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aCS Dept., University of Illinois at Urbana-Champaign
bDSIC, Universitat Politècnica de València

Abstract

We present several new concepts and results on conditional term rewriting
within the general framework of order-sorted rewrite theories (OSRTs), which
support types, subtypes and rewriting modulo axioms, and contains the more
restricted framework of conditional term rewriting systems (CTRSs) as a special
case. The concepts shed light on several subtle issues about conditional rewrit-
ing and conditional termination. We point out that the notions of irreducible
term and of normal form, which coincide for unconditional rewriting, have been
conflated for conditional rewriting but are in fact totally different notions. Nor-
mal form is a stronger concept. We call any rewrite theory where all irreducible
terms are normal forms a normal theory. We argue that normality is essential
to have good executability and computability properties. Therefore we call all
other theories abnormal, freaks of nature to be avoided. The distinction between
irreducible terms and normal forms helps in clarifying various notions of strong
and weak termination. We show that abnormal theories can be terminating
in various, equally abnormal ways; and argue that any computationally mean-
ingful notion of strong or weak conditional termination should be a property of
normal theories. In particular we define the notion of a weakly operationally ter-
minating (or weakly normalizing) OSRT, discuss several evaluation mechanisms
to compute normal forms in such theories, and investigate general conditions
under which the rewriting-based operational semantics and the initial algebra
semantics of a confluent, weakly normalizing OSRT coincide thanks to a notion
of canonical term algebra. Finally, we investigate appropriate conditions and
proof methods to ensure that a rewrite theory is normal; and characterize the
stronger property of a rewrite theory being operationally terminating in terms
of a natural generalization of the notion of quasi-decreasing order.

Keywords: Conditional term rewriting, normal forms, normal theory,
operational termination, rewriting logic, Maude.

1. Introduction

This paper presents several new contributions to conditional term rewriting
and to the semantics of declarative, rewriting-based languages. Conditional
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rewriting is considered within the general and highly expressive framework of
order-sorted rewrite theories (OSRTs), that is, theories R = (Σ, B,R), where
(Σ, B) is an order-sorted equational theory [17, 7] with equational axioms B,
and R is a collection of conditional rewrite rules with oriented conditions of the
form: ` → r ⇐ s1 → t1, . . . , sn → tn, which are applied modulo B. All the
results are in particular new results for Conditional Term Rewriting Systems
(CTRSs); that is, for order-sorted rewrite theories of the special form R =
(Σ,∅, R), with B = ∅ and Σ unsorted, i.e., having a single sort. The point of
using OSRTs is, of course, that not only the CTRS-based syntactic rewriting,
but the more general rewriting modulo axioms B is thus supported; and that,
for obvious reasons of expressiveness, all well-known rule-based languages, e.g.,
[8, 23, 6, 3], support not only rewriting modulo axioms, but also types and, often,
subtypes. Therefore, the greater generality of OSRTs is not a caprice, but an
absolute necessity for making formal specification and declarative programming
expressive and practical.

Our contributions consist in asking and providing detailed answers to the
following, innocent-sounding questions:

1. What is the right notion of normal form for an OSRT?

2. What is the right notion of weak operational termination for an OSRT?

3. Under what conditions can OSRTs be used as declarative programs having
a well-behaved semantics? How can we execute such programs? How can
their executability conditions be checked in practice?

4. Under what conditions does a confluent OSRT have a canonical term
algebra that can be effectively computed and that provides a complete
agreement between the operational semantics of the OSRT as a functional
program, and its mathematical, initial algebra semantics?

5. Can the operational termination of OSRTs be characterized in terms of
orders?

Surprisingly enough, some of these questions seem to never have been asked. At
best, the issues involved seem to have remained implicit as not well-understood,
anomalous features in the literature. Consider, for example, question (1) above,
which asks about the notion of normal form. For unconditional term rewriting
the notion is absolutely clear and unproblematic: a normal form is a term t that
is irreducible, that is, such that there is no t′ with t →R t′. To the best of our
knowledge, all the CTRS literature is unanimous in identifying normal forms
with irreducible terms also in the conditional case. That is, the terms “normal
form” and “irreducible term” are used with the same meaning by all authors.1

However, for an OSRT, and in particular for a CTRS, the notion of normal

1 Nevertheless, in the seminal paper [2], for R a confluent and orthogonal CTRS a dis-
tinction is made between the set Irr(R) of its irreducible terms (called there “normal forms”),
and a subset Irrf (R) ⊆ Irr(R) of irreducible terms of “finite order.” However, as we further
explain in Section 3.1, the notion of “irreducible term of finite order” is too weak to capture
the intuitive notion of normal form, namely, a term that is the result of the term normalization
process.
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form is actually highly problematic. The big problem is that for an OSRT there
can be terms t that are irreducible in the above sense, i.e., there is no t′ with
t→R t′, but such that when we give t to a rewrite engine for evaluation such an
engine loops! For a trivial example, consider the single conditional rewrite rule
a→ b⇐ a→ c. Since the rewrite relation defined by this conditional rule is the
empty set, the constant a is trivially irreducible; but the proof tree associated
to the normalization of a using the CTRS inference system is infinite [13], and
a rewrite engine that tries to evaluate a will loop when trying to satisfy the
rule’s condition. Therefore, calling a a normal form is a very bad joke, since,
intuitively, a term is considered to be a normal form if it is “fully normalized,”
that is, if it is the result of fully evaluating some input term by rewriting; but
this is precisely what a in the above example is not.

Our answer to this puzzle is to introduce a precise distinction (fully artic-
ulated in the paper) between irreducible terms and normal forms: every term
in normal form is irreducible, but, as the above example shows, not every irre-
ducible term is a normal form. We call an OSRT normal2 iff every irreducible
term is a normal form, and call it abnormal otherwise. Abnormal theories, like
the one above, are hopeless for executability purposes and should be viewed as
monsters in the menagerie of CTRSs and OSRTs.

Termination is quite a subtle issue for OSRTs in general and CTRSs in par-
ticular. The distinction between irreducible terms and normal forms helps in
clarifying various notions of termination. We show that abnormal theories can
be terminating in various, equally abnormal ways; and argue that any compu-
tationally meaningful notion of strong or weak conditional termination should
be a property of normal theories. Many notions of conditional termination have
been proposed (see e.g., [20]), but it is by now well-understood that the most
satisfactory notion from a computational point of view is that of operational ter-
mination [13] (more on this later). Here we ask and answer several questions,
further developing this notion. One question is (5) above. For the case of de-
terministic 3-CTRS we proved in [13] that operational termination is equivalent
to the order-based notion of quasi-decreasingness. In Section 6 we generalize
this result to a similar result characterizing operational termination of OSRTs
in terms of an (axiom-compatible) term ordering.

Another related question is question (2), which could be more simply re-
phrased as follows: what is the right notion of weak termination/normalization
for OSRTs? Although notions of weak CTRS termination go back at least to
[2], as we further explain in Section 3.1 they can be very misleading; that is,
they can violate one’s most basic intuitions about what termination means. Our

2 Note that this meaning of “normal” is in open conflict with the definition of a nor-
mal CTRS (see, e.g., [20]) as a CTRS whose rewrite rules R are all of the form l →
r if

∧
i=1..n ui → vi with each vj ground and, not only R-irreducible, but, furthermore,

Ru-irreducible, where Ru is the set of unconditional rules obtained from R by dropping all
conditions. Since: (i) the terminology “normal” in, e.g., [20], is not universally accepted (e.g.,
with an extra orthogonality condition they are instead called type IIIn in [2]), and (ii) these
two meanings of “normal” are so different, no confusion should arise.
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distinction between irreducible terms and normal forms shows that there are in
fact two possible notions, a computationally ill-behaved one (weak termination:
every term has a terminating rewrite sequence ending in an irreducible term),
and a computationally well-behaved one (weak operational termination: every
term has a normal form).

The notion of normal OSRT is closely related to question (3), namely, that
of executability conditions for declarative, conditional rule-based programs, and
their evaluation methods, i.e., their operational semantics. As we explain in
Section 4, there are several evaluation methods, which become increasingly more
efficient as we impose further conditions on the OSRT which we use as our
program, and depending on the meaning that such a program has.

A rewrite theory R = (Σ, B,R), can have two different meanings: (i) a
functional meaning, in which a function symbol f is understood as a function
defined by rules of the form R = ~E, which orient conditional equations E and
are executed modulo B; and (ii) a non-functional meaning, in which a term t is
understood (modulo B) as a state in a concurrent system, whose local concur-
rent transitions are specified by the rules R [16]. In the Maude language, the first
meaning is supported by functional modules of the form fmod (Σ, B,E) endfm,

where the oriented conditional equations ~E are confluent; and the second mean-
ing is supported by system modules of the form3 mod (Σ, B,R) endm.

For functional programs specified by an OSRT, that is, for rewrite theories
of the form (Σ, B, ~E), with ~E conditional equations oriented as rewrite rules and
executed modulo B, the issue raised in question (4) is not just one of having
good executability conditions, but actually of correctness. More precisely, of
semantic agreement between an abstract initial algebra semantics when the
rules are viewed as equations, and an operational semantics based on rewriting,
where the computed values —that is, the normal forms— give rise to a very
intuitive algebra, the canonical term algebra, which under the assumptions of
confluence, strict coherence, determinism, sort-decreasingness and operational
termination is isomorphic to the initial algebra of the specification.

Question (4) above asks, essentially: what are the most general conditions
ensuring this isomorphism and keeping both computability of the canonical term
algebra and an exact agreement between mathematical and operational seman-
tics? That is, what are the right conditions for this semantic agreement when
we relax the operational termination condition? This is answered in Section 4.4.
Last but not least, in Sections 3 and 5 we investigate appropriate conditions and
proof methods to ensure that a theory has good executability properties such as
being normal, and evaluation to normal form defining a total recursive function.

This paper is a substantial extension of our conference paper [14]. Besides
having been fully reorganized, having more thorough discussions of the key
concepts and of related literature, and containing both detailed proofs of all

3More generally of the form mod (Σ, B ] E,R) endm, with (Σ, B,E) satisfying the require-
ments of a functional module. For the sake of a simpler exposition, in this paper we treat
only the case where the only equations involved are the axioms B.
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the theorems stated in [14] and more examples, additional new contributions
include: (i) a detailed description of the operational semantics of computing
normal forms in deterministic normal rewrite theories based on their proof the-
ory; (ii) a discussion of conditions under which such an operational semantics
is supported by the Maude system; (iii) a detailed study of computability prop-
erties; and (iv) a more detailed treatment of canonical term algebras for nor-
mal, strongly deterministic, confluent, sort-decreasing, and weakly normalizing
rewrite theories.

2. Preliminaries

To make the paper self-contained, we recall here some basic notions of order-
sorted algebra, order-sorted rewrite theories, strict coherence, and operational
termination.

Order-Sorted Algebra. We summarize here material from [7, 17] on order-
sorted algebra. We start with a partially ordered set (S,≤) of sorts, where s ≤ s′
is interpreted as subsort inclusion. The connected components of (S,≤) are the
equivalence classes [s] ∈ S/≡≤, where ≡≤= (≤ ∪ ≥)+, i.e., ≡≤ is the smallest
equivalence relation containing ≤. We also define bsc = {s′ ∈ S | s′ ≤ s}, i.e.,
the sorts in S which are smaller than or equal to s. When [s] has a top element
we denote it by >[s]. An order-sorted signature (Σ, S,≤) consists of a poset of
sorts (S,≤) and an S∗ × S-indexed family of sets Σ = {Σw,s}(w,s)∈S∗×S , which
are function symbols with a given string of argument sorts and a result sort. If
f ∈ Σs1...sn,s, we display f as f : s1 · · · sn → s. This is called a rank declaration
for symbol f . Some of these symbols f can be subsort-overloaded, i.e., they can
have several rank declarations related in the ≤ ordering [7]. To avoid ambiguous
terms, we assume that Σ is sensible, meaning that if f : s1 · · · sn → s and
f : s′1 · · · s′n → s′ are such that [si] = [s′i], 1 ≤ i ≤ n, then [s] = [s′]. And to
make both equational and rewriting deduction simpler we will further assume
that Σ is also kind complete, meaning that: (i) each connected component [s]
has a top sort, denoted >[s] ∈ [s] and called the kind of [s], such that s′ ≤
>[s] for each s′ ∈ [s], and (ii) whenever (f : s1 · · · sn → s) ∈ Σ, then we
also have a typing of f at the kind level of the form: (f : >[s1] · · · >[sn] →
>[s]) ∈ Σ. The kind completeness assumption involves no real loss of generality,

since each Σ can be extended into a kind-complete Σ� so that both equational
deduction and rewriting in Σ are are conservatively extended to the level of
Σ� [19]. Throughout this paper, Σ will always be assumed sensible and kind-
complete.

Given an S-sorted set X = {Xs}s∈S of mutually disjoint sets of variables,
the family of sets TΣ(X ) = {TΣ(X )s}s∈S defines for each s ∈ S the set TΣ(X )s
of Σ-terms of sort s as the least set such that (i) Xs ⊆ TΣ(X )s, (ii) if s ≥ s′

then TΣ(X )s ⊇ TΣ(X )s′ , and (iii) for each f : s1 · · · sn → s and ti ∈ TΣ(X )si ,
1 ≤ i ≤ n, f(t1, . . . , tn) ∈ TΣ(X )s. The assumption that Σ is sensible ensures
that if [s] 6= [s′], then TΣ(X )s ∩ TΣ(X )s′ = ∅. And kind-completeness implies
that TΣ(X )>[s]

=
⋃
s′∈[s] TΣ(X )s′ .
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The operations f : (t1, . . . , tn) 7→ f(t1, . . . , tn), for each f ∈ Σs1...sn,s, on
the family TΣ(X ) = {TΣ(X )s}s∈S define an order-sorted Σ-algebra called the
free algebra on X and denoted, by abuse of language, TΣ(X ). When X =
∅, TΣ = TΣ(∅) denotes the initial Σ-algebra. By further abuse of language,
TΣ(X ) also denotes the set of all well-formed Σ-terms, that is, the set-theoretic
union TΣ(X ) = ∪s∈STΣ(X )s. A simple syntactic condition on (Σ, S,≤) called
preregularity [7] ensures that each well-formed term t has always a least sort
possible among all sorts in S, which is denoted LS(t). A substitution σ is
an S-sorted mapping σ = {σ : Xs → TΣ(X )s}s∈S from variables to terms.
Subst(TΣ(X )) denotes the set of all such substitutions. The application of σ
to t (denoted σ(t)) consists of simultaneously replacing the variables occurring
in t terms according to the mapping σ. The domain of σ is the set dom(σ) =
{x ∈ X | σ(x) 6= x}. A specialization ν is an injective substitution that maps a
variable x of sort s to a variable x′ of sort s′ ≤ s.

A Σ-equation has the form t = t′, with the sorts of t and t′ in the same
connected component. A conditional Σ-equation is an implication

∧
1≤i≤n ui =

vi ⇒ t = t′, with n ≥ 0. If n = 0 we identify such a conditional equation
with the equation t = t′. An order-sorted conditional theory is a pair (Σ, E)
with E a set of conditional Σ-equations. The models of (Σ, E) are precisely
the order-sorted Σ-algebras that satisfy the conditional equations E [7, 17].
Order-sorted conditional equational logic has a sound and complete inference
system [17]. Furthermore, the category of Σ-algebras satisfying E has an initial
algebra denoted TΣ/E . Although Σ-equations need to be explicitly quantified
[7, 17], by assuming that Σ has non-empty sorts, that is, that for each sort s
we have TΣ,s 6= ∅ we can leave such quantification implicit. For simplicity we
will assume throughout that Σ has non-empty sorts. The relation =E denotes
provable equality modulo E, that is, t =E t′ iff E ` t = t′, where ` is the
provability relation for order-sorted conditional equational logic [17].

Equality modulo E extends naturally to substitutions: we write σ =E τ iff
for all variables x we have σ(x) =E τ(x). Given Σ-terms t′, t we say that t′

E-matches t (with E-match σ) iff there is a substitution σ such that t′ =E σ(t).
We then call t′ an E-instance of t. E is said to have a finitary E-matching
algorithm iff =E is a decidable relation and there is an algorithm that, given
any two Σ-terms t′, t, generates a finite, complete set of E-matches of t′ as an
E-instance of t, denoted MatchE(t′, t), so that for any other such E-match τ
there is a σ ∈ MatchE(t′, t) such that τ =E σ.

Order-Sorted Rewrite Theories. An (order-sorted) rewrite rule is an
ordered pair (l, r), written l→ r, with l, r ∈ TΣ(X ), and LS(l) ≡≤ LS(r).

