

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/10.1016/j.compind.2016.02.002

http://hdl.handle.net/10251/81586

Elsevier

Giret Boggino, AS.; Garcia Marques, ME.; Botti Navarro, VJ. (2016). An engineering
framework for Service-Oriented Intelligent Manufacturing Systems. Computers in Industry.
81:116-127. doi:10.1016/j.compind.2016.02.002.

An Engineering Framework for Service-Oriented

Intelligent Manufacturing Systems

Abstract

Nowadays fully integrated enterprises are being replaced by business net-
works in which each participant provides others with specialized services.
As a result, the Service Oriented Manufacturing Systems emerges. These
systems are complex and hard to engineer. The main source of complexity
is the number of different technologies, standards, functions, protocols, and
execution environments that must be integrated in order to realize them.
This paper proposes a framework and associated engineering approach for
assisting the system developers of Service Oriented Manufacturing Systems.
The approach combines Multi-agent system with Service Oriented Architec-
tures for the development of intelligent automation control and execution of
manufacturing systems.

Keywords: Service Oriented Intelligent Manufacturing Systems,
Multi-agent system, Service Oriented Architectures, Software Engineering
Method

1. Introduction

The rapidly changing needs and opportunities of todays global market
require unprecedented levels of interoperability to integrate diverse informa-
tion systems to share knowledge and collaborate among organizations. Fully
integrated enterprises are being replaced by business networks in which each
participant provides others with specialized services [1]. Almost no enter-
prise is able to accomplish all the production processes to offer a product
or a product service system (PSS) independently. As a result, the Service
Oriented Manufacturing Systems (SoMS) emerges.

A promising approach to develop SoMS is the integration of Multi-agent

Preprint submitted to Computers in Industry December 18, 2015

system (MAS) and/or Holonic Manufacturing Systems (HMS)1 with Service
Oriented Architectures (SoA). MAS represents one of the most promising
technological paradigms for the development of open, distributed, coopera-
tive, and intelligent software systems. It has already been successfully applied
to the field of Intelligent Manufacturing Systems (IMS) [4]. Moreover, the
areas of SoA and MAS are getting closer and closer. In fact, in spite of both
trying to deal with the same kind of environments formed by loose-coupled,
flexible, persistent and distributed tasks [5], MAS and SoA present some im-
portant differences, namely in terms of autonomy and interoperability (see
[6] for an in-depth study). Some researches state that the lacks in terms of
interoperability exhibited by the MAS solutions in the manufacturing field
can be overcome by combining SoA principles, and especially by using Web
services technology [7]. An example of this fact is the new approach of Service
Oriented Multi-agent Systems (SoMAS).

One of the critical aspects when developing SoMS is the complexity of the
development process and the system itself. The system engineer needs sup-
port from software engineering methods and frameworks in order to manage
the complexity originated by the number of different technologies, standards,
functions, protocols, and execution environments that must be integrated in
order to realize the SoMS. To the best of the authors’ knowledge there is
no complete engineering method in the specialized literature that can assist
the system engineer during the whole life-cycle (requirements’ specification,
analysis, design, implementation, validation and verification, deployment,
maintenance and operation) of a SoMS. Moreover, todays’ changing mar-
ket requirements force these systems to have some agility, reconfigurability
and flexibility features in order to respond in a satisfactory and competitive
way. The authors believe that MAS approaches can help to achieve all these
features, and propose a service oriented engineering framework specifically
tailored to deal with the development of IMS based on services and oriented
to services. In this work it is presented a MAS based infrastructure for as-

1HMS is a paradigm that translates the concepts of living organisms and social orga-
nizations developed by Koestler [2] to the manufacturing world. A holon is an identifiable
part of a system that has a unique identity, yet is made up of sub-ordinate parts and
is in turn part of a larger whole. The holons can represent physical resources and logic
entities, with intelligent and cooperative capabilities. In this paper we use agents and/or
holons in order to refer to the intelligent software components that made up an Intelligent
Manufacturing System. For a detailed comparison of the two concepts see [3].

2

sisting the system developers when developing Service Oriented Intelligent
Manufacturing Systems (SoIMS).

The proposed approach is called ANEMONA-S + Thomas framework.
The initial ideas of the framework were presented in [8], whereas in cur-
rent paper an in-depth analysis of the details of the framework is presented,
augmented with new guidelines and steps that complete the framework.The
background on SoMS is presented in Section 2, together with a discussion
on related works. The proposed framework is described in Section 3. In
Section 4 the usefulness and completeness of the approach is evaluated. The
conclusions and future works are analyzed in Section 5.

2. Cloud Manufacturing and Service Oriented Manufacturing

Cloud manufacturing is a computing and SoMS model developed from
existing advanced manufacturing models and enterprise information tech-
nologies. Cloud computing, Internet of Things, virtualization and service-
oriented technologies, and advanced computing technologies are the informa-
tion technologies that support the realization of cloud manufacturing.

In a cloud manufacturing system, various manufacturing resources and
abilities can be intelligently sensed and connected into the wider Internet
by means of SoA principles, see Figure 1. In this way the manufacturing
resources and abilities, from Providers, are virtualized and encapsulated into
different manufacturing cloud services (Mfg Services) that can be accessed,
invoked, deployed, and on-demand used by Consumers. An example of such
approach is that SCADA and MES functions start being provided as services
partially located in service clouds [9].

Service-based manufacturing network (or collaborative manufacturing vir-
tual enterprises) is the manufacturing paradigm for the production of prod-
ucts and PSS2. In service-based manufacturing network, each enterprise fo-
cuses on core businesses, outsources non-core businesses (buy Mfg Services),
and provides producer services (sell Mfg Services) for one another to achieve
rapid innovation and improve efficiency. In this way, the integration of ser-
vice and manufacturing has also changed the product pattern and not only

2A PSS is an integrated system in which the traditional functionality of a product is
expanded by additional services. PSS shifts the focus to the usage of the product, that is,
the customer does not pay for the possession of a product, but for the use of the product
or for the functionality he receives [10].

3

Consumers Providers

Cloud

Mfg AbilityMfg
Resource

Mfg
Resource

Manufacturing
System

Virtual
Enterprise

Virtualization and
Encapsulation

Invoking

Mfg
Service

SoA
Registration Orchestration Composition

Mfg
Service

Mfg
Service

Figure 1: Cloud Manufacturing abstract execution

the manufacturing paradigm [11]. The physical product is servitized or inte-
grated with services to form PSS.

