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Abstract

In this paper we present linear quadratic methods for optimal nonlinear
control problems. These techniques lead to a matrix Riccati differential equation
that should be solved numerically. The solution is a symmetric positive definite
time-dependent matrix which controls the stability of the equation for the state.
This property is not preserved, in general, by the numerical integrators and we
propose second order exponential integrators methods which unconditionally
preserve this property and analyse higher order exponential methods. This
method can be applied to the integration of nonlinear problems if they are
previously appropriately linearized. The algorithm obtained is applied for the
control of a quadrotor which is an unmanned flying vehicle. Both the trajectory
following as the correction of the angles have been achieved.
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1. Introduction

Nonlinear control problems have attracted during the last years the interest
of researchers in different fields like control of airplanes, helicopters, rockets,
satellites, etc. Linear quadratic optimal control problems have been extensively
studied, but most realistic problems are inherently nonlinear. In addition, non-
linear control theory can improve the performance of the controller and enable
tracking of aggressive trajectories [13].

To solve nonlinear optimal control problems requires the numerical inte-
gration of systems of coupled non-autonomous and nonlinear equations with
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boundary conditions, where the equations for the state vector and for the con-
trol vector are coupled. Simple, fast, accurate and reliable numerical algorithms
are of great interest for real time integrations. It is usual to solve the nonlinear
problems by linearization, which then have to be solved using linear quadratic
(LQ) methods. In general, they usually require the integration of matrix Ric-
cati differential equations (RDEs) iteratively many times. These RDEs usually
present an algebraic structure which make the solutions to be symmetric positive
definite matrices which play an important role for the qualitative and quanti-
tative solutions of both the control as well as the state vector (e.g. to stabilize
the equation for the state vector).

Geometric numerical integrators are numerical algorithms which preserve
most of the qualitative properties of the exact solution. However, some qual-
itative properties like preservation of positivity (which is a relevant property
in this problem) is not unconditionally preserved by most methods, included
geometric integrators. We show that some low order exponential integrators
unconditionally preserve this property, and higher order methods preserve it
under mild constraints on the time step. We refer to these methods as structure
preserving integrators, and they allow to use relatively large time steps while
showing a high performance for stiff problems or problems which strongly vary
along the evolution.

It is usual to solve the nonlinear problems by linearization, and this can be
done in different ways. We consider three techniques to linearize the equations
and the linear equations are then numerically solved using some exponential
integrators which preserve the relevant properties of the solution. Since the
nonlinear problems are solved by linearization, we first consider in detail the
linear problem.

The paper is organized as follows. In section 2 we consider in detail the lin-
ear case. We study the algebraic structure of the equations and the qualitative
properties of the solutions. We next consider some exponential integrators and
we analyze the preservation of the qualitative properties of the solution by the
proposed methods. In section 3 we consider the nonlinear case which, after lin-
earization, can be treated as a particular case of the non-autonomous linear one.
Finally, in section 4, the numerical algorithm is applied to a particular example
(the control of the flight of a quadrotor corresponding to an unmanned micro-
helicopter) in order to test the accuracy of the exponential methods. Numerical
results and conclusions are included.

2. Linear quadratic (LQ) methods in optimal control problems

Let us consider the general LQ optimal control problem

min
u∈L2

∫ tf

0

(

XT (t)Q(t)X(t) + uT (t)R(t)u(t)
)

dt (1a)

subject to Ẋ(t) = A(t)X(t) +B(t)u(t), X(0) = X0, (1b)
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where Ẋ(t) is the time-derivative of the state vector X(t) ∈ R
n, u(t) ∈ R

m is
the control, R(t) ∈ R

m×m is symmetric and positive definite, Q(t) ∈ R
n×n is

symmetric positive semi-definite, A ∈ R
n×n, B ∈ R

n×m, and MT denotes the
transpose of a matrix M .

Problems of the type (1) are frequent in many areas like game theory, quan-
tum mechanics, economy, environment problems, etc., see [6, 18], or in engi-
neering models [2, ch. 5].

