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ABSTRACT. In this paper we prove first some abstract theorems
on existence of global attractors for differential inclusions gener-
ated by w-dissipative operators. Then these results are applied
to reaction-diffusion equations in which the Banach space L, is
used as phase space. Finally, new results concerning the fractal
dimension of the global attractor in the space Lo are obtained.
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1. INTRODUCTION

The theory of global attractors for partial differential equations have been
applied to a wide range of equations of parabolic and reaction-diffusion types.
It is very important in this theory to choose an appropriate phase space for
the system. The existence, uniqueness and properties of solutions of partial
differential equations depend strongly on the phase space.

The more common phase space used for reaction-diffusion equations is the
space Lo (2) (see [3], [4], [5], [6], [7], [13], [17], [18], [21], [25], [26], [28], [29],
31], [32], [33]).

However, other spaces like L, (2) [1], H? (£2), 0 <y <1 (see [2], [11], [12],
[20] and their bibliography) or C (92) (see [15]-[16], [27 ]) have been also used
succesfully.

As far as we know, the space L, (§2), where 2 < p < oo, has not been
considered so far.

In this paper we shall consider the existence of global attractors for differen-
tial inclusions of the type

u (0) = up,

where A is a multivalued w-dissipative operator.

{ o'(t) € A(x(t)),
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This general framework allows us to apply the obtained results in order to
prove the existence of a global attractor for the following reaction-diffusion
equation

9 — Au+ f(u) dwu+h, on ]0,T[x €,
u=0, on ]0,T[ x T,
u(0,2) = up(x) € L, (),

where f : R — 2R is a multivalued maximal monotone map and 2 < p < oo.
Therefore, we extend the results of attractors for reaction-diffusion equations
to the case where the phase space L, () is used. Moreover, the nonlinear
function f, which is usually a continuous one, can be in our case multivalued.
Hence, our results are valid also for differential equations with discontinuous
nonlinearities. We obtain also a result (see Theorem 4.4), which is new in the
case where f € C'! and p = 2.

In the case p = 2 we obtain some estimates of the fractal dimension of the
global attractor. Such estimates are well known under different conditions on
the function f (see [3]-[5], [7], [18], [25]). In all these papers the function f is
at least Lipschitz on any bounded set of R. We shall extend these result by
considering a function f (s) which is Lipschitz on a fixed bounded set [—a, a] but
can be even discontinuous for s ¢ [—a, a].

We shall recall now some definitions of the theory of dynamical systems (see
[20], [22]-[23], [29] for more details). Let Y be a complete metric space with the
metric denoted by p(-,-), V : Rf XY — Y be a semigroup of operators, i.e.,
the following properties hold

V(tl,V(tz,x)) = V(tl + tz,x), for all t1,12 € R+,:U S Y,
V(0,) = 1.

The map = — V (t,z) is supposed to be continuous for each t € R, .
Let us introduce the next notation:
B(Y) is the set of all bounded subsets of Y;
(@) = U V()77 (4) = U7 (o), where t,7 € R, 5 € ¥, A€ B(Y);

w(B) = tgoy;"(B) is the w-limit set.
We denote by Z the set of stationary points of V, i.e.,
Z={ueY |V(t,u)=u, forallteR}.

The continuous function L : Y — R is called a Lyapunov function on Y for
Vif L(V(t,z)) < L(z) forany t >0,z €Y,z ¢ Z.

Let us recall the concept of distance between sets. Let A, B C Y. Then the
distance from A to B is determined as follows:

d(A,B) =s inf , .
(4, B) wlelg{ylng(w y)}

Definition 1.1. The compact set ® C Y is called a global attractor of the
semigroup V if the following conditions hold:
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(1) It attracts each set B € B(Y'), that is,
d(V(t,B),R) = 0, as t = +o0.
(2) It is invariant, i.e., V (t,R) =R, for all t > 0.

Definition 1.2. The semigroup V is called "pointwise dissipative” if there ex-
1sts a bounded set B which attracts each x € Y.

Remark 1.3. We note that if for any B € B(Y") there exists some T' = T'(B) €
R, for which ;- (B) € B(Y'), then pointwise dissipativeness is equivalent to the
existence of a bounded set By such that for each z € Y there exists T' (x) for
which V (T, z) € By. In such a case we can take B; = 7;(B0) (By).

Definition 1.4. The semigroup V is said to be time-continuous if the map
t— V(t,z) is continuous for each v € Y.

Theorem 1.5. ([23, p.107-109] and [19, p.4-5])Let V (t,-) be compact for some
t > 0 and let V be pointwise dissipative. Suppose that for any B € B(Y)
there exists T = T'(B) € Ry such that v (B) € B(Y). Then V has the global
attractor K. If V is time-continuous and Y is connected, then R is connected.

This paper is organized as follows. In the second section we prove the exis-
tence of attractors for abstract differential inclusions in Banach spaces generated
by w-dissipative operators. In the third section we apply the abstract results
of the preceding section to differential inclusions generated by subdifferential
maps in Hilbert spaces. In the fourth section we prove the existence of global
attractors for reaction-diffusion equations in L, (2) spaces. Finally, in the fifth
section we obtain estimates of the fractal dimension of the global attractor of
reaction-diffusion equations in the Hilbert space Lg (€2).

2. EXISTENCE OF ATTRACTORS OF DIFFERENTIAL INCLUSIONS GENERATED
BY w-DISSIPATIVE OPERATORS

Let X be a real Banach space with its dual denoted by X*. We shall denote
by |||l and ||-||, the norms in X and X* respectively. (-,-) will denote pairing
between the spaces X and X*. Consider the next differential inclusion

du (t)
1) { S e A, 0=t <oo,
U (0) =ug € X,
where A : D (A) C X — 2% is a multivalued nonlinear operator and v : R, —
X

We remind that the dual operator J : X — 2% (may be multivalued) is
defined as follows:

T = {7 X Il = 1712 = (@, )}

Consider the next conditions:
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(A1) The operator A is w-dissipative, i.e., for all 1,22 € D (A), y1 € A(x1),
y2 € A (z2), there exists j (z;,y;) € J (x1 — z2) such that

<y1 — Y2, -7> S wal —£U2H2,

where w > 0.

