alvarado and Davis [7] and Hammond and Davis [8] recombined later the primitives using some 96

geometrical rules. Sarkar et al. [9] first segmented the strokes before facing the corner finding using 97

4

genetic algorithms to fit digital curves to lines and arcs. Zhang et al. [10] extracted the primitives by a 98

connected segment performing a growing process from a seed-segment and utilised relationships 99

between them to refine the control parameters. Nguyen and Debled-Rennesson [11] applied two 100

methods, the method based on a fixed parameter (the width of considered maximal blurred seg-101

ments) and the method based on a multi-width approach without thresholds, obtaining only corners 102

since curves were always fitted to lines. 103

More important methods were those presented in the following works. In [12] Wolin et al. devel-104

oped the ShortStraw algorithm to find corners in strokes. This algorithm was found to be highly 105

accurate in both total correct corners and all-or-nothing corner accuracy, but the main problem was 106

that strokes only contained straight lines. An improvement of this algorithm was presented by Xiong 107

and La Viola [13], called IStraw, which overcame some limitations and attempted to reduce the lacks 108

maintaining its computational complexity and extending the ShortStraw to deal with strokes con-109

taining curves. This algorithm obtained significant improvements in all-or-nothing corner accuracy 110

compared to ShortStraw, but did not consider tangent points in strokes. Although Pu and Gur [14] 111

used mathematical curves to approximate the stroke, their method presented two important incon-112

veniences. First it did not distinguish between corner vertices and tangent points, and second it per-113

formed a high post-process of refinement, remaining the number of false positive detections very 114

high. 115

Other technique, that Herold and Stahovich [15] called ClassySeg, begun by identifying a set of 116

candidate segment windows, each comprising a curvature maximum and its neighbouring points. 117

Then, features were computed for each point in each window based on curvature and other geomet-118

ric properties, most of them adapted from numerous prior segmentation approaches. These features 119

were used to train a statistical classifier to identify which candidate windows contained true segment 120

points. Although this approach is more oriented to classify symbols in different domains (being a 121

very tedious and complex method since many techniques have to be combined and also a non intui-122

tive previous training has to be made for each domain), authors also tested this technique to segment 123

sketches on a data set of ten pen strokes including curves, but again only corner points were present, 124

that is, there was no tangency in the sketches. 125

But as usual, all previous reviewed methods did not deal with tangent points. In sum, many re-126

search works just deal with polyhedral models, or reconstruct 3D models from simple sketches of 127

isolated lines or arcs (like in [6]), because the main lack of obtaining curved models from sketches, 128

5

 5

necessary in most of engineering models, is that segmentation algorithms are not capable of detect-129

ing smooth transitions from straight lines to curves or between curves, and those that try to detect 130

this kind of transitions are not robust, mainly due to the bad results obtained or to the high number 131

of false positives they reach. 132

The TCVD method seems to be the most advanced and accurate method to segment hand-drawn 133

sketches finding corners and tangent points in sketches including curves, contrary what said in [15]. 134

The work presented here intends to improve this method, solving the two lacks found: the use of a 135

heuristic threshold when finding corners and the scale dependence, making it difficult to distinguish 136

between large radius curves and straight lines. 137

This article is organised as follows: In section 2 a brief description of the TCVD method is done. 138

Section 3 explains in detail the stages of the TCVD method that have been revised and improved. 139

Section 4 describes the experimental work carried out comparing the results obtained from the origi-140

nal TCVD to those obtained after improvements proposed. Finally, section 5 and 6 reports the con-141

clusions and further work, respectively. 142

 143

2 THE TCVD METHOD 144

The TCVD method [3] uses the radius, as the inverse of the curvature, as a way to find corners in 145

hand-drawn strokes. The radius allows setting more intuitively the value of thresholds (a small 146

threshold for corner vertices and a larger one for arcs or curves) than the curvature, since for exam-147

ple, we understand better a radius value of 100 pixels than a value of 0.01 for curvature. To distin-148

guish between straight lines and curves, as discrete radius is not stable in hand-drawn sketches, 149

TCVD method obtained a piecewise parametric curve approximation of the stroke, and calculated 150

the radius function from the mathematical expressions of the parametric curves in order to segment 151

the stroke, getting the entities in the stroke and keeping the points of tangency between them. 152

This method has six differentiated stages. A brief description of each of them is laid out below: 153