The optimal control problem (1) is solved, assuming some controllability
conditions, by the linear feedback controller [21]

u(t) = −K(t)X(t), (2)

with the gain matrix
K(t) = R−1(t)BT (t)P (t) ,

and P (t) verifying the matrix RDE

Ṗ (t) = −P (t)A(t) −AT (t)P (t) + P (t)B(t)R−1(t)BT (t)P (t)−Q(t), (3)

with the final condition P (tf ) = 0. The backward time integration of this
equation with Q(t) and R(t) symmetric positive definite matrices has as solution
P (t) a symmetric and positive definite matrix [1] (if Q(t) is positive semidefinite
it requires the problem to be stabilizable and detectable). To compute the
optimal control, u(t), we solve for P (t) and plugging the control law into (1b)
yields a linear equation for the state vector

Ẋ(t) =
(

A(t)−B(t)R−1(t)BT (t)P (t)
)

X(t), X(0) = X0

to be integrated forward in time with which the control is readily computed.
Notice that S(t) = B(t)R−1(t)BT (t) is a semi-definite positive symmetric ma-
trix (positive definite if rank B = n) and P (t) is a positive definite matrix.
Thus, its product is also a semi-positive matrix, and this is very important for
the stability of the solution for the state vector and ultimately for the control.
A numerical integrator which do not preserve the positivity of P (t) can lead
into unstable methods when solving the state vector.

In this paper, exponential integrators, which belong to the class of Lie group
methods (see [7, 19] and references therein), are proposed in order to solve the
RDE (3). They are geometric integrators because they preserve some of the
qualitative properties of the exact solution and also frequently provide accurate
results.

2.1. Structure preserving integrators

We are interested in the search of numerical integrators which preserve both
the symmetry as well as the positivity of P (t). While symmetry is a property
preserved by most of the methods, the preservation of positivity is a more chal-
lenging task.
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For our analysis, we consider convenient to review some results from the
numerical integration of differential equations. Given the ordinary differential
equation (ODE)

ẋ = f(x, t), x(t0) = x0 ∈ R
n (4)

the exact solution at time t = t0 + h can formally be written as a map from the
initial conditions to the final solutions, x(t0 + h) = Φh(x0) and, for sufficiently
small h, one can also consider it as the exact solution at time t = t0 + h of an
autonomous ODE

ẋ = fh(x), x(t0) = x0

where fh is the vector field associated to the Lie operator
1

h
log(Φh).

In a similar way, a numerical integrator for solving the equation (4) which
is used with a time step, h, can be seen as the exact solution at time t = t0 + h
of a perturbed problem (backward error analysis)

ẋ = f̃h(x), x(t0) = x0.

If f̃h − fh = O(hp+1) we say that the method is of order p. The qualitative
properties of the exact solution, Φh, is related to the algebraic structure of
the vector field fh. If the the vector field, f̃h, associated numerical integrator,
shares the same algebraic structure, the numerical integrator will preserve these
qualitative properties.

Given the RDE

Ṗ = PA(t) +AT (t)P − PS(t)P +Q(t), P (t0) = 0

with Q(t), S(t) symmetric and positive definite matrices then P (t), for t > t0,
is also a symmetric and positive definite matrix. This equation is equivalent to
(3) since in that case the equation is integrated backward in time.

A numerical integrator which can be considered as the exact solution of a
perturbed matrix RDE

Ṗ = PÃh + ÃT
hP − PS̃hP + Q̃h, P (t0) = 0

with Q̃h, S̃h symmetric and positive definite matrices preserves the symmetry
and positivity of the exact solution. The same result applies if the numerical
integrator is given by a composition of maps such that each one, separately, can
be seen as the exact solution of a matrix RDE with the same structure.

We will refer to these methods as positive preserving integrators. If this pro-
perty is preserved for all h > 0, we say it is unconditionally positive preserving
and, if it exists h∗ > 0 such that this property is preserved for 0 < h < h∗ we
will refer to it as conditionally positive preserving.

In general, standard methods do not preserve positivity. We show, however,
that some second order exponential integrators preserve this positivity uncon-
ditionally and higher order ones are conditionally preserving the property for a
relatively large range of values of h∗ which depends on the smoothness in the
time dependency of the matrices A(t), S(t), Q(t).
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At this stage, it is convenient to write the RDE (3) as a linear differential
equation

d

dt

[

V (t)
W (t)

]

=

[

−A(t)T −Q(t)
−S(t) A(t)

] [

V (t)
W (t)

]

,

[

V (tf )
W (tf )

]

=

[

Pf

I

]

, (5)

where Pf = 0, S(t) = B(t)R−1(t)BT (t), and the solution P (t) of problem (3)
to be integrated backward in time is given by

P (t) = V (t)W (t)−1, P (t), V (t),W (t) ∈ R
n×n,

in the region whereW (t) is invertible (see, for instance, [7] or [20], and references
therein). If R and Q are positive definite matrices, this problem has always
solution.