When w = 0 the operator A is called dissipative. It is easy to check
that condition (A1) is equivalent to the dissipativeness of the operator
A—wl.

(A2) D(A)c N Im(I—M\A), where Ay > 0, \gw < 1.
0<A<Ag

Notice that D (A) is a complete metric space endowed with the usual metric

p(z,y) = llz—yll, for all z,y € D (A).

If conditions Al and A2 are satisfied, then there exists a semigroup of oper-
ators V : Ry x D (A) — D (A) corresponding to the operator A (see [8, p.108]
or [14, p.63]) such that V is determined by the next formula

n—00

(2.2) V(t,z) = lim (I—%A)_na@, reD(A), teR,.

Moreover, for any fixed t € Ry one has

(2.3) IV (t,2) =V (£, 9)|| < exp(wt) ||z —y|, for all 2,y € D (4).
It follows from inequality (2.3) that the map  —— V (¢,z) is continuous for
eacht e R, .
A map u: [0,7] — X is called a strong solution of inclusion (2.1) on [0, 7]

if:

(1) u is continuous on [0, 7] and u (0) = wu;

(2) w is absolutely continuous on any compact subset of (0,7);

(3) w is almost everywhere (in short, a.e.) differentiable on (0,7") and sat-

isfies inclusion (2.1) a.e. on (0,T).

Remark 2.1. If u(-),u(0) = uo, is a strong solution of (2.1) and (Al), (A2)
hold, then u(t) = V (¢, uo) [14, Theorem 3.1], where V is the semigroup defined
by (2.2).

Remark 2.2. Suppose that the space X is reflexive, (A1), (A2) hold and the
operator A is closed. Then the map u (t) = V (¢, ug) is a strong solution of (2.1)
for any T' > 0,ug € D (A) [14, p.77].

We also must consider the next condition:
(A3) Im (I — AA) = X for all A > 0.
A dissipative operator which satisfies A3 is called m-dissipative. In such a
case A2 is always satisfied. Moreover, every m-dissipative operator is closed [8,
.75].
g If]A = B + wl with B m-dissipative, then A is closed and (Al), (A2) are
satisfied. Indeed,

Im (I —AA) = Im (I = AB — AwI) = Im (1 — Aw) [ — AB) =
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A
m< 1 —w ) ’

if 1 — Aw > 0. Hence,
N Im(I—-XA)=X, if lw<L1.

0<A< Ao
In that case we have the inclusion:
du (t)
(24) S e B®) +wu), u(0) =u.

Remark 2.3. It is easy to prove that if u (t) = V (¢,x) is a strong solution of
(2.1) for each z € D (A), then the set of stationary points Z can be characterized
as follows:

Z={ueD(A)|0e A(u)}.
It may be proved also that if A = B + wl, where B is m-dissipative, then
this characterization is also true.

First we shall recall the next result, which states the existence of a compact
attractor for m-dissipative operators.

Theorem 2.4. [30, p.609] Let A be an m-dissipative operator. Suppose that the
semigroup V generated by A is compact for some ty > 0 and that Z is nonempty
and bounded. Assume also that the next condition is satisfied:

If x € D(A) and ||V (t,z) —v|| = ||z — v|| for allv € Z, for all t >0,
then x € Z.

Then Z is the global attractor of V.. Moreover, the following conditions hold:

(1) Z is connected if D (A) is connected;
(2) Every positive trajectory {z(t) = V(t,x0), t € Ry, zy € D(A)} con-
verges to some element z € Z, i.e., w(x) = z € Z, for all z € D(A).

(2.5)

Remark 2.5. In fact, m-dissipativeness is too strong. The statement of the
theorem remains valid if (A1) — (A2) hold with w = 0.

Remark 2.6. The proof of Theorem 2.4 is based on the results from [23]. It
is remarked in [19] that in the abstract result of that paper on the connectivity
of the global attractor is necessary to supppose the semigroup V to be time-
continuous. Since the semigroup V is time-continuous, the statement of point
(1) remains valid.

To obtain suitable conditions on A and also to study the w-dissipative case
we need strong solutions of (2.1).

Further, we shall prove two results on existence of the global attractor for
the semigroup V.

Lemma 2.7. Suppose that A satisfies (A1) — (A2) and that u (t) =V (¢, up) is
a strong solution of (2.1) for any ug € D (A). Suppose also that there exists
u € Z such that the next condition holds:
(2.6)

forallz € D(A),z ¢ Z, ye A(x), there exists j € J(x —u) for which

(y, ) <0.
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Then the function L (z) = || — u|| is a Lyapunov function for V on D (A).
Proof. Suppose that z ¢ Z. Since the map z (t) = V (¢, z) is continuous on t,
there exists an interval [0, s) such that z (t) ¢ Z for any t € [0, s). Multiplying
(2.1) by j € J (x (t) — u) and using (2.6), we have

<da;‘i§t)’j> <0ae te(0,s).

By Lemma 1.2 from [8, p.100] we have <dzgt),j> = (% |z () — ull) |z (¢) — ul.
Hence,

d
<% |z (t) — uH) |z (t) —u|l <0 ae. te(0,s).
By integration we obtain
[l () = ull <[z (0) —ull, if ¢ € (0,5).