An order-sorted rewrite theory (OSRT) is a triple R = (Σ, B,R), where Σ
is an order-sorted signature, B is a set of Σ-equations, and R is a collection of
conditional rewrite rules with oriented conditions of the form ` → r ⇐ s1 →
t1, . . . , sn → tn, where ` → r and the si → ti are order-sorted rewrite rules
(with ` 6∈ Xs for all s ∈ S), and where the conditions si → ti are intended to
express the reachability of (instances of) ti from (instances of) si.

6



(Refl) u→? v
if u =B v

(Tran)
u→ u′ u′ →? v

u→? v

(Cong)
ui → u′i

f(u1, . . . , ui, . . . , uk)→ f(u1, . . . , u
′
i, . . . , uk)

where f ∈ Σs1···sk,s and 1 ≤ i ≤ k

(Repl)
σ(u1)→? σ(v1) . . . σ(un)→? σ(vn)

u→ v
where `→ r ⇐ u1 → v1 · · ·un → vn ∈ R,

σ is an OS-substitution, u =B σ(`) and v = σ(r)

Figure 1: Inference rules for order-sorted rewrite theories

Remark 1. Throughout this paper we assume the equations (u = v) ∈ B are:

1. regular (i.e., Var(u) = Var(v));

2. linear (i.e., no repeated variables in either u or v);

3. having a finitary B-matching algorithm;

4. sort-preserving (i.e., for each specialization ν, LS(ν(u)) = LS(ν(v))); and

5. with top typing, i.e., each variable x in Var(u) = Var(v) has top sort >[s]

for some connected component of sorts [s].

Examples of axioms B satisfying (1)–(3) include combinations of associativity
and/or commutativity and/or identity axioms. Maude supports rewriting mod-
ulo such axioms and also checks automatically properties (4) (it actually checks
a somewhat weaker condition for identity axioms that still ensures a least sort
for each B-equivalence class), and (5).

Rewrite rules `→ r ⇐ c in OSRTs are classified according to the distribution
of variables among `, r, and c, as follows: type 1, if Var(r) ∪ Var(c) ⊆ Var(`);
type 2, if Var(r) ⊆ Var(`); type 3, if Var(r) ⊆ Var(`)∪Var(c); and type 4, if no
restriction is given. An n-OSRT contains only rewrite rules of types m ≤ n. A
3-OSRT R is called deterministic if for each rule l→ r ⇐ s1 → t1, . . . , sn → tn
in R and each 1 ≤ i ≤ n, we have Var(si) ⊆ Var(l) ∪

⋃i−1
j=1 Var(tj). If for all

specializations ν we have LS(ν(`)) ≥ LS(ν(r)) we then say that the OS-rule
` → r ⇐ c is sort-decreasing. We call an OSRT R = (Σ, B,R) sort-decreasing
if all rules in R are so.

We write R ` t → u, abbreviated t →R u, (resp. R ` t →? u, abbreviated
t →?

R u) iff there is a closed proof tree (i.e., with no pending open goals) for
t → u (resp. t →? u) from R using the inference system in Figure 1. We write
R 6` t→ u, abbreviated t 6→R u (resp. R 6` t→? u, abbreviated t 6→?

R u) if such
a closed proof tree does not exist. t →R u is a more compact notation for the
usual notation t →R,B u, which we shall also use. That is, the above inference
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system uses matching modulo B at some subterm position to perform a rewrite
step. Note, however, the subtle notational distinction between the LATEX \ast

symbol (∗), and the \star symbol (?). This has been done on purpose to stress
that t→?

R u is not the reflexive-transitive closure of t→R u, but only a closely-
related relation. What we actually have (see [18]) is: t →?

R u iff either: (i)
t =B u, or (ii) there is an n ≥ 1 such that t→R t1 →R . . .→R tn =B u. Since
we assume that there is a finitary B-matching algorithm, as we explain in more
detail in Section 4, the relations →R and →?

R can be easily implemented for
deterministic OSRTs.

An OSRT R is called confluent iff for all terms t, u, v, t →?
R u and t →?

R v
imply that there is a term w such that u→?

R w and v →?
R w.

An OSRT R is called terminating if there is no infinite rewrite sequence
t1 →R t2 →R · · · Besides this classical notion, which is also important in our
development, we discuss below the notion of operational termination of OSRTs.

Strict Coherence. The intention, of course, is to achieve with →R the
effect of rewriting in B-equivalence classes; that is, the effect of a relation usually
denoted→R/B , which can be much harder and much less efficient to implement
(Section 4 discusses implementation issues in more detail). However, for =B to
be an actual bisimulation between →R,B and →R/B , so that the more efficient
relation →R,B defined in Figure 1 can be used, the rules R should be closed
under B-extensions, which makes them strictly coherent in the sense of [18].
Strict coherence precisely means that if t →R u and t =B t′, then there is a
term u′ such that t′ →R u′ and u =B u′. Furthermore, if the rules R are closed
under B-extensions, they satisfy the following, even stronger property (see [18]),
which implies strict coherence as a corollary:

For each instance of Replacement (Repl) of the form:

θ(u1)→? θ(v1) . . . θ(un)→? θ(vn)
u→ v

and each B-equality u =B u′ there is another instance of (Repl) of the form

θ′(u1)→? θ′(v1) . . . θ′(un)→? θ′(vn)
u′ → v′

with v =B v′ and θ(x) = θ′(x) for each x ∈ Var(u1 → v1 ∧ . . . ∧ un → vn).
Strict coherence is a stronger and simpler notion than the usual notion of

coherence [10], but it is all we need when the equations B are regular and linear.
For B any combination of associativity, commutativity and identity axioms,
Maude automatically computes the B-extensions of the user-given rules R (see
Sect. 4.8 in [3]), so that strict coherence, and with it the effect of rewriting in
B-equivalence classes, is achieved. Since strict B-coherence is essential for this
effect to be achieved, and therefore for correct executability, from now on we
will assume that all OSRTs are closed under B extensions and are therefore
strictly B-coherent.

8



Operational Termination. Given a logic L (defined by its inference rules),
one has the notion of a theory or specification S in such a logic, so that L’s
inference system becomes specialized to each such specification S to derive its
provable theorems ϕ. Assume that we have an interpreter for the logic L, that
is, an inference machine that, given a theory S and a goal formula ϕ will try
to incrementally build a proof tree for ϕ. Intuitively, we would say that S
is terminating if for any ϕ the interpreter either finds a proof in finite time,
or fails in all possible attempts also in finite time, see Definition 4 below for
a precise statement of the property. The notion of operational termination
captures this fact, meaning that, given an initial goal, an interpreter will either
succeed in finite time in producing a closed proof tree, or will fail in finite time,
not being able to close or extend further any of the possible proof trees, after
exhaustively searching for all such proof trees. We summarize below some of
the main concepts in [13, 4].

Theories S in a logic L belong to a set of theories ThL. Each theory S ∈
ThL has an associated set FormL(S) of its formulas, and an associated set of
inference rules IL(S), where each inference rule ι ∈ IL(S) is a scheme specifying
a (possibly infinite) set of pairs (~ϕ, ϕ), called its instances, and denoted ~ϕ

ϕ , where

~ϕ ∈ FormL(S)∗ and ϕ ∈ FormL(S). The key proof-theoretic notion in a logic L
is that of a proof tree.

Definition 1. The set of (finite) proof trees for a theory S in a logic L and the
root of a proof tree are defined inductively as follows. A proof tree is

• either an open goal, simply denoted as ϕ, where ϕ is a formula for S;
then, we define root(ϕ) = ϕ,

• or a non-atomic tree with ϕ as its root, denoted as

T1 · · · Tn
ϕ

(ι)

where ϕ is a formula for S, ι is an inference rule in IL(S), and T1,. . . ,Tn
are proof trees such that

root(T1) · · · root(Tn)

ϕ

is an instance of ι.

We say that a proof tree is closed whenever it is finite and contains no open
goals. If T is a closed proof tree for S, we then write S ` root(T ), and call
root(T ) a theorem of S.

Notice the difference between ϕ, an open goal, and ϕ, a goal closed by a rule ι
without premises. An occurrence of a goal G in a proof tree T is at level n in
T if the length of the path from G to the root of T is n.

Increasing chains of (finite) proof trees can give rise to infinite proof trees.
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Definition 2. A proof tree T is a proper prefix of a proof tree T ′ if there are one
or more open goals ϕ1, . . . , ϕn in T such that T ′ is obtained from T by replacing
each ϕi by a non-atomic proof tree Ti having ϕi as its root. We denote the
proper prefix relation as T ⊂ T ′.

An infinite proof tree is an infinite increasing chain of finite trees, that is,
a sequence {Ti}i∈N such that for all i, Ti ⊂ Ti+1.

We characterize the proof trees with computational meaning (those which
are computed by an interpreter for L which solves goals in a proof tree bottom-
up and from left to right), by means of the notion of well-formed proof tree.

Definition 3. We say that a proof tree T is well-formed if it is either an open
goal, or a closed proof tree, or a proof tree of the form

T1 · · · Tn
ϕ

(ι)

where for each j Tj is itself well-formed, and there is i ≤ n such that Ti is not
closed, for any j < i Tj is closed, and each of the Ti+1 ,. . . ,Tn is an open goal.
An infinite proof tree is well-formed if it is an ascending chain of well-formed
finite proof trees.

Definition 4 (Operational termination). A theory S in a logic L is called
operationally terminating if no infinite well-formed proof tree for S exists.

In particular, we say that an OSRT R (viewed as a theory of the logic L for
OSRTs whose inference system is given in Figure 1) is operationally terminating
by applying Definition 4 to R and L.

In the same vein, we can say that a predicate π (for instance, → or →? in
the inference system of Figure 1) is operationally terminating if for any goal ϕ
such that ϕ = π(t1, . . . , tk) for terms t1, . . . , tk, ϕ is operationally terminating.
In the following, we speak about operational 1-termination of an OSRT as the
operational termination of → (with respect to the inference system of Figure
1). Since by the (Tran) rule the operational non-termination of → implies that
of →?, the operational termination of an OSRT is equivalent to the operational
termination of →?. Similarly, we say that a term t is operationally terminating
(resp. operationally 1-terminating) iff every goal t→? u (resp. t→ u) is opera-
tionally terminating for all terms u. We call R ground operationally terminating
(resp. ground operationally 1-terminating) iff all t ∈ TΣ are so.

3. Normal and Abnormal Rewrite Theories

Normal forms and normal theories are defined. The relationship between
normal forms and “irreducible terms of finite order” in the sense of [2] is also
explained.
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3.1. Normal Forms and a Taxonomy of Theories

Definition 5 (Irreducible terms and weak termination). For R an OSRT
and t, v terms, we say that t is irreducible iff for any term v, t 6→R v. Irr(R)
(resp. GIrr(R)) is the set of irreducible terms (resp. ground irreducible terms)
of R. A substitution σ is called irreducible iff σ(x) ∈ Irr(R) for all variables x.

If t rewrites to an irreducible term v —i.e., t→?
R v and v ∈ Irr(R)— we say

that t has a (not necessarily unique) irreducible form v, denoted t→→Rv or just
t→→v if no confusion arises. If every term t has an irreducible form, i.e., t→→Rv
for some irreducible v, then R is called weakly terminating.

Any terminating OSRT is weakly terminating, but in general, the converse is
not true. Of course the very notions of terminating and weakly terminating
CTRS can be highly misleading, since when the OSRT is abnormal (for the
precise definition, see Definition 7 below) such notions can violate one’s basic
intuitions about termination. Consider, for example, the following “abnormal”
weakly terminating CTRS:

Example 1. Let R be the CTRS with constants a, b, c, unary function symbol
f , and rules R:

f(x) → f(f(x)) (1)

f(x) → a (2)

a → b⇐ a→ c (3)

Since every Σ-term different from b or c can be rewritten to a, and since a, b, c
are R-irreducible, R, though not terminating, is weakly terminating. However,
a user evaluating Σ-terms other than b or c in an interpreter to their irreducible
form will never see any results, unless the interpreter implements some reacha-
bility checking (which is well-known to be undecidable in general). That is, as far
as the user is concerned, except for inputs b and c, nothing will ever terminate
in the most obvious and basic sense of getting back a result from the interpreter.
So, even calling R “weakly terminating” requires large doses of irony and can be
highly misleading for the unwary. The moral of this little tale is that abnormal
OSRTs have equally abnormal notions of termination, which, computationally
speaking, are as useless as the abnormal OSRTs themselves.

Definition 6 (Normal form, weak normalization). A term v is called a
normal form iff it is irreducible and operationally 1-terminating. Let NF(R)
(resp. GNF(R)) be the set of normal forms (resp. ground normal forms) of R.
A substitution σ is called normalized iff σ(x) ∈ NF(R) for all variables x.

If t→→Rv and v is a normal form, we then write t→!
R v and call v a normal

form of t. If every (ground) term t has a normal form, i.e., t →!
R v for some

normal form v, then R is called weakly (ground) operationally terminating (or
weakly (ground) normalizing), abbreviated WOT (resp. GWOT).

Note that NF(R) ⊆ Irr(R) and →!
R ⊆ →→R (these inclusions can be strict!).
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Remark 2 (Notation). If R is confluent and weakly terminating (resp. WOT)
and t→→Rv (resp. t →!

R v), then v is called the irreducible (resp. normal or
canonical) form of t, denoted v = t ↓R (resp. v = t!R), which is unique up to
B-equality.

Example 2. The one-step rewrite relation for a → b ⇐ a → c (a single rule
OSRT) is empty. Hence, this OSRT is terminating and a is irreducible. How-
ever, a is not a normal form: every attempt to prove a reduction step on a
starts an infinite proof tree. Note, however, that b and c are normal forms.

There can also be reducible terms that are not operationally 1-terminating.

Example 3. Term f(a) is not operationally 1-terminating in the 2-CTRS R:

g(a) → c(b) (4)

b → f(a) (5)

f(x) → x⇐ g(x)→ c(y) (6)

Since g(a)→ c(b), we have f(a)→ a by means of a finite proof tree. However,
since the evaluation of the condition could continue beyond c(b)

g(a)→ c(b)→ c(f(a))

and the term f(a) can start a new (deep) proof tree, we also have an infinite
(well-formed) proof tree for the goal f(a)→ u with u arbitrary.

Remark 3. Note that R in Example 3 is terminating. This is easy to see,
because the underlying TRS Ru = {` → r | ` → r ⇐ c ∈ R} is clearly
terminating.

Definition 7 (Normal rewrite theory). A deterministic OSRT R is called
normal (resp. ground normal) if the set Irr(R) (resp. the set GIrr(R)) is opera-
tionally terminating, i.e., every irreducible (ground) term is a (ground) normal
form: Irr(R) = NF(R) (resp. GIrr(R) = GNF(R)). A deterministic OSRT R is
called abnormal iff it is not normal.

Corollary 1. Any operationally 1-terminating deterministic OSRT R is nor-
mal.

Remark 4. Clearly, Examples 1–2 are abnormal CTRSs.

The strict B-coherence assumption then gives us:

Lemma 1. Let R = (Σ, B,R) be a deterministic OSRT whose axioms B satisfy
requirements (i)–(v) in Section 2 and where the rules R are closed under B-
extensions. Then the sets Irr(R) and NF(R) are both closed under B-equality.
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Proof. Let u ∈ Irr(R) and let v =B u. We can reason by contradiction.
Suppose v →R w. This exactly means that there is a proof tree proving v → w,
but by strict coherence this also means that there is a proof tree proving u→ w′

for some w′ =B w, contradicting u ∈ Irr(R).
Let u ∈ NF(R) and let v =B u. Suppose that v 6∈ NF(R). By the above

reasoning, v ∈ Irr(R), so this means that v is irreducible but not operationally
1-terminating. That is, there is an infinite well-formed proof tree T with goal
v →R w. By strict coherence, there is then a goal u → w′ for some w′ =B w,
and an infinite well-formed proof tree T ′ which is identical to T , except by
changing its goal from v →R w to u→ w′, contradicting u ∈ NF(R). �

Corollary 2. Let R = (Σ, B,R) be a weakly normalizing deterministic OSRT
whose axioms B satisfy requirements (i)–(v) in Section 2 and where the rules R
are closed under B-extensions. Then R is a normal theory.

Proof. Suppose u ∈ Irr(R) − NF(R). Since R is weakly normalizing, there
is a v ∈ NF(R) such that u →!

R v. But this forces u =B v, which by Lemma 1
forces u ∈ NF(R), contradicting u ∈ Irr(R)− NF(R). �

Example 4. The CTRS R in Example 3 is weakly normalizing (see below) and
therefore normal, but, as already shown, not operationally 1-terminating. To see
that it is normal, assume to the contrary that Irr(R)−NF(R) 6= ∅ and choose a
minimal irreducible term s ∈ Irr(R)− NF(R) so that all its strict subterms are
normal forms. Since f is the only symbol defined by a conditional rule, we must
have s = f(t) for some normal form t. Since f(t) is irreducible, the evaluation
of the condition in the rule cannot succeed, i.e., g(t) must be irreducible. Since t
is a normal form, g(t) cannot start any infinite well-formed tree. Contradiction!