It is then clear that if a numerical integrator for the equation (5) can be seen
as the exact solution of an autonomous perturbed linear equation

d

dt

[

V (t)
W (t)

]

=

[

−ÃT
h −Q̃h

−S̃h Ãh

] [

V (t)
W (t)

]

,

[

V (tf )
W (tf )

]

=

[

Pf

I

]

,

where Q̃h and S̃h are symmetric and positive definite matrices, then the numer-
ical solution is symmetric and positive definite.

In general, high order standard methods like Runge-Kutta methods do not
preserve positivity. Explicit methods applied to the linear problem do not pre-
serve positivity unconditionally, but to show this result for implicit methods
requires a more detailed analysis, and it is stated in the following theorem.

Theorem 2.1. The second order implicit midpoint and trapezoidal Runge-Kutta
methods do not preserve the positivity unconditionally for the solution of the
RDE (5).

Proof 2.2. It suffices to prove it for the scalar non-autonomous problem

ṗ = −q − 2a(t) p+ s p2, p(tf ) = 0

with q, s > 0 and a : [0, tf ] → R.
Firstly, we study the implicit midpoint method for which one iteration back-

wards in time is given by

pn+1 = −pn +
−2 + 2ah+ 2

√

(−1 + a(tf − hn
2 )h)2 + h(2pn + hq)s

hs
.

The first iteration starting from the initial value p0 = 0 yields p1 > 0. A
simple way to produce a negative value p2 < 0 is given by letting a(t) = 0
for t ∈ [tf − h, tf ]. Then, p2 < 0 is equivalent to a(tf − 3h/2) =: a < 0
and h > −2/a. Given a time-step h, it is thus easy to construct a continuous
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Figure 1: h = 1/2

(smooth) function a(t) such that positivity is not preserved. For the trapezoidal
rule, letting a(tf − 2h) = a(tf − 3h) = a < 0, the condition for p3 < 0 reads

a <

(

4 + h2q
)

(

−h2q + 2
(

5 +
√

1 + 2h2q
))

4h (−4 + h2q)
∧ h <

2√
q
.

a stronger (sufficient) criterion is Comment:(which we can even make stronger
to simplify more (and always remove the more accurate previous restriction))

a < − 3

h
+ hq

(

−1

4
+

6

−4 + h2q

)

∧ h <
2√
q
.

We remark, that, given a < 0, the method produces negative values p3 for a
range of time-steps h, i.e., for larger time-steps h, it is less prone to negativity.

Comment:Write about results for trapezoidal rule, and why we dont use it
later on, also write about possibly complex results in intermediate steps

If we are interested on high order numerical integrators, a different class of
methods has to be explored. We consider a particular class of exponential
integrators referred as Magnus integrators (see [4] and references therein).

2.2. Magnus integrators

Magnus integrators can be considered as a special class of exponential in-
tegrators as well as Lie group integrators. When they are used to numerically
solve, e.g. the eq. (5), one can interpret the numerical solution as the exact solu-
tion of a slightly perturbed linear system with a similar structure (i.e. replacing
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in each time step the time-dependent matrices Q(t), R(t), . . . by perturbed con-
stant ones Q̃h, R̃h, . . ., obtained from appropriate time averaging) and then in
some cases it is possible to guarantee that the numerical solution for P (t) is, for
example, a symmetric and positive definite matrix.