The complexity of SoMS is hight due to large number of different ele-
ments and the need to integrate different components, standards, functions,
protocols, and execution environments into a single system. Moreover, the
development process of such system needs to be guided and supported by
appropriate and complete software engineering methods that can help the
developers to manage the complexity. Key fundamental features in the de-
velopment process of SoMS are: (i) specific notation and method support for
the identification and specification of the system components that will imple-
ment the Providers and Consumers in the SoMS; (ii) specific and complete
guidelines to specify and implement the Mfg Services that will made up the
SoMS; (iii) design and implementation artifacts that facilitate the develop-
ment of agile, flexible and reconfigurable SoMS; (iv) an execution platform
for supporting the deployment of SoMS in which open and dynamic sys-
tem execution (run-time creation, modification and deletion of Mfg Services,
Providers and Consumers) are allowed; (v) a uniform approach for design
and implementation that facilitate the interconnection among components
and levels in the SoMS (encouraging the use of standards). These key issues
motivated the authors to propose ANEMONA-S + Thomas approach for the

4

development of SoMS.
In the specialized literature we can find some works in the field of SoMS.

Adacor II [28] is an engineering framework based on distributed control sys-
tems and service oriented design paradigms. A Petri net-based language is
used for intra and inter-coordination activities. Nevertheless, the proposed
approach is very interesting and complete in terms of the set of tools that
can be used, the approach lacks engineering guidelines. Moreover, there
is a lack of uniform specification language and modeling concepts. In [29]
an agent-based approach is described for modeling PSS. Nevertheless, the
approach is limited only to the modeling of the life-cycle of the PSS after
sell, i.e. in execution or in use. On the other hand [1] uses agent-based
service-oriented approaches for the business level of virtual enterprise coop-
eration. In it the companies share resources by means of an agent-based
infrastructure built on top of service-oriented technologies in order to define
virtual enterprises. The SoMAS approach defined in ANEMONA-S is close
to the work presented in [7]. Nevertheless, in [7] there is lack of method-
ological process to assist the system developer during system development.
The ANEMONA-S method can be used to complement it in order to help the
system designer at every development step. PROSIS [30] is a service oriented
architecture based on PROSA type of holons as well as ANEMONA-S. PRO-
SIS provides a set of specialized services that can be parameterized in order
to use them in product, resource and order holons. Nevertheless, in PRO-
SIS there is no methodological support for the development process. The
SoA and MAS architecture described in [33] implements a set of layers and
pre-defined platform supplied services that can be used for manufacturing
automation level 2 of an ISA95/IEC 62264 standard architecture [31]. This
proposal can be combined with the ANEMONA-S development process in
order to populate the Service Cloud with application dependent services for
specific manufacturing systems. The Thomas platform can be used also to
implement the Service Cloud and the specialized services. IMC-AESOP [34]
and SOCRADES [35] are two complete frameworks for implementing Cyber-
Physical Systems using SoA. Nevertheless, both lack methodological support.
ANEMONA-S development process can complement these two frameworks
providing the support of engineering methods and notation.

Table 1 shows the list of abbreviation that are used in this paper.

5

Table 1: List of abbreviations
Abbreviation Mining

ACL Agent Communication Language
ASeM Agent Supported e-Manufacturing environment
CMA Customer Mediator Agent
FIPA Foundation for Intelligent Physical Agents
HMS Holonic Manufacturing System
IMS Intelligent Manufacturing System
MAS Multi-agent System
MES Manufacturing Execution System
OMS Organization Management Service
OVE Open Virtual Environment
PSS Product Service System
SCADA Supervisory Control and Data Acquisition
SF Service Facilitator
SoA Service Oriented Architecture
SoIMS Service Oriented Intelligent Manufacturing System
SoMAS Service Oriented Multi-agent System
SoMS Service Oriented Manufacturing System
SPEM Software Process Engineering Metamodel
UML Unified Modeling Language

3. ANEMONA-S + Thomas

ANEMONA-S + Thomas is a complete framework for developing SoIMS
(see Figure 2). It is the integration of two main components: a MAS engineer-
ing methodology for SoIMS called ANEMONA-S; and the Thomas platform
for the implementation and execution of open SoMAS. A system engineer
can use them together and get the whole support from both components, or
may opt by using just one of them and connect the development with other
software tools or methods that are compatible with MAS and/or SoA.

ANEMONA-S is an extension of ANEMONA [12], which is a MAS method-
ology for HMS analysis and design. ANEMONA-S is based on service and
oriented to service. Figure 2 shows the different components of the method.
It provides complete support for SoIMS development, which includes: spe-
cific notation, complete and specific development process, tailored software
engineering guidelines for SoIMS, CASE tool, implementation environment
and Thomas service execution platform.

The SoIMS approach used in ANEMONA-S + Thomas framework is char-
acterized by the use of a set of distributed autonomous and cooperative agents
(embedded in smart control components) that use SoA principles. The agents
are oriented by the offer (Providers) and request (Consumers) of services,
in order to fulfill industrial and production systems goals. The manufactur-
ing resources functionalities are encapsulated as services that can be offered,

6

System Requirement
Analysis

Client/User

Use Case
Diagram

Analysis
Models

System
Architecture

Executable
Code

Requirements

Operation
and

Maintenance
SetUp and

Configuration

Holon
Implementation

Holon
Design

Holon Identification
and Specification

HMS UC
Guidelines

PROSA
Guidelines

THOMAS
Guidelines

Function Block
Guidelines

JADE
Guidelines

C
Group
Goal

A
Abstract

GoalAgent
Role

Task
C

Group
Belief

A
Abstract

Belief
Belief

Event
Resource

Interaction

WorkFlow

A
Abstract

Task

Name

Application

Organization Goal

Service

Abstract
Agent

A

NOTATION

PROCESS

CASE TOOL

Organization Execution Framework

OMS

AMS

SF

Network Layer

Agent

Agent
Agent

Org

Agent

Agent

Org

Platform Kernel (PK)

Thomas Execution Platform

Automatic Code
Generation

Figure 2: The components of ANEMONA-S + Thomas at a glance

searched and used by other entities, without knowing their underlining im-
plementation. For this purpose, service providers publish the services they
want to offer in a service registry (see Section 3.4), and the service requesters
search the services they want to use through the help of discovery methods
provided by Thomas [13].