1. Computing the discrete radius function. Where first, the digitised stroke is resampled 154

and the noise removed. Second, the tangent vector at each point is calculated from differ-155

ences between coordinates of its neighbouring points, and the curvature at each point is 156

obtained from differences of the tangent angle between neighbouring points. Finally, the 157

radius at each point is calculated. 158

2. Corner vertices detection. The corner vertices are located at points with local minima of 159

6

the radius, and with a radius sufficiently smaller than the points of its environment. 160

3. Piecewise parametric curves approximation. The resampled points between pairs of cor-161

ners are approximated by means of piece-wise cubic curves until the distance from every 162

approximated point to the resampled point does not exceed a threshold. When the dis-163

tance is greater, the sequence of points is halved and the process is subsequently applied 164

to both sides, forcing two curves to have the same tangent at the common point (the cen-165

tral point when the previous sequence is divided). 166

4. Computing the analytic radius function. The tangent vector at each point is calculated 167

from derivative of piece-wise cubic curves, then, the curvature at each point is obtained 168

from derivative of the tangent angle, and finally the radius at each point is calculated. 169

5. Straight lines and curves detection. A point lies on a candidate curve if the radius at that 170

point is less than a threshold, otherwise the point belongs to a straight line. Therefore, a 171

sequence of consecutive candidate curve points is definitely a curve if the distance be-172

tween the points and the straight line from first sequence point to last one is greater than 173

a threshold. 174

6. Tangent points detection. The tangent points are located at points of transition from 175

straight lines to curves (and vice versa), and at points of transition between curves of ra-176

dius with different sign, if corner vertices are not previously placed in such transitions. 177

3 REVISION OF TCVD METHOD. IMPROVEMENTS 178

In this work, we have implemented two improvements to the TCVD method. The first improve-179

ment is related to the corner vertices detection stage (Stage 2 of TCVD method, See Fig. 1) that con-180

sists on the establishment of a discriminatory function to clearly differentiate corner vertices avoid-181

ing further refinements. This function is based on the radius function (as the inverse of the curvature) 182

and on the second derivative of the curvature. The calculation of the first and second derivative of 183

the curvature (C’ and C” respectively) has been carried out at the end of Stage 1. The second im-184

provement is related to the lines and curves detection stage (Stage 4), where the main objective is to 185

make the obtaining of curves independent of the scale. 186

The modifications proposed to TCVD method are represented in the flowchart of Figure 1. The 187

following sections describe in deep these improvements. 188

189

7

 7

 190

 191

User input

(Sketches)

Gaussian

filtering

2. Corner vertices

detection method

(K, R0, C”0)

3. Computing the

analytic radius function

(MAX_DISTANCE)

Discrete radius

and discrete C’ and C” (1st and

2nd derivative of the curvature)

4. Curves and lines

detection method
(MIN_CURVE_ANGLE,

MAX_RADIUS_RATIO,

MIN_LINE_LENGTH)

Peaks of minimum

radius (C’=0)

CORNER VERTICESYES¿C” > Minimum C”?

Minimum C”, where

C”= K(R-R0)2+C”0

Each point of

minimum radius is

the seed of a curve

Total curve_angle

> threshold
CURVESYES

Lines: sequences of

points outside curves

Move points from short

lines to adyacent curves

LINES

5. Tangent points

detection method TANGENT POINTS

1. Computing the

discrete radius

Function

(INTERSPACING_DISTANCE,

FILTER_WINDOW, DIRECTION_WINDOW)

Resample

Next neighboring

point is a corner

Point_radius /

Min_radius >

threshold

NO

YES YES

Add point to curveNO

Piecewise curve fitting

Analytic radius

 192
Figure 1. Flowchart of the modifications proposed to TCVD method. Only stages 1, 2 and 4 have 193

been affected. The parameters used at each stage appear between parentheses after the number and 194

the name of the stage 195

3.1 NEW DISCRIMINATORY FUNCTION FOR CORNER VERTICES 196

The main objective is to establish a new scientific discriminatory function instead of the heuristics 197

used in TCVD method to detect corners. 198

The functions involved in the obtaining of corners are the first and second derivatives of the cur-199

vature and the radius. The curvature measures the changes in the direction of the tangent vector. 200

When faster it changes the bigger the curvature is (in absolute value). In the computer display, where 201

Stages:

8

the reference system is levorotatory, the curvature is positive when the turn is clockwise. The radio is 202

the inverse of the curvature, where an infinite radius will correspond to a curvature of value zero 203