Given the general linear equation

y′ =M(t) y , y(t0) = y0 ; (6)

with y ∈ R
p, and if we denote by Φ(t, t0) ∈ R

p×p the fundamental solution, such
that y(t) = Φ(t, t0)y(t0), the Magnus expansion gives us the formal solution
(under certain convergence conditions, see [4] and references therein) as

Φ(t, t0) = exp (Ω(t, t0))

where Ω(t, t0) =
∑∞

n=1 Ωn(t, t0) and each Ωn(t, t0) is an element of the Lie
algebra generated by M(t) given by n-dimensional integrals involving n − 1
nested commutators ofM(t) at different instants. The first two terms are given
by

Ω1(t, t0) =

∫ t

t0

M(s) ds, Ω2(t, t0) =
1

2

∫ t

t0

dt1

∫ t1

t0

[M(t1),M(t2)] dt2

where [A,B] = AB −BA.
In the region of convergence of the Magnus expansion, the exact solution

at time t = t0 + h is equivalent to the exact solution of the autonomous linear
equation

y′ =
1

h
Ω(t0 + h, t0) y , y(t0) = y0 .

It is well known that the set of matrices
[

A B
C −AT

]

(7)

with A,B,C ∈ R
n×n and B = BT , C = CT form the algebra of symplectic

matrices. This algebraic property is preserved by the commutators and then any
truncated Magnus expansion preserves symplecticity for this problem. However,
the additional property about the positivity (or negativity) on the skewdiagonal
matrices B,C is not always guaranteed when the series is truncated. We analyse
the low order methods and show that it is possible to build second order Magnus
integrators which unconditionally preserve this positivity.

The first term in the expansion, applied to (5), which do not contain com-
mutators is given by

Ω1(t, t0) =













−
∫ t

t0

A(s)T ds −
∫ t

t0

Q(s) ds

−
∫ t

t0

S(s) ds

∫ t

t0

A(s) ds













. (8)
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Then, if we truncate the series to the first term, and approximate the in-
tegrals for a time interval t ∈ [t0, t0 + h] using a quadrature rule of second or
higher order, we obtain a second order method.

It is well known that, if Q(t) is a symmetric positive definite matrix for

t ∈ [t0, t0 + h] then Q̂h =

∫ t0+h

t0

Q(s) ds is also a symmetric positive definite

matrix. Suppose now that the integral is approximated using a quadrature rule

Q̃h ≡ h

k
∑

i=1

biQ(t0 + cih) ≃
∫ t0+h

t0

Q(s) ds

with ci ∈ [0, 1], i = 1, . . . , k. If
∑

i bi > 0 , we have:

a) If bi > 0, i = 1, . . . , k, then Q̃h is a symmetric positive definite matrix.

b) If ∃ bj < 0, for some value of j and ‖Q(tm)−Q(tn)‖ < C|tm− tn|, ∀tm, tn ∈
[t0, t0 + h], then ∃ h∗ > 0 such that Q̃h is a symmetric positive definite
matrix for 0 < h < h∗, and h∗ depends on C.

The same results also apply to S̃h.
To have a second order method which preserves positivity, it suffices to

consider the first term in the Magnus expansion (8) and to approximate the
integrals by a second or higher order rule with the constraint that all bi > 0.
The most natural choices are the midpoint rule

Ψ
[2]
h = exp (hM(t+ h/2)) = Φ(t+ h, t) +O(h3),

or the trapezoidal rule

Ψ
[2]
h = exp

(

h

2
[M(t+ h) +M(t)]

)

= Φ(t+ h, t) +O(h3). (9)

However, from the computational point of view, in order to save evaluations
on the numerical algorithm, we found more efficient the trapezoidal rule. If we
consider the RDE (3) that corresponds to (6) with the data (5) and consider
an equidistant time grid tn = t0 + nh , 0 ≤ n ≤ N , with constant time step
h = (tf − t0)/N and taking into account that this equation has to be solved
backward in time, we obtain

[

Vn
Wn

]

= exp

(

−h
2
[M(tn) +M(tn+1)]

)[

Vn+1

Wn+1

]

⇒ P̃n = VnW
−1
n ,

By construction, P̃n is a symmetric positive definite matrix. In addition, it is
also a time symmetric second order approximation to P (tn). In this way, the
matrix functions A(tn), B(tn), Q(tn), R(tn) are computed at the same mesh
points as the approximations P̃h of P (t) are computed and, as we will see, they
can be reused for the forward time integration of the state vector.
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Let us consider the state vector to be integrated forward in time which takes
the form

Ẋ = (A(t) − S(t)P̃h)X

where we denote by P̃h the numerical approximations to P (t) computed on the
mesh and P̃h,n ≃ P (tn). Notice that at the instant t = tf − h we have that

P̃h,N−1 = P (tf − h) +O(h3) (local error) but at t = t0, after N steps, we have

P̃h,0 = P (t0)+O(h2) (global error). This accuracy suffices to get a second order
approximation for the numerical approximation to the state vector.

