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Minimal TUD spaces
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Abstract. A topological space is TUD if the derived set of each
point is the union of disjoint closed sets. We show that there is a
minimal TUD space which is not just the Alexandroff topology on a
linear order. Indeed the structure of the underlying partial order of a
minimal TUD space can be quite complex. This contrasts sharply with
the known results on minimality for weak separation axioms.
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1. Introduction

Definition 1.1. [2] A topological space is said to be TUD if the derived set of
each point is the (possibly empty) union of disjoint closed sets.

In this introduction, we provide a complete brief survey and bibliography
of minimality. The family LT (X) of all topologies definable for an infinite set
X is a complete atomic and complemented lattice (under set inclusion). If T
and S are two members of LT (X) with S ⊆ T , then S is said to be weaker
than T . Given a topological invariant P , a member T of LT (X) is said to be
minimal P if and only if T possesses property P but no weaker member of
LT (X) possesses property P .

The concept of minimal topologies was first introduced in 1939 by Parho-
menko [27] when he showed that compact Hausdorff spaces are minimal Haus-
dorff. Motivation for such an investigation is provided by realising that it is in
seeking to identify those members of LT (X) which minimally satisfy an invari-
ant that we are, in a very real sense, examining the topological essence of the
invariant.

Given a topological space (X, T ), (X, T ) is
- minimal Hausdorff if and only if it is Hausdorff and every open filter-

base which has a unique adherent point is convergent to this point (see
[5], [9], [10], [27], [31], [32], and [36])

- minimal T1 if and only if T is the cofinite topology C on X
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- minimal regular if and only if it is regular and every regular filter-base
which has a unique adherent point is convergent ([4], [8])

- minimal completely regular if and only if it is compact and Hausdorff
([4], [5])

- minimal normal if and only if it is compact and Hausdorff ([5])
- minimal Urysohn if and only if it is Urysohn and every filter with a

unique adherence point converges to this point ([11], [34])
- minimal (locally compact and Hausdorff) if and only if it is compact

and Hausdorff ([5], [4])
- minimal paracompact if and only if it is compact and Hausdorff ([35])
- minimal metric only if it is compact and Hausdorff ([35])
- minimal completely normal only if it is compact and Hausdorff ([35])
- minimal completely Hausdorff only if it is compact and Hausdorff ([35])
- minimal T0 if and only if it is T0, nested and generated by the family
{X \ {x} : x ∈ X} ∪ {∅, X} ([1], [12], [19], [22], [26])

- minimal TD if and only if it is TD and nested ([1], [12], [19], [22], [26])
- minimal Tδ if and only if it is Tδ and nested ([1], [22])
- minimal Tξ if and only if it is Tξ and nested ([1])
- minimal TA if and only if it is TA and partially nested ([22])
- minimal TES if and only if either T = C or T = E(X \ Y )∪ (C ∩ I(Y ))

for some non-empty proper subset Y of X ([21])
- minimal TEF if and only if T = C or T = I(x) or T = E(x) for some
x ∈ X ([21])

- minimal TFF if and only if there exists x ∈ X such that either T = C ∩
I(x) or T = C ∩ E(x) ([15])

- minimal TF if and only if either there exists x ∈ X such that T = C ∩
I(x) or there exists a non-empty proper non-singleton subset Y of X
such that T = D(Y ) ([15])

- minimal TY S if and only if T =W(P)∨ (C ∩ I(K)) for some subset K
of X and some partition P of X such that P is simply associated with
K and is associated with X \K. ([16])

- minimal TDD if and only if T =WK(P) ∨ (C ∩ I(K)) for some subset
K of X and partition P of X such that P is simply associated with K
and associated with X \K ([16])

- minimal TY Y if and only if T =Mp(P) ∨ (C ∩ I(K)) for some p ∈ X,
subset K of X \ {p} such that P is simply associated with K ([23])

- minimal TY if and only if T =W(F)∨ (C ∩I(K)) for some degenerate
K-cover F of X ([23])