(straight line). 204

The first derivative of the curvature is the slope of the curvature. The zero crosses correspond to 205

points where the slope changes its sign, that is, to the local minimum and maximum values of the 206

curvature. The second derivative measures the changes of the curvature. Then, when faster the cur-207

vature changes the bigger the second derivative is. Thus, for curves of constant curvature, although 208

it is high, the second derivative will be zero and for corners it will be a high value. 209

a)

b)

c)

d)

Figure 2. Functions for the stroke sample of Figure 1: a) Original stroke; b) Angle values; c) Curva-210

ture (C), first derivative of the curvature (C’) and second derivative of the curvature (C”) superim-211

posed; and d) Radius 212

For this stroke, the functions obtained after filtering are shown in Fig. 2. As we can see in Fig. 2b, 213

the angle clearly shows sharp changes of 90 º (labelled as ‘1’ and ‘3’) which correspond to the two 214

corners in the stroke. Also a smooth transition of 90º between the two corners (labelled as ‘2’) corre-215

sponds to the curve in the stroke. In the curvature function (Fig. 2c) we can observe the two maxi-216

mum values (in absolute value) corresponding to the corners, and between them, we can see the 217

intermediate values of the curvature corresponding to the curve. The zero crosses in the derivative of 218

the curvature (C’) correspond to maximum values of the curvature function, and the maximum val-219

ues in the second derivative of the curvature (C”) correspond to stroke points where the curvature 220

9

 9

changes fast (corners) whereas for the curve (almost constant curvature) the value of C” can be con-221

sidered zero. 222

The graphs of Figure 3 show a set of 3561 values of the second derivative of the curvature C” (Y 223

axis) with respect the radius values (X axis), both in absolute values, obtained from the zero crosses 224

of the first derivative of curvature of a set of 200 strokes (belonging to the training set used). Such 225

maximums are distributed in 469 corners (blue colour) and 3092 non corners (red colour). Only con-226

flictive radius values are shown (<=100 pixels). 227

a)

b)

c)

Figure 3. C” values (Y axis) respect to radius values (X axis) of corners (blue) and non corners (red) 228

including different thresholds for the training set of 200 strokes: a) Constant threshold for radius; b) 229

Constant threshold for C”; and c) Quadratic threshold for C” 230

In order to separate corner vertices from non corner vertices, several functions can be proposed. In 231

Fig. 3a, a threshold for radius has been chosen (equivalent to a curvature threshold, which is com-232

mon in many sketch recognition methods) remaining a large number of false positives and false 233

negatives of corner vertices, thus requiring ulterior refinement process of the corners detection. In 234

Fig. 3b, a threshold for C” is chosen, and the number of false positive and false negative corners 235

found is lower than in Fig. 3a, so we can say that C” is more appropriate than C to separate corner 236

from non corner vertices. In Fig. 3c, a quadratic function for C” is chosen, being the results much 237

better. The proposed discriminatory function of C” depending on the radius results as follows: 238

10

    0

2

0 "·" CRRKRC threshold  (1)

 239

So that a vertex found will be a corner if its |C”| value is upper than the C”threshold in (1). Where K 240

is a constant, C”0 is the lowest value found for the second derivative of the curvature and R0 is the 241

radius value for C”0 (see Fig. 4). 242

a)

b)

Figure 4. a) Zones where the corners (blue) and non corners (red) are positioned; and b) Several 243

shapes of discriminatory functions depending of the constant K (opening) and the values of C”0 and 244

R0 as the coordinates for positioning the function 245

In our case, the K, R0 and C”0 values have been obtained using an implementation of the optimisa-246

tion algorithm Simulated Annealing [16] for the data set proposed of 3561 values. The values ob-247

tained after the optimisation process are shown in Table 3. 248

Figure 5 shows the result, applying this discriminatory function, for a sample of a stroke that con-249

tains three corner vertices and one curve of a quite small radius. This sample has been chosen to 250

show how this threshold is able to distinguish corners from curves with small radius. 251

a)

b)

11

 11

c)

d)

Figure 5. a) Stroke sample and its segmentation; b) Curvature (C) and second derivative of the curva-252

ture (C”) overlapped; c) Radius; and d) |C”| values (Y axis) respect to the radius values (X axis) for 253

points of minimum radius (dots) and C”threshold (green curve) 254

As we can see from Fig. 5c, the radius of the real curve of the stroke (last sharpen peak) is lower 255

