Every finite system of T_{1} uniformities comes from a single distance structure

Jobst Heitzig

Abstract

Using the general notion of distance function introduced in an earlier paper, a construction of the finest distance structure which induces a given quasi-uniformity is given. Moreover, when the usual defining condition $x U_{\varepsilon} y: \Leftrightarrow d(y, x) \leqslant \varepsilon$ of the basic entourages is generalized to $n d(y, x) \leqslant n \varepsilon$ (for a fixed positive integer n), it turns out that if the value-monoid of the distance function is commutative, one gets a countably infinite family of quasi-uniformities on the underlying set. It is then shown that at least every finite system and every descending sequence of T_{1} quasi-uniformities which fulfil a weak symmetry condition is included in such a family. This is only possible since, in contrast to real metric spaces, the distance function need not be symmetric.

2000 AMS Classification: Primary 54E15; Secondary 54E35, 54A10, 54E70.
Keywords: distance function, free monoid, generalized metric, uniformity.

1. Introduction

Since Fréchet's invention of real metric spaces in [2], many generalizations of this concept have been studied in the literature. Much research has been done on generalized metric spaces, in which the distance functions are replaced by certain set systems (cf. [9]). On the contrary, many authors independently suggested more general types of distance functions, the references [8], [12], [7], [5], [6], [11], [10], and [1] are only a small selection. In [3] and [4], a common framework for most if not all of these general concepts of distance functions has been developed to a certain extent.

In this paper, the induction of quasi-uniformities on a distance space (X, d, \underline{M}, P) will be studied. In such a structure, $d: X \times X \rightarrow \underline{M}$ is a general distance function on X, that is, it fulfils the zero-distance condition $d(x, x)=0$ and the triangle inequality $d(x, y)+d(y, z) \geqslant d(x, z)$, and takes its values in a quasi-ordered monoid (q. o. m.) $\underline{M}=(M,+, 0, \leqslant)$. The set $P \subseteq M$ must be a set of positives (or idempotent zero-filter) for \underline{M}, that is, a filter of (M, \leqslant) with
infimum 0 such that, for every $\varepsilon \in P$, there is $\delta \in P$ with $2 \delta \leqslant \varepsilon$. The triple (d, \underline{M}, P) is called a distance structure on X. For examples and categorical aspects of distance functions on various mathematical objects, see $[3,4]$.

Using Kelley's metrization lemma, one can easily show that every quasiuniformity is induced by a suitable multi-quasi-pseudo-metric, that is, a "quasi-pseudo-metric" taking values in a real vector space instead of the non-negative reals. There is no doubt that this fact must have been noticed early. In this article however, we will see that also every finite family of T_{1} uniformities (and many families of T_{1} quasi-uniformities) on a fixed set X comes from a single distance structure. In Theorem 8, this is proved by constructing the finest such structure. This construction is a combinatorially more complex variant of the construction of a finest distance structure for a given quasi-uniformity, which is given in Theorem 2. In contrast to multi-quasi-pseudo-metric spaces, the "topological" information in the resulting spaces will be mostly contained in the set of positives P rather than in the distance function d itself. For example, each T_{1} quasi-uniformity on some set X can be induced using one and the same distance function.

2. Preliminaries

In generalization of the usual definition of entourages in a metric space, let

$$
U_{n}(\varepsilon):=\{(x, y) \in X \times X: n d(y, x) \leqslant n \varepsilon\}
$$

for every $\varepsilon \in P$ and every positive integer n. As P is a filter, the set $\varepsilon_{n}:=$ $\left\{U_{n}(\varepsilon): \varepsilon \in P\right\}$ is a base for a filter \mathcal{U}_{n} of reflexive relations on X for each n. Moreover, when \underline{M} is commutative,

$$
n d(y, x) \leqslant \delta \geqslant n d(z, y) \text { implies } n d(z, x) \leqslant n(d(z, y)+d(y, x)) \leqslant 2 \delta
$$

so that, for every $\varepsilon \in P$, there is $\delta \in P$ with $U_{n}(\delta)^{2} \subseteq U_{n}(\varepsilon)$, that is, \mathcal{U}_{n} is a quasi-uniformity.

