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Abstract 

The application of catalytic membrane reactors can overcome some of the disadvantages that 

reactions for the direct conversion of methane to fuels and petrochemicals present. Hydrogen 

separation membranes can shift the reaction equilibrium by hydrogen removal, improving the 

separation, selectivity and yield of the reactions. La5.5WO11.25-δ/La0.87Sr0.13CrO3-δ (LWO/LSC) 

based membranes present a high H2 flux within the temperature range where CMR can be 

applied. However, the catalytic activity of the material is very low and it has to be improved. 

This work presents the development of different catalytic layers based on LSC material and the 

study of their influence on the H2 flux obtained by using 60/40-LWO/LSC membranes. 

Membranes coated with porous layer made of Ni-infiltrated La0.75Ce0.1Sr0.15CrO3-δ exhibited the 

best permeation flux but still 20% lower than the one reached using Pt layers. Stability of the 

catalytic layers is also evaluated under H2 permeation conditions and under high steam content 

methane. 
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1. Introduction 

The direct conversion of methane to fuels and petrochemicals represents a major challenge. 

Steam reforming of light hydrocarbons is an industrially important chemical reaction and a key 

step for producing hydrogen and syngas for ammonia and methanol production, hydrocracking, 

Fischer-Tropsch synthesis and other important processes in the oil refining and petrochemical 

industries [1, 2]. Industrial fixed-bed steam reformers suffer however from several problems 

which seriously affect their operation and performance [3]. These problems comprise low 

catalyst effectiveness, low heat transfer rates, large temperature gradients and thermodynamic 

equilibrium constraints. In the last years, the catalytic conversion of methane to aromatics via 

non-oxidative routes has attracted significant attention. However, this reaction presents very low 

equilibrium conversions and benzene yields of only ∼ 7% at the required temperature (950 K) 

[4].  

The integration of this kind of reactions in catalytic membrane reactors (CMR) may allow the 

process efficiency to be substantially increased. The reaction equilibrium can be shifted by 

controlled hydrogen removal with the consequent enhancement of separation, selectivity and 

yield of these reactions [5, 6]. Dense mixed-conducting ceramic membranes are one of the 

typical inorganic membranes for CMR, specifically, mixed proton electron conducting 

membranes which present an important hydrogen permeability and catalytic activity at high 

temperatures [7, 8]. Several ceramic membranes have been tested for water gas shift reaction at 

high temperature (700-900 °C) and the reported results are promising [9, 10].  

Despite the advantages of these membranes, H2 fluxes obtained up to date are still low for their 

short-term industrial application. Aiming to improve the H2 flux, research has been recently 

focused in the development of dual phase composites, materials formed by two phases, one 

electron conducting phase and another phase mainly proton conducting. With this strategy, an 

important improvement of the H2 flux and stability has been obtained as compared with the 

single constituent materials. It is noteworthy the significant H2 fluxes obtained with several cer-

mets as Ni-BaCe0.9Y0.1O3– [11], Ni-BaZr0.1Ce0.7Y0.2O3– [12] and Ni-BaCe0.85Tb0.05Zr0.1O3–

[13]. As well as the cer-cers based on BaCeO3- or BaCe1-xZrxO3- based materials as protonic 

phase and doped ceria as electronic phase [14, 15]. 

Among the reported dual phase composites, La5.5WO11.25-δ/La0.87Sr0.13CrO3-δ (LWO/LSC) based 

cer-cers present an excellent H2 flux permeation [16, 17] (which comprises the H2 flux due to 

proton transport through the membrane in addition to the H2 produced by water splitting and 

concomitant oxide-ion transport) and stability in different atmospheres. Despite the high H2 flux 

obtained with this material, it presents a poor catalytic activity toward H2 exchange [16]. For 

this reason, a development of a catalytic layer for the improvement of the surface kinetics is 

mandatory in order to apply this material in CMR. 