It is easy to see that the last inequality holds for any ¢t > 0. Indeed, let z (s) € Z.
Then z (t) =z (s), for all t > s, and

lz () = ul = lim [lz (7) —ul = inf |z (7) —ull <llz(0) -l

since ||z (7) —ul| is a decreasing function on [0,s). So, L(z) = ||z —u| is a
Lyapunov function for V on D (A). O

Theorem 2.8. Let A satisfy conditions (Al) — (A2), V' be compact for some
to > 0, the map u (t) = V (t,ug) be a strong solution for all ug € D (A), Z be
nonempty and bounded and (2.6) hold for some u € Z. Then V has the global
attractor R. It is connected if D (A) is connected.

Proof. Tt follows from Lemma 2.7 that L () = ||z — u|| is a Lyapunov function
for V on D (A) and also that for some v € Z one has

IV (£, u0) — ul| < |juo —u|, forallug € BeB (D(A)) :

Then, it is obvious that v, (B) € B ( (A)>

Z is nonempty and bounded by assumption. It is well known from [23, The-
orems 2.1 and 2.4] that if V' is compact for some ¢ > 0, there exists a Lyapunov
function and 73 (z) is a bounded set, then w (z) is nonempty, compact and
attracts z. Moreover, w (z) C Z. It follows that Z attracts any = € D (A), so
that V is pointwise dissipative.

We conclude the proof by applying Theorem 1.5. O

Corollary 2.9. Under the conditions of Theorem 2.8, ® = Z if we suppose
that one of the next conditions holds:

(1) (2.6) holds for any u € Z;
(2) A is m-dissipative.

Moreover, in the second case w(x) =z € Z, for all z € D (A).
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Proof. Let us prove the first statement. Let v € R. We must prove that in this
case u € Z.

Recall that the function u(-) : R — X is called a complete trajectory of V'
if u(t +t1) = V(t,u(t1)), for all t; € R, t € Ry.. This function will be called a
complete trajectory of the point z if u(0) = .

From the definition, every global attractor is the union of all bounded com-
plete trajectories of V' (for a proof see [22, p.10]). Hence, the point u belongs
to some bounded complete trajectory {u(t),t € R}. Without loss of gener-
ality we can put v (0) = u. From each sequence {u(t,)}, ¢, / +oo (that
is, an increasing sequence of times converging to +o00) or t, \, —oo (that is,
a decreasing sequence of times converging to —oo), belonging to a complete
bounded trajectory {u(t),t € R}, we can choose a subsequence converging to
some stationary point (see [23, Theorem 2.4]). It follows that there exist two
sequences {u (t,)}, tn 400, {u (tm)}, tm ¢ —00, such that

lim u(t,) =u; € Z, lim u(ty)=u2 € Z.
n—00 m—00

Let us prove by contradiction that v € Z. Suppose the opposite. Then by (2.6)
and using Lemma 2.7 we have
lu(tn) — ual| < ||lu—usl| < ||u(tm) —ue|, forallt, >0, t, <O0.

Since limy,, oo || (ty) — uz2|| = 0, we obtain u = u; = ug € Z. Thus, R C Z,
from which & = Z.

Let us prove the second statement. Since L (z) = ||z — u|| is a Lyapunov
function for some u € Z, (2.5) is immediately satisfied. Thus, the second
statement is a consequence of Theorem 2.4. [l

Remark 2.10. If A = B+ wl, where B is m-dissipative (or satisfies (A1) and
(A2) with w = 0), (2.6) can be written in the next way: there exists u € Z such
that
(2.7)

forallz € D(A),x ¢ Z, y € B(x), there exists j € J (z — u) for which

<y7j> < —w <x7j> .

In the preceding theorem we have used conditions providing the existence of a
compact attractor. In the next one we shall consider another kind of conditions
without using the set of stationary points Z.

Theorem 2.11. Let A satisfy (Al)-(A2), V' be compact for some ty > 0,
u(t) = V(t,up) be a strong solution for any uy € D(A) and the next condition
hold: there exist C' > 0, § > 0 such that

for all w € D(A), ||u]] > C, y € A(u), there exists j € J(u) for which

(28) <yj>< 0.

Then V' has the global attractor R. It is connected if D (A) is connected.

Proof. First we shall prove that for all x € D(A) there exists t(z), for which
V(t,z) € By, where

By={ue D@ | |lull < C+cf.
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with € > 0.
Let = ¢ By, so that ||z|| > C + €. Suppose that u(t) = V (¢t,z) ¢ By, for all
t > 0. Then, using (2.8) and arguing as in the proof of Lemma 2.7 we get

u()]|? < [|u(0)]|* — 26, for all ¢ > 0.

For t great enough u(t) € By. The resulting contradiction proves that u(t) € By
for some ¢.

Further, let us prove the inclusion vy (B) € B( (A)), if B € B( (A)),
B C D(A). For this purpose it suffices to show that if ||ug|| < M, uy €
D(A), M > C, then |lu(t)|| = ||[V(¢t,uo)|| < M, forallt > 0. Indeed, sup-
pose that ||u (¢1)|| > M, for some ¢; > 0. Since the map u(-) is continuous
on [0,00) it is clear that there exists to < t; such that [|u(f2)|| = M and
llu(t)|| > M for to < ¢t < t;. But in this case we obtain arguing as before that
lw (E0)]|* < |lu (t2)||* — 26 (2 — 1), which is a contradiction.

It remains to consider the case where z € D(A)\D(A). Let us show first that
V(t,z) € By for some ¢ (x) > 0. Let it not be so, i.e., V(t,z) ¢ By, for all t >
0. Since z € D(A), we can find a sequence {z} C D(A) such that limy_, o z =
x. Let ¢ be fixed. Then using (2.3) we obtain that there exists ky such that
\V(t,zg)|]| > C +¢/2, forall k > ky. Since for any M > C and = € D(A)
we have that |V (7, z)]| < M, forallT > 0,if ||z|| < M, we deduce that
\V(r,zg)|| > C +¢€/2, for all 7 € [0,t], K > ko. Then, using (2.8) again we
get

IV zo)ll” < IV (r,2)ll? —26(t —7), t > 17, forall k > k.
When k£ — oo we obtain
IV (t2)|* <1V (r2)|* =28t —7), t >
It is easy to see that choosing ¢ great enough we have that V' (¢,z) € By. Hence,

we obtain a contradiction.