Furthermore, we can describe in detail the set NF(R). Since all operators
are unary, using Polish notation we can express all terms as strings. It is then
not hard to check that, denoting by X the set of variables, the normal forms can
be described by means of the regular expression:

NF(R) = a ∪X ∪ (f ∪ g)∗c+(X ∪ a).

Weak normalization can be shown as follows: b has normal form a, and for any
h ∈ {f, g, c} and term t, we can prove by structural induction and case analysis
that h(t) has a normal form by assuming that t has a normal form u ∈ NF(R).

Note that R is: (i) terminating (see Remark 3); and (ii) weakly operationally
terminating. However, as pointed out in Example 3, R is not operationally 1-
terminating and, a fortiori, not operationally terminating.

Example 4 and Corollaries 1–2, help us gain a more complete picture about
various subclasses of normal rewrite theories. Let Normal, 1OT, WOT, and
OT denote, respectively, the classes of normal, operationally 1-terminating,
weakly operationally terminating, and operationally terminating OSRTs. By
Corollaries 1–2 we have inclusions:

OT ⊆ 1OT,WOT ⊆ Normal.
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From Example 4 we know that WOT 6⊆ 1OT. Furthermore, the 1-rule TRS
{f(x)→ f(f(x))} shows that 1OT 6⊆WOT. And the two-rules TRS {f(x)→
f(f(x)), f(x)→ a} shows that we have a strict inclusion OT ⊂ 1OT ∩WOT.
The strict inclusion 1OT ∪WOT ⊂ Normal is also easy to check by adding
to the CTRS in Example 3 the rewrite rule h(x)→ h(h(x)), which breaks weak
operational termination but does not change the set of normal forms. Therefore,
all inclusions (indicated by arrows) in the taxonomy below are strict.

Normal

1OT ∪ WOT

1OT WOT

1OT ∩ WOT

OT

The following notions of strongly and super-strongly deterministic OSRT are
very useful for executability purposes and will be extensively used later in this
paper.

Definition 8 (Strongly and super-strongly deterministic rewrite theory).
A deterministic OSRT R = (Σ, B,R) is called strongly deterministic (resp.
super-strongly deterministic) if for each ` → r ⇐ s1 → t1, . . . , sn → tn in R,
and each irreducible substitution θ we have: θ(t1), . . . , θ(tn) ∈ Irr(R) (resp. and
each normalized substitution θ we have: θ(t1), . . . , θ(tn) ∈ NF(R)).

The CTRS R in Example 3 is super strongly deterministic. Since irre-
ducible and normal forms coincide for normal OSRTs, strongly deterministic
normal OSRTs are obviously super strongly deterministic. But not all strongly
or super-strongly deterministic rewrite theories are normal. For an example
of an abnormal super-strongly deterministic rewrite theory, see the conditional
CTRS extending combinatory logic in Section 5.5 of [22], which is a variation
on the CTRS in Prop. 4.4 of [2].

Remark 5. Note that if R is normal, then R is strongly deterministic iff R is
super-strongly deterministic. However, for abnormal theories the concepts are
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different. For example, the following abnormal CTRS is strongly deterministic,
but not super-strongly deterministic:

f(x) → g(x)⇐ x→ a (7)

a → b⇐ a→ c (8)

This is because a in the first rule’s condition is irreducible but not a normal
form, so that rule is not super-strongly deterministic.

The notion of strongly deterministic OSRT generalizes that of strongly deter-
ministic CTRS in the sense of [20]. The conceptual difference between strongly
and super-strongly deterministic OSRTs is obscured by the fact that in [20],
and as far as we know in the entire CTRS literature, since irreducible terms
and normal forms are conflated, irreducible substitutions are called normalized
substitutions.

3.2. Relationship between Normal Forms and Irreducible Terms of Finite Order

We explain in detail the relationship between our notion of normal form and
Bergstra and Klop’s notion4 of “irreducible term of finite order” in [2] (Def.
4.2), already alluded to in Footnote 1. Their notion is defined for orthogonal
CTRSs R with rules satisfying the requirements explained in Footnote 2 (their
type IIIn CTRSs, see also Footnote 2), which they prove in [2] to always be
confluent. Here is their precise definition, modulo the terminological change
just remarked in Footnote 4 to avoid unnecessary confusion:

Definition 9. ([2]) Let R = (Σ,∅, R) be a type IIIn CTRS in the sense of [2].
We inductively define the following subsets of Irr(R):

• Irr(R)0 = Irr(Ru) (recall the definition of Ru in Remark 3).

• t ∈ Irr(R)n+1 iff for all substitutions θ, rules l → r ⇐
∧
i=1..k ui → vi in

R, and contexts C such that t = C[θ(l)], there are j ≤ n, and 1 ≤ i ≤ k,
such that θ(ui)→∗R u, u ∈ Irr(R)j with5 u 6≡ vi.

• Irr(R)f =
⋃
n∈N Irr(R)n, called the set of irreducible terms of finite order.

Using confluence ofR, Bergsta and Klop then prove (Prop. 4.2.1) that Irr(R)f ⊆
Irr(R). Although in general Bergstra and Klop allow type IIIn CTRS to have
extra variables in their conditions, since the righthand sides vi of each conjunct
in the condition is an Ru-irreducible ground term, in a rule application, the
substitution for those extra variables cannot be incrementally computed, as it can

4 Since Bergstra and Klop call all irreducible terms “normal forms,” they actually use the
terminology “normal form of finite order.” To avoid needless terminological confusion, in what
follows we will instead call their notion “irreducible term of finite order.” This expresses their
intended meaning exactly, while avoiding any danger of confusion.

5Remember that vi is a ground Ru-normal form in any IIIn CTRS. Here ≡ denotes syn-
tactic equality between terms.
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for super-strongly deterministic CTRSs, where such substitutions are computed
incrementally, as each conjunct in the condition is solved from left to right.
That is, such substitutions must be guessed among a generally infinite number
of possibilities. Since without the use of symbolic methods this makes the
execution of such rules by an interpreter unfeasible, from now on we will restrict
our discussion to type IIIn CTRS with no extra variables in their conditions,
which are a special case of super-strongly deterministic CTRSs. Also, since this
makes some arguments below easier, we also assume the practical case where
the set R of rules of the CTRS is finite.

The first key fact is that we have: Irr(R)0 ⊆ NF(R) ⊆ Irr(R)f ⊆ Irr(R).
The second key fact is that we can have NF(R) ⊂ Irr(R)f ; that is, the notion of
“irreducible term of finite order” is strictly weaker than that of “normal form”
in our sense. The first fact is stated in the following proposition.

Proposition 1. Let R = (Σ,∅, R) be a type IIIn CTRS in the sense of [2],
whose rules have no extra variables in their conditions and with R finite. Then
we have the set-theoretic inclusions:

Irr(R)0 ⊆ NF(R) ⊆ Irr(R)f ⊆ Irr(R).

Proof. As already mentioned, Bergsta and Klop prove in [2] (Prop. 4.2.1)
that Irr(R)f ⊆ Irr(R). The inclusion Irr(R)0 ⊆ NF(R) is trivial. This leaves
us with proving the inclusion NF(R) ⊆ Irr(R)f . By definition, t ∈ NF(R) iff
t ∈ Irr(R) and t is operationally 1-terminating. That is, all proof attempts to
prove a one-step rewrite t → w fail in finite time. More precisely, for any such
goal t→ w all well-formed proof trees we can build are finite, and none of them
is closed. As explained in Section 4.1, we can restrict ourselves to sensible well-
formed proof trees. If t is operationally 1-terminating and R satisfies the above
conditions, then the set of sensible well-formed proof trees having a goal of the
form t→ t′ is finite and none of them is closed. Call a sensible well-formed, finite
proof tree T maximal iff it cannot be extended to a bigger sensible well-formed
tree T ′ with T ′ ⊃ T . Call a sensible non-closed maximal well-formed tree T a
failure tree, since it represents a clearly failed proof attempt. Let FT (R) denote
the set of failure trees of R. For simplicity, in what follows we will assume that
all well-formed proof trees are built using the inference sytem in Figure 2.

We define a function tc : NF(R) → N, called the tree cost of t, and prove
that t ∈ NF(R) implies t ∈ Irr(R)f by strong induction on tc(t). Intuitively,
tc(t) measures the cost of detecting all the failed rewrite attempts to rewrite t,
and is defined as follows. We first define the set AttR(t) of t’s rewrite attempts
as the set:

AttR(t) = {(α, p, θ) | α = (`→ r ⇐ s1 → t1, . . . , sn → tn) ∈ R, p ∈ Pos(t), t|p = θ(`)}.

And for each such rewrite attempt (α, p, θ), with α = (` → r ⇐ s1 →
t1, . . . , sn → tn), we define the set FT (α, p, θ) of its failure trees as:

FT (α, p, θ) = {(T1 · · · Tn
t→ t[θ(r)]p

) ∈ FT (R) | goal(Ti) = θ(si)→? θ(ti), 1 ≤ i ≤ n}
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where α = (` → r ⇐ s1 → t1, . . . , sn → tn). Then, for each t ∈ NF(R) we
define tc(t) ∈ N as the double sum:

tc(t) = Σ(α,p,θ)∈AttR(t)ΣT∈FT(α,p,θ)|T |

where |T | is the size of tree T , that is, its number of nodes.
The base case for the inductive proof is easy, since tc(t) = 0 means that

no rewrite attempts are possible, i.e., that t is irreducible by Ru and therefore
belongs to Irr(R)0. Assume that u ∈ Irr(R)f for each normal tc(u) ≤ m and
suppose tc(t) = m + 1. This means that AttR(t) 6= ∅. Pick any (` → r ⇐
s1 → t1, . . . , sn → tn), p, θ) ∈ AttR(t) and let k be biggest possible such that
R 6` θ(sk) →? θ(tk) but R ` θ(si) →? θ(ti), 1 ≤ i < k. Obviously, 1 ≤ k < n,
and there is a failure tree for this attempt of the form T1 ··· Tn

t→t[θ(r)]p with the

T1, . . . , Tk−1 closed proof trees, Tk a failure tree, and Tk+1, . . . , Tm single node
trees of the form θ(sj)→? θ(tj), k + 1 ≤ j ≤ n. Furthermore, any other failure
tree T ′ for the same proof attempt (` → r ⇐ s1 → t1, . . . , sn → tn), p, θ) and
having T ′1 = T1, . . . , T

′
k = Tk−1 must also have T ′k a failure tree. Since from

an infinite well-formed proof tree for a goal u →? w we can easily build an
infinite well-formed proof tree for any other goal u →? w′, this means that
θ(sk) is operationally terminating and a fortiori terminating. The maximality
of Tk means that there is an irreducible term v 6= θ(tk) appearing in a node
v →? θ(tk) of Tk such that θ(sk)→→v. Furthermore, v must be a normal form,
since otherwise θ(sk) would be operationally non-terminating. But any failure
tree for v is a proper subtree of a failure tree for the attempt (` → r ⇐ s1 →
t1, . . . , sn → tn), p, θ). Therefore, tc(v) ≤ k, and by the induction hypothesis
there is a natural number nv such that v ∈ Irr(R)nv . Therefore, t ∈ Irr(R)nv+1,
as desired. �

The following type IIIn CTRS shows the second fact, i.e., that the inclusion
NF(R) ⊆ Irr(R)f can be proper.

Example 5. Let R be the CTRS with rules:

tt → true (9)

a → b⇐ a→ c ∧ tt → false. (10)

Since it is orthogonal and both c and false are Ru-irreducible, it is a type IIIn
CTRS. Note that we have Irr(R)0 = NF(R) = {b, c, true, false} ∪ X . And,
since tt → true, true ∈ Irr(R)0, and true 6≡ false, Irr(R)1 = Irr(R)f =
Irr(R) = {a, b, c, true, false} ∪ X . In particular, a, which is not operationally
1-terminating, and therefore not a normal form in our sense, is already in the
set Irr(R)1.

The above example clearly shows that the notion of “irreducible term of
finite order” is too weak to capture the intuitive notion of normal form; that
is, a term returned by an interpreter as the result of the term normalization
process.
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Admittedly, for type IIIn CTRSs with no extra variables in their condi-
tions one could build a special-purpose interpreter computing terms in Irr(R)f
by evaluating in parallel all the left term instances σ(s1) . . . σ(sn) of the con-
dition in a rule application and then detecting if some σ(si) reduces to some
term u ∈ Irr(R)k for some k, with u 6≡ ti, by recursively trying to evaluate
u in the same manner. But the correctness of this special-purpose interpreter
depends crucially on the confluence of type IIIn CTRSs and breaks down for
non-confluent CTRSs, as the following example shows:

Example 6. Let R be the CTRS with rules:

[x] → x;x (11)

x;x → true (12)

x; y → x; [y] (13)

a → b⇐ [tt ]→ false. (14)

The point here is that, when trying to apply the last rule to a, [tt ] will reduce
to true ∈ Irr(R)0, and of course false ∈ Irr(R)0 and true 6≡ false. But, if an
interpreter cannot assume confluence —indeed this example is non-confluent—
it cannot jump to the conclusion that a cannot be rewritten to b in some other
way and —since a is not operationally 1-terminating— must in this case loop
forever trying to satisfy the condition [tt ]→ false.

Furthermore, if we add to the above CTRS the extra rule x; [x]→ false, the
special-purpose interpreter for type IIIn CTRSs described above —that concludes
that a conditional rule cannot be applied to an instance of its lefthand side
when the left side of the corresponding instance of one of its conditions can
be rewritten to an irreducible term syntactically different from the condition’s
irreducible righthand side— will return an incorrect result, since it will jump
to the false conclusion that, since [tt ] reduces to true, a is irreducible, and will
return a as the result of evaluating a, when in fact now a can be reduced to b.

Besides depending crucially on confluence, even under the confluence as-
sumption, the idea used by the above special-purpose interpreter for type IIIn
CTRSs of evaluating in parallel all left term instances σ(s1) . . . σ(sn) of the
condition in a conditional rule application attempt cannot be used to evaluate
terms for confluent strongly deterministic CTRSs with extra variables in their
condition. The reason is that for such CTRSs the substitution σ for those extra
variables must be computed incrementally, by solving one condition at a time
from left to right.

In summary: (i) the inclusion NF(R) ⊆ Irr(R)f can be proper, so that the
notion of “irreducible term of finite order” is too weak to capture the intuitive
notion of normal form; and (ii) such a notion and its effective computation
depend crucially on the confluence assumption and on rules having no extra
variables in their condition, so that its evaluation mechanism either becomes
incorrect or cannot be used when either of those assumptions is violated.
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4. Computing with Deterministic Rewrite Theories

For executability purposes, deterministic OSRTs are the traditional non plus
ultra. It is certainly possible to execute more general rewrite theories symboli-
cally, as done, for example, in the rewriting modulo SMT approach and, as ex-
plained in [21], there are compelling system-oriented applications making such
symbolic rewriting very useful. But as far as ordinary rewriting is concerned, the
big problem with executing rewrite theories that do not satisfy the determinism
requirement is the arbitrariness in choosing a substitution σ for the additional
variables in a rule, since in general an infinite number of such substitutions can
be chosen. Therefore, this section focuses on the operational semantics and
computational properties of deterministic rewrite theories R in general, which
can be normal or abnormal, with special emphasis on what can be computed in
either case.

So, what do we want to compute? In a functional interpretation ofR we want
to compute unique normal forms, that is, the unique values to which functional
expressions, i.e., terms, reduce or normalize to. Instead, in a concurrent system
interpretation of R, although we may also be interested in computing (not
necessarily unique) normal forms, which are now interpreted as final states of
the system, we are more generally interested in solving reachability problems
for R, that is, in performing some kind of explicit-state model checking for
R, so that computing final states becomes a special case of this more general
reachability analysis.

This is exactly what is supported in Maude [3] for system modules (i.e.,
rewrite theories with a concurrent system interpretation) through the search

t =>* u command, which asks for all states R-reachable from state t which
are substitution instances of the pattern u, and the search t =>! u command,
which asks for all final states reachable from state t and matching the pattern u.
Of course, if R is interpreted functionally, the evaluation of a term t by means
of Maude’s reduce command is mathematically equivalent to the (in this case
unique if it exists, thanks to confluence) answer of the search t =>! x command,
with x a variable, when the same R is interpreted non-functionally. But, thanks
to confluence, Maude’s reduce command can be implemented much more ef-
ficiently. We explain below the precise meaning of these search commands as
ways of computing solutions of reachability (resp. normalization) problems.

Since the reachability problems search t =>* u we shall consider are solved
by rewriting, and not by narrowing, the only variables that need be instantiated
in a solution to such problems are those of u. This means that without loss
of generality the term t can be assumed to be a ground term. The case when
Var(t) = {x1, . . . , xn} can be reduced to the ground case by working on the
extended signature where the x1, . . . , xn have been added as extra constants.