- minimal TSA if and only if T = E(X \B)∨SK(P)∨ (C ∩I(K ∪B)) for
some disjoint subsets B and K of X such that K 6= ∅ and K ∪ B 6=
X, and partition P of X \ B such that P is simply associated with
X \ (K ∪B) and associated with K. ([24])

- minimal TSD if and only if T = SK(P) ∨ (C ∩ I(K)) for some non-
empty proper subset K of X and partition P of X such that P is
simply associated with X \K and associated with K ([24])
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- minimal TFA if and only if
either (X, T ) is minimal TES with at least one isolated point and at least

two closed points
or (X, T ) is minimal TSD
or T = E(X \B)∨SK(P)∨D(B ∪K)) for some non-empty, disjoint

subsets B, K of X such that B ∪ K is a proper, infinite subset
of X with |X \ (B ∪ K)| > 1, a subset G of X \ (B ∪ K) and a
partition P of X \ (B ∪G) such that P is simply associated with
X \K and associated with K.

2. Constructing the Partial Order

We need an axiom for partial orders which implies the TUD axiom for topo-
logical spaces.

Definition 2.1. A partial order (X,�) is said to be T+
UD if there is a family

{Y (x) : x ∈ X} of subsets of X such that
• (∀y ∈ Y (x))y � x ∧ y 6= x
• (∀z � x)z 6= x⇒ (∃y ∈ Y (x))z � y
• (∀y, y′ ∈ Y (x))(∀z ∈ X)(z � y ∧ z � y′)⇒ y = y′

We shall write YX(x) if the underlying partial order is ambiguous.

A few comments:
We conjecture that the minimal TUD topologies must be the weak topologies

on a minimal T+
UD partial order.

We conjecture that the minimal T+
UD partial orders are just the T+

UD and
suitable partial orders. This would provide a characterization which requires for
each pair of elements an infinite set which satisfies a first order formula. Maybe
those weak separation axioms which have simpler minimality characterizations
do so because of logical considerations, i.e., must all first order weak separation
axioms have minimalities which are weak topologies for partial orders either
without infinite chains or without infinite antichains?

Next we describe a way in which two T+
UD partial orders can be combined

and yet preserve T+
UD.

Definition 2.2. If X0 ⊂ X1 are partial orders, where X0 has the order induced
by X1, then we say that X0 is a simple subset of X1 if there are distinct
x0, x1 ∈ X0 and w ∈ X1 −X0and A ⊂ X1 −X0 such that

• x1 � w 6∈ A
• x0 and x1 are incomparable in X0

• A is the set of all elements of X1 −X0 strictly below x0

• each element of A is minimal in X1

• (∀x ∈ X0)(∀y ∈ X1 −X0)(x� y ⇒ x� x1 � y = w)
• (∀x ∈ X0)(∀y ∈ X1 −X0)(y � x⇒ y � x0 � x)

Proposition 2.3. If X0 is a simple subset of X1 and both X0 and X1 − X0

are T+
UD, then X1 is also T+

UD.
Moreover, we can get YX1(x) ∩X0 = YX0(x) for each x ∈ X0.
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Proof. Let x0, x1 ∈ X0 and w ∈ X1 − X0 and A ⊂ X1 − X0 be as in defini-
tion 2.2. Suppose x ∈ X1. We must define Y (x) as in definition 2.1. We do
this by cases.

(1) If x ∈ X0 and x 6= x0, then we let Y (x) = YX0(x).
(2) If x ∈ X1 −X0 and x 6= w, then we let Y (x) = YX1−X0(x).
(3) If x = x0, then we let Y (x) = YX0(x) ∪A.
(4) If x = w, then we let Y (x) = YX1−X0(x) ∪ {x1}.

It suffices to show that definition 2.1 is satisfied by {Y (x) : x ∈ X1}.
Verifying the first condition requires us to use only the facts (∀a ∈ A)a �

x0 ∧ a 6= x0 and x1 � w ∧ x1 6= w.
Verifying the second condition requires examination of the same four cases.
(1) If y � x and y ∈ X1 −X0 then simplicity says that y � x0 � x. Now,

since x 6= x0 ∈ X0, we know that (∃s ∈ YX0(x))x0 � s and thus that
y � s.