Of course, there are certain relationships between the \mathcal{U}_{n}, and in many cases most of them coincide. Obviously,

$$
n=n_{1}+\cdots+n_{k} \text { implies } U_{n_{1}}(\varepsilon) \cap \cdots \cap U_{n_{k}}(\varepsilon) \subseteq U_{n}(\varepsilon) .
$$

Also, $n d(x, y) \leqslant n m d(x, y)+(m-1) n d(y, x)$, so that

$$
(2 m-1) n \delta \leqslant n \varepsilon \text { implies } U_{m}(\delta) \cap U_{n}^{-1}(\delta) \subseteq U_{n}(\varepsilon)
$$

For a positive d (that is, when $d(x, y) \geqslant 0$ for all $x, y)$,

$$
n \leqslant m \text { and } m \delta \leqslant n \varepsilon \text { imply } U_{m}(\delta) \subseteq U_{n}(\varepsilon)
$$

On the other hand, a symmetric d (that is, one with $d(x, y)=d(y, x)$) fulfils $2 d(x, y)=d(x, y)+d(y, x) \geqslant d(x, x)=0$, so that here the implication (\dagger) holds at least when $m-n$ is even. This proves the following

Lemma 2.1.

(a) $n=n_{1}+\cdots+n_{k}$ implies $\mathcal{U}_{n} \subseteq \mathcal{U}_{n_{1}} \vee \cdots \vee \mathcal{U}_{n_{k}}$, in particular, the map $n \mapsto \mathcal{U}_{n}$ is antitone with respect to divisibility.
(b) For all $n, m, \mathcal{U}_{n} \subseteq \mathcal{U}_{n}^{-1} \vee \mathcal{U}_{m}$.
(c) For a positive d, all \mathcal{U}_{n} coincide.
(d) For a symmetric d and all $k \geqslant 1, \mathcal{U}_{2 k}=\mathcal{U}_{2} \subseteq \mathcal{U}_{1}=\mathcal{U}_{2 k-1}$.

Note that there are indeed natural distance functions which are neither positive nor symmetric, the most important being perhaps the distance $x^{-1} y$ on groups, introduced by Menger [8]:
Example 2.2. Let $G:=[0,2 \pi)$ be the additive group of real numbers modulo $2 \pi, \underline{M}:=(\mathcal{P}(G),+,\{0\}, \subseteq)$ the power set of G ordered by set inclusion and with the usual element-wise addition, $P:=\{(-\delta, \delta): \delta \in(0,2 \pi]\}$. Then $d(x, y):=\{y-x\}$ defines a skew-symmetric distance function (that is, one with $d(x, y)+d(y, x)=0)$, and \mathcal{U}_{1} is the usual "Euclidean" uniformity on G, while \mathcal{U}_{n} is this uniformity "modulo $\frac{2 \pi}{n}$ " since

$$
x U_{n}(-\delta, \delta) y \Longleftrightarrow x-y \in \bigcup_{k \in n}\left(-\delta+\frac{2 k \pi}{n}, \frac{2 k \pi}{n}+\delta\right)
$$

Likewise, for $X:=\mathbb{C} \backslash\{0\}, \underline{M^{\prime}}:=\underline{M} \otimes[0, \infty), P^{\prime}:=P \times(0, \infty)$, and $d^{\prime}(x, y):=\left(d^{\prime}(\arg x, \arg y),||y|-|x||\right)$, the uniformity \mathcal{U}_{n} of $\left(d^{\prime}, \underline{M}^{\prime}, P^{\prime}\right)$ induces the Euclidean topology "modulo multiplication with nth roots of unity".

