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Merotopies associated with
quasi-uniformities
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ABSTRACT. To an arbitrary quasi-uniformity on the set X,
a merotopy on X is assigned. There are results concerning the
question whether this merotopy is compatible with the topology
induced by the quasi-uniformity and whether the closure opera-
tion induced by the merotopy, admits a compatible uniformity.
More precise results are obtained in the case of transitive quasi-
uniformities.
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1. INTRODUCTION

The purpose of the present paper is to establish a relation between two well-
known kinds of topological structures, namely quasi-uniformities and mero-
topies.

Notation and terminology concerning quasi-uniformsities will be used accord-
ing to [4]. The concept of a merotopy has been introduced in [8], but we shall
use according to [3] a more advantageous description of them due to [7]. Thus
a merotopy € on a set X will mean a non-empty collection of covers of X (we
denote by T'(X) the collection of all covers of X) with the properties:

(1.1) Ifced, ¢ €eI'(X) and ¢ refines ¢ then ¢ € €,

(1.2) ¢1, ¢ € € implies ¢;(N)ey € €

where we say that ¢ refines ¢’ (in symbol ¢ < ¢) iff C' € ¢ implies the existence
of C' € ¢ satisfying C C €', and

Cl(ﬁ)tz = {Cl NCy: C; € Ci};
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(N) is obviously an associative operation. Equivalently, (1.2) may be replaced
by

(1.3)  ¢1,¢0 € € implies the existence of ¢ € € satisfying ¢ < ¢; (i =1,2).

The topological category Qunif is composed of the objects of quasi-uniform
spaces (X,U) where U is a quasi-uniformity on X, and of the morphisms of
quasi-uniformly continuous maps [4]. The category Mer contains the objects
of merotopic spaces (X, €) where € is a merotopy on X and of the morphisms of
merotopically continuous maps, where f : X — X' is said to be merotopically
continuous or (&, €')-continuous, € and ¢’ being merotopies on X and X' respec-
tively, iff ¢ € ¢ implies f~1(¢/) € € (of course, f~1(/) = {f~H(C") : C" € ¢'}).

We know ([4]) that each quasi-uniformity & on X induces a topology 7(U)
on X for which the neighbourhood filter of z € X is given by {U(x) : U € U}.
Similarly, each merotopy € on X induces a closure operation on X (i.e. a map
c:expX — expX such that ¢(@) = @, A C ¢(4), c(AUB) = ¢(4) U ¢(B)
where exp X is the power set of X) and ¢ = ¢(€) is defined by

z € c¢(A) & A €secv(x)

(for b C X(X), where ¥(X) is the collection of all non-empty subsets of the
power set exp X, we write

Aesecb < AC XANB # @ for each B € b)

and the c-neighborhood filter v.(x) of z € X is generated by the filter base
{st(z,c) : ¢ € €}. Also each topology 7 on X may be considered as a closure
¢ = ¢; = cl; special in the sense that c¢(c(A)) = ¢(A) for every A C X.

2. MEROTOPIES ASSOCIATED WITH QUASI-UNIFORMITIES

Let U be an entourage [4] on X. Define ¢y = {U(z) : z € X}. Then ¢y is
a cover on X and, both U and U’ being entourages on X with U C U’, clearly
U(z) C U'(z) for z € X so that ¢y < ¢yr. Therefore, if U is a quasi-uniformity
on X, then B = {c¢y : U € U} is a base [3] for a merotopy ;. More generally,
if B is a base for U and we set B = {cy : U € B} then B is still a base for
Cy. Moreover, if (X',U') is another quasi-uniform space and f : X — X' is
quasi-uniformly continuous then f is (€, €y )-continuous as well: if U € U,
U' e and (z,y) € U implies (f(z), f(y)) € U’ then f(U(x)) C U'(f(z)) so
that ¢y < f_l(CUI).