This strategy has been widely employed for oxygen permeable membranes based on mixed 

ionic electronic conductors.[18-21] Regarding surface kinetics improvement in H2 permeable 

membranes, the use of Pt as catalytic layer is the most reported for different materials as cerates 

[22], tungstates [23] and dual phase composites [14, 24, 25]. Ni and Pd particles were also 

employed for the coating of a BaCe0.85Tb0.05Co0.1O3- perovskite hollow fibre membrane 

obtaining a significant H2 flux improvement [26]. 

The aim of this work is the synthesis and development of different catalytic coatings layers for 

the mixed protonic-electronic 60/40-LWO/LSC (60:40 in volume) composite with the purpose 

of performing different catalytic reactions as steam methane reforming (SMR) or methane 

dehydroaromatization (MDA) in a CMR. Targeted properties of the porous catalytic layers are 

listed: (a) high electronic conductivity; (b) redox stable under high steam content methane and 

coking resistant under atmospheres composed of dry methane, ethylene and aromatic vapours; 

and (c) high catalytic activity towards hydrogen activation. This work presents the development 

of different catalytic coatings based on LSC materials compatibles with LWO/LSC. H2 

permeation measurements have been performed by using 60/40-LWO/LSC membranes with the 

developed catalytic coatings. H2 flux has been studied as a function of the temperature, of the H2 

concentration in the feed and hydration conditions of the membrane. For the best membrane, H2 

permeation measurements under CH4 containing stream have been accomplished. Finally, 

stability tests under high steam content methane have been performed and the integrity of the 

samples has been evaluated by XRD and SEM. 

 

2. Experimental 

60/40-LWO/LSC (60:40 vol%) composite was prepared by mixing the corresponding amounts 

of LWO (provided by Cerprotech (NO) and calcined at 800 ºC) and LSC (provided by Praxair 

(US) and calcined at 900 ºC) and both materials were ball-milled together for 24 hours. 

LSC based materials (employed as catalytic layers) as powders were synthesized by using the 

citrate reaction route [27] with a final calcination temperature of 900 and 1000 ºC. The 

following LSC based materials were synthesized: La0.87Sr0.13CrO3-δ (LSC), La0.75Ce0.1Sr0.15CrO3-δ 

(LCeSC), La0.85Sr0.15Cr0.8Ni0.2O3-δ (LSCN) and La0.75Ce0.1Sr0.15Cr0.95Ru0.05O3-δ (LCeSCR). 

Crystalline phases were identified by X-ray diffraction (XRD) performed in a CubiX FAST 

equipment using CuKα1,2 radiation and an X’Celerator detector in Bragg-Brentano geometry in 

the 2θ range from 20 to 70º. XRD patterns were analyzed using X’PertHighscore Plus software 

(PANalytical). 

Composite membranes used in H2 permeation measurements consisted of a gastight disc with 15 

mm diameter. Membranes were prepared by uniaxially pressing at 72 MPa of the mixtures 

before sintering at 1550 °C for 6 h in air.  



Catalytic layers made of LSC based materials were obtained by screen-printing the inks on both 

sides of 60/40-LWO/LSC membranes. Inks were made by mixing the milled powders with a 

solution of ethylcellulose in terpineol (6%-wt.) and subsequently refined using a three roller 

mill (Exakt). Pt conducting paste was provided by MaTeck (Germany). 

Six different coatings were prepared: (a) Pt (reference), (b) LSC, (c) LCeSC, (d) LSCN, (e) 

LCeSCR and (f) LCeSC infiltrated with Ni, in order to promote the surface reactions. Ni 

infiltration was made by following the procedure explained elsewhere [27] and using 5 M water 

solution of Ni nitrate. Firing temperature of screen-printed membranes was 1150 ºC for 2 h.  

Permeation measurements were performed on a double chamber quartz reactor following the 

procedure describe elsewhere [28, 29]. A mixture of H2-He (100 mL·min
-1

) was used as feed 

gas whereas Ar was employed as sweep gas (150 mL·min
-1

). The H2 content in the permeate 

side was analyzed using micro-GC Varian CP-4900 equipped with Molsieve5A and PoraPlot-Q 

glass capillary modules. Sealing was obtained using silver rings and applying a spring load. 