It remains to prove that v, (B) € B( (A)> , forall Be B (D(A)> We
shall prove that V (¢, Bys) C By, for all t > 0, where

By ={veD{A) || <M}, M>C
For any B C By, B C D(A), we have already verified the inclusion V (¢, B) C

By, for all ¢ > 0. Suppose that there exist z € D(A)\D(A), z € By, and
t > 0 such that ||V (t,z)|| > M. Choosing {zx} C D(A), ||z — x| o 0, and
—00

using (2.3), we have ||V (t,z) — V (¢, zx)]| e 0. Then ||V (¢, zg)| > M, for
all & > kg. The resulting contradiction shows that V (¢, By;) C By and then
v (B) € B (D(A)) , forall Be B (W).

Therefore, v; (B) € B (m), forall B € B (W) , and, in view of

Remark 1.3, the semigroup V' is pointwise dissipative . We conclude the proof
by using Theorem 1.5. O

Remark 2.12. In view of Remark 2.2 if X is reflexive and A is closed, then
u(t) = V(t,up) is a strong solution of (2.1) for any ug € D(A).
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Remark 2.13. It is easy to see that if there exist € > 0, M > 0 such that

forallu € D (A), y € A(u), there exists j € J (u) for which

2.9 .
(2.9) (25 < —e Jul’®> + M,

then (2.8) holds.

3. APPLICATIONS TO INCLUSIONS GENERATED BY SUBDIFFERENTIAL MAPS

Let H be a real Hilbert space where is given the scalar product denoted by
(,-). We identify H with its dual H* and then the dual operator J is the
identity map I. We recall that the multivalued operator A : D(A) C H — 21
is called monotone if

(y1 — yo2, 21 — x2) > 0, for all z1,29 € D(A), y1 € A(z1), y2 € A(z2).

A monotone operator is called maximal monotone if there does not exist another
monotone operator B such that Graph(A) C Graph(B), where

Graph(A) ={(z,y) e Hx H:y€ A(x)}.

Remark 3.1. The operator A is maximal monotone if and only if —A is m-
dissipative [8, p.71].

Counsider the problem

e _9p(u(t)) +wult) + h,
(3.10) { d 2 (0) = up.

where w > 0, dp : H — H is the subdifferential of a convex proper lower
semicontinuous function ¢ : H — ]—o00,4+00] and h € H. It is well known
that D(¢) = D(0p) and also that dp is a maximal monotone operator [8,
p.54]. Then —Jy is m-dissipative in view of Remark 3.1 and —d¢ + h is also
m-dissipative.

For any ug € D(Jd¢) and T" > 0 there exists a unique strong solution of
(3.10), u(-) € C([0,T], H) (see [9, p.82] or [21, p.1399]). In view of Remark 2.1
we have u(t) = V (¢, up).

Let us recall the next well-known criterion of compacity of the semigroup V'
(see [21, p.1398]). We shall give the proof for the sake of completeness.

Lemma 3.2. The semigroup V(t,-) is compact (that is, the map V(t,-) is
compact for any t > 0) if the following property is satisfied:

(L) The level sets B defined by
Bo ={u € D(p) | [lull <C, p(u) < C}
are compact in H for every C' € R .

Moreover, for any B € B(D((p)) and t > 0 there is R > 0 such that
V(t,B) C Bp.
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Proof. We must prove that for every B € B(D(y)) and any ¢ > 0 the set
V(t, B) is precompact in H. Let By ={u € H | ||u|| < N}, N > 0. We take an
arbitrary uyg € By, up € D (¢), u(t) =V (t,up). It follows from [9, p.82] that
if up € D (), then

du

dt

2 4

d
t ‘ + t%go(u) =t <h + wu, —QZ) a.e. on (0,7,

and flj—z; € L2 (0,T; H). Therefore, it follows that ¢ (u (t)) is absolutely continu-

ous on [0,7] [8, p.189]. Hence, integrating by parts we have

T ldu||? r du r
/0 tHE dt + To(u(T)) :/0 t(h—i—wu,a)dt—i—/o o(u(t))dt,
and then )
Tl du
roun) < 5 [ o G e motun)
1 T ) T
(3.11) <5 [ tnlsw s [ ot

On the other hand, without loss of generality we can assume that min{p(u) :
u € H} = p(xg) = 0. Indeed, let 29 € D(dy), yo € Op(xp). If we introduce the
new function g(u) = ¢(u) — w(xo) — (Yo, u — x¢), the inclusion
du

E—i—acp(u) > h+wu

is equivalent to

d B ~

d—?—i—&p(u) Sh—yo+wu=h+wu
and min{p(u) : w € H} = ¢(zg) = 0. It is clear that ¢ satisfies (L).

Hence, since h + wu (t) — dqzlgt) € dp(u(t)) a.e. on (0,T), we have
du(t
(1)) < (b +wu(®) ~ P u(e) )
Integrating over (0,7") we get
T
| etutnar

T
< 2 lu(0) = woll® ~ 3 u(T) — ol + / (Il + @ [l (8) ) [[ut) — o ) dt

DN | =

T
< O =l + [ (bl e O (t) = o] .

Let vy € D (¢) be fixed. Obviously, there exists a constant C' such that ||v (¢)]] <
C, for all t € [0,T], where v (t) = V (t,vp). It follows from inequality (2.3) that

lu(t) — v (t)|| < exp (WT') [Jug — vo|, for 0 < ¢ < T.
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Therefore, there are constants Dy, Dy (depending on 7" and N, but not on
ug € By) for which

(3.12) lu ()| < Dy, forall t € [0,1],

T
(3.13) /0 o(u(t))dt < Dy < oo.