3.1. Software Engineering Process

ANEMONA-S + Thomas provides a specific development process in or-
der to: find out what services will implement a given SoIMS, how to specify
the services, how the services will be orchestrated and choreographed to sup-
port the functionalities of the system, how to implement and execute the
services, and how to maintain the system. It is an iterative and recursive
process focused on service-oriented MAS. Figure 2 shows its development

7

Requirements

HMS-UC
Guidelines

Specify Use
Case Realization

Identify
Holons

PROSA
Guidelines

Specify Environment
Relations

Analysis
Models

Analysis

:Software
Engineer

(1)

(2)

(3)

(4)

(5)

Determine
Use Cases

Service
Guidelines

(1) From the system Requirement and the
HMS-UC guidelines identify the system goals
and Use Cases.
(2) From the Use Cases and Service guidelines
1 to 3 derive the services provided and required
by the system.

(3) For every Use Case identify a holon/agent
responsible of its execution. Complete an Agent
Model for each holon/agent.
(4) Analyze every agent's ability/function in
order to virtualize them as services provided for
customers.
(5) Specify the Interaction Diagrams that
implement the Use Cases, including the agents
(providers and/or consumers of services), and
the message sequence (service request and
service composition).
(6) For every interrelated Use Cases identify
which services are the bridge for the
interconnection in order to derive service
composition.

(7) Complete an Agent Model for every holon/
agent identified in previous steps using the
PROSA Guidelines.
(8) Complete the Task and Goal Model and
Services Specifications using the Service
Guidelines.
(9) Complete the Organization Model identifying
the relations among the different holons/agents
of the system and the Interaction Models.

(10) Complete the Environment Model taking special
focus on the services required from external
providers (i.e. providers that are outside the SoIMS
under development)

Figure 3: ANEMONA-S analysis activities

stages3. Every development stage has specific tasks that incrementally help
the system designer to: figure out which system’s functionalities can be virtu-
alized and encapsulated as services provided for customers, which functional-
ities/services can be required/purchased from external providers, specify the
services (including the business and physical level), specify and implement
the providers and consumers of the services, deploy the system (including
special support for local execution of services and services executed in cloud
platforms).

3The specification of the development process is in SPEM (Software Process Engineer-
ing Metamodel) notation [14].

8

Design

Refine
the Holons

Specification

Build
the System
Architecture

Design
Models

Requirements

JADE
Guidelines

Function
Blocks

GuidelinesSystem
Architecture

Function Block
Interface

Specification

JADE Agent
Templates

: Software
Engineer

Analysis Models
(1)

(2)

Deployment
Model

Service
Guidelines

Service
Specification

Templates

(1) Complete the details of all the Agent Model
of the system
(2) Verify that every goal of the Task and Goal
Models is pursued by at least one agent of the
system
(3) Complete and verify the service
composition identified in the Service
Specification of the analysis stage.
(4) Derive new service composition patterns
by means of the goal composition identified in
the Task and Goal Model of the system.

(5) For every resource holon with a physical
part complete a Function Block Interface
Specification
(6) Build the System Architecture including the
implementation details of the target execution
platform
(7) Use the Service Guidelines for completing
a Service Specification Template for each
service identified in previous stages

Figure 4: ANEMONA-S design activities

The analysis (Figure 3) adopts a top-down recursive approach and is
supported by a set of specific guidelines (see Section 3.2) that help the system
engineer to find out the agents that will provide and consume the services of
the SoIMS. On the other hand, the design (Figure 4) is a bottom-up process
to produce the system architecture from the analysis models. In this process
the focus is on providing a complete specification of the services by means of
the Service Specification Templates (see Section 3.3).

ANEMONA-S + Thomas uses SimIShop [15] simulation tool in order to
evaluate the system correctness and get performance measures during the
implementation and configuration steps. Moreover, an extension of Thomas
is proposed as future work in order to connect it with the simulation tool
based on NetLogo proposed in [16].

9

Table 2: ANEMONA-S Service Guidelines

Service Guidelines

ID Guideline

1 Associate a new service description to each system functionality that is provided to
external users of the system.

2 If the system requires a functionality from outside the system, identify a service
request with it.

3 If two use cases requires interactions identify a new service to implement this inter-
action.

4 For every service (from guidelines 1 and 3) complete a Service Specification Template
defined in [17]. Define the ontology for the service. To do this, analyze the system
domain concepts. These concepts will be used to define the inputs, outputs and
attributes of tasks, protocols and services.

5 For every service (from guidelines 1 and 3) make sure that there is one or more holons
responsible for providing it.

6 Complete the holon specification from the service profile specified in the Service
Specification Template. To define the service profile the attributes for each service
must be identified. Create one activity diagram for specifying each service imple-
mentation. If there are services that should be published to other members of the
system or to external stakeholders, the organizational diagram of the system should
be refined by adding a service registry in the SF associated with the organization.

7 Complete the Interaction Model by means of sequences of services executions. Make
sure that every service in an interaction model has its corresponding Service Speci-
fication Template.

8 Translate the Service Specification Template into Thomas code using the programers
guidelines (http://www.gti-ia.upv.es/sma/tools/magentix2/index.php).

3.2. Service Oriented Guidelines

The guideline support provided by ANEMONA-S inherits from ANEMONA
all the aspects for developing IMS. These guidelines are divided into six dif-
ferent groups (Figure 2), which are: HMS UC Guidelines [18] for identify-
ing holonic manufacturing Use Cases from the requirements of the system;
PROSA Guidelines [18] that help the system designer to identify and spec-
ify the agents/holons of the system in terms of PROSA [19] type of holons;
Service Guidelines that help to virtualize and encapsulate manufacturing
abilities of the agents/holons into services; Function Blocks Guidelines [18]
for specifying the physical layer of the physical agents (e.g. machines, re-
sources, etc.); and finally two sets depending on the chosen implementation
platform, which are: THOMAS Guidelines [18] for Thomas development and
execution platform [17], and JADE Guidelines [18] for JADE platform [20].

The set of Service Guidelines are exclusive of ANEMONA-S and specially

10

designed in order to follow a service oriented MAS engineering approach.
Table 2 summarizes them. These guidelines are used at different development
stages combined with the other set of guidelines provided by ANEMONA-S.

