
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://dx.doi.org/10.1177/0021998316636205

http://hdl.handle.net/10251/81738

SAGE Publications (UK and US)

Ferri Azor, JM.; Gisbert, I.; García Sanoguera, D.; Reig Pérez, MJ.; Balart Gimeno, RA.
(2016). The effect of beta-tricalcium phosphate on mechanical and thermal performances of
poly(lactic acid). Journal of Composite Materials. 50(30):4189-4198.
doi:10.1177/0021998316636205.



“The effect of beta-tricalcium phosphate on mechanical and thermal performance 

of poly(lactic acid)” 

 

J.M. Ferri, I. Gisbert, D. García-Sanoguera, M.J. Reig, R. Balart 

 

Instituto de Tecnología de Materiales (ITM) 

Universitat Politècnica de València (UPV) 

Plaza Ferrandiz y Carbonell 1, 03801, Alcoy, Alicante (Spain) 

 

  



Abstract 

Orthophosphates are bioactive crystals with similar structure, in terms of 

elemental composition and crystal nature, to human bone. In this work, biocomposite 

materials were prepared with poly(lactic acid), PLA as matrix and beta-tricalcium 

phosphate, β-TCP, as osteoconductive filler by extrusion-compounding followed by 

conventional injection molding. The β-TCP load content was varied in the 10-40 wt.% 

range and the influence of the β-TCP load on mechanical performance of PLA/β-TCP 

composites was evaluated. Mechanical properties of composites were obtained by 

standardized tensile, flexural, impact and hardness tests. Thermal analysis of composites 

was carried out by means of differential scanning calorimetry (DSC); degradation at 

high temperatures was studied by thermogravimetric analysis (TGA) and the effect of 

the β-TCP load on dynamical response of composites was studied by mechanical 

thermal analysis (DMTA) in torsion mode. The best-balanced properties were obtained 

for PLA composites containing 30 wt. % β-TCP with a remarkable increase in the 

Young’s modulus. These materials offer interesting properties to be used as base 

materials for medical applications such as interference screws due to high stiffness and 

mechanical resistance. 

 

Key words: beta-tricalcium phosphate; poly(lactic acid); thermal and mechanical 

properties; fasteners; bone tissue engineering 



1. Introduction. 

 The use of joint devices such as screws, fasteners, anchor stitches, etc. for 

tendon and bone reconstruction or repairing has progressed in the last years; typical 

biocompatible and biostable materials based on high strength metallic alloys and 

insoluble ceramics have given way to new resorbable and biocompatible materials 

based on polymeric matrices. Today it is possible to find a wide variety of materials that 

could be potentially used in the biomedical sector. In the last years, important efforts 

have been done to develop new metallic, ceramics, polymeric and composite materials 

(1, 2) thus giving evidence of the need and importance of these materials in medicine. 

 With regard to metals, titanium based alloys (3-5) are widely used; in particular, 

Ti6Al4V alloy (6, 7) is one of the most used. Other alloys such as CoCr (8), CoCrMo 

(6) and stainless steels (9) are used. These metallic alloys are biocompatible but they are 

not able to induce bone tissue regeneration, so that, these alloys must be subjected to 

surface treatments to allow osteointegration (10-12). This costly and arduous procedure 

plays a key role in bone tissue regeneration among the bone-fixation interface to avoid 

potential rejection.  

 On the other hand, calcium phosphate ceramic materials such as hydroxylapatite 

(HA) are excellent candidates as fillers with osteoconductive properties. HA is a bio 

crystal that can be found in human bones in combination with collagen. HA and other 

calcium phosphates can be considered as biomimetic materials with no rejection 



phenomena when in contact with connective tissue at physiological media pH (13). 

Nevertheless, due to its ceramic nature, HA is highly fragile.  