(2) If y � x and y ∈ X0 then x = w which is impossible.
(3) If x = x0 and y � x and y ∈ X1 −X0 then y ∈ A which suffices.
(4) If x = w and y � x and y ∈ X0 then y � x1 which suffices.

Verifying the third condition also requires the examination of these same four
cases.

(1) Suppose y0, y1 are distinct elements of Y (x) and z � y0, y1. Then z ∈
X1−X0 so that x0�y0 and x0�y1 by the sixth condition of simplicity—
clearly a contradiction.

(2) Suppose y0, y1 are distinct elements of Y (x) and z�y0, y1. Then z ∈ X0

so that, by the fifth condition of simplicity, y0 = w = y1!
(3) The first case for YX0(x) and the fact that A is a set of minimal points

in X1 suffices.
(4) The second case for YX1−X0(x) leaves the possibility that there is z�x1

and z � y ∈ YX1−X0(x). If z ∈ X1 − X0, then z � x0 � x1 which is
impossible. If z ∈ X0, then z � x1 � y = w—yet y ∈ YX1−X0(w)!

The proof is complete. �

Next, we describe when two incomparable elements of a T+
UD partial order

cannot be made comparable in a given “direction” without destroying T+
UD.

Moreover, since a TUD-topology may induce an order which is not T+
UD, we

stipulate a condition to ensure that the resulting order has no compatible TUD-
topology.

Definition 2.4. If X0 ⊂ X1 are partial orders, where X0 has the order induced
by X1, and x0, x1 ∈ X0 are incomparable, then we say that X0 is a suitable
subset in X1 with respect to (x0, x1), if there are, in X1, elements w, {yi : i ∈ ω}
and {zi : i ∈ ω} all distinct from each other and from x0 and x1 such that

• (∀i ∈ ω)zi � yi � w
• (∀i ∈ ω)zi � x0

• x1 � w
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• (∀F ∈ [X1]<ω)(((∀f ∈ F )w 6�f)⇒ ((∃i ∈ ω)(∀f ∈ F )yi 6�f))
Note that this definition applies also when X0 = X1.

Indeed, we can “make” a T+
UD partial order suitable for two incomparable

elements in a “simple” way.

Proposition 2.5. If X is any T+
UD partial order and x0, x1 ∈ X are incompa-

rable, then there is a partial order Y ⊃ X such that
• X is a simple subset of Y
• X is a suitable subset of Y with respect to (x0, x1)
• Y −X is countable and T+

UD

Proof. We let Y = X ∪ {yi, zi : i ∈ ω} ∪ {w} where all these elements are
distinct and not in X. We declare

• (∀i ∈ ω)zi � x0

• (∀i ∈ ω)zi � yi � w
• x1 � w

and close off under transitivity.
To check that X is a simple subset of Y , define A = {zi : i ∈ ω}. Since

nothing is defined to be below any zi, we know that each zi is minimal in Y .
Thus we have conditions 1, 2 and 4 in definition 2.2. Further, clearly w cannot
be below x0 nor can any yi be below x0, so that condition 3 is satisfied.

If x ∈ X, y ∈ Y −X and x�y, then x1 �w must be a step in the calculation.
Since nothing is defined to be above w, w is maximal in Y and so w = y as
required. Thus condition 5 is satisfied.

If x ∈ X, y ∈ Y −X and y�x, then zi�x0 must be a step in the calculation
as required. Thus condition 6 is satisfied.

To check that X is a suitable subset of Y with respect to (x0, x1), suppose
that there exists finite F ⊂ Y such that (∀f ∈ F )w 6= f and (∀i ∈ ω)(∃f ∈
F )yi�f . If yi�f and yi 6= f , then some step in the calculation must be yi�w.
Since w is maximal in Y , we must have f = w which is impossible. Thus we
know that (∀i ∈ ω)(∃f ∈ F )yi = f and thus F ⊃ {yi : i ∈ ω}!