Hence we can state:

Theorem 2.1. If we associate with each quasi-uniformity U on the set X the
merotopy &y with base

(2.4) %:{CU:UEU}
where
(2.5) (v ={U(z) : z € X},

then ®((X,U)) = (X,Cy), ®(f) = f for f : X — X' define a (covariant)
functor ® : Qunif — Mer.
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It is an interesting question which merotopies can be represented in the form
¢y with some quasi-uniformity U, or which covers have the form ¢y for some
entourage U. The collection of all covers of the form ¢y clearly does not coincide
with I'(X): if ¢ = ¢y then there is a surjection f : X — ¢ such that z € f(x) for
each ¢ € X, consequently there is a bijection g : Xy — ¢ for some Xy C X such
that = € g(z) for z € Xy, or equivalently there is an injection g7 ' = h:¢ — X
such that h(C) € C for C € ¢, i.e., in the terminology of [8], there is a transversal
for ¢. Now clearly, if t € ¥(X) and h is a transversal for t, then necessarily the
following condition must hold:

(2.6) t' C t implies t'| < | U

because h(t') C Ut'. Consequently, if ¢ = ¢y for some entourage U then (2.6)
has to be fulfilled for t = ¢.

According to [6], the condition (2.6) is sufficient for the existence of a trans-
versal for t in the case when t and each T' € t are finite, or even, according to
[5], in the case when t is infinite but each T' € t is finite. However, probably
there are no further results on the sufficiency of (2.6) in the general case (if
some T" € t can be infinite then (2.6) certainly does not guarantee the existence
of a transversal, cf. [9]). So we can formulate:

Problem 2.2. Look for necessary and/or sufficient conditions for a cover ¢ of
X for the existence of an entourage U satisfying ¢ = cyy.

Problem 2.3. Look for necessary and/or sufficient conditions for a merotopy
¢ on X for the existence of a quasi-uniformity U satisfying € = €.

If U is a quasi-uniformity on X and we look for the closure ¢ = ¢(€y) then
it is easy to see:

Lemma 2.4. ¢ = c¢(€y) is coarser than c,qy), i-e.
crauy(4) Ce(4) (A CX).

Proof. Clearly v.(z) is generated by the filter base composed of all sets st(z, c;7)
where U € U, and

(2.7) stz ) = | {UW) 9 € U@)} = U(U(w)).
Obviously U(z) C U(U~Y(z)). O

In general, ¢ # c;(); e.g. if X = R and U is the Sorgenfrey quasi-uniformity
generated by the base {U. : ¢ > 0} where U.(x) = [,z +¢) then U, (U, }(z)) =
(x — e,2 + €) so that ¢(&) is the Euclidean topology on R. It is even possible
that the closure ¢(€) it not a topology:

Example 2.5. Let X = {a,b, c} and U be an entourage on X such that U(a) =
{a}, U(b) = {a,b}, U(c) = {a,c}. Clearly U? = U so that {U} is a base for a
quasi-uniformity f on X and {cy } is a base for the merotopy €. For ¢ = ¢(€y),
we have ¢({b}) = {a,b} and c({a,b}) = X.
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However, it is not difficult to characterize those quasi-uniformities U for
which ¢(&y) = c - Recall ([4]) that a quasi-uniformity ¢/ on X is said to
be point-symmetric iff, for each x € X and U € U, there is V € U such that
VY(x) C U(x) or, equivalently, iff 7(i/) is coarser than 7(1/~1).

Theorem 2.6. The equality ¢(€y) = ¢,y holds iff U is point-symmetric.