Appropriate sealing was confirmed by continuously monitoring the He concentration in the 

permeate stream. An acceptable sealing was considered when the helium concentration was 

lower than 5% of the H2 permeated. Real H2 permeation was then calculated by substracting the 

He to the total H2 flow observed [30].  

Permeation measurements were accomplished under four hydration degree configurations: C1, 

dry atmosphere in both sides of the membrane (feed and permeate side); C2, feed side 

humidified (pH2O=0.03 atm); C3, both membrane sides humidified (pH2O=0.03 atm) and C4, 

sweep side humidified (pH2O=0.03 atm). Permeation was also performed by using 30% CH4, 

50% H2 and 20% He as feed, in order to check the H2 flux under CH4 containing atmospheres. 

60-LWO/LSC (without catalytic layer), LCeSCRu and LCeSC-Ni samples were subsequently 

treated under an atmosphere composed by 50 % CH4 and 50% H2O, at 3 bar and 700 ºC for 24 

hours.  

The microstructure of the catalytic layers and membranes was investigated using field emission 

scanning electron microscopy (FE-SEM) (Zeiss Ultra 55) and elemental analysis was carried 

out with energy-dispersive X-ray spectroscopy (EDS) (INCA, Oxford). The integrity of the 

samples was also checked by XRD. 

 

3. Results 

3.1. Synthesis of LSC based materials 

Formula of the synthesized compounds based on LSC, their abbreviation and the corresponding 

calcination temperature are listed in Table 1. Room temperature XRD patterns of the developed 

LSC based materials as powders listed in Table 1 are shown in Figure 1. The predominant 

crystalline phase corresponds to the orthorhombic perovskite [31], however some minor peaks 

ascribed to SrCrO4 and CeO2 impurities can be also observed. Nevertheless, these impurities 



disappear at higher calcination temperatures, T>1050 ºC [32], where no secondary phases are 

detected as can be observed in Figure 7. 

 

Compounds Nomenclature 
Calcination temperature of 

the powder (ºC) 

La0.87Sr0.13CrO3-δ LSC 900 

La0.75Ce0.1Sr0.15CrO3-δ LCeSC 900 

La0.75Ce0.1Sr0.15Cr0.95Ru0.05O3-δ LCeSCR 1000 

La0.85Sr0.15Cr0.8Ni0.2O3-δ LSCN 900 

Table 1: Stoichiometry, nomenclature and calcination temperature of LSC based compounds 

developed for catalytic coatings. 

 

.  

Figure 1: XRD patterns (y axis in log scale) of the LSC calcined powders. Reference patterns of 

SrCrO4, LaCrO3 and CeO2 have been depicted for comparison (bottom). 

 

3.2. Hydrogen permeation 

3.2.1. Pt catalytic coating 

The 60/40-LWO/LSC composition was selected due to the significant H2 permeation that 

presents, higher than the reported for 20/80-LWO/LSC and 50/50-LWO/LSC [16]. H2 fluxes for 

the three composites (expressed as mL·min
-1

·cm
-1

 in order to disregard the effect of the 

thickness) are plotted in Figure 2a as a function of temperature under C3 conditions. Note that 

the three membranes were coated with Pt ink on both sides of the membrane. H2 flux obtained 

for 60/40-LWO/LSC is 1.1 and 3.9 times higher than 50/50-LWO/LSC and 20/80-LWO/LSC, 

respectively.  
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Permeation of 60/40-LWO/LSC coated with Pt was evaluated as a function of the temperature 

under four different hydration conditions: (C1) both sides of the membrane dry, (C2) feed side 

humidified, (C3) both sides of the membrane humidified and (C4) only sweep side humidified. 

Humidified gas streams contains 3% of water (pH2O=0.03 atm). The H2 fluxes obtained are 

depicted in Figure 2b. Different behaviours can be distinguished depending on the gas hydration 

configuration, as it was previously observed for 50/50-LWO/LSC. H2 flux is very low under C1 

as corresponds to the deficiency of protonic charge carriers in the oxide under dry conditions. 