Given an OSRT R = (Σ, B,R) and Σ-terms t, u in the same connected
component with t a ground term, the reachability problem from t to u asks
for all substitutions θ with dom(θ) = ~y = Var(u) such that R ` t →? v and
v =B θ(u). That is, for all witnesses solving in R the existential formula

(∃~y) t→? u.
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In particular, the question of what terms are R-reachable from t is the reacha-
bility problem from t to x, where if t has sort s, x is a fresh variable of top sort
>[s]. That is, the witnesses solving in R the existential formula (∃x) t→? x.

Similarly, the normalization problem from t to u asks for all substitutions
θ with dom(θ) = ~y = Var(u) such that R ` t →! v and v =B θ(u). And the
unrestricted normalization problem for t is the normalization problem from t
to x, where if t has sort s, x is a fresh variable of top sort >[s]. That is, its
solutions are all substitutions θ which are witnesses solving in R the existential
formula (∃x) t→? x and such that θ(x) ∈ NF(R).

Of course, by changing t →!
R v to t→→Rv, and NF(R) to Irr(R), instead

of the normalization problem from t to u we would define the weak termina-
tion problem6 from t to u. The two crucial observations about such a weak
termination problem are:

1. IfR is normal, the normalization and weak termination problems coincide.

2. If R is abnormal, such problems do not coincide. As explained later,
the normalization problem can still be solved by search; but generating
a complete set of solutions for the weak termination problem is generally
impossible, because, as shown in [11, 2] and further discussed in Section
4.3, in general the set Irr(R) is not recursively enumerable.

Of course, when we give a concurrent system interpretation to an abnormal
theory R, the set of all its final states is Irr(R), and not just NF(R). However,
final states in Irr(R) − NF(R) violate all computational intuitions about what
a “final state” is and how to reach it, since we can be already in a final state
u ∈ Irr(R) − NF(R) but never be able to know it, and would then face the
Sisyphean task of forever trying to reach a final state from such a u.

All this clearly suggest that in any concurrent system interpretation of R
where we need to reason about final states, deterministic normal theories are the
non plus ultra: abnormal theories are freaks of nature to be avoided at any cost.
Likewise, in a functional interpretation of R normal theories are also the non
plus ultra.7 Certainly, under assumptions of strong determinism, confluence,
weak termination, and sort-decreasingness, the quotient under =B of the set
of ground irreducible terms GIrr(R) is, when viewed as an S-sorted family, the
carrier of an algebra isomorphic to the initial algebra of R in its equational
interpretation.8 The huge problem, however, is that, in general, such a carrier
GIrr(R)/ =B is not even r.e., and its operations, mapping each ground term to

6Typically, when we ask whether a term t weakly terminates we are interested in knowing
whether there is at least one witness answering positively the problem (∃x) t→→Rx, with x
a fresh variable of top sort >[s] and s = LS(t). But we can consider more nuanced weak
termination problems, like (∃~y) t→→Rv for v an irreducible pattern, and we may be interested
in enumerating the corresponding answers and not just in knowing that a witness exists.

7See Section 4.4 for a more precise formulation of what the non plus ultra is for an OSRT R
interpreted functionally when we desire a full agreement between its initial algebra semantics
and its canonical term algebra of normal forms.

8 This easily follows from Theorem 15 in [24] when R is a CTRS, and from Theorem 5
(the Church-Rosser Theorem) in [18] for R a general OSRT.
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its irreducible form, are not computable. That is, the huge problem is that,
in general, the mapping t 7→ [t ↓R]B is not a computable function,9 making R
useless as a functional program.

Example 7. Here is a trivial example. Let Σ have just constants a, b, c, and
consider the 1-rule CTRS a → b ⇐ a → c, functionally interpreted as the
singleton set equation E = {a = b⇐ a = c}. This R is confluent, terminating,
and strongly deterministic. Therefore, the Church-Rosser Theorems 15 in [24]
and 5 in [18] apply to R. In fact, since each ground term is irreducible and
=E is the identity relation, the carrier of the initial algebra TΣ/E and the set
GIrr(R) coincide, so that the isomorphism of initial algebras is the identity. But
we only can reduce c and b to normal form, since we have NF(R) = {b, c} ⊂
{a, b, c} = GIrr(R). So R is useless as a functional program.

The consequences of the above discussion from the practical point of view
are that: (i) we can study the operational semantics of solving reachability
problems for any deterministic R, normal or abnormal; but (ii) although we
can likewise study the operational semantics of solving normalization problems
for any deterministic R, the answers to such problems will only be meaningful
and practical for normal theories. Instead, at the intuitive level of computing
final states or evaluating functional expressions, such answers will be essentially
and unavoidably incomplete (since Irr(R)−NF(R) 6= ∅) for abnormal theories.

4.1. Solving Reachability Problems in Deterministic OSRTs

In this section we explain in detail how deterministic rewrite theories can be
executed in practice, so that the substitution for the extra variables in a rule’s
condition and righthand side is computed incrementally. Our starting point is
the inference system for conditional rewriting in Figure 1. However, there is
a substantial gap between such a system and a more detailed inference system
that can provide an operational semantics for deterministic rewrite theories on
which an interpreter can be based. The key issue is the need for handling and
solving existentially quantified variables in reachability goals (∃~y) t→? u.

Our reasoning will be simplified by using the inference system for conditional
rewriting in Figure 2, which is slightly different from that in Figure 1, yet easily
shown to be equivalent to it. The only difference is that the original (Cong)
and (Repl) rules have now been combined into a more powerful (Repl) rule that
allows rewrites at any term position p.

The above inference system is certainly quite general. But leaves a number of
issues unanswered. The crucial one is how to guess the value of the substitution
σ for the extra variables in the condition and righthand side when applying
a given rule ` → r ⇐ u1 → v1 · · ·un → vn in R, which from now on we
will always assume is deterministic and strictly B-coherent. Furthermore, the

9This result goes back to [11]. See Section 4.3 for a more detailed discussion of computabil-
ity issues, and Section 4.4 to see how normal theories solve this aporia.
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(Refl) u→? v
if u =B v

(Tran)
u→ u′ u′ →? v

u→? v

(Repl)
σ(u1)→? σ(v1) . . . σ(un)→? σ(vn)

t→ t[σ(r)]p
where `→ r ⇐ u1 → v1 · · ·un → vn ∈ R,

p ∈ Pos(t), σ OS-substitution, and t|p =B σ(`).

Figure 2: Alternative inference rules for OSRTs

inference rules (Tran) and (Repl) allow useless inference steps that should never
be taken by an interpreter implementation:

1. When applying the (Tran) rule, it is useless to select a term u′ such that
u 6→Ru u

′, since that subgoal will automatically be unprovable.

2. When applying the (Repl) rule, there may be an infinite number of substi-
tutions σ|Var(`) such that t|p =B σ|Var(`)(`), even though, by the existence
of a finitary matching algorithm, there is a finite number of matching
substitutions in MatchB(t|p, `) that, up to B-equality, represent the pos-
sibly infinite number of substitutions of the form σ|Var(`) with t|p =B

σ|Var(`)(`). Because of strict B-coherence, it is useless to choose a σ|Var(`)
such that σ|Var(`) 6∈ MatchB(t|p, `).

Call an application of (Tran) selecting such a hopeless u′, or an application
of (Repl) with σ|Var(`) 6∈ MatchB(t|p, `) a “dumb” inference step. Call a well-
formed proof tree sensible iff it has no dumb inference steps.

Note that the left subgoal u→ u′ of any dumb application of (Tran) cannot
be extended, i.e., is always a failure goal. Therefore, using strict B-coherence,
it is easy to prove that any provable goal of the form R ` t →∗ t′ has a
closed sensible well-formed proof tree; and that for any provable goal of the
form R ` t → t′ there is a provable goal R ` t → t′′ having a closed sensible
well-formed proof tree and such that t′ =B t′′.

Therefore, for all practical purposes we can restrict ourselves to sensible
well-formed proof trees. The key question now is: if R is deterministic, strictly
B-coherent, with B having a finitary matching algorithm, how can we solve
reachability goals of the form (∃~y) t →? u? That is, how can we find substitu-
tions σ such that the goal t→? σ(u) has a sensible well-formed proof tree? The
answer to this question also includes an answer to the question of how the extra
variables in a deterministic rule can be solved incrementally, and therefore to
the further question of specifying a detailed enough operational semantics for
deterministic rewrite theories. In essence, these are all the same question, which
is answered by the more detailed inference system below, which solves goals of

22



the form t →? u with t a ground term and u a term possibly with variables,
that are understood as implicitly existentially quantified.

The inference system takes the form of meta-level rewrite rules of the form
G G′, where G,G′ are meta-level terms representing well-formed proof trees.
These rules are at the meta-level of the logic because they transform proof
tree representations and make use of notions such as term position, matching
substitution, and substitution composition. In a reflective language like Maude,
they can be implemented as ordinary rewrite rules using its META-LEVEL module.
Also, although at the meta-level they are indeed rewrite rules, and not narrowing
rules, the notation  is meant to suggest that they in fact instantiate the
variables in u as “logical variables,” and therefore have a narrowing-like flavor.
As usual, to avoid variable capture, we assume that the variables of all rules in
R are renamed with fresh new variables in each rule application. The details of
such renaming are immaterial. They can be abstracted away by the notion of a
standardized apart rule.

Given a rewrite theory R = (Σ, B,R), by a rule of R being standardized
apart, denoted (l′ → r′ ⇐ C ′)� R, we mean that there is a variable renaming
ρ and a rule (l → r ⇐ C) ∈ R such that (l′ → r′ ⇐ C ′) = ρ(l → r ⇐ C), and,
furthermore, the variables Var(l′ → r′ ⇐ C ′) are disjoint from all the variables
previously met during any computation. In our case, the “computations” will
be rewrites of the form G  G′, and their variables will include the variables
~y in the original reachability goal (∃~y) t→? u, implicitly mentioned in the goal
t→? u to be rewritten, plus new variables introduced by conditions.

The rewrite rules will be applied modulo associativity and identity of: (i) the
conjunction operator ∧ with identity >; and (ii) the sequential composition
operator ; with identity nil . Furthermore, variables ST , SC , SCL, STS , and
STL —corresponding to patterns describing already solved parts of the goal,
which can be defined either by sorts or by the context-free grammar below—
will be used in such rules:

• Solved Step: ST ::= [t→ u].SC

• Solved Condition: SC ::= [SCL]

• Solved Condition List: SCL ::= > | STS | STS ∧ SCL

• Solved Step Sequence: STS ::= [STL ; [t =B t′]]

• Solved Step List: STL ::= nil | ST | ST ; STL

The goal t →? u (that can be used to represent the evaluation of a given
term t) will be represented as a term of the form {〈t →? u〉}, where 〈 〉 is the
focus symbol, indicating the current goal where meta-level rewriting should take
place, and { } is a context symbol, indicating the context in which meta-level
rules should be applied, which is needed for the bookkeeping of substitutions
(see below). A solution of the goal {〈t →? u〉}, if it exists, will be of the form:
[STL ; [vn =B θ(u)]].θ, i.e., a pair consisting of a solved step sequence and a
substitution θ, where STL represents a proof for a sequence of n ≥ 0 rewrite
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steps t → v1 . . . vn−1 → vn, and θ ∈ MatchB(vn, u) is the witness proving the
existential formula (∃~y) t→? u. The meta-level rewrite rules are the following,
where id denotes the identity substitution:

• (Refl) {STL ; 〈v →? u〉} [STL ; [v =B θ(u)]].θ, where θ ∈ MatchB(v, u).

• (Repl.u) {STL ; 〈v →? u〉} 
{STL ; [v → v[θ(r)]p].[>] ; {〈v[θ(r)]p →? u〉}}, where ` → r ⇐ > � R,
p ∈ Pos(v), θ ∈ MatchB(v|p, `).

• (Repl.cnd) {STL ; 〈v →? u〉} 
{STL ; {v → v[θ(r)]p}.J{〈θ(s1) →? θ(t1)〉} ∧ θ(C)K.id ; v[θ(r)]p →? u},
where `→ r ⇐ s1 → t1 ∧C � R, p ∈ Pos(v), θ ∈ MatchB(v|p, `), and J K
is a context symbol indicating a not yet solved condition,

The above rules exactly mimic the building of a sensible well-formed proof
tree using the (Refl) and (Repl) rules, and, implicitly, the (Tran) rule, (which is
handled with the sequential composition operator ; ). However, rule (Repl.cnd)
can produce goals with extra, implicitly existentially quantified variables besides
those in the original target term u. This is because in each application of
rule (Repl.cnd) the goals in J〈θ(s1) →? θ(t1)〉 ∧ θ(C)K can have (implicitly
existentially quantified) fresh variables. To achieve the incremental computation
of substitutions, so as to make guessing unnecessary in the instantiation of
such variables, the following substitution-handling rules are added, where α
and θ are (meta-)variables ranging over substitutions, αθ denotes substitution
composition, and CND is a (meta-)variable ranging over conditions, that is,
over conjunctions of goals of the form w →? w′ (note, again, that these rules
are applied modulo the associativity and identity axioms for ∧ and ; ):

1. JSCL ∧ STS .θ ∧ v →? w ∧ CNDK.α 
JSCL ∧ STS ∧ θ({〈v →? w〉} ∧ CND)K.αθ

2. JSCL ∧ STS .θK.α [SCL ∧ STS ].αθ
3. {v → w}.[SCL].α [v → α(w)].[SCL].α
4. {STL ; ST .α ; w →? u} {STL ; ST ; 〈α(w)→? u〉}.
Rules (1)–(2) capture the incremental computation of the substitution in-

stantiating the extra variables in a deterministic rule’s condition. Rule (3) then
applies such an incrementally computed substitution to the rule’s righthand
side. Rule (4) takes care of the fact that rule (Repl.cnd) had created a subgoal
of the form v[θ(r)]p →? u, where r was the righthand side used in the previous
step, possibly having extra variables that should be instantiated by the substi-
tution α already computed for such a previous step before moving the focus
goal to the right.

Example 8. Consider the following deterministic CTRS for adding natural
numbers:

x+ 0 → x (15)

0 + x → x (16)

x+ y → s(s(z + z′))⇐ x→ s(z) ∧ y → s(z′). (17)
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The evaluation of the reachability goal {〈s(0) + s(0) →? x′〉} by the above
meta-level rewrite rules yields, for example, the following  -irreducible goals,
where the sequence of rules labels applied has been recorded (for the sake of read-
ability, we use n instead of sn(0) and, if n > 1, sn(t) instead of s( · · ·︸︷︷︸

n−2

s(t) · · ·︸︷︷︸
n−2

)):

{〈1 + 1→? x′〉} Repl.cnd
 

Refl
 

1
 

Refl
 

2
 

3
 

4
 

Repl.u
 

Refl
 

[[1 + 1→ s2(0 + 0)].[[[1 = 1]] ∧ [[1 = 1]]]; [s2(0 + 0)→ 2].[>]; [2 = 2]].(x′ = 2)

which corresponds to building a closed and sensible well-formed proof tree com-
puting the result s(s(0)). The same goal has the alternative evaluation:

{〈1 + 1→? x′〉} Repl.cnd
 

Refl
 

1
 

Refl
 

2
 

3
 

4
 

Repl.cnd
 G

where G is the goal:

G = {[1 + 1→ s2(0 + 0)].[[[1 = 1]] ∧ [[1 = 1]]];

JSCL∧STS .θK{s2(0+0)→ s4(y′+y′′)}.J{〈0→? s(y′)〉}∧0→? s(y′′)K.id ; s4(y′+y′′)→? x′}

which corresponds to building a maximal, open and sensible well-formed proof
tree with a failure node 0→? s(y′) which cannot be further extended.

The above meta-level rewrite rules give a detailed enough specification for
building an interpreter to solve reachability goals. Given a reachability goal
{〈t →? u〉} with t ground, such an interpreter should execute the meta-level
rules in a breadth first manner to find -irreducible goals G in solved form, i.e.,
goals of the form STS .θ with STS a solved step sequence and θ the associated
witness substitution, yielding a sensible and closed well-formed proof tree for
the goal t→? θ(u).

Note that all  -irreducible goals yield associated maximal sensible well-
formed proof trees, which cannot be further extended and are either sensible
closed proof trees, or sensible (finite) failure proof trees. We leave for the reader
to check that such an interpreter is sound and complete, in the sense that it
will eventually build all most general10 and maximal sensible proof trees for the
given reachability goal, and only sensible well-formed trees. Of course, unless
R is operationally terminating, in the limit (i.e., as limits of infinite rewrite
sequences) the interpreter can also build infinite sensible well-formed proof trees
for some reachability goals. Indeed, since the purpose of the meta-level rewrite
rules is precisely to simulate the building of sensible well-formed proof trees,
it can be shown that lack of operational termination for R coincides with the
existence of infinite meta-level rewrite sequences from someR-reachability goals.