For these reasons, the medical sector demands new materials with a balance 

between mechanical performance, density and cost. An additional attracting feature for 

biomaterials (in particular, materials for fixation devices and screws), is 

biodegradation/resorption in physiologic media. This allows controlled decomposition, 

gradual resorption and bone growth in the bone-fixation interface thus leading to total 

osteointegration. Biodegradable polymeric materials are an interesting choice due to 

their easy processing and potential degradation in physiological media (14, 15). An 

attracting approach is based on the fact that “the best bone substitute is the regenerated 

bone itself”. The polymeric material degrades-dissolves slowly and progressively and it 

is continuously resorbed and substituted by soft tissue and new specialized connective 

tissue. This fact leads polymers to an advantageous position if compared to 

conventional metallic and ceramic materials, since second surgery to remove fixation 

plates, screws, pins etc.  once the bone has regenerated, can be avoided. Biodegradable 

polymers such as poly(glycolic acid)-PGA, poly(butylene succinate)-PBS, poly(ester 

amides)-PEA, poly(caprolactone)-PCL, poly(lactic acid) and their blends and/or 

copolymers are increasingly being used in biomedical applications (16-22). The 

different biodegradation rates of these polymers and their copolymers, allows tailoring 

the desired resorption times to ensure optimum recovery. 



Formulation of an osteoconductive, biocompatible, resorbable fixation device 

should be composed of two main components: a biodegradable polymeric matrix and an 

osteoconductive filler such as those derived from orthophosphates: oxyapatite (OXA), 

hydroxylapatite (HA), biphasic calcium phosphate (BCP), beta-tricalcium phosphate (β-

TCP), or mixtures of all these phosphate materials as all they have similar composition 

to that of the human bone (23, 24). Orthophosphates can be classified in terms of their 

solubility in physiological media from the highest to the lowest (25) and the Ca/P ratio. 

As β-TCP particles solubilize, they supply calcium and phosphate in a controlled way 

and this leads to mineralization of the bone-fixation interface thus allowing formation of 

connective tissue and good osteointegration (26, 27). Osteointegration allows optimum 

bony growth and bone healing, which leads to stabilize the fracture of bone defect. 

Connective tissue can be soft (cartilaginous) at the beginning and afterwards, 

hard bone tissue or simply fibrous-cartilaginous tissue if the fracture affected only 

tendons or ligaments. Several “in vivo” studies with composite materials based on PLA 

matrix and β-TCP showed a remarkable proliferation of mesenchymal stem cells 

(MSCs) which led to more adipose-derived stem cells differentiation (ASCs). The 

potential of rejection or inflammatory process with PLA/β-TCP systems are extremely 

low. This is due to different phenomena: on the one hand the low degradation rate of 

PLA and on the other hand, the formation of a buffer solution with dissolved β-TCP 



particles, which contributes to maintain constant pH. This occurs when alkaline salts 

such as phosphates (PO4
3-) are present (28).  

Manufacturing of polymeric fixation devices, interference screws, fixation pins, 

etc. by extrusion-injection molding processes is difficult to be substituted by other 

techniques due to an excellent balance between technical viability, costs and overall 

properties (29). Extrusion-injection techniques offer attracting advantages to obtain 

optimum particle dispersion that leads to high homogeneity (29). In addition, an 

increase in the residence time in the screw has a positive effect on particle dispersion. 

Furthermore, an increase in the applied pressure reduces porosity (29, 30). Foaming is 

one of the widely used techniques to mold polymers into shapes. The porous structure 

favors interaction with human tissues and, subsequently, osteointegration during the 

resorption process. In this work PLA/β-TCP composite materials in the form of block 

materials with potential use as resorbable medical joint devices were prepared by the 

injection moulding process with previous extrusion-compounding. The extrusion is 

intended for improved particle dispersion and the injection moulding is intended for 

high quality end and cost-effective products that do not require further processing. The 

particle aggregation and dispersion has been tested by microscopic techniques by using 

selective extraction/dissolving of the β-TCP particles with HCl acid solution to reveal 

the real structure. The load content of β-TCP varied in the 0-40 wt. % range and the 



effects of β-TCP content on mechanical and thermal properties of PLA/β-TCP 

composites were evaluated. 