H2 permeation increases when H2 feed side is humidified (C2) due to the hydration of the 

membrane and the subsequently increase of proton incorporation. Under C3 and C4, water 

splitting in the sweep side originated from the oxygen ion transport from the sweep side to the 

feed side contributes to the total H2 flux. In fact, when both sides are humidified, C3, the H2 flux 

increases reaching values up to 0.22 mL·min
-1

·cm
-2

. This rise is related to the higher proton 

transport and stems from the enhanced hydration degree of the oxide which provokes an 

increase in the proton concentration and thus in the proton. A contribution of 50% proton 

transport-50% water splitting has been reported for 50/50-LWO/LSC at 700 ºC under similar 

conditions using deuterium-labelled tracers [24]. For that reason together with the prevailing 

proton conductivity of LWO [33] in this range of temperature, at least a contribution of 50% 

proton transport is expected for the studied composite material. 

 

On the other hand, when only the sweep side is humidified, H2 flux decreases as compared with 

the previous condition. This drop is related to the lower degree of hydration of the membrane 

which causes the decrease of the proton transport. Conversely, in this configuration, the pO2 

gradient is slightly higher than in the previous one, resulting in an increase in the H2 flux 

produced via water splitting. The point that H2 flux in C4 is lower than in C3 indicates a 

prevailing proton transport in the material within the studied temperature range. This behaviour 

is in line with the transference number of LWO [33], i.e., this effect becomes progressively 

more important with decreasing temperatures and protons become the prevailing carriers at 

temperatures below 700 ºC. 



 

Figure 2: H2 flux (permeability) as a function of temperature for 20/80, 50/50 and 60/40-

LWO/LSC with a Pt coating under C3 configuration expressed as mL·min
-1

·cm
-1

 (b) H2 flux 

(expressed as mL·min
-1

·cm
-2

) as a function of temperature for 60/40-LWO/LSC under C1, C2, 

C3 and C4 configurations. 

 

3.2.2. LSC based catalytic coatings 

The H2 permeation was studied for different 60/40-LWO/LSC membranes activated using five 

different porous catalytic coatings on both sides of the membrane: (i) 20 μm layer of LSC, (ii) 

20 μm layer of LCeSC, (iii) 20 μm layer of LCeSCR, (iv) 20 μm layer of LSCN and (v) 20 μm 

layer of LCeSC infiltrated with Ni (LCeSC-Ni). All deposited LSC layers were sintered in air at 

1150 ºC. This sintering temperature was previously optimized to reach proper electrochemical 

performance for LSCN when tested as proton conducting fuel cell anode on LWO electrolytes 

[32]. 

Figure 3 shows the H2 permeation fluxes as a function of the temperature for the membranes 

coated with LSC (a), LCeSC (b), LCeSCR (c), LSCN (d) and LCeSC-Ni (e). Only the 

membranes coated with LSC and LCeSC-Ni present similar behavior depending on the 

hydration configuration as Pt coated membrane, i.e. H2 flux in C3 is higher than in C4. This 

indicates that the degree of hydrogen flux vs hydrogen produced by water splitting is influenced 

by the catalytic layer. Both LCeSCR and LCeSC present an increased catalytic activity toward 

O2 exchange that gives rise to a higher contribution of the H2 produced by water splitting as 

compared to H2 permeation. LSCN presents an unexpected behaviour; one would expect the 

same behaviour as LCeSC-Ni, maybe with lower catalytic activity due to the lower Ni 

concentration.  
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Figure 3: H2 flux as function of temperature for 60/40-LWO/LSC with different activation 

catalytic layers: LSC (a), LSCN (b), LCeSCR (c), LCeSC (d) and LCeSC-Ni (e) in four 

different hydration degree configurations: C2, C3 and C4. 