Using (3.12)-(3.13) in relation (3.11) we obtain that for any 7" > 0 there exists
K > 0 such that p(u(T)) < K.

Consider now that ug € D (¢), up € By. We take a sequence {uf} C D (y)
such that uj — up, as n — oo. It is clear by inequality (2.3) that " (T") —
u (T'). Since ¢ is lower semicontinuous, we get

o (u(T)) < liminfp (u" () < K.

Then
V(T, B N) Cc B R,
where R = max{K, D;}. It follows from (L) that V (T, By) is precompact in
H. O

Thus, as a consequence of Theorem 2.11 we obtain the following result, which
is a slight improvement of Corollary 2.1 from [21].

Corollary 3.3. Let ¢ satisfy (L) and let the following condition hold: there
exist 0,C > 0 such that for all u € D(0yp), |ul]| > C, for ally € —0p(u) one
has

(3.14) (ysu) < =6 —wllul]* = (h,u).

Then V has the global attractor R, which satisfies the next property of smooth-
ness: there exists C' € Ry such that R C Bc.

Proof. 1t is straightforward to prove by using (3.14) that (2.8) holds. Hence,
by Lemma 3.2 all conditions of Theorem 2.11 hold. Finally, since the attractor
R is invariant, we have V(¢,R) = R, for all ¢ > 0. Taking ¢ > 0 we obtain by
Lemma 3.2 that R C B¢ for some C > 0, as claimed. O

Further, as a consequence of Theorem 2.8 and Lemma 3.2 we obtain:

Corollary 3.4. Let (L) be satisfied and let the following conditions hold:

(1) There exists u € Z such that for all x € D(0p), x ¢ Z, forally €
Op(x), one has

(3.15) (y,z —u) > w(z,z —u) + (h,x —u).
(2) The set of stationary points Z, i.e., the set of solutions of the inclusion
(3.16) dp(u) dwu+h, v e H,
s bounded.

Then V has the global attractor R.
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Remark 3.5. It is possible to transform (3.15) as follows. By the definition of
the subdifferential map we have

(y,2 —u) 2 p(x) — @(u), forally € dp(z).
Hence, (3.15) will be satisfied if
o(x) — p(u) > w(z,z —u) + (h,x —u), forall z ¢ Z.
As a consequence of Corollary 2.9 we have:

Corollary 3.6. Let w =0, h =0, and let (L) be satisfied. If ¢ is coercive, i.e.,
o(u) = +00, as ||ul| = +oo, then R = Z # & is the global attractor of V.

Proof. Since ¢ is coercive, we have [8, p.52]

317 Z={s]0€0ple)} = {s € Do) | o(o) = min o)} £ 2.

On the other hand, using again that ¢ is coercive it is easy to check that Z is
bounded. Moreover, in view of Remark 3.5 and since w and h are equal to zero,
in order to prove (3.15) it suffices to satisfy the next condition: p(z) — ¢(u) >
0, for all z ¢ Z, and some fixed u € Z. This condition is satisfied for any u € Z
in view of (3.17). It remains to apply Lemma 3.2 and Corollary 2.9. O

Remark 3.7. From the coerciveness of ¢ it follows that Z is non-empty and
bounded. We can also use these two conditions instead of coerciveness. On the
other hand, in Corollaries 3.4 and 3.6, R C B¢ for some C > 0.

4. APPLICATIONS TO REACTION-DIFFUSION EQUATIONS
In the sequel © wil be an open bounded subset of R" with sufficiently smooth

boundary I'. Consider the boundary value problem:

@—Au—i-f(u) Swu+h, on |0,T[ x €,

(4.18) ot w=0, on ]0,T[ x T,
u(0,x) = up(z) on £,
where w > 0, f : D(f) € R — 2% is a maximal monotone multivalued map
such that D(f) =R, h € L,(2) and 2 < p < oo.
We shall use the Banach space X = L, () as phase space. Define the
operator By : D (By) — 2%,

By(u)={£€Ly,(Q):{(z) € Au(z) — f(u(x)), a.e on Q},

D(B,) = {u € W2P (Q) N WP () :
Jy € L, (©2) such that y(z) € f (u(x)) a.e. on Q}.

The operator B, is m-dissipative (see [8, p.87]). Hence, the operator A, (u)
= B, (u) + wu + h, D (A,) = D (B,), satisfies A1-A2.
Recall that in L, (Q) the dual operator F : L, () — Lg (9),

.  uP i
single-valued and defined by F (u)

I Uiy
Il

1 L {1
= = = 1
p+q ) 18
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Let us denote the semigroup generated by (4.18) in the complete metric space
D (Bp) C Ly (2) by V).

Proposition 4.1. Let f satisfy the next condition: there exist M > 0, ¢ > 0
such that for all s € D(f), y € f(s) one has

(4.19) ys—wls> >elsP =M
Then condition (2.8) holds.

Proof. For u € D(A,) and y € f(u), a.e. on Q, y € L,(Q2), we obtain by using
(4.19) and integrating over €2 that

p72u T D upf2
/(y(x)—wu(:v)) —|u(x)| — ( )d:vz [u@)] dx—M/ 7| | —dz.
Q Q

2 2 2
Jul, o llulf; Jully,

Then, using integration by parts, for any £ € A, (u) we get

(&, F (u)) =
Ju ()P~ u (x) Ju ()P~ u (x)
= Ay——"————"dx — z) —wu(z h(z)) ———dx
A T | )~ wute) + 1) i
—(p-1) Vu 2]u )‘pzdw—s Mdm
. JALE Jully ? o ull; ?

@)p!
+M/HW2d+/| HWde

Further, Holder inequality implies

(€, F () < —elullf, +M|Q|_ ; H + A, H ::

< =Sl + 190 + o8I,

2 2
= —cllul?, +M QP + Al lull,, <

where || denotes the Lebesgue measure of Q. Fix 0 > 0. Then there exists
C > 0 such that if ||u||Lp > C we obtain

(&, F (u)) < —6.
Thus, condition (2.8) holds. O

Remark 4.2. In the case p = 2 condition (4.19) can be weakened by putting
e — A1 instead of ¢, where ) is the first eigenvalue of —A in H} ().