(and wider) than those from the first two corners. In Fig. 5d are represented the values of C’’ for the 256

minimums of radius of the stroke. Blue dots correspond to corners (above the threshold) and the red 257

dot corresponds to a real curve (below the threshold). The values obtained for the curvature and 258

radius functions and for C” threshold are depicted in Table 1. The corresponding segmented stroke 259

appears in Fig. 5a, where the straight lines are represented in red and the curve in blue. The three 260

intermediate corners found (and the two ends of the stroke) are represented in magenta colour and 261

the two tangent points that limit the curve are represented in cyan. 262

Table 1. Results obtained for the minimum values of R for the stroke of Fig. 5a 263

Point R |C”| C”threshold Description

1 49.4 0.0053 > 0.0046 Corner 45º
2 25.9 0.0130 > 0.0054 Corner 45º
3 18.4 0.0227 > 0.0133 Corner 90º
4 19.2 0.0080 < 0.0135 Curve

3.2 CURVES DETECTION 264

This improvement has been introduced in order to make the curve detection independent of the 265

scale. 266

In the earlier TCVD method, the curve detection algorithm determined that a point lied on a curve 267

candidate if the radius at that point was less than a threshold (MAX_CURVE_RADIUS), otherwise 268

the point belonged to a straight line. Therefore, a sequence of consecutive curve points was definitely 269

a curve if the distance between the points and the straight line from the first sequence point to the 270

last one was greater than a threshold (MIN_DIST_CA). This way of detecting curves leads to a high 271

dependence on the scale, causing misdetections when analysing the same shapes having different 272

12

sizes. 273

To avoid the problem of size requirement, the parameters proposed are: The Angle swept by the 274

tangent vector to the stroke; and the Ratio between the major and minor radius values within the 275

curve. In the case of the angle, this parameter informs about a minimum value from which the curve 276

is appreciable. In the case of the ratio, the value is a maximum, because when the entity to check is a 277

straight line, this value increases considerably. The values of these parameters were determined by 278

using the Simulated Annealing technique mentioned previously (see Table 3). 279

The algorithm proposed (in pseudo-code) for curves detection is shown in Fig. 6. 280

#Find minimum local values of radius between each pair of corners found. Each minimum is consid-281

ered the initial point of a candidate for a curve, and will be a CURVE SEED. 282

#For each CURVE SEED, do: 283

#Grow curve on both sides, adding neighbouring points to the curve, as three conditions are 284

met: 285

#The radius ratio of the current added point divided by the radius ratio of the curve 286

seed is below the fixed parameter MAX_RADIUS_RATIO 287

#The current added point is not a corner (a corner has not been reached) 288

#The radius of the current added point keeps its sign (it is not an inflexion point) 289

#If two candidate for a curves, from different starting curve seeds and with the radius of the 290

same sign, join, then both curves belonging to different curve seeds will be chained 291

#When no more points are added (growing process ends), the sequence of points candidate to a 292

curve, will be definitely considered a curve if the absolute value of the angle swept by the tan-293

gent vector to the stroke between both ends of the sequence is above the parameter 294

MIN_CURVE_ANGLE 295
 296

Figure 6. Algorithm proposed for curves detection 297

To illustrate better how the curve detection algorithm operates independent of the scale, the 298

stroke of Fig. 7a has been chosen. This stroke consists of two straight lines and two curves with very 299

different radius but with similar angles. This sample will prove that neither the arc length nor the 300

radius differences between the two curves are important to segment both as curves. 301

Figure 7 shows, both in the stroke (Fig. 7a) and in the graph of the radius (Fig. 7b), the growing 302

process of the curves, starting from the seeds or points with minimum radius. The values that do not 303

appear in the graph of the radius correspond to absolute values extremely high (curvature almost 304

zero) of the straight lines. The bigger curve presents radius values about 500 pixels, whereas the 305

small curve presents radius values about 65 pixels (in absolute values). The curves from the first four 306

13

 13

seeds join and the curves from the last two seeds also. 307

a)

b)

Figure 7. a) Original stroke; and b) Radius values. Both figures show the location of the seeds in the 308

original stroke and in the radius values, respectively 309

Figure 8a shows the angle of the tangent vector of the previous stroke, which rotates in each curve 310

90º. Figure 8b shows the segmented stroke, resulting in two curves and two straight lines separated 311

by corners. Table 2 shows the features for both curves found in the stroke. 312

a)

b)