3.3. Agents and Services Specification

Agents and services are the two central entities in ANEMONA-S. The
approach is that every agent’s capability and/or ability is encapsulated into
services. In this way the whole manufacturing system execution is imple-
mented in terms of cooperations of different agents that try to fulfill the
system goals by means of the execution of the services provided by agents
and consumed by agents. The ANEMONA-S development process helps to
identify the cooperation scenarios (or cooperations domains originally defined
in Metamorph architecture [21]), the agents and the services. Moreover, the
cooperation scenarios (Interaction Model, see previous section) guide the sys-
tem developer to specify the patterns for service composition, choreography
and orchestration. In the following paragraphs the key features that must
be specified when modeling and implementing the agents are described. To-
gether with the set of templates that complete the service specification.

ANEMONA-S supports PROSA types of holons [19]. An Agent Model is
used to complete the definition of every agent/holon in the system. An agent
is specified in terms of its goals, the ontology it understands, the cooperation
scenarios in which it is involved, and the set of services it provides and/or
consumes. Figure 5 shows the Agent Model of a Package Order agent of a
Packing Cell System. This agent provides two services, i.e. Packing Cell
Formation and Execute Packing, which are complex services orchestrated
in terms of other services provided by a Packing Team of: Storage Agents,
Conveyor Belts, Robots, Docking station, Wrapper agent and the Package
Order agent.

The agents that have a physical part (a machine, tool, etc.) must have a
Function Block Specification Interface (IEC 61499 - Function Block standard
[22]) associated to complete their definition. Figure 6 shows the Function
Block specification of a Conveyor Belt agent of the Packing Cell System.

The definition of product agents must state whether the product will be
a PSS or not. In case it is a PSS it must also be specified if the service/s
associated with it must be provided by the SoIMS or required from third
parties (outsourcing non-core business processes).

A service entity is associated to an agent entity using two relations: pro-
vide and consume. A service entity is specified by means of two objects

11

Package
Order

Process Order Initiate Group Formation

Order Status:
Not Initiated

Package, quantity,
quality: Schedule

 Packing Cell
Formation

Pursue Responsible

Package
Order

Control Order
Packaging

Find out Package
status

ResponsiblePursue

Package, quantity,
quality: Schedule

Order Status:
Initiated

Used Resources

Execute
Packing Order

Conveyor
Belt

Robot DockingStorage Wrapper

Packing
Team

Service
Specification

Template

Task BeliefOrganization Goal Service

Notation

Template Aggregation
relation

Association
relation

Agent

Service
Specification

Template

Figure 5: Agent Model of a Package Order Agent of a Packing Cell System

(compliant with SoA and Thomas specification [17]): the Service Profile rep-
resents the abstract service specification and is common to all providers; and
a set of Service Process specifications, which details the concrete service im-
plementation of each service provider. In the service specification there are
included: a communication protocol, the message formats, the contact port,
and other specific details of the service. It is specified using the OWL-S (On-
tology Web Language for Services) standard (http://www.w3.org/TR/owl-
guide/) extended with FIPA protocols. An ontology is associate also to give
meaning to all of the elements of the service, using the OWL-DL language
(http://www.w3.org/Submission/OWL-S/). At the same time a Service can
be associated to a Workflow specification in order to define it with an ap-
proach similar to Business Process Execution Language and real time events.
Finally, a service can be associated also to an Interaction entity in order to
specify orchestration and composition. Table 3 shows the available services

12

Function Block Interface
Specification

Agent ID

Normal Operation Sequence

Agent Platform

Resource Behaviour
Command

2ns

FB template code

Abnormal Operation Sequence

Actuator Sensor Output Time

3ns
1ns
1ns

Agent Task

Conveyor Belt Packaging Shop

Divert Package to BeltHC2

Incoming Package detected
Target Belt detected
Connect Belts
Package in target Belt

INIT

E_SEN_IN SEN_INSTOPPER_OUT E_SET_STOPPER
E_SEND_STR A_ID

SEN_OUT_STRAIGHTE_SEND_STR
E_RECV_ID NEW_ID

Can’t connect belts
Stop source belt
Connect Belts
Package in target Belt

Incoming Packange detected
Target Belt detected

Function Block Diagram

INIT
E_SEN_IN
E_SEN_OUT_STRAIGHT
E_SENOUT_SIDE
E_RECV_ID
E_SET_LUT

INITO
E_SET_STOPPER
E_SET_DIVERTER

E_SEND_STR
E_SEND_SIDE

SEN_IN
SEN_OUT_STRAIGHT
SEN_OUT_SIDE
NEW_ID
LUT_ENTRY
LUT_NEW_VAL

STOPPER_IN
STOPPER_OUT

DIVERTER
A_ID

DIVERTER_CONTROLLER

EVENT
EVENT
EVENT
EVENT

EVENT
EVENT
EVENT
EVENT

EVENT

EVENT
EVENT
EVENT
EVENT
EVENT
EVENT

EVENT
EVENT
EVENT
EVENT
EVENT
EVENT

Figure 6: Function Block Specification Interface of the Conveyor Belt Agent of a Packing
Cell System

provided by the Packing Team of the Packing Cell System. On the other hand
Figure 7 depicts the Service Specification Template of the Execute Packing
Order service.

The Service Specification Template is processed by ANEMONA-S + Thomas
in order to generate an OWL-S description of the service in terms of: a unique
service identifier; a list of providers; a service goal that can be achieved by
executing the service, and; the Service Profile, which specifies what the ser-

13

Table 3: Services provided by the Packing Team in the Packing Cell system
Provider
Entity

Service Inputs Outputs

Docking Lock Shuttle, UnLockShuttle ShuttleEvent, OrderEvent,
FinishEvent, LockShuttle-
Flag

LockShuttleFlag, Noti-
ficationEvent, UnLock-
ShuttleFlag

Robot GetItempsOp, GetItems NotificationEvent, Material
Stock, List of Item Types,
NotificationEvent, Material
Stock, List of Item Types

FinishEvent

Package
Order

GetOrder, SendOrder, Pack-
ing Cell Formation, Execute
Packing

NotificationEvent, Order-
Code, FinishEvent

List of Item Types, Or-
derCode, PackageCode

Storage QueryCarriersAndStorage,
QueryStorage

List of Item Types MaterialStock

Wrapper PaperWrapper, Pack-
ageWrapper

Type of Wrapper, Package
Dimensions

WrapEvent

Service'Specification'Template'
Name:" Execute"Packing"Order"
Description:" A"composed"service"for"executing"and"controlling"a"packing"order"into"

the"Packing"Cell"system"
Supplied'by:" Package"Order"
Required'by:" External"customers"and"Logistic"Manager"