If we use the same Magnus expansion for the numerical integration of the
state vector with the trapezoidal rule we have the algorithm

Xn+1 = exp

(

h

2
[Dn+1 +Dn]

)

Xn , Dm = Am − SmP̃h,m, m = n, n+ 1

where Am = A(tm), Sm = S(tm).
Finally, the controls which allow us to reach the final state in a nearly optimal

way are
un = −R−1(tn)B

T (tn)PnXn .

Higher order Magnus integrators. Let us now consider high order Magnus inte-
grators. They usually require to compute matrix commutators. If we truncate
up to the second term in the Magnus expansion, Ψh ≡ exp (Ω1 +Ω2), it agrees
with exact solution up to order four, i.e. Ψh = Φ(t + h, t) + O(h5). We have
that Ω1+Ω2 belong to the algebra of symplectic matrices, as given in (7), where
the skewdiagonal matrices take an involved form. It is possible to show that it
conditionally preserves positivity, but it is not unconditionally preserved as it
happens with exp (Ω1).

For simplicity in the analysis, we consider commutator-free Magnus integra-
tors (see [4, 5] and references therein). If we denote

M (0) =

∫ tn+h

tn

M(s) ds, M (1) =
1

h

∫ tn+h

tn

(

s− (tn +
h

2
)
)

M(s) ds

we have that the following commutator-free composition gives an approximation
to fourth-order

Ψ
[4]
CF = exp

(

1

2
M (0) + 2M (1)

)

exp

(

1

2
M (0) − 2M (1)

)

= Φ(t0 + h, t0) +O(h5).

If we approximate the integrals using the fourth-order Gaussian quadrature rule
we have

Ψ
[4]
G = exp (h(βM1 + αM2)) exp (h(αM1 + βM2)) ,

where Mi ≡ M(tn + cih), i = 1, 2, c1 = 1
2 −

√
3
6 , c2 = 1

2 +
√
3
6 , α = 1

4 −
√
3
6 =

−0.038 . . . < 0, β = 1
4 +

√
3
6 . This composition will not preserve positivity

unconditionally when applied to solve the RDE because α < 0. However, since
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α+ β = 1
2 the positivity will be preserved for relatively large values of the time

step.
If we approximate the integral using the Simpson rule we have

Ψ
[4]
G = exp

(

h

12
(−M1 + 4M2 + 3M3)

)

exp

(

h

12
(3M1 + 4M2 −M3)

)

,

where M1 ≡ M(tn),M2 ≡ M(tn + h/2),M3 ≡ M(tn + h). As previously, one
of the coefficients is again negative and it does not preserve positivity uncondi-
tionally if we apply the method to solve the RDE.

If we first integrate backward in time the matrix RDE with one of the fourth-
order commutator-free methods and next we want to use the same method
for the state vector, we need to use a time step twice larger for the forward
integration (prefearably with the Simpson rule). The main goal of this paper is
to present a simple, fast, accurate and reliable numerical scheme for nonlinear
problems. As we will see, nonlinear problems are solved after linearization, and
the linear equations are solved iteratively. The solution at each iteration is
plugged into the following iteration, and this requires to use a fixed mesh for
all methods. For this reason, we consider that the most convenient algorithm
is the second order Magnus integrators with the trapezoidal rule, being this the
methods used in the numerical examples.

3. The nonlinear control problem

Many problems in engineering are described by optimal control problem of
the form

min
u∈L2

∫ tf

0

(

XT (t)Q(t,X(t))X(t) + uT (t)R(t,X(t))u(t)
)

dt (10a)

subject to Ẋ(t) = fA (t,X (t)) + fB (t,X (t) , u (t)) , X(0) = X0. (10b)

This nonlinear optimal control problem is considerably more involved than
the linear case. It is then usual to solve the nonlinear problem by linearization,
and this can be done in different ways. In the following we present three of
them and compare their performance when the linear equations are solved using
exponential integrators.