 

A comparison of the H2 fluxes (expressed as mL·min
-1

·cm
-1

, in order to neglect the thickness 

influence) obtained for the five membranes with different catalytic layers and Pt coated 

membrane is depicted in Figure 4 for C2 (a), C3 (b) and C4 (c) conditions. Pt activated 

membrane presents the highest H2 fluxes in the three evaluated conditions, followed by the 

LCeSC-Ni and LSCN coated membranes. Ni nanoparticles are formed on the LCeSC-Ni grain 

surface due to the reduction of the infiltrated Ni [34] whereas on LSCN they are formed from Ni 

reduction with subsequently precipitation on the grain surface [35]. The higher H2 flux obtained 

with the Ni containing layers is ascribed to the active catalytic activity of Ni nanoparticles for 

the H2/O2 bond breaking in addition with the high electronic conductivity of these compounds 

which allows the three-phase boundary area to be increased. In fact, the addition of Ni to LSC 

anodes has been reported to boost surface reaction processes, appearing at low frequencies in 

impedance spectra [27]. This improvement was higher (as in this work) when the Ni was 

infiltrated, ascribed to a better dispersion and higher surface coverage of Ni nanoparticles [27, 

34]. However, under C4 condition, the values obtained with LSCN are slightly higher at the 

highest tested temperature and the cause of this effect remains unknown. At this point, one may 

speculate about the distinct activity of the Ni reaction sites in LSCN and Ni-infiltrated 

electrodes towards H2 activation and water splitting. Specifically, the results for C4 (dry feed 

side) may suggest that the infiltrated Ni particles are more active towards water splitting than 

the particles from the LSCN. 
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On the other hand, H2 fluxes obtained for the LSC, LCeSC and LCeSCR activated membranes 

present practically the same values, indicating a relatively low catalytic activity for H2 and O2 

evolution/oxidation reactions [36]. Despite the higher total and p-type electronic conductivity 

that LCeSC possesses [34] and the relatively high catalytic activity of Ru [37] for hydrocarbon 

reforming and syngas conversion, these membranes exhibit a similar magnitude of the H2 flux 

as the obtained using the LSC activated membrane. The low catalytic activity of LCeSCR could 

be related with the Ru concentration in the perovskite lattice, which turns out to be insufficient 

to form enough Ru
0
 nanoparticles by precipitation on the grain surface and to reach a proper 

surface coverage of the LCeSCR backbone structure. 

 

 

Figure 4: Comparison of the H2 flux obtained for 60/40-LWO/LSC with the different activation 

catalytic layers under C2 (a), C3 (b) and C4 (c) hydration configurations. Note the distinct y-

axis for (a) 

 

3.3. Stability study 

The stability and proton transport under CH4 atmospheres was evaluated for LCeSC-Ni coated 

membrane. With this purpose, H2 permeation measurements were performed at 750 ºC during 5 

hours feeding 30% CH4, 50% H2 and 20% He and humidifying both sides of the membrane (C3) 

(note that the same specimen was used in all the measurements, without and with CH4 in the 

feed). H2 fluxes obtained by using 50% H2-50% He and 30% CH4-50% H2-20% He as feed gas 

are compared in Figure 5. H2 flux obtained under CH4 containing atmosphere remained 

unchanged for 6 hours which demonstrates the stability of the compound in these conditions. In 

addition, permeation values were higher than those obtained employing 50% H2-50% He as 

expected from the higher pH2 gradient under CH4-containing stream, i.e., larger driving force 

for the separation. 
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Figure 5: H2 flux as a function of time for 60/40-LWO/LSC coated with LCeSC-Ni feeding 

50% H2 in He and a mixture composed by 30% CH4, 50% H2 and 20% He at 750 ºC. 