Input'Parameters'
Name' Description' Mand.' Type' Value'

Range'
Default'

NotificationEvent" Is"the"activating"event"for"
starting"the"service"

Yes" Enum" Start" "

OrderCode" Unique"ID"of"the"packing"
order"

Yes" String" " "

Output'Parameters'
Name' Description' Mand.' Type' Value'

Range'
"

List"of"Item"Types" Defines"the"list"of"items"
ID"that"must"be"packed"in"
the"order"

Yes" Structure" " "

OrderCode" Unique"ID"of"the"packing"
order"

Yes" String" " "

PackageCode" Unique"ID"of"the"package" Yes" String" " "
PreAcondition'

Pre1" ∃!!", !",!",!,!,!! ∈ !"!|!!". !"#$ = !"#$"%&'()&(∧!"!". !"#$ =
!"#$%&' ∧ !". !"#$ = !"#$%&"'(%)*! ∧"

!. !"#$ = !!"!# ∧ !. !"#$ = !"#$%&'! ∧!. !"#$ =!!"##$!!"
PostAcondition'

" "
"

Figure 7: Service Specification Template of the Execute Packing Order service of a Packing
Cell System

vice fulfills, its constraints, the quality of service, and the requirements for
the customers. On the other hand the Service Process is specified and as-
sociated to the concrete agent that provides the service. It includes the:
service model in OWL-S, which specifies how the client can use the service,
and; the service grounding (also in OWL-S), which specifies the communica-

14

tion protocol, the message formats, the service port, etc. During design and
implementation steps (Figure 2) the service description is divided into two
levels: business and physical. The business level is specified with OWL-S
standard (as explained in previous paragraph), whereas the physical level
with IEC 61499 [22]. Moreover, during the specification of the physical level
an UML activity diagram as in [23] is used. In ANEMONA-S the two levels
are connected by means of encapsulation and FIPA ACL messages. As in
the proposal of Marariu et. al. [24] for a SoA implementation of an HMS,
the resulting set of business process definitions, services, and schemas make
up the logical architecture of the business level4. This logical architecture is
mapped to a physical architecture relating the components of the applica-
tion (agents) to a set of functional capabilities for the existing components
of the SoIMS, including the tools, machines, devices, etc. This mapping into
the physical architecture results into the System Architecture, which is a
specification of the actual hardware, capacity, operating system, language,
availability, policy and management system requirements to be actually used
in the production system (the service providers).

Due to the complexity of manufacturing systems, there is an urgent need
to use standards in the implementation and execution of these systems.
ANEMONA-S + Thomas integrates the layers of ISA-95 [31] standard by
means of agents that wrap the automation execution and control for manu-
facturing systems. Figure 8 depicts the relation of a SoIMS developed with
ANEMONA-S + Thomas with the different layers of ISA’95. Every compo-
nent/function that appears in ISA’95 can be virtualized as a service that is
provided by an intelligent agent in ANEMONA-S + Thomas or is used as
a service provided by others in the cloud and connected (by means of SoA
architecture) with the agents in the framework. The different channels for
intra-layer and inter-layer communication in ISA’95 are wrapped into agent
messages (FIPA ACL standard) that are compatible with the Enterprise Ser-
vice Bus model of SoA. The internal view of the logic architecture (Figure 8)
is similar to the proposal of Colombo et. al. [32] for wrapping SCADA and
MES functionalities into services.

4Nevertheless the proposed approach differs from [24] since it is not required a dif-
ferent implementation for every type of device due to the Thomas agents are created
automatically with SoA compatibility. In this way it is possible to directly use an orches-
trated architecture, based on Business Process Execution Language workflows and real
time events

15

Level 4
ERP, APO, Logistics Systems

Level 3
MES, LIMS, WMS, CMM Systems

Level 2
HMI, SCADA, Batch System

PLC, DCS, Package System

Level 1
I/O devices, Sensors

Discrete & Process Device
Communication Networks

Business Process Information
Networks

Operations Informations
Networks

Automation Networks

Agent Agent

Agent

Mfg
Service

Thomas Platform
SoA compliant

Execution
Support

Execution
Support

ANEMONA-S

 Mfg ability/resource
virtualization and

service specification

Physical Agents
identification and

specification

Cloud

Agents Communication/ESB

ISA'95 Control Hierarchy

An Abstract View of a SoIMS
developed and running on
ANEMONA-S + Thomas

SCADA

MES

PLC
Device

IEC 61499

Agent
Sw

Tool

IEC 61499

Agent
Sw

Machine

IEC 61499

Agent
Sw

Service Bus (ACL FIPA messages)

Mfg
Service

Mfg
Service

Mfg
Service

Mfg
Service

Mfg
Service

Agent

Agent

Logic Architecture
Internal View

Agent

Mfg
Service

Agent

Mfg
Service

Agent

Mfg
Service

Agents Communication/ESB

Agents Communication/ESB

Agent

Mfg
Service

Agent

Mfg
Service

Agent

Mfg
Service

Figure 8: ISA’95 Control Hierarchy and its relation with an abstract view of a SoIMS
running on ANEMONA-S + Thomas

16

Figure 9: CASE tool snapshot

3.3.1. CASE Tool

One of the main components of the framework is the CASE tool. It is the
software tool to design and implement SoIMS following the Model Driven
Architecture standard and using the Eclipse technology. This tool provides
a graphical editor for each of the models of the ANEMONA-S metamodel
and integrates all models into a unique ecore file. Moreover, the graphical
editor transforms these diagrams into Java skeletons that are ready to fill
and execute in Thomas.

Figure 9 depicts a snapshot of the tool in which its main windows and
functionalities are highlighted. The CASE Tool integrates the ANEMONA-S
guidelines as a built-in help functionality for the system designer. Moreover,
correctness checks are included in order to assure the coherence of the differ-
ent models of the designed SoIMS.