Theorem 4.3. If condition (4.19) is satisfied and
2
(4.20) 2<p<—n if n >3,

then the semigroup generated by (4.18) has the global attractor R, which is
compact in L, (Q) and bounded in H} (Q). If p= 2, then R is connected.
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Proof. We have to prove first that the semigroup is compact. Consider first the
case where p = 2. Denote in this case the semigroup by V5.

Note that there exists a proper convex lower semicontinuous map 7 : R —
]—00, 4+00] such that f = Jj, where Jj is the subdifferential of j [8, p.60].

Let us determine the function ¢ : H — |—o00,+00], H = Lo(f2), by

o) = { 3 JaVu@) dz+ [o j(u(@) do, ifu € D(p),
~+00, otherwise,

where D(p) = {u € H}(Q), j(u) € Li(Q)}. It is well known [8, p.88] that
y € Op(u) if and only if u € D(0p), y(z) € —Au(z) + f(u(z)) a.e. on Q, and
y(-) € La(S2), where

D(9p) = {u € HA(Q) N HY(®) |
there exists v € Ly(Q) such that v(z) € f(z) a.e. on Q},
D(p) = D(9p) = L().
Then By = d¢ and we have problem (3.10).
We must prove that ¢(u) satisfies (L). Indeed, since the function j(u) is
bounded from below by an affine function [8, p.51], for any u € B¢ we have

1 2
/Q(,u + vu(z)) dr + 5 /Q |Vu(z)|* dz < p(u) < C,

where p,v € R. Since the norms ”u”Hé(Q) and [|Vul|,, ) are equivalent, the

preceding inequality implies that B¢ is bounded in H¢ (). Finally, we use the
fact that the inclusion H{(Q) C Lo(2) is compact [10, p.169].

Now Lemma 3.2 implies the compacity of V5 (¢,-) for any ¢t > 0. Moreover,
since for any bounded set B C L2 (f2) and ¢ > 0 there exists C' such that
Vs (t, B) C Bg, the set V4 (¢, B) is bounded in H{ (£2).

Further, let p > 2. It is easy to check using the unicity of solutions that
Vp (t,up) = Va (t,ug), for any ug € D (B,), t > 0. Hence, for any bounded set
B C D(By) (in the topology of L, (£2)) and ¢ > 0 we have that V, (¢,B) =
Vs (t, B) is bounded in H{ (€2). Since in view of condition (4.20) the injection
H{ () C L, (Q) is compact (see [10, p.169]), V,, (¢, B) is a precompact set.

We note that for any ug € D (A,) there exists a unique strong solution
u (-) of inclusion (4.18) (see [8, p.146]), so that since in view of Remark 2.1,
u (t) =V, (¢, up), the existence of the global attractor follows from Proposition
4.1 and Theorem 2.11.

Further, since the global attractor is bounded in Ly, (€2), we get that V), (¢, R)
is bounded in H}(€2). Therefore, we obtain that % is bounded in H}(Q2) by the
equality V, (t,R) = R.

Finally, if p = 2 we have that D (B2) = D(9d¢) = L2 (2) . Then since Ly ()
is connected, the global attractor is connected. 0

Theorem 4.4. Let p =2, h=0,0 € f(0) and let f satisfy the next condition
(4.21) ys > (=1 +w) s, for all s €R, y € f(s),
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where Ay is the first eigenvalue of —A in H} (). Moreover, there exists C > 0
such that if |s| > C, then

(4.22) ys > (=1 +w) s, forally € f(s).

Then the semigroup generated by (4.18) has the global connected attractor R,
which is compact in Lo () and bounded in Hg ().

Proof. We have seen in the proof of the previous theorem that By = dy and
(L) holds. We must verify that (3.15)-(3.16) hold. It is clear that the function
v(z) = 0 is a stationary point of V5. Let us check (3.15) for this point. It follows
from (4.21) that for all u € D(0¢), y € f(u) a.e. on Q, y € La(2), one has

y(@)u(z) > (A + w) u?(z), a.e. on Q,
and so
(o) = |yl uahde 2 (<N )l
Therefore,

(—Au+y,u) > w Hu||%2 , for all u € D(0y), y € La(Q),y € f(u) a.e. on Q.
It remains to show that this inequality is strict when u ¢ Z. Suppose that
(—Au+ y,u) = w Hu||%2 ,y(x) € f(u(z)) a.e. on Q, y € Ly(Q2). This implies
that y(z)u(z) = (=A\1 +w)u?(z) a.e. on Q, and u € spanier,ea,...,en}, ie.,

it belongs to the space generated by the eigenfunctions corresponding to Aj.
Indeed, if y(z)u(z) > (=X + w) u?(z) on a set Q1 C Q such that [Q;] # 0, then

(yu) > (=1 +w) Jull7,

Hence (—Au + y,u) > w ||uH2L2, which is a contradiction. On the other hand,
by using the equality y(z)u(z) = (A1 + w) u?(z), we have

(—Au,u) + (y —w,u) = (—Au,u) — Ay Ju]7, = 0.

The last equality can hold only if u € span{ei, e, ..., e, }. Let us suppose that
it is not the case. Then

o o
A (z Avien zm) S > S 0 A Jul
i=1 =1

and thus we obtain a contradiction. We must check that u € Z. We take the
partition Q = Qy U Qo, where u(z) = 0 a.e. on Q, u(z) # 0 a.e. on sy, and
define the function
o 0, on Ql,
¢(z) = { y(z), on Q.
Since 0 € f(0), we have £(z) € f (u(x)) a.e. on Q. On the other hand &(x) =
(—A1 + w)u(z) a.e. on Q. Since —Aex, = Ajex on Q, forall k = 1,...,m [10,
p.-192], we get
—Au(z) + &(z) = wu () a.e. on .
Thus, 4 € Z and condition (3.15) holds.
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Next, we must prove that Z is bounded in Lo(Q2). If u € Z, then for some
y € La(R), y(z) € f(u(x)) a.e. on 2, we have

(—Au+y,u) =wllull], ,
and then, as we have already proved,
y(z)u(z) = (=A\1 +w) u?(z) a.e. on Q.