10If the sensible well-formed proof tree is closed, then all terms in it will be ground terms.
However, as illustrated by goal term G in Example 8, some terms in a sensible well-formed
failure proof tree may have variables, so that the associated proof tree could be further in-
stantiated.
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4.2. Solving Normalization Problems in Deterministic OSRTs

The above meta-level rewrite rules can also be used to solve normalization
problems. The proof of the following three lemmas is left to the reader:11

Lemma 2. Let R = (Σ, B,R) be a deterministic OSRT whose rules are strictly
B-coherent. Then a ground12 term v of sort s is a normal form iff all meta-level
rewrites of the goal {〈v →? x〉}, with x a variable of top sort >[s], terminate in
failure goals, except for a single solution of the form [[v =B v]].(x = v), obtained
by a single application of the (Refl) meta-level rewrite rule.

Lemma 3. Let R = (Σ, B,R) be a deterministic OSRT whose rules are strictly
B-coherent. Then a ground term v is a normal form of the ground term t of
sort s iff the goal {〈t→? x〉}, with x a variable of top sort >[s], can be rewritten
with the meta-level rules to a goal of the form {STL ; 〈v →? x〉}, and all meta-
level rewrites of the goal {STL ; 〈v →? x〉} terminate in failure goals, except
for a single solution of the form [STL ; [v =B v]].(x = v), obtained by a single
application of the (Refl) meta-level rewrite rule.

Lemma 4. Let R = (Σ, B,R) be a deterministic OSRT whose rules are strictly
B-coherent. Then a ground term v is a normal form and provides solutions
for a normalization goal (∃x) t →! u iff the goal {〈t →? u〉} can be rewritten
with the meta-level rules to a goal of the form {STL ; 〈v →? u〉} such that:
(i) MatchB(v, u) 6= ∅, and (ii) all meta-level rewrites of the goal {〈v →? x〉},
with x a variable of top sort >[s], terminate in failure goals, except for a single
solution of the form [[v =B v]].(x = v) (i.e., v is a normal form). Then the
set of solutions of the normalization goal provided by the normal form v are:
{[STL ; [v =B θ(u)]].θ | θ ∈ MatchB(v, u)}, all obtained by single applications
of the (Refl) meta-level rewrite rule.

The above three lemmas immediately suggest a simple strategy to build an
interpreter that can solve not only reachability problems of the form (∃x) t→?

u, but also normalization problems of the form (∃x) t→! u. To solve a normal-
ization problem (∃x) t →! u the interpreter starts with the goal {〈t →? u〉} as
for a standard reachability goal; but whenever its breadth first search reaches
a goal of the form {STL ; 〈v →? u〉} such that MatchB(v, u) 6= ∅, it has to
perform the additional check that v is a normal form before it can report the
solutions {[STL ; [v =B θ(u)]].θ | θ ∈ MatchB(v, u)} for such a normal form v.

Of course, since the additional check for the normality of v may not terminate
and, furthermore, in the case of an abnormal theoryR this non-termination may
take place without v being ever rewritten in one step to any other term v′, to

11We assume that if u has sort s and x has top sort >[s] in the connected component
of s, then MatchB(u, x) = {x = u}. In principle a B-matching algorithm could return a
substitution x = u′ with u′ =B u, but any practical algorithm will return x = u.

12Again, the requirement that v is a ground term is immaterial, since otherwise we can
always add the variables Var(v) to the signature Σ as extra constants.
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ensure its completeness the interpreter must perform this check for v’s normality
as a background task, which must be interleaved with the further breadth first
exploration of all other goals  -reachable from the original goal {〈t→? u〉}.

The strategy such an interpreter can use for solving normalization prob-
lems can be greatly simplified under the assumption that R is operationally
1-terminating, since then the check for v’s normality is decidable, namely, as
the failure of all attempts to rewrite v in one step. This normality check
can be achieved by: (1) applying in all possible ways either (i) the (Repl-
u) or (ii) the (Repl-cnd) meta-level rules to the goal {〈v →? x〉} to obtain
goals of the form either (i) [v → v[θ(r)]p].[>] ; {〈v[θ(r)]p →? x〉}} (which al-
ready show that v is not a normal form), or (ii) {{v → v[θ(r)]p}.J{〈θ(s1) →?

θ(t1)〉} ∧ θ(C)K.id ; v[θ(r)]p →? x}; and then (2) checking in case (ii) whether
all goals of the form J{〈θ(s1) →? θ(t1)〉} ∧ θ(C)K.id terminate in failure goals,
which by the operational 1-termination assumption is decidable. The Maude
interpreter assumes that all theories R on which it is invoked are operationally
1-terminating, and implements in essence this simpler strategy. This means that
—since it assumes that the check for normality will always terminate, and there-
fore performs it before doing any further breath-first search— it is in general
incomplete for theories not satisfying the operational 1-termination assumption,
as shown by the example below.

Example 9. Maude loops without ever returning a solution for the normaliza-
tion goal (∃x) cnt(0) →! x (the search command search cnt(0) =>! x) when
invoked on the following weakly normalizing (thus normal) and strongly deter-
ministic, yet not operationally 1-terminating, CTRS:

cnt(x) → s(x) (18)

cnt(x) → cnt(y)⇐ cnt(x)→ y. (19)

Note that cnt(0) has the infinite set of normal forms: {sn+1(0) | n ∈ N}. The
notation cnt(0) is well-chosen, since the operator cnt acts as a counter. The
terminating states reachable from state cnt(sk(0)) are: {sn+k+1(0) | n ∈ N}.

4.3. Computability Properties of Deterministic Rewrite Theories

This section gathers some basic computability results for deterministic OS-
RTs. Additional results for confluent theories are presented in Section 4.4.

The distinction between irreducible terms and normal forms can help us
better understand the significance of the following well-known result on the in
general non r.e. nature of the set of irreducible terms of a CTRS (see, e.g.,
[11, 2, 22]).

Theorem 1. [11, 2] There is a deterministic CTRS whose set Irr(R) of irre-
ducible terms is not recursively enumerable. Therefore, it is not just undecid-
able, but not even semi-decidable if a term is R-irreducible.
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In some sense this theorem shows how wild the beasts in the general menagerie
of abnormal OSRTs can be, and illustrates the need for notions such as that of
normal theory to obtain reasonable computational behaviors.

By contrast, our explanations in Sections 4.1 and 4.2 of how reachability and
normalization problems for a deterministic OSRT can be solved by an interpreter
immediately gives us the following result for all deterministic OSRTs with a
finite set of rules, including abnormal ones:

Proposition 2. Given a deterministic OSRT R = (Σ, B,R) with a finitary
B-matching algorithm and a strictly B-coherent finite set of rules R, the sets
Red(R) of R-reducible terms, and NF(R) of R-normal forms are both recursively
enumerable and therefore semi-decidable.

The wild behavior of abnormal, deterministic OSRTs completely disappears
for normal ones. In fact, normal theories are much better behaved, since the
above proposition —plus the well-known fact that if a set and its complement
are r.e., then both subsets are recursive— immediately give us:

Corollary 3. For a normal deterministic OSRT R = (Σ, B,R) with a finitary
B-matching algorithm and strictly B-coherent rules R, the sets Red(R) of R-
reducible terms, and NF(R) of R-normal forms are both recursive and therefore
decidable.

4.4. Confluent Theories: Church-Rosser, Initiality, and Computability Results

Thanks to the Church-Rosser property, confluent theories support a func-
tional programming style in which oriented equations uniquely define recursive
functions on the initial algebra, and term normalization exactly corresponds to
function evaluation. Furthermore, initial algebras provide an exact correspon-
dence between the mathematical, initial semantics of the equational theory, and
the operational semantics of the oriented equations executed by term rewrit-
ing. How well are all these results preserved for conditional theories? Not so
well, and not always. The purpose of this section is to explain why normal,
confluent and weakly normalizing strongly deterministic OSRTs are crucial for
all these results and semantic equivalences to be preserved. In particular, they
are essential, and most general possible, for conditional equations to define total
computable functions by conditional term rewriting.

In an equational style of functional programming, the program is an equa-
tional theory. In the conditional case, a conditional equational theory. To sup-
port types, subtypes, and reasoning modulo built-in axioms, we should consider
a very general class of such theories, namely, order-sorted conditional equational
theories [7, 17] of the form (Σ, E ∪B), where B are regular and linear, uncondi-
tional equational axioms satisfying all the requirements in Section 2. Of course,
the conditional equations are executed by orienting the conditional equations
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E as conditional rewrite rules13

~E = {t→ t′ ⇐ u1 → v1, . . . , un → vn | (t = t′ ⇐ u1 = v1, . . . , un = vn) ∈ E}.

The essential property linking the order-sorted equational theory (Σ, E∪B) and

the OSRT (Σ, B, ~E) is the Church-Rosser property, stating the equivalence:

E ∪B ` t = t′ ⇔ t ↓~E,B t′

where E ∪B ` t = t′ denotes provability in order-sorted conditional equational
logic [7, 17], and where, by definition, t ↓~E,B t′ iff there is a term u such that

t→?
~E,B

u∧t′ →?
~E,B

u. For unconditional equations that are strictly B-coherent,

confluence of ~E modulo B is equivalent to the Church-Rosser property. But in
general this equivalence fails for conditional equations E, in the sense that, even
if the rules ~E are confluent modulo B, they may fail to be Church-Rosser:

Example 10. [24]: Consider the the conditional equational theory (Σ, E) with
signature Σ having just three constants a, b, c and with E having the equations
a = c and b = c ⇐ c = a. Then the CTRS (Σ, ~E) has rules a → c and
b → c ⇐ c → a and is confluent. We obviously have E ` b = c. However,
c, and therefore b, are in ~E-normal form, so that b 6↓~E c. That is, (Σ, ~E) is
confluent but fails to have the Church-Rosser property.

For OSRTs, the equivalence between confluence and the Church-Rosser prop-
erty can be recovered under the following conditions, which generalize to OSRTs
a similar result for CTRSs in [24]:

Theorem 2. [18] (Church-Rosser Theorem modulo B). Let R = (Σ, B, ~E),
associated to an order-sorted conditional equational theory (Σ, E ∪ B), be such
that the rules R are: closed under B-extensions, sort-decreasing, weakly termi-
nating modulo B, and such that for each rewrite rule l → r ⇐

∧
i=1..n ui → vi

in ~E and ~E,B-irreducible substitution θ, the terms θ(vj), 1 ≤ j ≤ n, are all
~E,B-irreducible. Then →~E,B is confluent modulo B iff for any Σ-terms t, t′ we
have the equivalence:

t =E∪B t′ ⇔ t ↓~E/B t′.

Furthermore, if under these assumptions →~E,B is confluent, then t =E∪B t′ iff

t ↓~E,B=B t′ ↓~E,B.

13This definition of the conditional rules ~E assumes that an equation ui = vi in the condition
of a conditional equation is interpreted as a rewrite condition ui → vi in the associated
conditional rule. This seems to leave out the often considered treatment in which an equational
condition ui = vi is interpreted as a joinability condition ui ↓ vi in the associated rule. But
a joinability condition can be viewed as a special case of a rewrite condition: just transform
(Σ, E ∪ B) into the theory (Σ≡, E≡ ∪ B), where Σ≡ extends Σ by adding a fresh new sort
Truth with a single constant tt and with Truth unrelated to the other sorts in Σ, and adding
for each connected component [s] in Σ a binary equality operator ≡ : >[s]>[s] → Truth;
and where E≡: (i) adds, for each connected component [s] of Σ, the equation x ≡ x = tt with
x of sort >[s], and, (ii) modifies each conditional equation t = t′ ⇐ u1 = v1, . . . , un = vn in
E into the semantically equivalent equation t = t′ ⇐ u1 ≡ v1 = tt , . . . , un ≡ vn = tt .
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The above theorem can be highly misleading, since under the confluence
assumption it provides a desirable result, but utterly fails to provide the crucial
computational properties needed for declarative functional programming. The
desirable result provided is the existence of a canonical term algebra C~E,B iso-

morphic14 to the initial algebra TΣ/E∪B , where for each sort s, C~E,B,s is the set

of B-equivalence classes of ~E,B-irreducible terms having sort s, and for each op-
eration f in Σ, the function fC~E,B

maps a tuple ([t1], . . . , [tn]) of B-equivalence

classes of ~E,B-irreducible terms of the appropriate sorts to the B-equivalence
class: [f(t1, . . . , tn) ↓~E,B ].

However, all our hopes about the good computational properties of C~E,B are
dashed to the ground. The eval function mapping each term to its canonical
form is precisely the unique, surjective Σ-homomorphism:

eval : TΣ → C~E,B : t 7→ [t ↓~E,B ].

Of course, eval is uniquely defined as a mathematical function by initiality, but
in general is not a computable function at all! Recall Theorem 1. In particular,
one can define confluent type IIIn CTRSs (therefore satisfying all the conditions
in above Theorem 2) such that the set Irr(R) is not r.e. [2, 22]. But Irr(R) is
of course the underlying set of the canonical term algebra C~E when the rules R

of R are viewed as oriented equations ~E. And this makes it impossible for eval
to be a computable function, since its computability would make Irr(R) r.e.

What is misleading is of course the optical illusion of thinking that the
function eval : t 7→ [t ↓~E,B ] is a computational process, something an interpreter
could perform, when this is in general impossible. A more algebraic way of
expressing this aporia is to say that what is misleading is the optical illusion
of thinking that the canonical term algebra C~E,B is a computable algebra, since
in general it is not a computable algebra at all. Therefore, both C~E,B and its
associated eval function, while mathematically unobjectionable, are completely
useless and highly misleading from a computational point of view.

What we need to come out of this nightmare is of course normality ! Here is
the right definition, providing what we claim is the most general way possible
for conditional OSRTs to define total computable functions by term rewrit-
ing, as well as the desired computational agreement between the initial algebra
semantics of a functional program and its operational semantics by term nor-
malization:

Definition 10. [18] A normal, strongly deterministic OSRT R = (Σ, B,R),
where B satisfies the assumptions in Remark 1, is called weakly convergent iff
R is: (i) sort-decreasing; (ii) closed under B-extensions; (iii) confluent modulo
B; and (iv) weakly normalizing modulo B. If confluence modulo B holds just
for ground terms, R is called weakly ground convergent. A weakly convergent
and operationally terminating R is called convergent.

14Recall Footnote 8.
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Theorem 3. [18] (Church Rosser Theorem modulo B with Decidable Equality).

Let R = (Σ, B, ~E), associated to a conditional order-sorted equational theory
(Σ, E ∪B), be normal, strongly deterministic, sort-decreasing, closed under B-
extensions, and weakly normalizing modulo B. Then R is confluent modulo B
iff for any Σ-terms t, t′ we have the equivalence:

t =E∪B t′ ⇔ t ↓~E/B t′.

Furthermore, for any weakly convergent, and therefore Church-Rosser modulo
B, R = (Σ, B, ~E), with E finite, the equality relation t =E∪B t′ is decidable by
checking whether t!~E/B =B t′!~E/B holds.

Corollary 4. [18] (Agreement between Mathematical and Operational Seman-

tics). Let R = (Σ, B, ~E), associated to a conditional order-sorted equational
theory (Σ, E ∪ B), be weakly ground convergent with E finite. Then C~E,B is a

computable algebra15 and we have an isomorphism of algebras:

TΣ/E∪B ∼= C~E,B .

In summary, for functional programs based on conditional equations whose
aim is to define total recursive functions, the requirements of normality and weak
ground convergence are essential and as general as possible. Any further weak-
ening of the conditions will frustrate the overall aim: (i) lack of either ground
confluence or strong determinism can compromise the Church-Rosser property;
(ii) lack of sort decreasingness can block some computations and destroy the
isomorphism TΣ/E∪B ∼= C~E,B ; (iii) lack of weak normalization will make func-

tions partial; and (iv) lack of normality will make the only computable evaluation
function available, namely, the normalization function norm : t 7→ t!R partial,
whereas under normality and ground weak convergence we have the functional
equality norm = eval , so that all anomalies evaporate.

4.5. Some Execution Mechanisms for Computing Normal Forms

Given a (not necessarily normal) deterministic OSRT R and a term t, how
can we enumerate all normal forms of t if they exist? In its fullest generality, this
question has been answered in Section 4.2. That is, a breadth first search with
the meta-level rules in Section 4.1, combined with the background process to
check if a normal form has been reached explained in Section 4.2, will enumerate
all normal forms of a term t if they exist; but may loop forever if none exist or
if the set of normal forms of t is finite and all of them have already been found.

However, this general-purpose search process can be computationally quite
expensive. Are there less costly alternatives? And can the search for all normal
forms terminate under some assumptions? Without any pretension of giving a

15That is, an algebra where both the operations and the equality predicate are computable
functions.
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systematic answer to these question, we discuss some execution mechanisms —
in several cases supported by the Maude system— that provide partial answers
to such questions and can be used in practice to compute normal forms.