Quasilinearization. For fA(t, 0) = 0 and fB(t,X, u) 6= 0 for all t,X in the
appropriate domains, the state equation (10b) can be written in a non-unique
way as

Ẋ(t) = A(t,X)X(t) +B(t,X, u)u(t), X(0) = X0. (11)

The formulation (11) is the basic ingredient for the State Dependent Riccati
Equation (SDRE) control technique [15, 16]. Then, formal similarity to the
linear problem (1) motivates the imitation of the optimal LQ controller by
defining

u(t) = −R−1(t)BT (t,X(t))P (t,X)X(t) (12a)

10



where P (t,X) solves the now state-dependent algebraic Riccati equation

0 = −PA(t,X)−A(t,X)TP +PB(t,X)R(t,X)−1B(t,X)TP −Q(t,X). (12b)

One has to choose the unique positive definite solution of the algebraic Riccati
equation and, combining (12a) with (10b), the closed-loop nonlinear dynamics
are given by

Ẋ =
(

A(t,X)−B(t,X)R(t,X)−1B(t,X)TP (t,X)
)

X, X(0) = X0. (12c)

The usual approach is to start from X(0) = X0, and then to advance step by
step in time by first computing P from (12b) at each step and then applying
the Forward Euler method on (12c). The application of higher order methods,
such as Runge-Kutta schemes, requires to solve implicit systems with (12b) and
can thus be costly. In addition, if one is interested in aggressive trajectories,
the algebraic equation (12b) can considerably differ from the solution of the
corresponding Riccati differential equation, which affects to the solution of the
state vector, X , and ultimately the choice of the control in (12a).

Waveform relaxation. Alternatively, we can linearize (12c), by iterating

d

dt
Xn+1 =

(

A(t,Xn)−B(t,Xn)R(t,Xn)−1B(t,Xn)TP (t,Xn)
)

Xn+1, (13)

We start with a guess solution X0(t), and iteratively obtain a sequence of solu-
tions, X1(t), X2(t), . . . , Xn(t). The iteration is stops once consecutive solutions
differ by less than a given tolerance. Here, P (t,Xn(t)) at each iteration is ob-
tained from

Ṗ = −PAn(t)−An(t)TP+PBn(t)Rn(t)−1Bn(t)TP−Qn(t), P (tf ) = 0, (14)

with An(t) ≡ A(t,Xn(t)), Bn(t) ≡ B(t,Xn(t)), etc.
This procedure is similar to what is known as waveform relaxation [24],

however, the backward integration for P limits the parallelizability in this ap-
plication. This approach corresponds to freezing the nonlinear parts in (11) at
the previous state and then applying the optimal control law (2). It is worth
noting that this technique can handle inhomogeneities by slightly adapting the
control law, at the cost of solving an inhomogeneous linear system, see below.
The algorithm is illustrated in Table 1.

Taylor-type linearization. Similarly to [22], we can Taylor-expand the vector
field in (10b) around an approximate solutionXn(t) and use optimal LQ controls
for the approximated equation. The iteration step reads then

Ẋn+1(t) = Ān(t)Xn+1(t) + B̄n(t)un+1(t) + C̄n(t), (15)

where

Ān(t) = DXfA (t,Xn(t)) +DXfB (t,Xn(t), un(t))
B̄n(t) = DUfB(t,X

n, Un)
C̄n(t) = fA(t,X

n) + fB(t,X
n, un)−

(

Ān(t) ·Xn + B̄n(t) · un
)

,
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A1: waveform relaxation A2: linearization

n := 0; guess : X0(t), u0(t)
do

n := n+ 1
compute : An−1(t), Bn−1(t)
solve (tf → 0) : eq. (14) for Pn−1

solve (0 → tf ) : eq. (13) for Xn

while |Xn −Xn−1| > tolerance

Check for feasibility of Xn

n := 0; guess : X0(t), u0(t)
do

n := n+ 1
compute : Ān−1(t), B̄n−1(t), C̄n−1(t)
solve (tf → 0) : eq. (3) for Pn−1

solve (tf → 0) : eq. (16) for V n

solve (0 → tf ) : eq. (15) for Xn

while |Xn −Xn−1| > tolerance

Check for feasibility of Xn

Table 1: Algorithm (A1) for the waveform relaxation and algorithm (A2) for the Taylor-type
linearization.

and DX denotes the derivative with respect to X , etc. One starts with an
initial guess, X0(t) and the iteration stops once consecutive iterations differ by
less than a given tolerance.