3.4. Thomas

Thomas [17] is an open-agent platform that uses a service-based approach
as the basic building blocks for creating SoMAS. Thomas aims at providing
high quality software, which could be used in industrial applications. It

17

provides complete support for the management of virtual organizations for
dynamic, open and large-scale environments. Figure 2 depicts its abstract
architecture, which is based on the FIPA architecture (http://www.fipa.org),
extending its main components. The FIPA Agent Management System and
the Directory Facilitator are replaced by the Organization Management Sys-
tem (OMS) and the Service Facilitator (SF), respectively. The SF is a service
manager that provides registration facilities for services provided by exter-
nal entities and facilitates service discovery and orchestration for potential
clients. On the other hand, the OMS is responsible for the management of
virtual organizations, taking control of their underlying structure, the roles
played by the agents inside the organization and the norms that rule the
system behavior. In this way Thomas differs from well-known agent plat-
forms, like JADE (http://jade.tilab.com), FIPA-OS (http://www.fipa.org),
APRIL (http://www.nar.fujitsulabs.com/app/), among others, offering en-
capsulation of services and extended support for the management of virtual
organizations. On the other hand, the main different with JADE WSIG
(JADE - Web Service Integration Gateway, the extension of JADE for im-
plementing SoMAS) [25] is that Thomas offers built-in services for manag-
ing service registration, discovery, composition, and orchestration, as well as
built-in security and tracing services.

In Thomas the SF can be configured as a single service or as a fed-
eration of SFs. This is the main component that provides the SoA sup-
port. The registration, search, composition and orchestration of services
are provided by the SF. It is implemented on an Apache Tomcat server
(http://tomcat.apache.org) and executed as an internal platform service.

The Enterprise Service Bus is implemented by means of the communica-
tion layer of Thomas (Platform Kernel). In it the communication manager
executes all the duties of the Enterprise Service Bus. Moreover, services can
be used by the pull-principle, what can also be event-based. Thomas pro-
vides, among others, built-in security services and tracing tools. The Tracing
Service Support allows the service clients to subscribe to an event associated
to a service. If the subscribed event occurs, the registered client will be
informed.

18

Thomas Platform

A2WS
Interface
Facilitator

OVE
System

Manager

OVE
Service

Manager
OVE Status

Monitor

Distributed
Workflow
Manager

Trust and
Security
Mediator

Collaboration
Mediator

Internet
W

eb
S

ervice
W

eb
S

ervice
Open Virtual Enterprise

Open Virtual Enterprise

Open Virtual Enterprise
W

eb S
ervices

P
latform

e-Manufacturing
Supporter

Agents

Customer
Mediator
Agents
(CMA)

CMA 1

CMA 3

CMA 2
CMA x CMA 5

CMA j

Figure 10: System Architecture of ASeM

4. Evaluation and Case-study

4.1. Case-study: an e-Manufacturing environment

In order to evaluate the proposed framework we executed an exper-
iment in which two different engineering teams, with the same expertise
on agent-based technology, developed a Case-study using ANEMONA, and
ANEMONA-S + Thomas respectively. The goal of the evaluation was to
figure out the easy to use and usefulness of the Service Guidelines, and the
completeness of the proposed framework. The Case-study is an Agent Sup-
ported e-Manufacturing environment (ASeM). ASeM is a Web-based applica-
tion in which different companies can take part into open virtual enterprises
(temporary cooperations between various partners and services to support a
set of activities).

Figure 10 shows the agents of ASeM. The lower level agents represent
the e-Manufacturing Supporter Agents, which are local agents that pro-
vide ASeM environment services for the execution of the Customer Mediator
Agents (CMAs). The OVE System Manager manages the different virtual
enterprises in ASeM. The OVE Status Monitor keeps track of the status of
running virtual enterprises. The OVE Service Manager is responsible for
managing the service directory in ASeM. The Collaborator Mediator agent

19

is responsible for mediating among CMAs interacting in collaboration sce-
narios. It facilitates the service and collaboration scenario discovery among
the registered users. The service provision rule of Thomas is maintained, i.e.
a first-in-first-out policy among the clients that are allowed to request the
service and have requested it. The Trust and Security Mediator maintains
trust and security data of the CMAs. The Distributed Workflow Manager
keeps track of the status of the work orders that are being processed in the
different virtual enterprises running in ASeM. The A2WS Interface Facilita-
tor provides the set of services required for a Web-based presentation layer
(JSON5 - JavaScript Object Notation is used for the dynamic creation of the
web-pages). A CMA keeps record of a manufacturing company description,
together with collaboration related data such as the set of services the com-
pany offers and its execution log. CMA provides a complete set of services
to its associated company: agent configuration for service updates, search
service for joining virtual enterprises , data management service, virtual en-
terprise status service, agreements query service, work-orders management
service, virtual enterprise exit service, etc. Figure 11 shows the CMA agent
model in which these services are specified. Whereas Figure 12 depicts the
cooperation diagram, with the steps and FIPA ACL messages, for a virtual
enterprise creation. In this particular sequence diagram it can be noticed the
interaction of the CMA with a group of supporter agents in order to create
a new virtual enterprise. In virtual enterprises scenarios security and trust
information is key. In order to support it the Trust and Security Mediator
keeps record of the potential customers of any virtual enterprise. This agent
maintains a trust and reputation model of the agents, based on the approach
defined in [26], in order to get a ranked list on the customers and their inter-
action in the system. In this way the OVE System Manager can create and
activate the virtual enterprise only if the requester CMA surpasses a given
trust and reputation value threshold.

Table 4, shows the overall results of the experiments with the two develop-
ment teams. The first team derived a system with zero service (the function-
alities of ASeM are provided as conventional agents capabilities). Whereas,
the second team derived a system implemented by a service-oriented multi-
agent system. This is the main reason for the results on the last column
about failed test to add/delete virtual enterprises. The user interaction with

5http://www.json.org

20

Customer
Mediator

InformOVEStatus

ManagingOVE

CustomerMediator

Goal Service

Notation

Association
relation

Agent

CreateNewOVE

DefineService

UpdateService

SearchOVE

RegisterWODataRegisterOVE

Offers

Offers

Offers

OffersOffers

OffersOffers

Plays

Pursues

Figure 11: CMA agent model

the second system was much more easy and very ”smooth” for adding and
deleting virtual enterprises during run-time. In terms of functionality and
number of holons, the second team derived a system with fewer holons (9 vs
13) that compiles similar services into fewer providers. In terms of develop-
ment time, the first team finished first the system. This could be because no
team was expert on SoA implementation and there was required two train-
ing weeks for the second team in order to get the services running in the
platform. Finally, the second team required only 2 iterations of the devel-
opment process to complete the system development thanks to the Service
Guidelines. The second team highlighted the usefulness of the built-in help
provided by the CASE tool and the automatic code generation of service pro-
files and processes. These two features helped to reduce the implementation
and configuration time. Nevertheless, for debugging activities both teams
agreed that the debugging tool provided by Thomas is not easy to use nor