 

2.- Experimental. 

2.1.- Materials. 

The base polymer was a poly(lactic acid), PLA, commercial grade IngeoTM 

Biopolymer 6201D supplied by NatureWorks LLC (Minnetonka, USA), which is 

characterized by a content on D-lactic acid of about 2%. Its density is 1.24 g cm-3 and 

the melt flow index is in the 15-30 g/(10 min) range at 210 ºC. The osteoconductive 

filler was beta-tricalcium phosphate (β-TCP) supplied by Sigma-Aldrich (Steinheim, 

Germany). 

 

2.2.- Composite manufacturing. 

Four different compositions based on PLA matrix and β-TCP osteoconductive 

reinforcement were manufactured by extrusion-compounding and subsequent injection 

molding. Table 1 summarizes the compositions and the reference material with their 

corresponding compositions. The β-TCP load varied in the 0-40 wt.% range. PLA was 

dried at 80 ºC for 24 h to remove moisture. PLA/β-TCP composites were compounded 

in a twin screw extruder at 60 rpm and a temperature profile of 170 ºC (hopper), 175 ºC, 

180 ºC and 185 ºC (die). After cooling, compounds were pelletized and subsequently 



injected in an injection molding machine Meteor 270/75 (Mateu&Sole, Barcelona, 

Spain) at an injection temperature of 180 ºC. 

 

Table 1 

 

2.3.- Mechanical characterization of PLA/β-TCP composites. 

 Mechanical properties of PLA/β-TCP composites were evaluated in tensile and 

flexural conditions. Tensile and flexural properties were obtained in a universal test 

machine ELIB 30 (S.A.E. Ibertest, Madrid, Spain) at room temperature following ISO 

527-5 and ISO 178:1993 respectively; a load cell of 5 kN was used and the crosshead 

rate was set to 10 mm min-1 (tensile tests) and 5 mm min-1 (flexural tests). Five different 

specimens were tested and average values of strength and modulus were calculated. 

 Shore D hardness was obtained in a Shore durometer mod. 673-D (Instrumentos 

J. Bot S.A., Barcelona, Spain) as indicated in UNE-EN ISO 868.  

 The ability for energy absorption was estimated by using a 1 J Charpy’s 

pendulum (Metrotec S.A., San Sebastian, Spain) as recommended in ISO179:1993 

standard. Tests were carried out for five different unnotched samples and average values 

of energy absorption were calculated. 

 

2.4.- Microscopic characterization of PLA/β-TCP composites.  



 A scanning electron microscope (SEM) Phenom (FEI Company, Eindoven, 

Netherlands) was used to characterize fractured surfaces from impact tests as well as 

raw β-TCP microparticles. Samples were previously subjected to a metallization 

process in a sputter coater EMITECH SC7620 (Quorum Technologies Ltd., East 

Suseex, UK) with an Au-Pd alloy. 

 

2.5.- Dynamic mechanical characterization of PLA/β-TCP composites. 

 Dynamic mechanical characterization in torsion mode was conducted in an 

oscillatory rheometer AR G2 (TA Instruments, New Castle, USA), equipped with a 

torsion clamp accessory for solid samples. Rectangular samples sizing 40x10x4 mm3 

were subjected to a heating program from -50 ºC up to 110 ºC at a constant heating rate 

of 2 ºC min-1; the frequency and the maximum deformation (γ) were set to 1 Hz and 

0.1% respectively. 

 

2.6.- Thermal analysis of PLA/β-TCP composites. 

Thermal properties of raw materials and PLA/β-TCP composites were studied 

by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). 