The inhomogeneity C̄n can be treated as a disturbance input and compen-
sated by the controller [10]. The optimal control then becomes

un+1(t) = −Rn(t)
−1
B̄n(t)

T (

Pn(t)Xn+1(t) + V n(t)
)

where Pn(t) satisfies (3) with replacements A → Ān and B → B̄n, etc. and
V n(t) is given by

V̇ =
(

PB̄R−1B̄T − ĀT
)

V − PC̄, V (tf ) = 0 (16)

at each iteration. The linearization procedure is summarized in Table 1.

NOTE: We can solve non homogeneous equations with Magnus integrators as
follows. Given the non-homogeneous equation

y′ =M(t) y + C(t), y(t0) = y0 ;

it can be formulated as a homogeneous one in the following way [7],

d

dt

[

y
1

]

=

[

M(t) C(t)
0Tn 0

] [

y
1

]

, [y(0), 1]T = [y0, 1]
T ,

where 0Tn = [0, . . . , 0] ∈ R
n.

4. Modeling the control of a quadrotor UAV

The optimal control of Unmanned Air Vehicles (UAV) has attracted a great
attention in recent years [11, 14]. Helicopters are classified as Vertical Take Off
Landing (VTOL) aircraft and are among the most complex flying objects be-
cause their flight dynamics is nonlinear and their variables are strongly coupled.

12



In this section, we address the optimal control of a quadrotor, i.e., a vehicle
with four propellers, whose rotational speeds are independent, placed around a
main body [3, 9, 12, 14, 17]. Linear techniques to control the system have been
frequently used. However, to improve the performance, the nonlinear nature of
the quadrotor has to be taken into account.

The controllers are designed based on a simplified description of the system
behavior (linearized models). While this is satisfactory at hover and low veloc-
ities, it does not predict correctly the system behavior during fast maneuvers
(most controllers are specifically designed for low velocities). In order to reach
the desired final position as fast as possible, real time calculations are necessary
and hence more efficient and elaborated algorithms have to be designed.

LQ optimal controllers are widely used, in particular for the control of small
aircrafts [3, 23], where they have shown to produce better results than other
standard methods, like proportional integral derivative methods (PID) [9]. The
techniques presented here, however, are valid for the general optimal LQ control
problem (1).

For the illustration of our methods, we consider a VTOL quadrotor, based
on the model presented in [14, 23] (and references therein). Figure 2 describes
the configuration of the system, where φ, θ and ψ denote the rolling, pitching
and yawing angles, respectively.
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Figure 2: Quadrotor schematic

In general, one assumes some standard general conditions: symmetric and
rigid structure of the flying robot, the center of mass is in the center of the
planar quadrotor and the propellers are rigid. However, more realistic problems
have time-varying parameters [25], require a time-dependent state reference [17]
or involve nonlinear equations [15, 23].

There are several ways to perform these computational tasks, among the
simplest is the so called Pearson method that proposes Ṗ (t) = 0 and thus sim-
plifies (3) to an algebraic Riccati equation whose symmetric and nonnegative
solution is chosen. For time-dependent problems, however, better results are
obtained with the Sage-Eisenberg method [9], i.e., to compute P (t) by integrat-
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ing (3) backwards in time. Note that this requires to store the values P (t) on
an appropriate time mesh.

To describe the helicopter flight, it is more realistic to consider the non-
linear model (11). Nonlinear control theory can improve the performance of
the controller and enable the tracking of aggressive trajectories [13]. We re-
mark that inhomogeneities fA(t, 0) = b(t), e.g. from gravitational forces, can be
treated as disturbances, by adding new state variables or by taking advantage
of non-vanishing states, e.g. the altitude of the UAV when hover is searched
[15]. Usually, B is assumed to be independent of u.