Proof. By Lemma, 2.4, we need, for x € X and U € U, the existence of W € U
such that W(W~!(z)) C U(x). Now this condition clearly implies the point-
symmetry of &. On the other hand, if, for U € U, we choose Uy € U satisfying
U3 C U, then, given z € X, V € U such that V~!(z) C Up(z), finally we set
W =V NUy €U, obviously W(W 1) (z) C Up(V~t(z)) CUZ(x) CU(x). O

It is easy to find examples of point-symmetric quasi-uniformities. In fact,
recall (cf. [1]) that a topology ¢ (i.e. a closure ¢ = ¢, for a topology 7) is
said to be S; iff z € G implies c({z}) C G whenever G is c-open. Also recall
([4]) that the Pervin quasi-uniformity P associated with the topology ¢ (and
inducing c) is defined by the quasi-uniform subbase {Ug : G is c-open} where
Ug(z) =G ifz € G and Ug(zr) = X if £ € X — G. More generally, if B is a
base for the topology ¢ then the entourages Up (B € 8) constitute a subbase
for a transitive quasi-uniformity ¢ (8) compatible with ¢ (see e.g. [2]). If the
topology ¢ is 51, we can also consider the entourages Uy p = Up N Ux_c({s})
where z € B € B to obtain a subbase for a transitive quasi-uniformity U (8)
finer than U (B) and coarser than P, hence still compatible with c.

Now we can state:

Proposition 2.7. If c s an S topology admitting a base B then every quasi-
uniformity U finer than Uy (B) and compatible with ¢ is point-symmetric.

Proof. Given z € X and U € U, there is a B € 9B such that z € B C U(z). By
S1, we have ¢({z}) C B. Let H denote the c-open set H = X — c¢({z}). Then,
for V.=UpNUy €U (B) CU, we have V (z) = c¢({z}) C B C U(x). O

The condition for a quasi-uniformity U of being point-symmetric has another
important consequence for the merotopy €. Recall ([3]) that a merotopy € is
said to be Lodato iff ¢ € € implies int ¢ € € where int¢ = {intC' : C' € ¢} and
intC =X —¢(X — C), c=¢(€). Now we can state:

Theorem 2.8. IfU is point-symmetric then &y is a Lodato merotopy.

Proof. For ¢ € €, choose U € U such that ¢y < ¢ and Uy € U such that
U3 C U. Then, by Uy(z) C intU(z), ¢y, < int ¢y < intc and ¢y, € € implies
intc € €. O

3. SEMI-SYMMETRIC QUASI-UNIFORMITIES

Recall ([3]) that a semi-uniformity U on a set X is a filter on X x X having
a base composed of symmetric entourages; it induces a closure ¢(Uf) such that,
if c=c(U) and z € X, then v.(z) = {U(z) : U € U} is the neighborhood filter
of z for c.
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Now if U is an arbitrary entourage on X then clearly UU ! (we write AB
for Ao Bif A,B C X x X) is a symmetric entourage on X so that, whenever
U is a quasi-uniformity on X, {UU ! : U € U} is a base for a semi-uniformity
U*; by Lemma 2.4

(3.8) o(U*) = c(y).

We look for those quasi-uniformities & which admit a corresponding semi-
uniformity U* that is a uniformity. For this purpose, let us say that U is
semi-symmetric iff, given U € U, there is V € U satisfying V-1V c UU Y,
the pair (U, V) is said to be semi-symmetric in this case and, in particular, the
entourage U is said to be semi-symmetric iff (U,U) is semi-symmetric. Now it
is easy to prove:

Theorem 3.1. For a quasi-uniformity U, the semi-uniformity U™ is a unifor-
mity iff U is semi-symmetric.

Proof. If U* is a uniformity then, for U € U, there is V &€ U such that
VV-WWV~—l c UU~! whence clearly V'V C UU~'. Conversely, if the con-
dition in the statement is fulfilled, let U € & and Uy € U be chosen such that
U3 C U, thenlet V € U satisfy V=1V C UOUO_I. Now we can suppose V' C Uy as
V can be replaced by VNUy. Then V(V-IV)V-! Cc UpUpUy Uy cUUL O