 

The microstructure of the catalytic layers after the permeation measurements was checked by 

FE-SEM analysis. Images of the LCeSC (a), LCeSC-Ni (b) and LCeSCR (c) coated membranes 

(Figure 6) reveal that the integrity of the interface between catalytic layer and membrane is 

well-preserved. Figure 6 d-i shows the morphology of the catalytic layers. LCeSC presents an 

heterogeneous distribution of the particle size, ranging from 0.2 to 1 µm (Figure 6d,g). Ni 

nanoparticles fully cover the LCeSC-Ni grain surface as can be observed in Figure 6e,h. Higher 

magnification images of them could not be obtained due to the organic remains after permeation 

measurements that could be ascribed to the coke formation when CH4 was used as feed. Finally, 

Ru nanoparticles were not detected in LCeSCR (Figure 6f,i), fact that can explain its lower 

catalytic activity.  

 

After the permeation measurements, the stability under high steam content methane of the 

LCeSCRu and LCeSC-Ni coated membranes was evaluated by annealing under an atmosphere 

composed by 50% CH4 and 50% H2O at 700 ºC and 3 bars for 24 hours. These conditions are 

mimicking those encountered in steam methane reforming (SMR) reactors, which is an 

appealing application for high temperature hydrogen membrane. The integrity of the samples 

was checked by XRD before and after the treatment. The samples treated under the 

abovementioned conditions were the previous used membranes in permeation measurements. 

XRD patterns of these membranes before and after the treatment are displayed in Figure 7 

where no secondary phases can be detected after the annealing. Furthermore, no reaction or 

interaction between metallic Ni nanoparticles and LWO can be observed, proving the 

compatibility between Ni/LWO under permeation conditions [38, 39]. This is indeed a crucial 

aspect since NiO and LWO are prone to react at temperatures above 900 ºC under oxidizing 

conditions. 
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Figure 6: SEM analysis of the fractured cross-section of the studied membranes (a,b,c) and 

catalytic surface (d-i). 

 

 

Figure 7: XRD patterns of themembranes coated with LCeSCRu (a) and LCeSC-Ni (b) after 

stability treatment (50% CH4 and 50% H2O at 700 ºC and 3 bars for 24 hours). * corresponds to 

sample holder. 

 

In order to check the integrity of the microstructure after the treatment under SMR conditions 

(50% CH4 and 50% H2O at 700 ºC), the samples were analyzed by FE-SEM and EDS analysis. 
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In Figure 8 the fracture cross-sections of LCeSC-Ni and LCeSCRu coated membranes are 

depicted. To the limit of the technique, the formation of secondary phases during the annealing 

is not detected. In addition, the membranes are totally dense after the treatment and the layers 

present good adhesion to the underneath membrane. Well dispersed Ni nanoparticles are 

detected in the layer LCeSC-Ni. On the other hand, no Ru was detected in the sample LCeSCRu 

and this fact is ascribed to the initial low concentration of Ru in the sample, which appears to be 

responsible for the low catalytic activity observed for this sample in the H2 permeation 

measurements. 

 

 

Figure 8: SEM analysis of the fractured cross-section of the LCeSC-Ni and LCeSCRu coated 

membranes after stability treatment (50% CH4 and 50% H2O at 700 ºC and 3 bars for 24 hours) 

and EDS analysis. 

 

4. Conclusions 

Different catalytic layers for H2 evolution have been developed for the surface functionalization 

of ceramic hydrogen-separation membranes based on LWO/LSC composites, specifically for 

application in steam methane reforming and MDA using catalytic membrane reactors. 

LSC based materials were selected with this purpose for the compatibility with the membrane 

materials and the promising electrochemical properties as fuel cell anodes. Five layers were 

deposited and the highest H2 flux was obtained by using LCeSC-Ni coated membrane due to the 

important catalytic activity of the Ni nanoparticles to H2 dissociation, oxidation and surface 

diffusion of H species. Furthermore, stability of the H2 permeation by feeding CH4 was 

confirmed. In addition, stability under an atmosphere composed by 50% CH4 and 50% H2O at 
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700 ºC and 3 bars for LCeSCR and LCeSC-Ni coated membranes was demonstrated at least for 

24 hours. Due to the high H2 flux obtained and the stability under CH4 and high steam 

concentration, LWO/LSC composites and LSC based materials are presented as promising 

membranes and catalytic layers for their application in catalytic membrane reactors. 
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