21

ASeM::Company
CMA OVE System

Manager
OVE Service

Manager
Trust abd Security

Mediator

CreateNewOVE(ID,Purpose)

DefineWorkOrder()

RegisterWOData(Product,Quality,DueDate) WorkOrder
DefineVEWO(OwnerID,Purpose,Services)

RegisterOVE(OwnerID,WOID,Purpose)
GetTrustData(CustomerID,OVEType)

InformTrustData(CustomerID,Trust)

CreateOVE(OVEID,OwnerID,Purpose)

GetWOList(OVEID)
RegisterServices(OVEID,WOID)

GetServiceDescription(OVEID)
InformOVECreated(OVEID)

{if Trusted
Customer}

DeleteWOD(CustomerID,OVEID)
Inform(OVERefused){Not Trusted}

InformOVEStatus()

Figure 12: Cooperation diagram for virtual enterprise creation

configurable (this is an aspect already identified in previous developments
and is being re-designed in order to provide a better tool). It is also impor-
tant to point out that the second team recommended to add a CASE tool
module with pre-built interaction patterns for: team formation, monitoring
and deletion for different typical manufacturing scenarios, such as production
line, maintenance, supply chain, warehousing, delivery, etc.

The second team was asked about how easy and/or hard is to combine
services with agents using ANEMONA-S + Thomas. All the members of the
team agreed that the Service Specification Templates were easy and, some-
times, straightforward to complete from the Agent Model and Interaction
Model. Moreover, the automatic code generation of Thomas for service pro-
file and process reduces the implementation work to an activity of adjusting
and completing minor details. In conclusion the second team stated that
at the end combining services with agents was not hard, and that SoMAS

22

Table 4: Case-study experiment results for two teams of 3 members each
Team Service

bkgd
Time
to
finish

Training
Time

Total
Agents

Total
Services

Total
Itera-
tions

Failed
Tests

ANEMONA No 2,5
month

0 13 0 5 23/100

ANEMONA-S +
Thomas

No 3,2
month

0,5
month

9 12 2 2/100

provided more flexibility to the system they developed.

4.2. Qualitative Evaluation

In order to analyze and compare ANEMONA-S + Thomas with other
approaches we have used a MAS evaluation framework called MASEV [27].
This framework allows analyzing and comparing methods and tools for devel-
oping MAS in terms of general requirements, offered method guidelines and
the support for the integration of MAS and services. After this analysis6 we
can conclude that ANEMONA-S + Thomas offers an extensive support for
integrating services into SoIMS (outperforming 5 reviewed methods). Also
we have observed that ANEMONA-S + Thomas differs from other proposals
by providing specific guidelines for the manufacturing domain (outperform-
ing 15 reviewed methods).

5. Conclusions

In this work it is proposed a specific framework for developing SoIMS. The
proposed framework is made up of a new methodology called ANEMONA-
S and the Thomas platform. The proposed framework provides complete
support for SoIMS development and execution. The proposed approach was
validated by means of an experiment in which a Web-based application for
virtual enterprise definition and execution was implemented. The results of
the experiment show that the framework help to develop a correct and com-
plete system. Moreover, the specific guidelines for SoIMS help the system
developer to execute less process iterations and to identify fewer agents that
implement the same number of system functions. In the qualitative evalua-
tion the framework was analyzed and compared with other approaches using
a MAS evaluation tool. From this evaluation the framework outperformed

6The details of the analysis are available at http://masev.gti-ia.dsic.upv.es

23

others approaches in terms of the offered support for identifying and describ-
ing services and also on the service specific guidelines support for SoIMS.

As future works there are two lines identified: evaluation and enhance-
ment/addition. About evaluation, more work is required to evaluate and
validate the framework in real industrial environment having real industrial
manufacturing conditions in order to assure a given quality and readiness
level to the industry. On the other hand, it has been identified a set of
enhancement/addition in order to be able to connect the framework with
other tools and environments. Such as the tool proposed in [16], the ap-
proach presented in [7] and the architecture described in [33]. IMC-AESOP
[34] and SOCRADES [35] are two promising architectures for cloud-based
industrial Cyber-Physical Systems. Analyzing the feasibility and complete-
ness of the models of ANEMONA-S for developing applications in these two
architectures is also foreseen as an interesting future work.

[1] W. Shen, Q. Hao, S. Wang, Y. Li, H. Ghenniwa, An agent-based service-
oriented integration architecture for collaborative intelligent manufac-
turing, Robotics and Computer-Integrated Manufacturing 23 (3) (2007)
pp. 315–325.

[2] A. Koestler, The Ghost in the Machine, Arkana Books, London, (1971).

[3] A. Giret, V. Botti, Holons and Agents, Journal of Intelligent Manufac-
turing 15 (2004) pp. 645–659.

[4] P. Leitao, V. Marik, P. Vrba, Past, Present, and Future of Industrial
Agent Applications, IEEE Transactions on Industrial Informatics 9 (4)
(2013) pp. 2360–2372.

[5] M. Huhns, M. Singh, et.al., Research directions for service-oriented mul-
tiagent systems, IEEE Internet Computing. 9 (1) (2005) pp. 52–58.

[6] L. Ribeiro, J. Barata, P. Mendes, MAS and SOA: Complementary Au-
tomation Paradigms., in: Azevedo, A. (ed.) Innovation in Manufacturing
Networks. IFIP, vol. 266, Boston, (2008) pp. 259–268.

[7] P. Leitao, Towards Self-organized Service-Oriented Multi-agent Systems,
in: T. Borangiu et al. (Eds.): Service Orientation in Holonic and Multi
Agent, SCI 472, Berling, (2013) pp. 41–56.

24

[8] A. Giret, V. Botti, ANEMONA-S + Thomas: A Framework for Develop-
ing Service-Oriented Intelligent Manufacturing Systems, in: T. Borangiu
et al. (eds.), Service Orientation in Holonic and Multi-agent Manufac-
turing, Studies in Computational Intelligence 594, Berling, (2015) pp.
61–70.

[9] S. Karnouskos, A. W. Colombo, Architecting the next generation of
service-based SCADA/DCS system of systems, in: 37th Annual Confer-
ence of the IEEE Industrial Electronics Society (IECON 2011), IEEE
Press, Melbourne, Australia, (2011) pp. 359–364.