To check that Y − X is T+
UD, let Y (w) = {yi : i ∈ ω}, Y (yi) = {zi} and

Y (zi) = ∅. �

Definition 2.6. A partial order (X,�) is said to be suitable if, for each x0, x1 ∈
X which are incomparable, X is suitable in itself with respect to (x0, x1).

Suitability can be obtained in a “simple” increasing sequence if suitability
with respect to each incomparable pair is accomplished along the way.

Proposition 2.7. If {Xi : i ∈ ω} is an increasing sequence of (partially or-
dered) subsets of a partial order X such that

• each Xi is a simple subset of Xi+1

•
⋃
{Xi : i ∈ ω} = X

• (∀ incomparable x0, x1 ∈ X)(∃i ∈ ω)Xi is a suitable subset of Xi+1

with respect to (x0, x1)
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then X is suitable.

Proof. Given any incomparable elements x0, x1 in X, we must check that X
is suitable in itself with respect to (x0, x1). Now suppose that Xi is a suitable
subset ofXi+1 with respect to (x0, x1). This gives us distinct w, {yi : i ∈ ω} and
{zi : i ∈ ω} as in definition 2.4. Thus the first three conditions of definition 2.4
are satisfied. We need to check the fourth condition.

Suppose F ∈ [X]<ω and (∀f ∈ F )w 6�f and (∀i ∈ ω)(∃f ∈ F )yi � f .
We shall argue that no such F can exist by mathematical induction. Find
such an F with j∗ = minimum{max[j ∈ ω : F ∩ (Xj+1 − Xj) 6= ∅]} and
furthermore such that F ∩ (Xj∗+1 −Xj∗) has minimum cardinality. Let F ′ =
{f ∈ F : (∃i ∈ ω)yi � f}. We shall prove that j∗ ≤ i. Suppose j∗ > i
and choose f ∈ F ′ ∩ (Xj∗+1 − Xj∗)—such a choice is possible because of the
minimum nature of j∗. We know that for certain i ∈ ω, yi � f . Each such
yi is an element of Xi+1 ⊂ Xj∗ . Let the fact that Xj∗ is a simple subset of
Xj∗+1 be witnessed by x∗0, x

∗
1, w

∗. The fifth condition of simplicity gives us
that yi�x∗1 �f = w∗ so that F ′∩ (Xj∗+1−Xj∗) = {w∗} = {f}. Thus f can be
replaced by x∗1 ∈ Xj∗ , giving a subset F ∗ = (F −{f})∪{x∗1} of F which again
contradicts the minimum nature of j∗. Thus j∗ ≤ i. It follows that F ⊂ Xi+1,
contradicting the suitability of Xi in Xi+1 with respect to (x0, x1). �

Finally we can accomplish our aim of making a T+
UD partial order suitable

without destroying T+
UD.

Proposition 2.8. Any countable T+
UD partial order can be embedded in a suit-

able T+
UD partial order.

Proof. First, we define a partition {Pi : i ∈ ω} of ω. Given Pi ⊂ ω for i < n,
define Pn to be any infinite, co-infinite subset of ω−

⋃
i<n Pi such that n ∈ Pn

if n 6∈
⋃
i<n Pi It is routine to verify that the family {Pi : i ∈ ω} is a partition

of ω satisfying
(i) minPi ≥ i ∀i ∈ ω
(ii) |Pi| = ω ∀i ∈ ω.

Next, let X0 be any countable T+
UD partial order with at least two incomparable

elements. Write {(x, y) : x, y ∈ X0, x 6= y} = {(xi, yi) : i ∈ P0}. Consult
(x0, y0). If x0 and y0 are comparable, then write X1 = X0; otherwise, extend
X0 to X1 in the manner of proposition 2.5. We continue in this way, applying
proposition 2.5 ω-many times to form an increasing sequence {Xi : i ∈ ω} and
a sequence {(xi, yi) : i ∈ ω} such that

(i) Xi is a simple subset of Xi+1, when Xi 6= Xi+1

(ii) xi, yi ∈ Xi

(iii) if xi, yi are incomparable elements of Xi then Xi is a suitable subset
of Xi+1 with respect to (xi, yi) and ∃j ∈ ω such that Xj is a suitable
subset of Xj+1 with respect to (yi, xi)