Of course, each uniformity is an example of a semi-symmetric quasi-uniform-
ity. But it is easy to find non-symmetric examples, too. E.g. if i/ is the Sorgen-
frey quasi-uniformity on X = R whose base is composed of the entourages U, =
{(z,y) ;2 Sy <z+e} (e >0) then UU = U U = {(z,y) : |z —y| < e}
Similarly if I/ is the Michael quasi-uniformity on X = R, i.e. the base is com-
posed of {U; : € > 0} where Us(z) = (r — e,z +¢) if z € Q and U (x) = {z} if
r € R—Q, then U.U; Y(z) = (z—2¢, 2 +2¢), while clearly U.(x) C (z—¢,z+¢)
and U;Y(z) C (z —&,2 + ¢) so that U-Y(U.(z)) C U:(U-'(x)). On the
other hand, e.g. Example 2.5 is not semi-symmetric: U (U 1(b)) = {a,b} and
U-YU(b) = X.

Corollary 3.2. If a quasi-uniformity U is both semi-symmetric and point-
symmetric then the topology T(U) is completely regular.

Proof. By Theorem 2.6 ¢y = ¢(€y), by (3.8) and Theorem 3.1 the latter is a
topology induced by a uniformity. O

It is easy to see that point-symmetry and semi-symmetry are properties of
a quasi-uniformity independent of each other. In fact, the Sorgenfrey quasi-
uniformity is semi-symmetric without being point-symmetric, while if ¢ is an
S1 topology that is not completely regular then its Pervin quasi-uniformity is
point-symmetric by Proposition 2.7 but not semi-symmetric by Corollary 3.2.

Semi-symmetric quasi-uniformities have rather good invariance properties.
Recall that, if f : X — Y, then the inverse image f ! (U) of a quasi-uniformity
U on'Y is generated by the entourages f 1(U) for U € U where f(z,y) =

(f (), f(y))-
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Lemma 3.3. If f : X = Y is surjective and U is a semi-symmetric quasi-
uniformity on'Y then f~1(U) is semi-symmetric.

Proof. f U,V €U and V=V C UUL, further (f(z), f(y)) €V, (f(y), f(2)) €
V=L then (f(x), f(2)) € V=V C UU! so that there is some w € Y satisfying
(f(z),w) € U™L, (w, f(2)) € U, and choosing u € X such that w = f(u),
we get (f(),f(u)) € U™, (f(u), f(2) € U, ie. (z,u) € f7HUY), (u,2) €
7). O

The condition of surjectivity cannot be dropped as semi-symmetry is not
hereditary:

Example 3.4. Let X = {q,b,c,d}, U(a) = {a}, U(b) = {a,b} , U(c) = {a,c},
U(d) = X. Then U? = U, so that {U} is a base for a quasi-uniformity & on
X. The semi-symmetry of U is easily checked using the formulas for U(x) and
those U 1(a) = X, U 1(b) = {b,d}, U (c) = {c,d}, U 1(d) = {d}. Define
Xo = {a,b,c}, Uy = UN (Xo x Xp). Then U|Xy coincides with the quasi-
uniformity in Example 2.5 which fails to be semi-symmetric.

Lemma 3.5. If U; is a semi-symmetric quasi-uniformity on X; (i € I) and
X =[[{Xi:i eI} thenU = [[U; is semi-symmetric on X.

Proof. Let U € U be given. We can suppose U = [[U; where U; € U; for
1 € F and a finite ¥ C I, U; = X; x X; otherwise. Choose V; € U; such that
Vi*lVi - UZ'U;1 for i € F and V; = X; x X; otherwise. For V = [[V;, we have
V-lv cuu—L O

Some partial results concerning heredity may be obtained by introducing
the following definition: let us say that U is strongly semi-symmetric iff, given
U € U, thereis V € U such that V=1V C UUU™!; in this case (U, V) is strongly
semi-symmetric and, in particular, U € U is strongly semi-symmetric iff so is

(U,0).

Lemma 3.6. A strongly semi-symmetric quasi-uniformity is semi-symmetric
as well.