The first obvious observation is that if R has a finite set of rules and is oper-
ationally terminating, then: (i) it is a fortiori operationally 1-terminating; and
(ii) the set of normal forms of a given term t is finite. This means that the sim-
pler and more efficient interpreter for solving normalization problems sketched
out in Section 4.2 and supported by Maude can be used to compute the finite
set of normal forms of t. In Maude this is achieved by giving the search com-
mand: search t =>! x, where x has the top sort in the connected component of
the sort of t. Of course, if besides being operationally terminating R is conflu-
ent, sort-decreasing, and strongly deterministic, Maude’s reduce command for
functional modules is the most efficient execution mechanism available.

A second useful observation is that if R is confluent and t has a normal
form, only one solution exists for the normalization problem (∃x) t →! x, and
the general purpose search process will terminate yielding such a solution if no
more solutions are requested. Furthermore, if R is in addition operationally 1-
terminating, the simpler search mechanism supported by Maude can be invoked;
and if R is also weakly normalizing, the command search [1] t =>! x, with x
having the top sort in the connected component will always terminate yielding
the unique normal form.

We can illustrate this last case with the following WEAK-NORM Maude func-
tional module, which is ground confluent, sort-decreasing, weakly normalizing
and operationally 1-terminating, and where Nat? is a supersort of the sort Nat,
so that f and g are functions of sort Nat?.

Recall from the Introduction that a Maude functional module has the form:
fmod (Σ, B,E) endfm and is a functional program associated to the equational

theory (Σ, E ∪ B), whose associated rewrite theory (Σ, B, ~E) is assumed con-
fluent modulo B and is used to try to evaluate a term t to its unique nor-
mal from t!~E,B with Maude’s reduce command. Maude’s search command
cannot be used for functional modules: only for system modules of the form
mod (Σ, B,R) endm which specify concurrent systems, so that the rules R need
not be confluent. However, as we do below, we can transform a functional mod-
ule fmod (Σ, B,E) endfm into a system module mod (Σ, B, ~E) endm and use the
search command on this transformed module.

Note the matching condition true := even(N) in the last conditional equa-
tion. This specifies that in the conditional rules ~E associated to the equations
E of the module, the equational condition true = even(N) in this conditional
equation should be oriented as the rewrite condition even(N) => true in its
corresponding conditional rule.

fmod WEAK-NORM is

protecting BOOL .

sorts Nat Nat? .

subsort Nat < Nat? .

op 0 : -> Nat . op s : Nat -> Nat .
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op _+_ : Nat Nat -> Nat . op even : Nat -> Bool .

ops f g : Nat? -> Nat? .

vars N M : Nat .

eq N + 0 = N . eq N + s(M) = s(N + M) .

eq even(0) = true . eq even(s(0)) = false .

eq even(s(s(N))) = even(N) . eq g(N) = N .

eq f(N) = N + N .

ceq f(N) = g(f(N)) if true := even(N) .

endfm

Giving to Maude the reduce command to evaluate the term f(0) leads to
non-terminating behavior. That is, Maude’s innermost strategy for evaluating
operationally terminating, confluent and strongly deterministic theories cannot
be relied upon to compute normal forms for this module, because it is not
operationally terminating.

However, as mentioned above, the unique normal form of any term in this
module can be computed by asking for the first solution of a Maude search

command. Since Maude’s search command only applies to system modules, a
simple theory transformation, easily definable in Maude’s META-LEVEL module,
has first to be performed to transform the given functional module into its
associated system module:

mod WEAK-NORM is

protecting BOOL .

sorts Nat Nat? .

subsort Nat < Nat? .

op 0 : -> Nat . op s : Nat -> Nat .

op _+_ : Nat Nat -> Nat . op even : Nat -> Bool .

ops f g : Nat? -> Nat? .

vars N M : Nat .

rl N + 0 => N . rl N + s(M) => s(N + M) .

rl even(0) => true . rl even(s(0)) => false .

rl even(s(s(N))) => even(N) . rl g(N) => N .

rl f(N) => N + N .

crl f(N) => g(f(N)) if even(N) => true .

endm

Unique normal forms can now be found by search, without risk of looping
thanks to weak normalization and operational 1-termination:

Maude> search [1] f(0) =>! N:Nat .

search in WEAK-NORM : f(0) =>! N .

Solution 1 (state 5)

states: 9 rewrites: 12 in 0ms cpu (0ms real) (44943 rewrites/second)

N --> 0

Maude> search [1] f(s(s(0))) =>! N:Nat .

search in WEAK-NORM : f(s(s(0))) =>! N .

Solution 1 (state 14)
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states: 20 rewrites: 35 in 0ms cpu (0ms real) (55118 rewrites/second)

N --> s(s(s(s(0))))

Maude> search [1] f(s(s(s(s(0))))) =>! N:Nat .

search in WEAK-NORM : f(s(s(s(s(0))))) =>! N .

Solution 1 (state 27)

states: 35 rewrites: 70 in 1ms cpu (1ms real) (57189 rewrites/second)

N --> s(s(s(s(s(s(s(s(0))))))))

Considerably more efficient strategies to compute a unique normal form can
be used whenR is confluent and satisfies some additional properties. We discuss
here two cases.

4.5.1. Use of rewriting strategies

The first is the case of a type IIIn CTRS R in the sense of Bergstra and
Klop [2], who show (Theorem 5.7.1) that the parallel outermost strategy will
find the irreducible form of a term t if it exists. This theorem, however, has to
be interpreted in the light of Theorem 1, since Bergstra and Klop also prove
that the set of R-irreducible terms is not r.e. Indeed, the parallel outermost
strategy in Theorem 5.7.1 is not constructive, since it must assume “an oracle
deciding whether an Ru-redex is an R-redex.” But if the set of R-irreducible
terms is not r.e., such an oracle is a pipe dream. 1-termination makes such an
oracle available: for each Ru-redex σ(`) of a rule ` → r ⇐ c ∈ R occurring
in a term t, we can then compute the whole set T of proof trees associated to
the goal σ(`)→ σ(r) whose first applied rule is (Repl). As discussed in Section
4.1, we consider only sensible proof trees. We can then guarantee that T is
finite. Operational 1-termination ensures that each proof tree will be obtained
in finite time. Then, we can check whether T contains a closed proof tree
(meaning that the σ(`) is an R-redex) or not (meaning that σ(`) is not an R-
redex). Once all R-redexes have been computed, we can obtain the subset of
outermost R-redexes. Therefore, we have an effective oracle to compute the
parallel outermost strategy for a normal type IIIn CTRS R.

4.5.2. Use of replacement restrictions

A second case in which an efficient evaluation strategy can be used to com-
pute the normal form of a term t for a confluent OSRT R is when R is opera-
tionally µ-terminating for µ a replacement map and satisfies some reasonable as-
sumptions. A context-sensitive (CS) [12] OSRT is a four-tuple R = (Σ, B,R, µ),
where (Σ, B,R) is an OSRT, and µ, called the replacement map, maps each
f : s1 · · · sn → s in Σ to a subset µ(f) ⊆ {1, . . . , n} of the argument positions
of f under which rewriting is allowed. The operational semantics of context-
sensitive OSRTs is defined by restricting the inference system of Figure 1 with
the single restriction that, in the (Cong) Rule, i with 1 ≤ i ≤ k must fur-
thermore satisfy i ∈ µ(f). The one-step and (0 ≤ n)-step sequents derived
by this, more restricted inference system are denoted t →µ t′ and t →?

µ t′.
The notions of term in µ-normal form and of the set NFµ(R) of terms in µ-
normal form are the straightforward generalizations of the normal form notion
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and of NF(R). The lemma below states the required conditions on a CSOSRT
R = (Σ, B,R, µ) yielding the desired agreement between operational and math-
ematical semantics. This result relies on the notion of µ-sufficient completeness
and of the algebra CµR of terms in µ-normal form (see [9]). Specifically given a
context-sensitive rewrite theoryR = (Σ, B,R, µ), a subsignature Ω ⊆ Σ is called
a subsignature of constructors for R —which is then said to be µ-sufficiently
complete for Ω— iff for each Σ-ground term t there is an Ω-ground term u such
that t →?

µ u. In addition, if TΩ = NFµ(R), then Ω is called a signature of free
constructors modulo B for R = (Σ, B,R, µ).

Lemma 5. If R is a confluent, sort decreasing and super-strongly deterministic
context-sensitive 3-OSRT R = (Σ, B,R, µ), which is µ-operationally terminat-
ing and µ-sufficiently complete for Ω ⊆ Σ a subsignature of free constructors
modulo B, then:

1. R is ground weakly operationally terminating.

2. CµR |Ω= TΩ/B.

3. For each t ∈ TΣ, t!R,B = t!µR,B, that is, the normal form and the µ-normal
form of t (which can be computed by Maude’s reduce command) coincide.

4. TΣ/E∪B ' CµE/B (agreement between operational and denotational seman-

tics).

Under the assumptions of Lemma 5 plus the operational 1-µ-termination as-
sumption, we can compute normal forms as follows: since Maude supports the
execution of operationally 1-µ-terminating confluent context-sensitive strongly
deterministic OSRTs R = (Σ, B,R, µ) specified as functional modules, we can
just use Maude’s reduce command to compute µ-normal forms, which under
the assumptions in Lemma 5 are also ordinary normal forms in the underlying
OSRT (Σ, B,R). We can illustrate these ideas with the following example of a
context-sensitive strongly deterministic OSRT in Maude:

fmod FACTORIAL is

protecting NAT .

op monus : Nat Nat -> Nat .

op _~_ : Nat Nat -> Bool [comm] .

op [_,_,_] : Bool Nat Nat -> Nat [strat (1 0)] .

op fact : Nat -> Nat .

vars N M : Nat .

eq monus(s(N),s(M)) = monus(N,M) .

ceq monus(N,M) = N if M := 0 .

ceq monus(N,M) = 0 if N := 0 .

eq N ~ N = true .

eq s(N) ~ s(M) = N ~ M .

eq 0 ~ s(N) = false .

eq [true,N,M] = N .

eq [false,N,M] = M .

eq fact(N) = [(N ~ 0),s(0),N * fact(monus(N,s(0)))] .

endfm
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This theory, though ground confluent, is clearly non-terminating because
of the last equation. Here, µ does not restrict any argument positions, except
for the if-then-else operator [ , , ], where µ([ , , ]) = {1}, as specified by the
strat attribute. It is, however, operationally µ-terminating and has 0 and s,
and true, false as free constructors. Here are some evaluations:

Maude> red fact(2) .

reduce in FACTORIAL : fact(2) .

rewrites: 15 in 0ms cpu (0ms real) (192307 rewrites/second)

result NzNat: 2

Maude> red fact(3) .

reduce in FACTORIAL : fact(3) .

rewrites: 21 in 0ms cpu (0ms real) (10500000 rewrites/second)

result NzNat: 6

Maude> red fact(4) .

reduce in FACTORIAL : fact(4) .

rewrites: 27 in 0ms cpu (0ms real) (692307 rewrites/second)

result NzNat: 24

Maude> red fact(5) .

reduce in FACTORIAL : fact(5) .

rewrites: 33 in 0ms cpu (0ms real) (358695 rewrites/second)

result NzNat: 120

Can suitable strategies be used also in the non-confluent case to make the
search for normal forms more efficient? Yes. Specifically, we can use context-
sensitive rewriting in conjunction with search for non-confluent, deterministic
and operationally 1-terminating OSRTs to compute the normal forms of a term,
provided the sets of normal forms and of µ-normal forms coincide. In Maude,
context-sensitive rewriting is also supported for system modules thanks to the
frozen operator attribute, which specifies the complement of a replacement
map. That is, the frozen argument positions are exactly those under which
rewriting is forbidden. If no argument positions are specified in a frozen dec-
laration, all positions under the given operator are frozen. For example, in the
module below, the operator h has its only argument position frozen.

mod FROZENNESS is

sorts Nat Nat? .

subsorts Nat < Nat? .

op 0 : -> Nat .

op s : Nat -> Nat .

op _+_ : Nat Nat -> Nat .

op h : Nat? -> Nat? [frozen] .

op f : Nat? -> Nat? .

vars n m : Nat . var x : Nat? .

rl n + 0 => n .

rl n + s(m) => s(n + m) .

rl f(x) => h(f(x)) .

rl h(h(x)) => h(x) .

rl h(f(x)) => h(x) .
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rl h(n) => 0 .

crl h(n) => s(m) + s(m) if n => s(m) .

endm

By the methods in Section 5.1 it is easy to show that this module is ground
normal, and that its set of ground normal forms is the set of natural numbers in
Peano notation built with the constructors 0 and s. It is also easy to show that
its set of ground normal forms coincides with that of its ground µ-normal forms,
and that the module is operationally 1-terminating. Since Maude’s search t =>!
x command computes exactly the set of µ-normal forms of t for µ as specified by
the frozen declarations, we can then compute the normal forms of any term in
the above module more efficiently using the frozen attribute for h. In fact, the
above module is furthermore operationally µ-terminating, so that the search

t =>! x command will always teminate. It would, however, loop without the
frozen declaration. Here are a few sample computations:

Maude> search f(h(s(s(0)))) =>! x .

search in FROZENNESS : f(h(s(s(0)))) =>! x .

Solution 1 (state 13)

states: 21 rewrites: 25 in 0ms cpu (2ms real) (56053 rewrites/second)

x --> 0

Solution 2 (state 41)

states: 48 rewrites: 82 in 0ms cpu (3ms real) (89227 rewrites/second)

x --> s(s(s(s(0))))

Solution 3 (state 53)

states: 56 rewrites: 100 in 1ms cpu (3ms real) (88731 rewrites/second)

x --> s(s(s(s(s(s(s(s(0))))))))

No more solutions.

Maude> search f(h(s(s(s(s(0)))))) =>! x .

search in FROZENNESS : f(h(s(s(s(s(0)))))) =>! x .

Solution 1 (state 13)

states: 23 rewrites: 29 in 0ms cpu (2ms real) (36989 rewrites/second)

x --> 0

Solution 2 (state 105)

states: 119 rewrites: 253 in 2ms cpu (5ms real) (88214 rewrites/second)

x --> s(s(s(s(s(s(s(s(0))))))))

Solution 3 (state 141)

states: 146 rewrites: 318 in 4ms cpu (6ms real) (76608 rewrites/second)

x --> s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))))))

No more solutions.
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5. Proving Order-Sorted Rewrite Theories Normal

An interesting feature in the treatment of innermost termination problems
using the dependency pair approach [1] is that, since the variables in the right-
hand side of the dependency pairs are in normal form, the rules which can be
used to connect contiguous dependency pairs are usually a proper subset of the
rules in the TRS. This leads to the notion of usable rules [1, Definition 32] which
simplifies the proofs of innermost termination of rewriting.

In our analysis of normal rewrite theories we have a similar situation: when
an irreducible term t = f(t1, . . . , tk) is tested to see whether it is a normal
form, in the nontrivial case there will be a conditional rule ` → r ⇐ c and a
substitution σ such that t = σ(`) and we have to check whether the evaluation
of the conditions σ(c) gives rise to an infinite well-formed proof tree (for the
goal σ(`) → σ(r)) or not. Therefore, if we single out those rules that can be
involved in any attempt to evaluate σ(c), we can obtain a more precise analysis.
In the following, we prepare our main definition (Definition 11 below).

Given an order-sorted signature (Σ, S,≤), we define an unsorted signature F ,
where f ∈ F is of arity n if and only if f ∈ Σs1···sn,s for some s1, . . . , sn, s ∈ S.
TF (X ) denotes the set of unsorted terms from the unsorted signature F and
set of unsorted variables X . The root symbol root(t) of a term t ∈ TF (X ) is
given by root(x) = x if x ∈ X , and root(t) = f if t = f(t1, . . . , tn) for some
f ∈ F and t1, . . . , tn ∈ TF (X ). The obvious (surjective) mapping Θ( ) : Σ→ F
that removes from a symbol f ∈ Σ all sort information is extended to terms in
TΣ(X ) by structural induction (variables also get all sort information removed).
We let Θ(t) be the unsorted version of t ∈ TΣ(X ), i.e., the term Θ(t) ∈ TF (X )
that is obtained by removing all sort information from all function and variable
symbols in t.

RULES (R, t) = {`→ r ⇐ c ∈ R | ∃p ∈ Pos(t), root(Θ(`)) = root(Θ(t|p))}

Note that RULES (R, t) contains the rules of R which are potentially applicable
to the subterms in t.

Definition 11 (Usable rules for a rewrite theory). Let R = (Σ, B,R) be
an OSRT. The set of usable rules of R for t is:

U(R, t) = RULES (R, t) ∪
⋃

l→r⇐c∈RULES(R,t)

(
U(R], r) ∪

⋃
s→t∈c

U(R], s)

)

where (by abuse of the notation) R]= R− RULES (R, t).

That is: we consider both unconditional and conditional rules and add the rules
that could be used to evaluate the righthand sides and the conditions when
trying to apply those rules to subterms of t.