It follows from this equality that |u(z)| < C a.e. on €2, because by assumption
y(z)u(z) > — (A +w) u?(z) if |u(z)| > C. Thus, Z is bounded in Lo (£2) and
consequently in Lo (€2).

The properties of the attractor may be proved in the same way as in Theorem
4.3. U

Remark 4.5. We note, as a particular case, that if ys > —\;s2, for all s €
R\ {0}, y € f(s),then v = 0 is the unique stationary point. It follows from
Corollary 2.9 that ® = Z = {0}.

5. DIMENSION OF THE GLOBAL ATTRACTOR OF REACTION-DIFFUSION
EQUATIONS IN THE CASE p = 2

We are now interested in the estimation of the fractal dimension of the global
attractor of (4.18) in the Hilbert space L2 (2) . Such estimates are well known
in the case of a differentiable function f (see [3]-[5], [25]). For non-differentiable
maps a similar result was obtained in [7] supposing that f is Lipschitz and in
[18] in the case where f € VVl})’COO (R). In all these papers the function f is at
least Lipschitz on any bounded set of R.

We shall extend these results by considering a function f (s) which is Lips-
chitz on a fixed bounded set [—a, a] but can be even discontinuous for s ¢ [—a, a].

Recall that the fractal dimension of a compact setA is defined by

df(A) = inf{d > 0| (A, d) = 0},
where
Ky (A,d) = lim Edna
e—0
and n is the minimum number of balls of radius r < e which is necessary to
cover A.
First we have to obtain an estimate of the elements of the global attractor

in the norm of the space Lo, (). For this goal we need to impose a dissipative
condition which is stronger than (4.19).

Proposition 5.1. Let us assume that there exist € > 0,7 > 2, M > 0 such that

(5.23) ys —ws? >¢el|s|” — M, for any s € Ry € f (s).
Let k>0, ug € D (Agyr) and h € Lo (). Then u (t) = Vo (t,uo) satisfies:
o

B < poyets (e () () ) 4 (5 - 2)0) 7).

for all t>0.
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Proof. Let k > 0 be arbitrary. We note that since ug € D (Ak,), we have
that Va (¢,u0) = Viir (¢, up), so that w(-) € C ([0,T], Lgyr (2)) for any T > 0.
Denote v (t) = ||u(t )Hk+2 . Due to the regularity of uy we have that u (-) is
a strong solution of (4.18), u € WhH™ (0,T; Ly, (), for any T > 0, and

u(t) € Wt (Q) n w2kt (Q), for any t € 0,7 (see [8, p.146]). It follows
from [8, Lemma 1.2, p.100] that k+2 L ||]Z:zz = [, |u|" udz. Multiplying
(4.18) by |u|* u and using the Green formula and (5.23) we obtain

k+2 2 k k
k+2 i H““Lj:+2 + (k+1) Jo IVl [u® dz + € [o [u]**" do
< M [, |u|* do + Jo b |u|" udz.
Now the Holder inequalities

k k 2 k k r—=2
lullz, < lullz,,, Q=2 lullp, <l Qe

L2 Liggr
imply
k+2 k
g TS, + el T, < Ml 1905 + [ ool ude
Further Young inequality with exponent ¢ = k” and coefficients
_k
~1017F Cu = (S IR )
gives
(5.25)
3e 2—r £ —k ktr
k+2 k T k
g I+ e s, <101 (5) T M+ [ bl ude,

Using the Holder inequalities
k k+1 k+1 k+1 T
/Qh\UI udz < ||Allp Nullz), s lulln),, < iz, 19

Lyq1 Ly Ltz
we have ,
k+2 = k
w7, + 3 1205 ],
k T
< 191G z +th\u\ uds
= k+1
< lol(5) My IRl llullzr,,
E E+r k+1 _1
< 19/(5) - + 1Rl Nl 1272
Now applying the Young inequality with exponent g = Zﬂ and coeflicients

k+1
1—r 1—7 —r - .
a=5|Qk2, Cf = (% | k’+2> ™" to the last term of the inequality we get

k42 k 2-r
a1l ,, + 5 lullzy, 19

_k r _kt1 ktr
< o ()7 uE T ).

Hence,

(5.20 S0 () +7 () <5
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_k " _ktl ktr 2-p
where 8 = (k-+2) 101 ((9)77 M + () L) v = 5 6+ 205
1= 5

Further we shall use the following version of the Gronwall lemma [29, Chapter
I11, p.163]:

be absolutely continuous on (0,00). Suppose that

Lemma 5.2. Let y(t) > 0
0 > 0 such that

there exist ¢ > 1, v > 0,

(5.27) Sy (1) <6
Then
(5.28) y(t) < (%) ’ +(vy(g—1) t)_q+1 , for all t > 0.