Proof. V'V c UUU ! and (z,y) € V'V then either (z,y) € U or
(z,y) € U~ L. In the first case, let (z,2) € U !, in the second one let (y,y) € U.
In both cases, (z,y) € UU . O

E.g. the Sorgenfrey quasi-uniformity is strongly semi-symmetric because
{(@,9) iz —yl < e} = {(z,9) ;2 Sy<w+e}U{(wy) o —e <y} The
same holds for the Michael quasi-uniformity: U.(z) UUZ(z) = (z — ¢,z + ¢)
if r € Qand = {z} U ((z —e,5+¢)NQ) if z € R — Q, while U; '(Us(z)) C
(x — 20,z +20)ifr €« Qand = {z} U ((z —d,z+)NQ if z € R-Q
In Example 3.4, we find a semi-symmetric but not strongly semi-symmetric
quasi-uniformity; in fact strong semi-symmetry is hereditary:

Lemma 3.7. If f : X = Y and U is strongly semi-symmetric on Y then
f~YU) is strongly semi-symmetric on X.
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Proof. Assume U,V € Y and V'V cUUU L. If (z,y) € f*l(Vfl) f*l(V)
then (f(x), f(y)) €V IV CUUU Y50 (wy) € fHO) U T, O

However, the analogue of Lemma 3.5 is not valid for strongly semi-symmetric
quasi-uniformities:

Example 3.8. Let X = R?, I be the Sorgenfrey quasi-uniformity, and consider
U xU. We know that both factors are strongly semi-symmetric. For U =
Uy x Uy, no Vi = Us x U is suitable: (0,36) € Uy, (34,16) € Uy, (0, 16) € Uy,
(50, —50) € Uy ', s0 ((0,0), (58, —=50)) € V5 V5 but ((0,0), (30, -30)) ¢ U U
U™t = (U x Uy) U (U ! x U because (0,36) ¢ U ! and (0,—30) ¢ Uy

4. THE TRANSITIVE CASE

Problems 2.2 and 2.3 have partial solution in the case of transitive entourages
and quasi-uniformities, respectively. In order to see this, consider a system
t € ¥(X) and define an operation u : (X ) — X(X) by

(4.9) pt) ={T(z):z € X}
where
(4.10) T(z)=({T e€t:z T}

and we define N@ = X. Clearly z € T'(z), hence u(t) is always a cover of X so
that p: (X)) — I'(X).

Lemma 4.1. The operation p is idempotent.

Proof. Let t € X(X) and t' = u(t). For z,y € X and z € T(y) we have
{Tet:yeT} C{T €t:xz € T}, consequently T'(z) C T(y), so that
T et :zeT} =N{TW €t :ze Ty} DO T(x) while obviously
T(z)et,z €T (z) imply (WI" €t :z €T’} CT(x). By this, ({T" €t :z €
T'} = T(z) and p(t') = p(u(t)) = p(t). O

Let us say that a system t € X(X) is point-true iff ;1(t) = t; hence a point-true
system is always a cover of X. In other words,

Lemma 4.2. A system t is point-true iff a) ({T' € t:x € T} e tifx € X and
b) if T €t, there is x € T such that x € T' € t implies T C T".

Now let U be a transitive (i.e. such that U? = U) entourage on X. As
z € Ul(y) implies U(z) C U(y) (because (z,z) € U and (y,z) € U imply
(y,z) € U), we have U(z) = ({U(y) : z € U(y)}, so that:

Lemma 4.3. IfU is a transitive entourage on X then the cover ¢y is point-true.
Conversely:

Lemma 4.4. If ¢ is a point-true cover of X then there is a transitive entourage
U on X such that ¢ = ¢y .