Remark 6. Since we are dealing with OSRTs R = (Σ, B,R), rewriting happens
modulo B. This raises the issue of whether the above definition of usable rules
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is overly syntactic, that is, not stable under B-equality. The key issue is whether
in the (Repl) rule in the inference system of Figure 1 the top symbol of the redex
u coincides with that of the lefthand side `. This is the case by requiring the
axioms B to be as follows:

B =
⋃

f :[s1]···[sn]→[s]∈Σ

Bf

where Bf is a set of equations u = v with u, v ∈ T{f}(X )−X , i.e., only symbol
f is allowed to (and must) occur in the equations belonging to Bf . Associativity
and commutativity axioms satisfy this requirement, which can even be made to
work for identity axioms by performing the semantics-preserving transformation
described in [5].

Now we can give the main result of this section. For an OSRTR = (Σ, B,R), we
say that B preserves the R-normal forms if for all R-normal forms t, if t =B u,
then u is an R-normal form. Strict B-coherence, which is a usual requirement
for working OSRTs, implies this property (see Lemma 1). By RC we denote the
OSRT obtained as the union of U(R, s) for all left-hand sides s of conditions
s→ t in the rules of R:

RC =
⋃

`→r⇐c∈R

⋃
s→t∈c

U(R, s)

Theorem 4. A deterministic 3-OSRT R = (Σ, B,R) is normal if B preserves
the R-normal forms and RC is operationally terminating.

Proof. (Sketch) By contradiction. If R is not normal, then there is an
irreducible term t which is not a normal form, i.e., t is not operationally termi-
nating. Since every subterm within an irreducible term is irreducible, we can
assume that t = f(t1, . . . , tk) is such that t1, . . . , tk are normal forms, i.e., they
are irreducible and operationally terminating. Since t is not operationally ter-
minating (but it is not reducible), without loss of generality we can assume that
there is a conditional rule ` → r ⇐ u1 → v1, . . . , un → vn for some n > 0 such
that t =B σ(`) for some substitution σ (which is normalized for all variables
x ∈ Var(`) due to our assumptions for B and because B preserves the normal
forms of R) and, since t is not a normal form, there is i, 1 ≤ i ≤ n such that
σ(ui) 6→?

R σ(vi) and an infinite proof attempt is started for some term u in this
rewrite sequence, i.e., σ(uj) →?

R σ(vj) for all 1 ≤ j < i, σ(ui) →?
R u for some

term u = C[σ(`′)] and rule `′ → r′ ⇐ c′ (with a nonempty conditional part c′)
such that C[σ(`′)]→ C[σ(r′)] is the root of an infinite proof tree of the following
general form

T
...

(Cong)

C[σ(`′)]→ C[σ(r′)]
(Cong)

where T is an infinite proof tree with root(T ) = σ(`′) → σ(r′) and (Repl) is
applied with rule `′ → r′ ⇐ c′. This means that σ(ui) is not operationally
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terminating. Since σ(x) is normalized for all x ∈ Var(`), the determinism of
R guarantees that, for all i, 1 ≤ j < i, σ(si) →∗RC

σ(ti) and σ(si) →∗RC
u.

Furthermore, `′ → r′ ⇐ c′ ∈ RC and any redex occurring in σ(x) for variables
in x ∈ Var(`′ → r′ ⇐ c′) is an RC-redex (i.e., it is an instance of a rule in RC).
Therefore, RC is not operationally terminating, leading to a contradiction. �

Example 11. Consider the functional module WEAK-NORM in Section 4.5. Here,
RC is the unconditional subOSRT consisting of the rules defining even. Note
that RC has no conditional rule and is clearly terminating, hence operationally
terminating. We conclude that, as claimed, WEAK-NORM is a normal OSRT.

Example 12. Consider the following OSRT R defining a function allEven

which checks whether all components of a list of numbers (in Peano’s notation)
are even numbers:

mod AllEVEN is

protecting BOOL .

sorts Nat LNat .

op 0 : -> Nat .

op s : Nat -> Nat .

op even : Nat -> Bool .

ops nil nats : -> LNat .

op _:_ : Nat LNat -> LNat .

op from : Nat -> LNat .

op take : Nat LNat -> LNat .

op allEven : LNat -> Bool .

var n x : Nat .

var xs : LNat .

rl even(0) => true .

rl even(s(s(n))) => even(n) .

rl nats => from(0) .

rl from(n) => n : from(s(n)) .

rl take(0,xs) => nil .

rl take(s(n),x : xs) => x : take(n,xs) .

rl allEven(nil) => true .

crl allEven(x : xs) => allEven(xs) if even(x) => true .

endm

Although R is not terminating (due to rule defining symbol from), it is orthog-
onal and the right-hand side of the condition in the (only) conditional rule is
a ground term which is a normal form with respect to the underlying OSRT.
Thus, R is a III n OSRT. Note that RC consists of the following rules:

even(0) → true

even(s(s(n))) → even(n)

and is easily proved terminating. Since RC has no conditional rules, it is op-
erationally terminating. By Theorem 4, R is normal. Furthermore, it is not
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difficult to see that R is actually operationally 1-terminating. We reason as
follows: only terms t of sort LNat can be nonterminating; and the only way
for R to be operationally non-1-terminating is that some expression σ(`), for
`→ r ⇐ c the only conditional rule in R and an appropriate (sorted) substitu-
tion σ, initiates an infinite proof tree with root

σ(allEven(x:xs))→ σ(allEven(xs)) (20)

However, since variable x can only be instantiated to values of sort Nat, and
expressions of sort Nat are all terminating, the evaluation of the condition
σ(even(x)) →? true always terminates. Hence, there can be no infinite proof
tree for goal (20).

Following the discussion in Section 4.5.1 if a term t has a reduction sequence
t→?

R t for some irreducible term t, then the parallel-outermost reduction strat-
egy which reduces the parallel-outermost Ru-redexes is able to obtain t. For
instance, allEven(take(s(0),nats)) has a normal form true which can be
obtained by using the parallel-outermost reduction strategy:

allEven(take(s(0),nats)) →po allEven(take(s(0),from(0))) (21)

→po allEven(take(s(0),0:from(s(0)))) (22)

→po allEven(0:take(0,from(s(0)))) (23)

→po allEven(take(0,from(s(0)))) (24)

→po allEven(nil) (25)

→po true (26)

Note that step (24) is an application of the conditional rule where an ‘admin-
strative’ step even(0)→ true is performed for the evaluation of the condition.

Also, term t = allEven(take(s(s(0)),nats)) has an R-normal form

allEven(s(0):nil).

Note, however, that it is not an Ru-normal form. Actually, we could further
rewrite allEven(s(0):nil) into true by using Ru, but this would yield the
wrong conclusion that take(s(s(0)),nats) consists of even numbers only. In
other words, R and Ru are not semantically equivalent. However, the R-normal
form of t can be obtained by using the parallel-outermost reduction strategy.

allEven(take(s(s(0)),nats)) →po allEven(take(s(s(0)),from(0)))(27)

→po allEven(take(s(s(0)),0:from(s(0)))) (28)

→po allEven(0:take(s(0),from(s(0)))) (29)

→po allEven(take(s(0),from(s(0)))) (30)

→po allEven(take(s(0),s(0):from(s(s(0))))) (31)

→po allEven(s(0):take(0,from(s(s(0))))) (32)

→po allEven(s(0):take(0,s(s(0)):from(s(s(s(0)))))) (33)

→po allEven(s(0):nil) (34)
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Note that in step (33) the whole term

allEven(s(0):take(0,from(s(s(0)))))

is the outermost Ru-redex (of the unconditional version of the conditional rule
in R). However, it is not an R-redex because the condition even(s(0)) →?

true does not hold.

Finally, we show that Theorem 4 does not characterize normal OSRTs:

Example 13. Consider the following deterministic 1-CTRS:

a → b f(x) → x⇐ c→ d, a→ c
b → a

Every term f(t) is irreducible and also a normal form because the unsatisfi-
able condition c → d prevents the looping evaluation of the condition a → c.
However, RC = {a→ b, b→ a} is not (operationally) terminating.

Remark 7. In general, Theorem 4 cannot be used to prove the operational 1-
termination of an OSRT and then its normality as a consequence of operational
1-termination. For instance, the unsorted version of R in Example 12 is not
operationally 1-terminating (for instance, we can then bound the variable x in
the conditional rule to the nonterminating expression nats, thus initiating an
infinite proof tree for the evaluation of the condition). However, RC is still
terminating in this case. Thus, R is still proved normal (using Theorem 4), but
it is not operationally 1-terminating.

5.1. Proving Ground Normality

In order to prove that a deterministic OSRTR = (Σ, B,R) is ground normal,
we can proceed as follows:

1. Identify a subsignature of constructors Ω with nonempty sorts such that
the rules in R decompose as a disjoint union R(Σ−Ω) ∪RΩ, where the RΩ

have only Ω terms in their rules and conditions, and each ` → r ⇐ s1 →
t1, . . . , sn → tn in R(Σ−Ω) has l = f(t1, . . . , tn) for some f ∈ Σ−Ω. We also
assume that the axioms B decompose as a disjoint union B(Σ−Ω)∪BΩ with
the BΩ involving only Ω terms, and the B(Σ−Ω) not Ω-equations. This
yields an OSRT inclusion RΩ ⊆ R, with RΩ = (Ω, BΩ, RΩ).

2. Prove (by inductive theorem proving) that for all defined symbols f ∈
Σ − Ω, say with rank f : s1 · · · sn → s, the following inductive property
holds:

∀x1 ∈ TΩs1
, . . . , xn ∈ TΩsn

,∃yf(x1, . . . , xn)→R y

Then, if RΩ is a ground normal theory, R is ground normal and, furthermore,
GNF(R) ⊆ TΩ. This is because, by (2), any ground term t having some symbols
in Σ−Ω is always reducible (at an innermost occurence of any such symbol), so
that GIrr(R) ⊆ TΩ. But since the only rules that can apply to terms in TΩ are
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those in RΩ, which is a ground normal theory, we have GIrr(R) = GIrr(RΩ) ∩
TΩ = GNF(RΩ) ∩ TΩ = GNF(R) ∩ TΩ = GNF(R), as desired.

The above method can be easily generalized to a method for proving the
ground µ-normality of a CSOSRT R = (Σ, B,R, µ). The only differences are
that: (i) in step (2) the inductive properties we have to prove are of the form:

∀x1 ∈ TΩs1
, . . . , xn ∈ TΩsn

,∃yf(x1, . . . , xn)→µ y,

(ii) RΩ is now assumed to be a ground µ-normal theory; and (iii) we now get
GNFµ(R) ⊆ TΩ.

Example 14. We can apply this method to prove that, disregarding its replace-
ment map µ, the module FROZENNESS in Section 4.5.2 is ground normal. Choose
as Ω the the signature with just 0 and s, so that RΩ has no rules and is trivially
ground normal. Property (2) follows for + by structural induction on the sec-
ond argument, is trivial for f because of the rule f(x) => h(f(x)), and is also
trivial for h because of the rule h(n) => 0 and the fact that all Ω-terms have
sort Nat, which is the sort of the variable n. Therefore, FROZENNESS is ground
normal and has TΩ, i.e., the natural numbers in Peano notation, as its set of
ground normal forms.

6. Orderings, Quasi-Decreasingness, and Operational Termination

A binary relation R on a set A is terminating (or well-founded) if there is no
infinite sequence a1 R a2 R a3 · · · . Given f : Ak → A and i ∈ {1, . . . , k}, we say
that f is i-monotonic on its i-th argument (or that f is i-monotone with respect
to R) if f(x1, . . . , xi−1, x, . . . , xk)Rf(x1, . . . , xi−1, y, . . . , xk) whenever xRy, for
all x, y, x1, . . . , xk ∈ A. We say that R is monotonic if, for all symbols f , f is
monotonic for all its arguments w.r.t. R. In [13] we have shown that operational
termination of deterministic 3-CTRSs (which are special deterministic 3-OSRTs
where the set of sorts S contains a single sort and the set of equations B is
empty) is equivalent to quasi-decreasingness, i.e., the existence of a well-founded
partial ordering � on terms satisfying that: (1) the one-step rewriting relation
is contained in �: →R ⊆ �, (2) the strict subterm relation is contained in �:
B ⊆�, and (3) for every rule `→ r ⇐ s1 → t1, . . . , sn → tn, substitution σ, and
index i, 0 ≤ i < n, if σ(sj) →?

R σ(tj) for every 1 ≤ j ≤ i, then σ(l) � σ(si+1).
In the following, we generalize this result to deterministic 3-OSRTs under the
assumptions on B stated in Section 2. First we address the problem of defining
appropriate orderings for dealing with order-sorted terms and rewrite theories.

6.1. Orderings for Order-Sorted Terms

A strict ordering �s on terms of sort s is an irreflexive and transitive binary
relation on TΣ(X )s. In particular, a strict ordering �>[s]

, abbreviated to �[s], is
a transitive binary relation on TΣ(X )>[s], that is, on all terms in the connected

component [s] ∈ S/≡≤.
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Remark 8. Order-sorted rewriting proceeds by transforming terms in the same
connected component [s] ∈ S/≡≤. Therefore, orderings �[s] indexed by top sorts
>[s] rather than by sorts are more appropriate for compatibility with the order-

sorted rewrite relation. Indeed, note that →+
R=

⋃
s∈S(→+

R[s]
) is a well-founded

S-ordering if→R is terminating, and that, by the kind-completeness assumption
about Σ in R = (Σ, B,R), it is monotonic. On the other hand, we can always

obtain an ordering �s on terms of sort s as follows: �s = �[s] ∩ TΣ(X )
2
s.

A strict S-ordering �S= {�[s]}[s]∈S/≡≤ is an (S/≡≤)-sorted strict ordering on
TΣ(X ), i.e., given terms u, v ∈ TΣ(X ), u �S v if and only if u, v ∈ TΣ(X )>[s]

for some [s] ∈ S/≡≤ and u �[s] v. An S-ordering �S is: well-founded if its
components �[s] are well-founded for all [s] ∈ S/≡≤; stable if for all S-sorted
substitution σ, s ∈ S, and terms u, v ∈ TΣ(X )>[s]

u �[s] v, then σ(u) �[s] σ(v);

monotonic if for all f : s1 · · · sk → s ∈ Σ and terms ui, vi ∈ TΣ(X )>[si]
for

1 ≤ i ≤ k, if ui �[si] vi, then f(u1, . . . , ui, . . . , uk) �[s] f(u1, . . . , vi, . . . , uk). An
S-ordering �S on TΣ(X ) is compatible with a set of equations B on TΣ(X ) if
for all terms u, u′, v, whenever u �S v and u′ =B u, we have u′ �S v (in short:
=B ;� ⊆ �, where ‘;’ is the composition of relations: a R;S b iff there is c such
that a R c and c S b). The previous definitions generalize to arbitrary relations
(quasi-orderings &, equivalences ≈, etc.) on order-sorted terms.

Remark 9. S-sorted orderings cannot compare terms in different connected
components. Still, S-sorted orderings are the natural ones when comparing the
left- and right-hand sides of the rules of an order-sorted (conditional) rewrite
system.

A term ordering � is a strict order on TΣ(X ). An S-sorted ordering �S on
TΣ(X ) defines a term ordering on TΣ(X ): u � v iff ∃[s] ∈ S/ ≡≤ such that
u �[s] v. A term ordering which is not S-sorted is the strict subterm relation
B: ∀u, v ∈ TΣ(X ), uB v if u = f(u1, . . . , uk) for some f : s1 · · · sk → s ∈ Σ and
either v = ui or ui B v for some i, 1 ≤ i ≤ k. We write uD v if uB v or u = v.

The following result is the many-sorted version of the well-known Lankford’s
theorem for unsorted (and unconditional) rewriting; we use it to motivate the
improvements in proofs of termination that the presence of sorts can make
possible. Note that, in the many-sorted case, the poset of sorts is discrete and
we can identify S with S/≡≤.

Theorem 5. A many-sorted TRS R is terminating if and only if there is a
stable and monotonic S-ordering �S such that ` �s r for all rules ` → r with
`, r ∈ TΣ(X )s.

The following example illustrates an interesting feature of S-sorted orderings
which is due to the presence of sorts in the signature.