Figure 8. a) Tangent vector angle values for the stroke of Figure 7a; and b) Segmented stroke with 313

two curves (in blue) and two lines (in red) separated by corners 314

Table 2. Extracted features for curves of the stroke of Figure 8 315

Curves Radius range Rmajor/Rminor Curve angle Description

Big [370,600] 1.62 (<5) 105º (>30º) Real curve
Small [-55,-79] 1.44 (<5) 109º (>30º) Real curve

 316

4 EXPERIMENTAL WORK AND RESULTS 317

In order to evaluate the improvements made to TCVD, we have used a data set of 20 different 318

shapes, with 9 shapes belonging to the data set established in [3] and an additional data set of 11 319

different shapes containing more oriented engineering sketches with curves and tangencies (see Fig. 320

9 for the outlined models of the different sketches used). For now, all the strokes are considered open 321

shapes. The dataset contains 54 corners, 84 straight lines, 30 curves and 39 tangent points (including 322

14

five inflection points). 323

324

325

326

 327

Figure 9. Strokes with straight lines (drawn in red), curves (drawn in blue), corner vertices (drawn 328

in magenta) and tangent points (drawn in blue cyan) 329

We collected data from 10 different users, and each user drew 5 times each shape, making a total 330

of 1000 strokes. Each user drew each shape with different sizes. If a stroke was drawn wrong, that is, 331

at first glance it did not correspond with the model, it was removed and redrawn. The training data-332

set is formed with a stroke of each shape for each user (200 strokes) and the rest (800 strokes) are left 333

for the test dataset. The sketched shapes, Data-set-train.rar and Data-set-test.rar are available in the 334

Downloads section of the following address: http://www.cofilab.com. 335

And in [3], the parameters used for this approach were optimised by means of Simulated Anneal-336

ing algorithm in order to achieve best results, which is explained in detail in a previous work [17]. 337

This process is based on the Simulated Annealing technique, which allows us tuning the parameters 338

to improve the segmentation results, and where the parameters have been formulated as an optimi-339

sation problem where the function cost is expressed as the number of errors in the segmentation of 340

the training set. 341

http://www.cofilab.com/

15

 15

The temporal cost is about 8 ms per shape using a computer with an Intel i5-4460 3.20 GHz and 342

the operating system Windows 8.1, being about 90% for the Stage 3 (piecewise parametric curves 343

approximation, see Fig. 1). 344

The optimised parameters are in table 3, and these values are directly set in the TCVD algorithm. 345

Table 3. Parameters and their default values of the improved TCVD algorithm 346

TCVD Parameters Description
Value

from SA

INTERSPACING_DISTANCE Interspacing distance between resampled points 3.5

FILTER_WINDOW Window size for Gaussian filter 8

DIRECTION_WINDOW Window size for stroke direction calculation 4

K Constant of the quadratic threshold to determine
which points are corners

0.00001

C”0 Lowest value of the quadratic threshold to de-
termine which points are corners

0.0046

R0 Radius value for C”0 in the quadratic threshold
to determine which points are corners

50

MAX_DISTANCE Maximum distance between resampled points
and parametric curve approximation

3.0

MAX_RADIUS_RATIO Maximum ratio between the maximum and the
minimum radius along a curve

5.3

MIN_CURVE_ANGLE Minimum angle swept by the tangent vector
angle along a curve

34.7º

MIN_LINE_LENGTH Minimum length of a straight line 41.8

 347

The following tables show the results for both original TCVD algorithm and the improved TCVD, 348

called from now on TCVD-R (TCVD-Revised) to distinguish them. 349

The tables 4-7 show the results separately for corners, lines, curves and tangent points, although 350

the false positives (incorrect entities) and false negatives (entities not found) of different entities are 351

related, as seen in Figure 10. The results are expressed in the measures “Accuracy” and “False Posi-352

tive Rate”. The first measure is equal to the number of correct entities found divided by the total 353

number of entities; and the second one is equal to the number of incorrect entities found divided by 354

the total number of entities. The 20 shapes of the dataset contain 54 corners, 84 straight lines, 30 355

curves and 39 tangent points, and the test dataset contains 40 strokes of each shape (800 strokes), that 356

is: 2160 corners, 3360 straight lines, 1200 curves and 1560 tangent points. 357

 358

16

Figure 10. Corner not found (false negative) which also generates one false curve and two false 359