8 Akos Csdszar

Proof. Define (z,y) e U C X x X iff z € C € ¢ implies y € C. Then (z,x) € U
for x € X and (z,y) € U, (y,z) € U imply (x,z) € U so that U is a transitive
entourage on X. By definition, U(z) = ({C € ¢: v € C} € ¢ by Lemma 4.2
a), and, if C' € ¢, there is by Lemma 4.2 b) an z € C such that C = U(x).
Consequently ¢ = {U(z) : z € X }. O

Lemma 4.5. The transitive entourage U in the above lemma is uniquely de-
termined by c.

Proof. Let Uy and Us be transitive entourages on X such that ¢y, = ¢,. Given
z € X, there is y € X satisfying Uj(z) = Us(y). Then z € Uj(x) implies
z € Usly), hence Ux(z) C Us(y) = Ui(z) and Uz(z) C Ui(x). Therefore
U, C Uy. Similarly Uy C Us. O

Theorem 4.6. There is a bijection from the set of all transitive entourages on
X to the set of all point-true covers of X given by the formulas

(4.11) U,

(4.12) ¢ Us, Ue(z) = ({C €c:z € CHz € X).
Concerning the behaviour of transitive quasi-uniformities, let us first remark:

Lemma 4.7. Let U; be transitive entourages on X for i = 1,...,n and U =
N Ui. Then ey = p((N)Tew,)-

Proof. Let us denote ¢y, = ¢;, ¢ = ¢. Then, for x € X, we have by (4.12), for
the element of ¢ corresponding to z, U(z) = ] Ui(z) = Ni=, ({Ci € ¢z €
Cit=WCi€c:zeCii=1,..,n}=N{C e ()i z e C}; the latter
is the element of p(([)}¢i) corresponding to . O

Observe that p cannot be omitted because ¢1(N)cy may fail to be point-true
for point-true covers ¢; (i = 1,2).
Example 4.8. Let X =R, ¢; = {(2n,2n+2) : n € Z}U{(2n—2,2n+2) :n € Z}
and ¢ = {(2n —1,2n+1):ne€ Z}U{(2n —1,2n +3) : n € Z}. It is easy
to check using Lemma 4.2 that both ¢; and ¢y are point-true covers. Now
ca(Mex ={(n,n+1):neZu{(n,n+2):neZiU{(n,n+3):ncZiU{a}
is not point-true since neither (n,n + 3) nor {@} does fulfil Lemma 4.2 b).

Now we can prove:

Theorem 4.9. If U is a transitive quasi-uniformity then the merotopy € = &y

fulfils

(4.13) ¢ has a base B composed of point-true covers
such that
(4.14) if ¢; €8 fori=1,...,n then p((N)}e) € B.

Conversely if € is a merotopy satisfying (4.13) and (4.14) then there exists a
transitive quasi-uniformity U such that € = &yy.
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Proof. (4.13) is obvious if B = {cy : U € U is transitive}. If¢; € B (i =1,...,n)
then there are transitive entourages U; € U such that ¢; = ¢y,. By Lemma 4.7,
p(()iew;) =cy € B for U =] U; € U and B fulfils (4.14).

Conversely, if the merotopy € satisfies (4.13) and (4.14), let 8 denote the
base for € occurring in (4.13). By Lemma 4.4, there are transitive entourages
U such that ¢ = ¢y for each ¢ € B. Denote by B the set of all these U. By
Lemma 4.7 and (4.14), B is a filter base on X x X and by U? = U, it is a base
for a transitive quasi-uniformity . Clearly ¢ = €. O

In contrast to Lemma 4.5, there is no uniqueness in the above theorem:

Example 4.10. Let X =R, ¢ = {[2n,2n +2) : n € Z} and ¢ = ¢ U {[0,1)},
¢ = c¢U{[1,2)}. Each of the point-true covers ¢ and ¢; (i = 1,2) define
merotopic bases {c}, {c;} for the same merotopy € (observe ¢; < ¢ < ¢;).
However, if we choose transitive entourages U; such that ¢; = ¢y, (cf. Lemma
4.4) then {U;} is a base for a quasi-uniformity ¢; and €, = € while Us % Uy
(e.g. 1e UQ(O) — Ul(O)), so U 7'5 Us.