An analysis of the dynamics of the quadrotor shows that the control of the
attitude can be separated from the translation of the UAV [23] and we focus our
attention on the stabilization of the attitude, neglecting the gyroscopic effect.
The state vector is given by

X(t) =
(

φ(t), φ̇(t), θ(t), θ̇(t), ψ(t), ψ̇(t)
)T

∈ R
6,

and the input vector u ∈ R
3 is formed by linear combinations of the thrust of

each propeller.
The system designer can choose the weight matrices to tune the behavior

of the control according to the requirements, R(t) is used to suppress certain
movements and Q(t) limits the use of the control inputs. Usually, these matrices
are chosen constant, nonnegative definite, and often even diagonal, see [3, p. 67],
[14, 17]. For the numerical experiments we consider the problem (10) with the
following values taken from [8, 23]

a1,2 = a3,4 = a5,6 = 1, a2,4 = λα1I1ψ̇, a2,6 = λ(1 − α1)I1θ̇

a4,2 = λα2I2ψ̇, a4,6 = λ(1 − α2)I2φ̇, a6,2 = λα3I3θ̇,

a6,4 = λ(1 − α3)I3φ̇, b2,1 = L/Ix, b4,2 = L/Iy, b6,3 = 1/Iz
(17)

where αi reflects the non-uniqueness in the SDRE formulation, λ denotes the
inflow ratio, L is the length of the arms connecting the propellers with the center,
I1 = (Iy − Iz)/Ix, I2 = (Iz − Ix)/Iy, I3 = (Ix − Iy)/Iz. Here, mi,j denotes the
element located at i-th row and j-th column of the matrix M . Other entries of
A(t) ∈ R

6×6 and B(t) ∈ R
6×3 not indicated in (17) are null elements.

The numerical values are extracted from [8] and are given in the SI units

Ix = 0.0075, Iy = 0.0075, Iz = 0.0130, L = 0.23, λ = 1, αi = 1.

The weight matrices are fixed at

Q = 0.01 · diag{ 1, 0.1, 1, 0.1, 1, 0.1} ∈ R
6×6, R = diag{1, 0.1, 1} ∈ R

3×3.

We set the time frame to tf = 10 seconds, with a stepsize of h = 0.125s and
initial state

X0 = (70 ◦, 10, 70 ◦, 20, −130 ◦ ,−1)
T
,

that corresponds to a disadvantageous orientation and high rotational velocities
that is sought to be stabilized at 0 ∈ R

6.
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We have implemented a variety of methods to test against the Magnus in-
tegrators presented in section 2.2. As initial condition, we have taken X0(t) =
(1− t/tf)X0 and the iteration was stopped when ||Xn−Xn−1||2 < 10−3. Some
experimental results is given in Table 2, where we can see that the Magnus based
method (9), approximates the optimal control best. However, we have to remark
that the SDRE method is for the given parameters about a factor ten faster,
due to necessary iterations for the other schemes. In more difficult settings, e.g.
in the case of trajectory following and obstacle avoidance, stronger time depen-
dencies of the parameters are expected, and thus, an even greater advantage of
the exponential method towards achieving optimality in the control.

Type X(t) P (t) V (t) Cost It.

S1) SDRE Euler are N/A 0.1114
S2) Impl. Euler (IE) are N/A 0.1021

Optimal ⇒ 0.0977
W1) WAVE Euler Euler N/A 0.1071 3
W2) IE IE N/A 0.1036 3
W3) Magnus (9) Magnus N/A 0.0926 3

Optimal ⇒ N/A 0.0888
T1) TAYLOR Euler Euler Euler N/A Inf
T2) IE IE IE 0.0789 12
T3) Magnus Magnus Magnus 0.0707 12

Optimal ⇒ 0.0707

Table 2: Comparison of numerical methods, Type indicates the linearization procedure given
by section 3, and It. denotes the number of iterations necessary until convergence. The co

Figure 3 shows the controls obtained for the schemes S2, W3, T3 and Figure 4
shows the dynamics of the quadrotor subject to the obtained controls. We can
appreciate how the Magnus methods maximize the use of the controls to reach
an overall minimum of the cost functional.

From the numerical experiments we conclude that Lie group methods like
Magnus integrators are very useful tools for solving optimal control problems of
UAV. The results shown for a quadrotor easily extend to other helicopters. In
addition, for more involved trajectories the structure of the equations will play
a more important role and Lie group methods can provide efficient numerical
algorithms.

Acknowledgements

This work has been partially supported by Ministerio de Ciencia e Innovación
(Spain) under the coordinated project MTM2010-18246-C03 (co-financed by
the ERDF of the European Union) and MTM2009-08587, and the Universitat
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Figure 3: Evolution of the control vector. The left column shows the control that has
been less penalized u2. All curves are given for all methods S2 (line), W3 (diamond)
and T3 (cross).
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