tangent points 360

Table 4. Accuracy results for corner vertices 361

 TCVD TCVD-R Improvement

False Positives Corners 4 0

False Negatives Corners 24 22

Correct Corners Found (Total - False Negatives) 2136 2138

Total Corners (54x40) 2160 2160

Correct Corners Accuracy (Correct / Total) 98.9% 99.0% 0.1%

False Positive Rate (False Positives / Total) 0.2% 0% 0.2%

 362

The fact that there is no false positive corners in TCVD-R means that the tuning of parameters is 363

conservative, but it is the set of parameters that best performed. The majority of errors (false nega-364

tives) occurs in the octagons, which are difficult to draw by hand and always have some ambiguous 365

corners (Fig. 11a). In these cases, it is best to bend/emphasize (slightly) the sides of the polygon to 366

highlight the corners (Fig 11b). Another important feature to emphasize the corners is to stop to 367

change the direction at each of them to avoid making a small curve. Therefore, the speed is a feature 368

that is often used in the literature; however, the speed may be slow without performing a corner, 369

whereby it is not a very reliable feature. 370

a)

b)

Figure 11. Ambiguous corners not found (false negative) and corners emphasised in octagons 371

Table 5. Accuracy results for straight lines 372

 TCVD TCVD-R Improvement

False Positives Straight Lines 50 12

False Negatives Straight Lines 14 15

Correct Straight Lines Found (Total - False Negatives) 3346 3345

Total Straight Lines (84x40) 3360 3360

Correct Straight Lines Accuracy 99.6% 99.6% 0.0%

False Positive Rate (False Positives / Total) 1.5% 0.4% 1.1%

 373

Table 6. Accuracy results for curves 374

 TCVD TCVD-R Improvement

17

 17

False Positives Curves 25 15

False Negatives Curves 3 0

Correct Curves Found (Total - False Negatives) 1197 1200

Total Curves (30x40) 1200 1200

Correct Curves Accuracy 99.8% 100% 0.2%

False Positive Rate (False Positives / Total) 2.1% 1.3% 0.8%

 375

Table 7. Accuracy results for tangent points 376

 TCVD TCVD-R Improvement

False Positives Tangent Points 96 40

False Negatives Tangent Points 16 16

Correct Tangent Points Found (Total - False Negatives) 1544 1544

Total Tangent Points (39x40) 1560 1560

Correct Tangent Points Accuracy 99.0% 99.0% 0%

False Positive Rate (False Positives / Total) 6.2% 2.6% 3.6%

 377

The above tables show that improvements do not seem very large. This is for two reasons: the re-378

sults of the original TCVD were already very good, and there are many entities that are easy to rec-379

ognise in which TCVD never fails. The results in corners finding are very similar because the heuris-380

tic was very good (it also valuates the variation in radius values) and the size of the figure/shape 381

does not affect the corners. Moreover, the improvement is greater in finding straight lines, curves 382

and tangent points because the TCVD-R is more robust against the scale and the test dataset contains 383

shapes of different sizes. 384

The table 8 shows the “All-or-Nothing Accuracy“, which measures the number of correctly seg-385

mented strokes (completely) divided by the total number of strokes. As in the previous tables, we see 386

that the larger improvement is obtained in finding straight lines, curves and tangent points. The 387

“All-or-Nothing Accuracy” measure is the most significant one because it means that the entire 388

stroke is well recognised. 389

Table 8. All-or-nothing accuracy for full strokes 390

 TCVD TCVD-R Improvement

Incorrect Strokes (only corners) 25 20

Incorrect Strokes 80 46

Correct Strokes (only corners) 775 780

Correct Strokes 720 754

Total Strokes 800 800

All-or-Nothing Acc. (only corners) 96.9% 97.5% 0.6%

All-or-Nothing Acc. 90.0% 94.3% 4.3%

 391

In order to check how accurate is the TCVD-R vs. TCVD method, they have also been tested with 392

the shapes of the dataset drawn with a commercial CAD application (from now on, CAD set). In this 393

18

case, the All-or-Nothing Accuracy is 100% using the same set of parameters of the Table 3. 394

To test the limits of the quadratic threshold function for corners, other CAD shapes have also been 395

drawn: polygons of 10 and 12 sides, and squares and parallelograms with rounded corners (Fig. 12). 396