Thus, Lemma 5.2 implies
ﬁ’—T k+r k+r ktr k+r
Q| F+2 - ktr —htr v
@l < (257 (7 M + () it

+ (510055 (r—2)1)
N I Y=
< |Q|k+2 <2k-1|-r <( - ) + (75 ) ) +(

for all ¢t > 0. O

-

[NJIO)
—
=
|
[\
~
o~
~

|
<
|
N
N—

Corollary 5.3. Let up € C5° (), h € Loo (R2) and let (5.23) hold. Then for
any 1 > 0 we have

1 1
4M\ " 4|k r=1 1
(529)  Ilull,_ ooz < <T) + (%) . —
((r=2)nz)

Proof. First we shall show that ug € D (Ap) for any p > 2. We take an arbitrary
single-valued function ¢ (s) such that g (s) € f(s), for all s € R. Since f (s)
is maximal monotone, g (s) is non-decreasing. Any non-decreasing function is
measurable, so that the composition [ () = g (ug (x)) is a measurable selection
of f (up (x)). Let us check that [ (z) € Lo (2). Since ug € C§° (), there exists
b > 0 such that |ug ()| < b, for all z € 2. Hence,

g(=b) < g(ug(x)) <g(b), forallzeQ,

so that [ (z) € Lo (2). It follows that [ (z) € L, (Q2), for any p > 2, and that
[(z) € f(up (z)), a.e. on Q. Therefore, uy € D (4,), for all p > 2.

Proposition 5.1 implies that (5.24) is satisfied for any & > 0. Passing to the
limit as k — oo we obtain

1 1
AM\ r 4 ||k r—1 1
I (@), < (—) 4 (M) LY raleso,
¢ € ((r—2)t5) 2
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and then for any n > 0 we get
1
Jul < (MY (AT,
Ul Loo(n,TiLoo(@) = \ T2 L
: c ((r—2)n5) =
O

Corollary 5.4. Let ug € Lo (), h € Loo (R2) and let (5.23) hold. Then in-
equality (5.29) holds.

Proof. Let uy € C§° (2) be a sequence such that ujj — ug in Ly (©2). Then in-
equality (2.3) implies that u" (t) = Va2 (¢,u) converges to u(t) = Va (¢, uo)
in C([0,T],L2(€2)). The sequence u™ is bounded in Ly (1,T; Lo (2)) b

(5.29). Hence, there exists a subsequence converging to u weakly star in
Lo (1,T; Loo (2)). Therefore, (5.29) holds. O

Now we can obtain an estimate of the elements of the global attractor R
(which exists in view of Theorem 4.3) in the norm of the space Ly, (£2).

Theorem 5.5. Let h € Lo (2) and let (5.23) hold. Then for any y € R the

following estimate holds:

1 1
AN
(5.30) HMhmm)_< 5) +—< - )

Proof. Let 6 > 0, y € R be arbitrary. We choose n such that

1
((r -2) 77%) <
Since R is invariant, there exists ug € R for which y = u (2n) = V5 (29, up).
Corollary 5.4 implies

1 1
AMN*  (4lbll T
||U||Loo(n,377;Loo(Q)) < <?) * (f) i

Since u € C(n,3n; Ly (2)) and it is bounded in Ly (1, 37; Lo (2)), we have
u € Cy (n,3n; Ly (), for any 2 < ¢ < oo, where C,, denotes the weak topology

(see [24, p.275]). Hence,
1 1
AMN\ " (Al \ T 1
’M@@ZW@WMQS(C?>+(—?—) It
AMNT  [4|hl, \71
Wiy = el < (F20) () o

so that
€

Since ¢ is arbitrary, (5.30) holds. O

Theorem 5.6. Let h € Ly, () and let (5.23) hold. Suppose that there exists
a > 0 such that

1 1
AM\ 4||h =1
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and in the interval [—a, a] the function f (s) is Lipschitz (with Lipschitz constant

§)-
Then there exists K depending on 2 and n for which

(5.32) df(R) < K (w+6)2.

Proof. Let {An}3_, be the eigenvalues of —A in H{ (), PN be the ortho-
projector to the subspace generated by the eigenfunctions corresponding to the
first N eigenvalues and QY = I — PV. Tt follows from [7, Theorem 4] that if
we find ¢t > 0, [ € [1,400), 6 € (0, %) such that

(5.33) 1Va(t, uo) — Va(t, vo)ll < 1 luo — voll

(5.34) QY Va(t, uo) — QY Val(t,vo)|| < 6 lluo — wvoll,

for all ug, vy € R, then for any n > 0 such that (\/§GZ)N (\/55)77 =0 <1 the
next estimate holds

(5.35) di(A) <N +1.

In view of inequality (2.3) condition (5.33) holds with [ () = exp (wt) .
Further we note that from Theorem 5.5 and the Lipschitz condition of f on
[—a, a] it follows that

(5.36) 1 () = f (W), <&llu—wvll,, for any u,v € R.

We take two arbitrary initial conditions ug, vy € R. Let now w (t) = wu (t) —
v(t), wh (t) = QNw (t), where u (t) = Va (t,ug) , v (t) = Va (t,vp). From (4.18
we can easily obtain

1d 2 2
LYo 2, 4 902, + (7 () - £ 0) ™) = (w,0%).
Using the inequality [V |7 > Ay |lw™ (£)]|7, , (2.3) and (5.36) we obtain
d 2 2
pn HwN (t)HL2 + 2AN 11 HwN (t)HL2 < 2(w+ &) exp (2wt) ||lw (0)\\%2 .
Multiplying both sides by exp (2Any41t) and integrating over (0,t) we get
2
[w¥ @[,
< N O, (exp (~2An10) + 5555 (exp (201) — exp (~2An111)))

<l (O), (exp (~22n410) + S5 exp (201))
= 8 (tN) w01,

Repeating exactly the same proof of Theorem 7 from [7] we can obtain that

for t = og(v212) there exists a constant D (depending on 2) such that if

)\N_wa

N = [(D (w+ f))%}, where [z] denotes the integer part of z, then § (¢, N) < %

and (120 (£, N) 1 (¢))¥ < 1, so that (\/§GZ)N (\/55)77 < 1 for n = N. It follows
from (5.35) that
df(A) <2N < K (w+¢)7,
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with K = 2D*%. O

Remark 5.7. We note that if f is locally Lipschitz, then it is Lipschitz on
any interval [—b,b]. We allow the function f (s) to be not Lipschitz (and even
discontinuous) for s ¢ [—a,a].
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