Observe that this Example shows: if U; (1 = 1,2) are transitive entourages
and ¢y, < ¢y, < ¢y, then Uy = Uy need not hold. Also {c1,c2} is a base for
¢ but {U;,Us} is not a quasi-uniform base at all as U g U, g U;. Certainly,
it is a quasi-uniform subbase; however, if U = U; N Uy, then {U} is a base
for a quasi-uniformity ¢ but, since by Lemma 4.7 ¢ = {[2n,2n +2) : n €
Z—{0}}U{[0,1),[1,2)}, we have € # & as ¢y < ¢ and ¢ £ cp.

Example 4.10 contains a merotopy and quasi-uniformities inducing very bad
topologies. However, it is possible the find a better example:

Example 4.11. Let X = R—Z =,y I, where I;, = (n,n+1). Let 7 denote
the subspace topology on X of the FKuclidean one on R Denote by B the
base for 7 composed of all (7)-open sets B contained in some I,,. Consider the
(point-true) covers of X ¢; p = {{z}, B — {z}, X — {z}}; clearly ¢, p = ¢y, p-
Denote also ¢ = {X}U{lyx 1: k€ Z}, " ={X}U{ls : k € Z}. Clearly both
¢/ and ¢” are point-finite, point-true covers of X. We write ¢/ = ¢y, ¢ = ¢y
with transitive entourages U’, U”. Let U’ be the transitive quasi-uniformity
defined by the subbase {U, p : « € B € B} U {U'}, and similarly define U"
with the help of the subbase {U, p:z € Be BU{U"}.

We have U’ # U". In fact, assume the contrary; then U’ D U = (] Uy, 5,NU"
for suitable z; € B;, 1 <4 < n. There is a k € Z such that Iy, is disjoint from
all sets By, ..., B, so that U'(z) = Iy for € Iy, while U(x) is cofinite as
Uy, B () = X — {z;} and U"(z) = X.

Let us write ¢/ = €, €" = €. For an arbitrary cover ¢ € ¢/, we can find,
according to Lemma 4.7, z; € B; € B such that p((N)}cp,5,(NU’) <¢c. We
claim

p(((Diews,z) < w(((Diew,m (M)
In fact, if £ € B; for some ¢ then the member containing z of the left hand

side is contained either in B; N Iy,_; = B; for some k or in B; N X = By; both
sets belong to the right hand side. If z ¢ B; for each ¢ = 1,...,n, then there
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is a k such that Iy is disjoint from all sets B; occurring on the left hand side
and then the member of the left hand side containing some y € Iy is the same
as the one containing x; therefore this member is the one containing y of the
right hand side. Thus the left hand side, belonging to €”, refines ¢ and ¢ € €”,
¢’ c ¢”. A similar argument furnishes €” C ¢’ so that finally ¢/ = ¢” = €.

Clearly both U’ and U” induce the (very good) topology 7. According to
Proposition 2.7, they are point-symmetric, so that the merotopy € induces 7
as well (see Theorem 2.6).

Example 3.4 shows that the invariance properties of semi-symmetry are es-
sentially the same in the transitive case as in the general one. However, we can
establish useful criteria guaranteeing the symmetry of a transitive entourage or
the semi-symmetry of a transitive quasi-uniformity.

Lemma 4.12. If ¢ is a point-true cover of X, U = U, s the corresponding
transitive entourage, then c;—1 = p(c¢) where ¢¢ ={X — C : C € c}.

Proof. Let V=U"1'2€ X. Nowye V(z)if r € U(y) =N{C €c:y € C}iff
yeCec=zelifr ¢ Cec=yd¢Cifze X-C, Cec=>ye X—-Ciff
ye (X —-C:C ec, z € X—C} and the latter ) is the element corresponding
to = of p(c). O

Observe that p cannot be dropped: let X =[0,1] CR, ¢ ={[0,z] : 0 Sz <
1} U{1l}; now ¢¢ = {(z,1] : 0 S = < 1} U[0,1) is not point-true.