TGA was carried out in a TGA/SDTA thermobalance mod. 851 (Mettler-Toledo Inc., 

Schwerzenbach, Switzerland) with a heating program from 30 ºC to 700 ºC at a heating 

rate of 20 ºC min-1 in nitrogen atmosphere (66 mL min-1). Thermal transitions were 



evaluated in a differential scanning calorimeter (DSC) mod. 821 (Mettler-Toledo Inc., 

Schwerzenbach, Switzerland); samples sizing 7-10 mg were placed into standard 40 µL 

aluminum crucibles and subjected to a heating program from 30 ºC to 350 ºC at a 

heating rate of 10 ºC min-1 in air atmosphere. 

 

3.-  Results and discussion. 

3.1.- Effect of weight % β-TCP on mechanical properties of PLA/β-TCP composites.  

 Fig. 1 & Fig. 2 show the plot evolution of the main parameters obtained from 

tensile and flexural tests respectively. 

 

Figure 1 

 

 From observation of tensile test results (Fig. 1) we see a decrease in tensile 

strength values with regard to unfilled PLA. The tensile strength of unfilled PLA is 

close to 64 MPa and decreases up to values of 50.5 MPa for composites containing 40 

wt.% β-TCP. Nevertheless, for a β-TCP content of 10 wt.%, the tensile strength 

decrease is less than 3%. This is related to low particle-polymer interactions; thus the 

osteoconductive filler acts as a stress concentrator but the poor interaction makes 

calcium and phosphate easy available during degradation and this is positive from a 

biomedical point of view. Intermediate compositions with 20 and 30 wt.% β-TCP 



promote a decrease in tensile strength of about 12% and 15%. With regard to elongation 

at break the unfilled PLA is characterized by relatively low values around 8%. As the β-

TCP content increases, we observe a clear decreasing tendency and minimum values of 

about 3.4% are obtained for PLA/β-TCP composites with the highest β-TCP content, 

which represents a percentage decrease of almost 60%. As expected, the elastic modulus 

increases with β-TCP content thus leading to stiffer materials. This is in total agreement 

with the evolution of tensile strength and elongation at break. The elastic modulus 

represents the ratio between the stress and the elongation in the linear region. As 

abovementioned, we have observed a decrease in tensile strength but the decrease in 

elongation at break is still higher so that, the ratio between these values increases due to 

the lower values of elongation at break. 

 Different tendency can be observed by following the evolution of the flexural 

properties of the PLA/β-TCP system. The unfilled PLA is characterized by a flexural 

strength of about 110 MPa and the flexural strength values in terms of the β-TCP 

content decreases up to values in the 90-100 MPa range. It is clear that increasing β-

TCP filler increases flexural strength and flexural modulus. However, the resistance is 

lower in all cases compared to the virgin PLA. The smallest resistance value is obtained 

for PLA composites containing 10 wt.% β-TCP. This may be due to the presence of 

small particle aggregates that promote crack initiation prematurely thus leading to 

fracture. However with increasing β-TCP load we observe stiffer materials and, 



therefore, an increase in resistance, but always less than virgin PLA due to particle 

aggregation. On the other hand, the flexural modulus increases in a remarkable way 

from 3.24 GPa for unfilled PLA up to 5.02 GPa for composites containing 40 wt.% β-

TCP. Once again, the flexural results indicate that addition of β-TCP provides stiffer 

materials with slightly lower resistance. Compositions in the 10-20 wt.% β-TCP 

represent a good balance between overall mechanical response as they offer high 

stiffness materials with similar resistance and deformation ability to unfilled PLA. The 

evolution of the Shore D hardness is similar to other mechanical resistant properties 

with a clear increase with the β-TCP load. 