Example 15. Consider the following Maude functional module:

fmod ListsAndTake is
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sorts Nat NatList .

op 0 : -> Nat .

op s : Nat -> Nat .

op nil : -> NatList .

op cons : Nat NatList -> NatList .

op take : Nat NatIList -> NatList .

vars M N : Nat .

var L : NatList .

eq take(0, L) = nil .

eq take(s(M), cons(N, L)) = cons(N, take(M, L)) .

endfm

where sort NatList is intended to classify finite lists of natural numbers. The
function take can be used to obtain an initial segment of a list by giving the
number of items we want to extract. The S-sorted ordering �S where �Nat= ∅
and �NatList is generated by the following polynomial interpretation over the
naturals:

[[0]] = 1 [[s]](x) = x+ 1 [[nil]] = 0
[[cons]](x, y) = y [[take]](x, y) = x+ y

by u �NatList v if ∀~x([[u]] >N [[v]]) for all s ∈ S and u, v ∈ TΣ(X )s, where
~x = x1, . . . , xn and {x1, . . . , xn} is the set of variables occurring in u or v
(without any sort information, all ranging over the naturals). We can use it to
prove termination of the previous module. We have:

1. [[take(0,L)]] = [[0]] + [[L]] = 1 + L and [[nil]] = 0;

2. [[take(s(M),cons(N, L))]] = [[take]]([[s(M)]], [[cons(N,L)]]) = M + L + 1
and [[cons(N,take(M,L))]] = [[cons]]([[N]], [[take(M,L]]) = M + L

Since (variables L, M , and N are universally quantified over the naturals):

[[take(0,L)]] = 1 + L >N 0 = [[nil]]
[[take(s(M),cons(N,L))]] = M + L+ 1 >N M + L = [[cons(N,take(M,L)]]

we conclude that, as desired, take(0,L) �NatList nil and

take(s(M),cons(N,L)) �NatList cons(N,take(M,L)).

The interesting fact is that, in contrast with the unsorted case, �NatList is
monotonic despite the fact that cons does not take into account the information
of the first argument (of sort Nat). This is possible because �Nat= ∅, which
makes sense because we do not need to compare terms of sort Nat in a TRS
without rules of sort Nat!

6.2. Quasi-Decreasingness and (Strong) Operational Termination of determin-
istic 3-OSRTs

After the previous discussion, we can provide a generalization to determin-
istic 3-OSRTs of the usual notion of quasi-decreasingness for deterministic 3-
CTRSs.
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Definition 12 (Quasi-decreasingness). A deterministic 3-OSRT (Σ, B,R)
is quasi-decreasing if there is a well-founded term ordering � on TΣ(X ) sat-
isfying: (1) →R ⊆ �, (2) =B ;� ⊆ �, (3) B ⊆ �, and (4) for every rule
l → r ⇐ u1 → v1, . . . , un → vn, substitution σ, and index i, 0 ≤ i < n, if
σ(uj)→?

R σ(vj) for every 1 ≤ j ≤ i, then σ(l) � σ(ui+1).

Quasi-decreasingness is a sufficient condition for operational termination of de-
terministic 3-OSRTs.

Theorem 6. Let R be a deterministic 3-OSRT. If R is quasi-decreasing, then
it is operationally terminating.

Proof. LetR = (Σ, B,R). SinceR is quasi-decreasing, there is a well-founded
partial ordering � which is compatible with =B , includes both →R and B, and
such that for every rule l → r ⇐ u1 → v1, . . . , un → vn, substitution σ, and
index i, 0 ≤ i ≤ n, if σ(uj)→?

R σ(vj) for every 1 ≤ j ≤ i, then σ(l) � σ(ui+1).
Assume that R is not is operationally terminating. Then, there is an infinite

well-formed proof tree T for some judgement G (i.e., G = root(T )). We prove
that there is a judgement G′ at level 1 or 2 in T which is the root of an infinite
well-formed proof tree T ′ and such that left(G) = u � u′ = left(G′), where
left(u→ v) = u and left(u→? v) = u.

1. In case G = u→ v, G must be the root of an instance of an inference rule
∆, where ∆ is either (Cong) or (Repl).

(a) If ∆ is the Congruence rule, then u = f(u1, . . . , ui, . . . , un), v =
f(u1, . . . , u

′
i, . . . , un) and there is an infinite well-formed proof tree

T ′ (at level 1 in T ) whose root is G′ = root(T ′) = ui → u′i. Since
B ⊆�, we have left(G) = s � ui = left(G′) as required.

(b) If ∆ is the Replacement rule, then u =B σ(l) for some conditional
rule ` → r ⇐ u1 → v1, . . . , un → vn and substitution σ and there
is i ∈ {1, . . . , n} such that T1, . . . , Ti−1 are well-formed finite proof
trees with root(Tj) = σ(uj) →? σ(vj) for 1 ≤ j < i (and hence,
σ(uj) →?

R σ(vj) for all 1 ≤ j < i) and Ti is infinite. Let Gi =
root(Ti) = σ(ui) →? σ(vi). Now, we have u =B σ(l) � σ(ui). Thus,
we let G′ = Gi and (using the compatibility of � and =B) conclude
left(G) = u � σ(ui) = left(G′).

2. Now consider the case G = u→? v. Since T is infinite, the only possibility
is to use Transitivity. Thus, we have two proof trees T1 and T2 such that
either T1 or T2 are infinite. Here, G1 = root(T1) = u→ u′ for some term
u′ and G2 = root(T2) = u′ →? v.

(a) If T1 is infinite, then left(G) = u = left(G1). We can apply item 1
above to G1 and T1 to conclude that there is a judgement G′ at level
1 in T1 (i.e., at level 2 in T ) such that left(G) = u � u′′ = left(G′).

(b) If T1 is finite, then u→R u′, i.e., u � u′ and T2 is infinite. Then, we
let G′ = G2 and conclude left(G) = u � u′ = left(G′).
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Thus, given the well-formed infinite proof tree T , we can define an infinite
sequence u = u1 � u2 � · · · which contradicts the well-foundedness of �. �

Quasi-decreasingness is also necessary for operational termination of an
order-sorted rewrite theory R = (Σ, B,R). Recall from Section 2 that, since
any order-sorted signature can be transformed into a kind-complete one with-
out changing its deductions [19], we have assumed throughout that Σ is always
kind-complete. This assumption is already implicit in the inference system of
Figure 1, since a more involved inference system would be needed for signa-
tures that are not kind-complete to avoid the production of ill-formed term by
rewriting [19]. The proof that quasi-decreasingness is also necessary exploits
the monotonicity of rewriting ensured for kind-complete signatures by by the
Congruence rule in the inference system of Figure 1.

In the following results, given a set of equations B, we consider the following
B-subterm relation BB = (=B ;B; =B). Note that B ⊆ BB due to reflexivity of
=B . However, BB need not be well-founded, as the following example shows.

Example 16. Consider B given by

f(a) = a (35)

Note that a =B f(a)B a, i.e., aBB a. Thus, BB is not well-founded.

For sets of equations B corresponding to commonly used theories such as any
combination of associativity, commutativity, and associativity-commutativity ax-
ioms, BB is clearly well-founded. Indeed, this follows from the fact that such
axioms B are size-preserving, i.e., if u =B v, then |u| = |v|, where |t| is the
number of nodes of t as a tree.

Proposition 3. Let �S be a monotonic S-sorted relation on T ⊆ TΣ(X ) and
B a set of equations such that BB is well-founded. If �S is well-founded on T
and =B ;�S ⊆ �S ; =B, then �= (=B ; (BB ∪�S)+; =B) is a well-founded term
ordering on TΣ(X ).

Proof. The proof is analogous to Lemma 7.2.4 in [20], which we borrow here.
Note that� is transitive: if s � t and t � u, then s =B s′(BB∪�S)+s′′ =B t and
t =B t′(BB ∪ �S)+t′′ =B u for some terms s′, s′′, t′, t′′. Since =B ;�S⊆�S ; =B

and =B ;BB ⊆ BB ; =B , we have s =B s′(BB ∪�S)+t and t(BB ∪�S)+t′′ =B u,
i.e, s =B s′(BB ∪ �S)+t′′ =B u, hence s � u. Well-foundedness follows by
contradiction. If � is not well-founded, then there is an infinite sequence

u1 =B ; (BB ∪�S)+; =B u2 =B ; (BB ∪�S)+; =B u3 =B ; (BB ∪�S)+; =B · · ·

for terms ui of sorts si. Furthermore, by using compatibility of both �S and
BB with =B , we can write instead the following infinite sequence:

u1 (BB ∪ �S) u2 (BB ∪ �S) u3 (BB ∪ �S) · · ·
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If there is only a finite number of steps of �S , then there would be an infinite BB
sequence, contradicting well-foundedness of BB . Thus, there must be an infinite
number of �S-steps. Since B ⊆ BB , each subsequence C[u]Bu �S v, where C[u]
is a term of sort s′, can by monotonicity be rewritten into C[u] �S C[v]BBv (i.e.,
pushing back the comparisons with �S ; note that u and v belong to the same
sort s). By proceeding in this way, we obtain an infinite decreasing sequence
for �[s1] (where s1 is the sort of u1), thus leading to a contradiction. �

Theorem 7. Let R = (Σ, B,R) be a deterministic 3-OSRT such that BB is
well-founded. If R is operationally terminating, then it is quasi-decreasing.

Proof. If R is operationally terminating, then →R is a well-founded S-
sorted relation which (by monotonicity) is closed under contexts. Furthermore,
by our assumption of strict coherence, if s =B s′ and s →R t, then there is
t′ such that s′ →R t′ and t′ =B t, i.e., we have =B ;→R⊆→R; =B . Note that
→R= ∪s∈S →R,s, where →R,s is the rewrite relation restricted to terms of sort
s. By Proposition 3, the relation =B ; (→R ∪BB)+; =B is a well-founded partial
ordering on terms. We write u v if there is a conditional rule `→ r ⇐ u1 →
v1, · · · , un → vn, a position p of u, a substitution σ and i ∈ {1, . . . , n} such that
u|p =B σ(`), v = σ(ui) and σ(uj) →?

R σ(vj) for all 1 ≤ j < i. We now prove
that � = ( =B ; (→R ∪ BB ∪  )+; =B) is a well-founded (strict) ordering.
Transitivity is proved as in Proposition 3 thanks to the compatibility of→R, BB
and  with =B . Irreflexivity is a consequence of well-foundedness, which we
prove by contradiction: from the assumption that � is not well-founded we are
going to build an infinite well-formed proof tree which contradicts operational
termination.

If � is not well-founded, then, there is an infinite �-decreasing sequence A
where, since =B ; (→R ∪ BB)+; =B is well-founded, we must have an infinite
number of  -steps which isolate finite (→R ∪ BB)-sequences. We can, then,
write A as follows:

u1 (→R ∪BB)∗u′1  u2 (→R ∪BB)∗u′2  u3 · · ·

In fact, since (→R ∪BB)∗ = (B∗B ;→R)∗;B∗B and the relation  already takes
into account B-subterms, we can eventually mix the last subterm steps of each
sequence ui (→R ∪ B)∗u′i with the  -step on u′i. Then, we can write each
sequence from ui to ui+1 as

ui = vi1
B∗B v′i1
→R vi2

...
(B∗B ;→R) vini+1

 ui+1

for some ni ≥ 0, where vij = Cij [v
′
ij ]qij for i ≥ 1 and 1 ≤ j ≤ ni and u′i = vini+1.

Note that, if ni = 0, then u′i = ui. Thus, by monotonicity of rewriting we can
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also write:
ui = Ci1[v′i1]pi1
→R Ci1[vi2]pi1
→R

...
→R Ci1[· · ·Cini

[vini+1]pini
· · · ]pi1

 Ci1[· · ·Cini
[ui+1]pini

· · · ]pi1
With regard to this sequence, we note the following.

1. Each step Cij [v
′
ij ]pij →R Cij [vij+1]pij has a finite proof tree Tij whose root

is Cij [v
′
ij ]pij → Cij [vij+1]pij and after |pij | applications of the Congruence

rule there is a proof of v′ij → vij+1:

Uij
v′ij → vij+1

...
Cij [v

′
ij ]pij → Cij [vij+1]pij

for some closed proof tree Uij .

2. Since

wi = Ci1[· · ·Cini [vini+1]pini
· · · ]pi1  Ci1[· · ·Cini [ui+1]pini

· · · ]pi1 ,

there is a rule li → ri ⇐ u1
i → v1

i , . . . , u
ki
i → vkii , a position qi ≥

pi1. · · · .pini
, a substitution σi, and an index `i ∈ {1, . . . , ki} such that

wi|qi =B σi(li), ui+1 = σi(u
`i
i ) and σi(u

j
i ) →?

R σi(v
j
i ) for all 1 ≤ j < `i.

Thus, there is a proof tree

T 1
i , . . . , T

`i−1
i , T `ii , G

`i+1
i , . . . , Gmi

i

Gi

with root Gi = wi[σi(li)]qi → wi[σi(ri)]qi , well-formed trees T ji rooted by

σi(u
j
i )→?

R σi(v
j
i ) for 1 ≤ j < `i, an infinite tree T `ii with left(root(T `ii )) =

ui+1 = σi(u
`i
i ) which continues the tail of A after ui+1 as explained before,

and open goals G`i+1
i , . . . , Gmi

i .

Thus, we obtain the infinite tree whose structure is shown in Figure 3. Therefore,
assuming that � is not well-founded contradicts operational termination of R.
Also, since well-foundedness implies irreflexivity of �, it turns out that � is a
well-founded strict ordering on terms. Now, it is not difficult to see that �makes
R quasi-decreasing. In particular (1) in Definition 12 holds because→R⊆→+

R⊆
(→R ∪BB ∪ )+. And due to reflexivity of =B , (→R ∪BB ∪ )+ ⊆� (and
similarly for item (3) in the definition). With regard to item (2), if s =B t � u,
then there are terms t′ and u′ such that t =B t′(→R ∪BB ∪ )+u′ =B u. We
prove by induction on the length n of the sequence t′(→R ∪BB ∪  )+u′ that
s � u.
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T11

T 1
1 , . . . , T

`1−1
1

..

. (∞)
u2 →? u′ G`1+1

1 , . . . , Gm1
1

w1 → w1[σ1(r1)]q1 w1[σ1(r1)]q1 →
? u

w1 →? u

...
C11[v12]p11 →

? u
u1 = C11[v′11]p11 →

? u

Figure 3: Proof of Theorem 7

1. Base case. If n = 1, then we have three possibilities:

(a) t′ →R u′. Since s =B t =B t′, by strict coherence there are terms
s′, s′′ such that s =B s′, s′ →R s′′ and s′′ =B u′ =B u, i.e., s � u.

(b) t′ BB u′, then, since s =B t =B t′, we have s =B t′ BB u′ =B u, i.e.,
s � u.

(c) t′  u, then since s =B t =B t′, we have s =B t′  u′ = u, i.e.,
s � u.

2. Induction step. We have t′(→R ∪BB∪ )t′′ =B u′′(→R ∪BB∪ )n−1u′.
By the induction hypothesis, t′′ � u. Reasoning as in the base case, and
by transitivity we conclude s � u.

Finally, item (4) follows by definition of  . �

Thus, quasi-decreasingness characterizes operational termination of order-
sorted, sort-decreasing rewrite theories whoseB-subterm relation is well-founded.

Corollary 5. A deterministic 3-OSRT R = (Σ, B,R) such that BB is well-
founded is operationally terminating if and only if it is quasi-decreasing.

7. Conclusions and Future Work

The results presented in this paper can be viewed from two complementary
perspectives: one more theoretical, and another more practical. At the the-
oretical level, we have investigated parts of the terra incognita of conditional
term rewriting by asking and providing precise answers to innocent-sounding
questions such as: what is a normal form? How can normal forms be effectively
computed? How should the notion of weakly normalizing system be understood
in the conditional case? How can good executability properties be ensured for a
theory? There is, however, a more practical aspect to all these results. It con-
sists in taking to heart the idea that rewrite theories are an excellent framework
for declarative programming and formal specification and verification. From this
second perspective, the questions asked and answered include: what is the most
general notion possible of a conditional rule-based program for which normal
forms can be computed? What is the appropriate operational semantics for term
normalization? How can it be made more efficient? What are the most general
possible requirements under which conditional functional programs can define
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total computable functions and be given an initial algebra semantics which fully
agrees with their operational semantics?

Future work should further investigate proof methods and supporting tools
for all the properties discussed here. For example, although the characteriza-
tion of the operational termination of an OSRT in terms of quasi-decreasingness
offers in principle a complete proof method, we are currently investigating a far-
reaching generalization to the conditional case of the dependency pair method
that seems considerably more effective for mechanizing actual proofs. In general,
the development of intrinsic methods for proving both strong and weak opera-
tional termination of OSRTs seems both quite attractive and sorely needed.

With regard to proving OSRTs normal, Example 13 shows that the notion
of operational termination of OSRTs is too strong to capture normality of some
OSRTs. The development of techniques for specifically proving operational
1-termination is an important topic for further research. However, there are
normal OSRTs that are not operationally 1-terminating (see Examples 3 and 4,
and also Remark 7). Actually, in order to guarantee that an OSRT R is normal,
operational 1-termination is required for irreducible terms only (see Definition
7). This suggests that research on proving this localized property (in the sense
of [15]) can lead to more accurate methods than the ones discussed above, which
try to use global termination properties of OSRTs to prove them normal. These
are interesting subjects for future work.
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