Theorem 4.13. Let ¢ be a point-true cover of X and U = U,. U is symmeltric
iff ¢ is a partition of X.

Proof. Necessity: Suppose U(x) N U(y) # @, say, z € U(z) N U(y). Then
U(z) C U(xz)NU(y) by the transitivity, z € U(z) and y € U(z) by the symmetry,
and U(z) UU(y) C U(z) by the transitivity again. Hence U(z) = U(z) = U(y).

Sufficiency: If U(z) = Cp then U™l (z) = ({X —C : C € ¢,z ¢ C} by
Lemma 4.12, hence U~!(z) = Cy provided ¢ is a partition. O

Theorem 4.14. Let € = &y for a transitive quasi-uniformity U. The latter is
semi-symmetric iff there is a base B for € composed of covers ¢y with transitive
U €U and such that these U constitute a base for U, further, if ¢ € B, there is
a ¢ € B such that, whenever C| € ¢’ and C]NCY # &, there is C' € ¢ satisfying
ciuch cc.

Proof. Necessity: Let B = {c¢y : U € U is transitive }. Given ¢ = ¢y € B,
U € U transitive, choose a transitive Vy € U such that Y/(flVo C UU! and
set V.=VyNU € U. Finally let ¢ = ¢y. Now if C] = V(z), C) = V(y) and
C1 N CY # @, we have some z such that z € V(z) NV (y), hence y € V1(z) C
V-V (z)) c U(U '(z)). Consequently there is some u satisfying u € U~ !(z),
y € U(u), ie. z,y € U(u), therefore C] UC), =V (z) UV (y) CU(z) UU(y) C
U(u) by the transitivity of U. For C' = U(u) € ¢ we obtain C] UC) C C.
Sufficiency: Given U € U, choose a transitive Uy € U such that Uy C U
and ¢y, belongs to the base B in the hypothesis. Set ¢ = ¢y,, then choose
¢ € B satisfying C] UC) C C € ¢ whenever C] € ¢ and C] N C) # &, and
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let ¢ = ¢y for some transitive V € Y. If x € X and y € V 1(V(z)), then
V(z), V(y) € ¢ and V(z)NV (y) # & so that V(z)UV (y) C C =Uy(z) C U(z)
for a suitable z € X. Then z,y € U(z), hence z € U '(z) and y € U(U !(z)).
From V- 1(V(z)) Cc U(U *(z)) we obtain V'V Cc UU L. O

A similar (but simpler) argument furnishes:

Corollary 4.15. Let ¢ = ¢y for a transitive entourage U. The latter is semi-
symmetric iff, whenever C; € ¢ and Cy N Cy # &, there exists C € ¢ satisfying
C,uCy, CC.

Semi-symmetry and point-symmetry are independent concepts also for tran-
sitive quasi-uniformities. In fact, the example given above for a point-symmetric
but not semi-symmetric quasi-uniformity was a Pervin quasi-uniformity, hence
transitive. For a semi-symmetric but not point-symmetric, transitive quasi-
uniformity, consider:

Example 4.16. Let X = {a, b}, ¢ be the closure associated with the Sierpinski
topology {@,{a}, X}, U the (transitive) Pervin quasi-uniformity of ¢ generated
by the base {U} where U = Uy, and ¢y = {{a}, X}. Then U(a) = {a},
Ub) =X, U Ya) = X, U L) = {b}. Clearly U Y(U(a)) = U YU(®)) =
U(U (a)) =UU (b)) = X so that U/ is semi-symmetric, but it is not point-
symmetric because U~ !(a) € U(a).

Acknowledgements. The author thanks Professor Vera T. Sés for helpful
suggestions.
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