(iv) each non-empty Xi+1 −Xi is T+
UD and countable

(v) (∀ distinct x, y ∈
⋃
{Xi : i ∈ ω})(∃i ∈ ω)(x, y) = (xi, yi)
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Conditions (i), (iii) and (iv) follow from proposition 2.5, while (ii) and (v)
follow from the properties of the index sets Pi. Let X =

⋃
{Xi : i ∈ ω}

have the smallest partial order � which gives each Xi the subset order. By
proposition 2.7, X is suitable. Applying proposition 2.3 iteratively, we deduce
that each Xi is T+

UD and that furthermore the family {YXi(x) : i ∈ ω, x ∈ Xi}
satisfies (∀i < j)x ∈ Xi ⇒ YXj (x) ∩Xi = YXi(x).

Since X is the increasing union of the Xi’s, it is routine to verify that X is
also T+

UD. �

Indeed any T+
UD partial order whatsoever can be embedded in a suitable

T+
UD partial order.

Corollary 2.9. There is a suitable non-linear T+
UD partial order.

Proof. By proposition 2.8, the empty partial order on two elements (which is
T+
UD) can be embedded in a suitable T+

UD partial order. Any partial order
which embeds the empty partial order on two elements must be non-linear. �

3. The Relation between the Partial Order and the Topology

Lemma 3.1. If a partial order is T+
UD, then the associated weak topology is

TUD.

Proof. Let (X,�) be a T+
UD partial order and let W be the associated weak

topology for (X,�). Given x ∈ X, the derived set of {x} is {x}
W
− {x} =

{y ∈ X : y � x ∧ y 6= x}. With Y (x) as in definition 2.1, for each y ∈ Y (x),

{y}
W

= {z ∈ X : z�y} so that it follows (by definition 2.1) that {x}
W
−{x} =⋃

{{y}
W

: y ∈ Y (x)}, a union of disjoint closed sets. That is, W is a TUD
topology for (X,�). �

Proposition 3.2. If the weak topology W on a suitable partial order (X,�) is
TUD, then it is minimally TUD.

Proof. Suppose not and that there exists a TUD-topology T for X which is a
proper subset of W. Let � be the specialization preorder induced on X by
T . We note that � is, in fact, a partial order since TUD implies T0. Since
W is the smallest topology on X to induce �, it follows that � must strictly
contain � as a relation. Thus, there must exist elements x0, x1 in X which are
incomparable in � and yet x0 � x1. Since � is suitable, then in particular it
is suitable in itself with respect to (x0, x1) so that there exist w, {yi : i ∈ ω}
and {zi : i ∈ ω} as in definition 2.4. It follows that

(i) (∀i ∈ ω)zi � yi � w
(ii) (∀i ∈ ω)zi � x0 � x1 � w

Now, T is TUD and so there exist disjoint T -closed sets {Aα : α ∈ κ} whose
union is the derived set of {w}. Suppose without loss of generality that x1 ∈ A0.
Then, by (ii), {zi : i ∈ ω} ⊂ A0. Fix i ∈ ω; since yi is an element of the derived
set of {w}, then there exists β ∈ κ such that yi ∈ Aβ . But, by (i), zi � yi so
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that zi ∈ Aβ , whence β = 0. Thus {yi : i ∈ ω} ⊂ A0, whence w 6∈ {yi : i ∈ ω}
T

.

It follows that w 6∈ {yi : i ∈ ω}
W

(since T ⊂ W) and so there exists a finite set
F ⊂ X such that

• (∀i ∈ ω)(∃f ∈ F )yi � f
• (∀f ∈ F )w 6�f

This contradicts the fifth condition of suitability. �

Corollary 3.3. There is a minimal TUD topology which is not nested.

Proof. Apply corollary 2.9 to get a suitable non-linear T+
UD partial order and

then take the weak topology W. Observe that the weak topology on any non-
linear partial order is not nested. Lemma 3.1 says that W is TUD. Proposition
3.2 says that W is minimal TUD. �
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