The radius (in pixels) obtained at each corner or rounded corner is shown. The parameters obtained, 397

which allow finding the corners of the decagon and the dodecagon, are shown in Table 9, and the 398

quadratic threshold function is shown in Fig. 13. From now on, the CAD set plus decagon and do-399

decagon it is called ‘CAD+ set’). 400

a)

b)

c)

d)

 401

Figure 12. Additional CAD shapes with the radius (in pixels) obtained at each corner or rounded 402

corner 403

 404

Table 9. Parameters obtained by means of Simulated Annealing for the training set and for the 405

‘CAD+’ set 406

TCVD Parameters Training set CAD+ set

K 0.000010 0.000007

C”0 0.0046 0.0022

R0 50 61

 407

 408

19

 19

Figure 13. Comparison of the threshold obtained for the training set (green) and for the CAD+ set 409

(blue) 410

With the parameters obtained for the training set, the corners of the decagon and dodecagon are 411

not found. Moreover, with the parameters obtained for the CAD+ set, a false corner is found at the 412

rounded corner of radius 59 of Fig. 12d, this is because the curve is very short and the radius varies 413

quickly (straight line – curve – straight line). The shape of Fig. 12c is well segmented with both sets 414

of parameters. Once again, it is proved that the variation of the radius (or curvature) it is more sig-415

nificant than its value. 416

The executable version of the algorithm TCVD-R is available, as the shapes sets, in the Downloads 417

section of the following address: http://www.cofilab.com. 418

 419

5. CONCLUSIONS 420

The TCVD method is an important improvement in the field of the free-hand sketches recognition, 421

being the main contribution of this method the detection of tangent points in strokes containing 422

curves. The accuracy of TCVD obtaining corner vertices is higher than others found in literature 423

mainly because it has very few false positives, but also TCVD is able to find curves and straight lines, 424

which allows obtaining tangent points between curves and between curves and straight lines, even 425

with very few false positives, making it unique in this field. Even so, two important improvements to 426

this method have been implemented in the TCVD-R algorithm. 427

The first improvement has consisted in establishing mathematical conditions to detect corners. In-428

stead of a heuristic threshold, a discriminatory function is used to obtain corners avoiding further 429

refinements, and it is based on the second derivative of the curvature as a quadratic function of the 430

radius. The second improvement is the obtaining of curves independent from the scale by means of 431

two parameters: the Ratio between the major and minor radius and the Angle swept by the tangent 432

vector to the stroke. With these parameters the scale does not matter, it is important that the radius 433

variation along the curve is not too high and that the curve turn a significant angle. 434

The results in corners finding are very similar (the “All-or-Nothing Accuracy” for corners increas-435

es 0.6%, from 96.9% to 97.5%) because the size of the strokes does not affect the corners, and also the 436

previous heuristic was already pretty good (like the new discriminant function, it also evaluated 437

more the variation in radius than the radius itself). However, it solves one of the common criticisms 438

in [15] to corner finding techniques: the reliance on heuristics. Due to its reliance on the second de-439

http://www.cofilab.com/

20

rivative of the curvature rather than on the curvature, the TCVD-R has been able to distinguish be-440

tween curves with a radius of 19 pixels and corners with a radius of 66 pixels. The improvement is 441

greater in finding curves, straight lines and tangent points (the “All-or-Nothing Accuracy” increases 442

4.3%, from 90.0% to 94.3%) because the test dataset contains shapes of different sizes and the TCVD-443

R is more robust against the scale. The TCVD-R has also been tested with the same shapes of the 444

dataset but drawn with a commercial CAD application. In this case, with the same set of parameters 445

obtained for hand-drawn strokes used, the All-or-Nothing Accuracy is 100% both for corners and for 446

curves, straight lines and tangent points. 447

6. FURTHER WORK 448

The next challenge is to perform the necessary extensions to deal with closed shapes. To achieve 449

this aim, two new parameters are needed. First, a Distance threshold between the first and last points 450

of the stroke to determine whether it is open or closed. Then, an Angle threshold to determine the 451

continuity by comparing the direction of the tangent to the stroke at the first and last points. If the 452

difference between both angles is greater than the threshold, there is a corner, otherwise, there will 453

be a tangent point if the start and end entities are different (straight line and curve) or they are two 454

curves with radius of opposite sign (inflection point). 455

Another possible improvement could be to apply the TCVD-R to contours of objects detected by 456

machine vision applications. In this case, the contours are always closed and, unlike closed strokes, 457

the first and last points coincide accurately and continuity must be obtained as in the rest of points. 458