 

Figure 2 

 

Another desirable attracting property in materials for fixation devices is the 

ability to absorb energy during fracture. Table 2 shows the absorbed energy (Charpy’s 

test) as a function of the β-TCP load content. PLA is a quite fragile material as indicated 

by the relatively low energy absorption values close to 1.85 J m-2. Addition of β-TCP 

leads to a slight decrease in absorbed energy. For compositions comprised between 10 

and 20 wt.% β-TCP, the absorbed energy is reduced up to values of 1.68 J m-2 

(percentage decrease of 10%) and 1.40 J m-2 (percentage decrease of about 24%)  

respectively. These values indicate that the ability of PLA for energy absorption is 



highly sensitive to presence of stress concentrators such as the case of the 

osteoconductive β-TCP filler. So that, compositions with more than 20 wt.% β-TCP 

would not be recommended (31) for fixation devices unless additional surface 

treatments are carried on the filler to minimize the loss on mechanical performance. 

 

Table 2 

 

The morphology of the fractured surfaces from impact tests of PLA/β-TCP 

composites was observed by SEM analysis. Fig. 3a shows typical fracture of unfilled 

PLA(32); as the β-TCP content increases we observe more rough surfaces due to 

presence of filler. Presence of β-TCP leads to a fracture process with a typical flake 

formation which is representative for a fragile fracture. Increasing flake structure is 

representative for more fragile materials as observed in Table 2 with absorbed energy 

values. 

 

Figure 3 

 

Figure 4 clearly shows the typical distribution β-TCP particles in the PLA 

matrix. It can be observed good particle dispersion among the PLA matrix. Although 

some particle-polymer interaction can be observed in Fig. 4a (low particle-polymer 



gap), in general terms, interaction is not high as previous mechanical characterization 

has revealed with a decrease in both strength and deformation ability. Fig. 4b shows a 

FESEM image of a PLA composite containing 30 wt.% β-TCP subjected to a treatment 

with 6M HCl for 12 hours. The voids and holes correspond to removed/dissolved β-

TCP and the overall void size and distribution also indicate good particle dispersion. 

 

Figure 4 

 

3.2.- Effect of weight % β-TCP on thermal properties of PLA/β-TCP composites.  

 Thermal transitions of PLA/β-TCP composites were evaluated by means of 

differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Table 3 

shows melt temperature, glass transition temperature (Tg), cold crystallization peaks 

and normalized values for the cold crystallization. We observe a slight decrease in the 

melt peak from 173 ºC to 170-172 ºC but it is not relevant. Similar behavior can be 

observed for the cold crystallization process with a peak at 116 ºC (unfilled PLA) up to 

values in the 113-116 ºC for PLA/β-TCP composites. The crystallization of PLA/β-TCP 

composites decreases in all formulations compared to the virgin PLA. In addition, the 

glass transition temperature is slightly lower but it is not relevant as it changes from 65 

ºC (unfilled PLA) to 62-63 ºC for PLA/β-TCP composites. This could be related to 



partial hydrolysis of PLA polymer chains due to the presence of a highly hydrophilic 

filler such as β-TCP which could contribute to hydrolyze (33) some poly(lactic acid) 

chains and promote a plasticization process with the formed lactic acid olygomers. Fig. 

5 shows a comparative plot of the DSC curves for PLA/β-TCP composites with 

different β-TCP loads in which, the different transitions can be observed. In addition, a 

double melt peak is detected, which is directly related to a crystalline polymorphism 

due to presence of small amounts of D-lactide (34). The change in the peak shape 

corresponding to PLA with 30 wt.% β-TCP is due to increased melting of spherulites D-

lactide crystallization. The osteoconductive particles promote this type of 

crystallization. 

Table 3 

 

Figure 5 

 

Fig. 6 shows thermogravimetric curves (TGA) for PLA/β-TCP composites with 

different β-TCP content. PLA is highly stable to temperature; nevertheless, PLA/β-TCP 

composites show a slight decrease in the degradation onset due to hydrolysis processes 

(35, 36). As we have described previously, β-TCP is highly hydrophilic and this fact 

leads to hydrolytic scission of poly(lactic acid) chains thus leading to formation of lactic 

acid olygomers. The percentage residue is directly related to the total content on β-TCP 



inorganic filler; so that, composites with 20 wt.% β-TCP show a residual percentage 

weight of 22% which corresponds to the β-TCP filler plus residual ashes from PLA. 