[10] T. S. Baines, H. W. Lightfoot, S. Evans, et.al., State-of-the-art in
product-service systems, Journal of Engineering Manufacture 221 (10)
(2007) pp. 1543–1552.

[11] J. Gao, Y. Yao, V. Zhu, L. Sun, L. Lin, Service-oriented manufactur-
ing: a new product pattern and manufacturing paradigm, Journal of
Intelligent Manufactruing 22 (2011) pp. 435–446.

[12] A. Giret, V. Botti, Engineering Holonic Manufacturing Systems, Com-
puters in Industry 60 (6) (2009) pp. 428–440.

[13] D. V. E., Service discovery in Open Service-Oriented Multi-Agent Sys-
tems, AI Communication 27 (2014) pp. 291–292.

[14] O. M. G. OMG, Software Process Engineering Metamodel Specification
Version 1.0, http://www.omg.org/docs/formal/02-11-14.pdf.

[15] N. Ruiz, A. Giret, V. Botti, V. Feria, An Intelligent Simulation Environ-
ment for Manufacturing Systems, Computers & Industrial Engineering
76 (2014) pp. 148–168.

[16] C. Morariu, O. Morariu, T. Borangiu, Modeling and Simulation for
Service-oriented Agent Based Manufacturing Systems, in: 2012 IEEE
International Conference on Automation Quality and Testing Robotics
(AQTR), IEEE, (2012) pp. 44–49.

[17] E. Argente, V. Botti, C. Carrascosa, A. Giret, V. Julian, M. Rebollo,
An Abstract Architecture for Virtual Organizations: The THOMAS
approach, Knowledge and Information Systems 29 (2) (2011) pp. 379–
403.

25

[18] V. Botti, A. Giret, ANEMONA: A Multi-agent Methodology for Holonic
Manufacturing Systems, Springer. Springer Series in Advanced Manu-
facturing, (2008).

[19] H. Van Brussel, J. Wyns, P. Valckenaers, L. Bongaerts, P. Peeters, Ref-
erence Architecture for Holonic Manufacturing Systems: PROSA, Com-
puters In Industry 37 (1998) pp. 255–274.

[20] JADE, http://jade.tilab.com/.

[21] F. Maturana, D. Norrie, Multi-Agent Mediator Architecture for Dis-
tributed manufacturing, Journal of Intelligent Manufacturing 7 (1996)
pp. 257–270.

[22] IEC, International Electrotechnical Commission: Function Blocks, Part
1 - Architecture. PAS 61499-1, (2000).

[23] C. Legat, B. Vogel-Heuser, An Orchestration Engine for Services-
Oriented Field Level Automation Software, in: T. Borangiu et al. (eds.),
Service Orientation in Holonic and Multi-agent Manufacturing, Studies
in Computational Intelligence 594, Berling, (2015) pp. 71–80.

[24] C. Morariu, O. Morariu, T. Borangiu, Customer order management in
service oriented holonic manufacturing, Computers in Industry 64 (2013)
pp. 1061–1072.

[25] F. Bellifemine, G. Caire, D. Greenwood, The JADE Web Services In-
tegration Gateway, in: Developing Multi-Agent Systems with JADE,
John Wiley & Sons, Chichester, (2007) pp. 181–205.

[26] A. Koster, J. Sabater-Mir, M. Schorlemmer, Opening the black box of
trust: Reasoning about trust models in a bdi agent, Journal of Logic
and Computation (JLC) 23 (1) (2013) pp. 25–58.

[27] E. Garcia, A. Giret, V. Botti, Evaluating Software Engineering Tech-
niques for Developing Complex Systems with Multiagent Approaches,
Information and Software Technology 53 (2011) pp. 494–506.

[28] P. Leitao, J. M. Mendes, A. Bepperling, D. Cachapa, A. Colombo,
F. Restivo, Integration of virtual and real environments for engineering
service-oriented manufacturing systems, Journal of Intelligent Manufac-
turing 23 (2012) pp. 2551–2563.

26

[29] S. Maisenbacher, D. Weidmann, D. Kasperek, M. Omer, Applicability
of Agent-Based Modeling for Supporting Product-Service System De-
velopment, Procedia CIRP 16 (2014) pp. 356–361.

[30] Y. Dubromelle, F. Ounnar, P. Pujo, Service oriented architecture for
holonic isoarchic and multicriteria control, in: T. Borangiu, A. Thomas,
D. Trentesaux (Eds.), Service Orientation in Holonic and Multi-Agent
Manufacturing Control. SOHOMA 2011, Springer-Verlag, Berlin, (2012)
pp. 155–168.

[31] WBF, THE WBF BOOK SERIES-APPLYING ISA 95. Implementation
Experiences. Wbf Book Series, World Batch Forum, Wbf, Momentum
Press, (2010).

[32] A. Colombo, J. Mendes, P. Leitao, S. Karnouskos, Service-oriented
SCADA and MES Supporting Petri nets based Orchestrated Automa-
tion Systems, in: 38th Annual Conference of IEEE Industrial Electronics
(EICON 2012), (2012) pp. 6144–6150.

[33] K. Nagorny, A. Colombo, U. Schmidtmann, A service- and multi-agent-
oriented manufacturing automation architecture: An IEC 62264 level 2
compliant implementation, Computers in Industry 63 (2012) pp. 813–
823.

[34] S. Karnouskos, A. Colombo, T. Bangemann, K. Manninen, R. Camp,
M. Tilly, M. Sikora, F. Jammes, J. Delsing, J. Eliasson, P. Nappey,
J. Hu, M. Graf, The imc-aesop architecture for cloud-based indus-
trial cyber-physical systems, in: A. W. Colombo, T. Bangemann,
S. Karnouskos, J. Delsing, P. Stluka, R. Harrison, F. Jammes, J. L.
Lastra (Eds.), Industrial Cloud-Based Cyber-Physical Systems, Springer
International Publishing, (2014) pp. 49–88.

[35] L. de Souza, P. Spiess, D. Guinard, M. Kohler, S. Karnouskos, D. Savio,
Socrades: A web service based shop floor integration infrastructure, in:
C. Floerkemeier, M. Langheinrich, E. Fleisch, F. Mattern, S. Sarma
(Eds.), The Internet of Things, Vol. 4952 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, (2008) pp. 50–67.

27