This feature forces to perform all the stages (resampling, filtering, obtaining curvatures, curve fitting, 459

etc.) for cyclic sequences of points. 460

ACKNOWLEDGMENTS 461

Spanish Ministry of Science and Education and the FEDER Funds, through HYMAS project (Ref. 462

DPI2010-19457) and INIA project VIS-DACSA (Ref. RTA2012-00062-C04-03) partially supported this 463

work. 464

REFERENCES 465

[1] P. Company, M.Contero, P.A.C. Varley, N. Aleixos, F. Naya, Computer-aided sketching as a 466

tool to promote innovation in the new product development process, Computers in Industry 60(8) 467

(2009) 592–603. 468

[2] D.G. Fernández-Pacheco, F. Albert, N. Aleixos, J. Conesa, A new paradigm based on agents 469

21

 21

applied to free-hand sketch recognition, Expert Systems with Applications 39 (2012) 7181–7195. 470

[3] F. Albert, D.G. Fernández-Pacheco, N. Aleixos, New method to find corner and tangent verti-471

ces in sketches using parametric cubic curves approximation, Pattern Recognition 46 (2013) 1433–472

1448. 473

[4] B. Yu. Recognition of freehand sketches using Mean Shift, in: Proceedings of the 8th Interna-474

tional Conference on Intelligent user Interfaces, IUI ’03, 2003, ACM, pp. 204–210. 475

[5] H. Hse, M. Shilman, A.R. Newton. Robust sketched symbol fragmentation using templates, in: 476

Proceedings of the 9th International Conference on Intelligent User Interfaces, IUI’04, 2004, pp. 156–477

160. 478

[6] B. Paulson and T. Hammond. “Paleosketch: Accurate primitive sketch recognition and beauti-479

fication”. In IUI ’08: Proceedings of the 13th international conference on Intelligent user interfaces, 480

2008, pp. 1-10. 481

[7] C. Alvarado and R. Davis. “Sketchread: a multi-domain sketch recognition engine”. In UIST 482

’04: Proceedings of the 17th annual ACM symposium on User interface software and technology, NY 483

USA, 2004, ACM Press, pp. 23-32. 484

[8] T. Hammond and R. Davis. “Ladder, a sketching language for user interface developers”. El-485

sevier, Computers and Graphics, 28 (2005), pp. 518-532. 486

[9] B. Sarkar, L.K. Singh, D. Sarkar, Approximation of digital curves with line segments and circu-487

lar arcs using genetic algorithms, Pattern Recognition Letters 24 (15) (2003) 2585–2595. 488

[10] X. Zhang, J. Song, G. Dai, M. R. Lyu, Extraction of line segments and circular arcs from free-489

hand strokes based on segmental homogeneity features, IEEE Transactions on Systems, Man, and 490

Cybernetics—Part B:Cybernetics36(2) (2006). 491

[11] T.P. Nguyen, I. Debled-Rennesson, A discrete geometry approach for dominant point detec-492

tion, Pattern Recognition 44 (2011) 32–44. 493

[12] A. Wolin, B. Eoff, T. Hammond, Shortstraw: A simple and effective corner finder for poly-494

lines, in: Proceedings of the EURO-GRAPHICS 5th Annual Workshop on Sketch-Based Interfaces 495

and Modeling, 2008, pp. 33–40. 496

[13] Y. Xiong, J. J. LaViola Jr., Revisiting ShortStraw—Improving corner finding in sketch-based 497

interfaces, in: Proceedings of the EUROGRAPHICS 6th Annual Workshop on Sketch-Based Inter-498

faces and Modeling, 2009, pp. 101–108. 499

[14] J. Pu, D. Gur, Automated freehand sketch segmentation using radial basis functions, Com-500

22

puter-Aided Design 41 (2009) 857–864. 501

[15] J. Herold and T. F. Stahovich, A machine learning approach to automatic stroke segmentation, 502

Computers and Graphics 38 (2014) 357-364. 503

[16] Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983). Optimization by Simulated Annealing. 504

Science, 220 (4598), 671-680. 505

 [17] D.G. Fernández-Pacheco, F. Albert, N. Aleixos, J. Conesa, M. Contero, Automated tuning o 506

parameters for the segmentation of free hand sketches, in: Proceedings of the International Confer-507

ence on Computer Graphics Theory and Applications (GRAP2011), 2011, pp. 321–329. 508