 

Figure 6 

 

 With regard to dynamic mechanical thermal behavior of PLA/β-TCP 

composites, Fig. 7 shows a comparative plot of the storage modulus (G’) as a function 

of temperature for different β-TCP loads. As we can see, the storage modulus moves to 

higher values as the β-TCP content increases which is representative for stiffer materials 

as described previously. The storage modulus remains almost constant up to values of 

about 60 ºC. A remarkable decrease in G’ occurs in the 60-80 ºC range which is directly 

related to the glass transition temperature (Tg) of . A new increase in storage modulus 

(G’) is detected at temperatures higher than 90-100 ºC; this is related to the cold 

crystallization process which leads to increased crystallinity and, subsequently, an 

increase in stiffness is achieved. As we can clearly detect, the crystallization moves to 

lower temperatures as the β-TCP content increases due to the nucleating effect of finely 

dispersed β-TCP into the PLA polymeric matrix (37). 

 

Figure 7 

 



4. Conclusions. 

In this work we developed biocompatible and resorbable composites based on 

PLA matrix and beta tri-calcium phosphate (β-TCP) as osteoconductive filler. PLA with 

20-30 wt.% β-TCP shows an increase in Young's modulus and flexural modulus up to 

35 and 53%, respectively. Higher β-TCP loads (>20-30 wt.%), produce a significant 

loss of resilience or ability for energy absorption. A reduction on crystallinity and the 

degradation onset temperature are observed by adding β-TCP to PLA. Due to the high 

hydrophilic character of the β-TCP particles, PLA/β-TCP composites are more 

hydrophilic than neat PLA. This is due to degradation caused by thermal hydrolysis 

processes. The softening temperature of the composites decreases compared to the 

polymer without osteoconductive load. This is also due to the lower crystallinity. An 

increase in the Young's modulus of composites is observed at temperatures below the 

Tg in comparison with PLA. The Young's modulus increases as the percentage of 

osteoconductive load rises. Considering that the working temperature of the composites 

will be lower than the softening point, it can be stated that the PLA composites 

containing 20-30 wt.% β-TCP show a necessary improvement in mechanical properties 

to prevent breakage in interference screws made from this material. 
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Table captions 

Table 1.- Compositions and labelling of PLA/β-TCP composites. 

Table 2.- Shore D hardness values and Charpy’s absorbed energy of PLA/β-TCP 

composites in terms of the β-TCP weight %. 

Table 3.- Summary of the main thermal parameters of PLA/β-TCP composites, 

obtained by differential scanning calorimetry (DSC). 

 

  



Figure legends 

Figure 1.- Plot of the evolution of mechanical properties from tensile tests as a function 

of the weight % β-TCP. 

Figure 2.- Plot of the evolution of mechanical properties from flexural tests as a 

function of the weight % β-TCP. 

Figure 3.- SEM images of fractured surfaces from impact tests corresponding to 

PLA/β-TCP composites with different wt.% β-TCP, a) unfilled PLA, b) 10 wt.% β-

TCP, c) 20 wt.% β-TCP, d) 30 wt.% β-TCP, e) 40 wt.% β-TCP. 

Figure 4.- FESEM images of fractured surfaces from impact tests of PLA composite 

with 30 wt.% β-TCP, a) untreated and b) treated with 6M HCl for 12 hours.  

Figure 5.- Comparative plot of DSC graphs corresponding to PLA/β-TCP composites 

with different wt.% β-TCP. 

Figure 6.- Comparative plot of TGA graphs corresponding to PLA/β-TCP composites 

with different wt.% β-TCP. 

Figure 7.- Evolution of the storage modulus (G’) of PLA/β-TCP composites with 

different wt.% β-TCP. 

 