3. Finest distance functions

Like for other topological structures on a set X, we might compare two distance functions d, d^{\prime} resp. distance structures $\underline{D}=(d, \underline{M}, P)$ and $\underline{D}^{\prime}=$ $\left(d^{\prime}, \underline{M}^{\prime}, P^{\prime}\right)$ on X with respect to their fineness. If the implication

$$
\begin{aligned}
d\left(x_{1}, y_{1}\right)+\cdots+d\left(x_{n}, y_{n}\right) & \leqslant d\left(z_{1}, w_{1}\right)+\cdots+d\left(z_{m}, w_{m}\right) \\
\Longrightarrow \quad d^{\prime}\left(x_{1}, y_{1}\right)+\cdots+d^{\prime}\left(x_{n}, y_{n}\right) & \leqslant d^{\prime}\left(z_{1}, w_{1}\right)+\cdots+d^{\prime}\left(z_{m}, w_{m}\right)
\end{aligned}
$$

holds for all $x_{i}, y_{i}, z_{i}, w_{i} \in X$, we say that d is finer than d^{\prime}. If, additionally, for all $\varepsilon^{\prime} \in P^{\prime}$, there is $\varepsilon \in P$ such that

$$
d\left(x_{1}, y_{1}\right)+\cdots+d\left(x_{n}, y_{n}\right) \leqslant \varepsilon \Longrightarrow d^{\prime}\left(x_{1}, y_{1}\right)+\cdots+d^{\prime}\left(x_{n}, y_{n}\right) \leqslant \varepsilon^{\prime}
$$

for all $x_{i}, y_{i} \in X$, we say that \underline{D} is finer than \underline{D}^{\prime}.
For a convenient notation, let me introduce the free monoid F of all words in X that have even length and define

$$
\begin{aligned}
d\left(x_{1} y_{1} \cdots x_{n} y_{n}\right) & :=d\left(x_{1}, y_{1}\right)+\cdots+d\left(x_{n}, y_{n}\right), \\
s R_{d} t & : \Leftrightarrow d(s) \leqslant d(t) \quad(s, t \in F) .
\end{aligned}
$$

By definition, $\left(F, \circ, 0, R_{d}\right)$ is a q.o.m., where \circ is concatenation and 0 is the empty word. Given any quasi-order R on F which is compatible to \circ (that is, whenever ($F, \circ, 0, R$) is a q.o. m.), the following construction leads to a distance function d_{R} if and only if

$$
x x R 0 R x x \text { and } x z R x y y z \quad \text { for all } x, y, z \in X
$$

Let $\left(M_{R}, \subseteq\right):=\theta(F, R)$ be the lower set completion of (F, R), that is, the system of all lower sets $R A:=\{s: s R t$ for some $t \in A\}$ of (F, R) with set inclusion as partial order. Define an associative operation $+_{R}$ on M_{R} and its neutral element 0_{R} by

$$
R A+{ }_{R} R B:=R\{s \circ t: s \in A \text { and } t \in B\} \quad \text { for all } A, B \subseteq F
$$

and $0_{R}:=R\{0\}$. Then let

$$
d_{R}:\left\{\begin{array}{ccc}
X \times X & \rightarrow & M_{R}=\left(M_{R},+_{R}, 0_{R}, \subseteq\right) \\
(x, y) & \mapsto & R\{x y\} .
\end{array}\right.
$$

It was shown in [3] that $d_{R_{d}}$ is equivalent to d, which motivates calling R_{d} the generating quasi-order of d. Moreover, when R_{\perp} is the smallest quasi-order on F which fulfils (\star) and is compatible with \circ then $d_{\perp}:=d_{R_{\perp}}$ is a finest distance function on X. In this relation, the step from $s \in F$ to an upper neighbour w.r.t. R_{\perp} consists of inserting a pair $y y$ at an arbitrary position in s or removing a pair $y y$ after an even number of letters in s, while the step to a lower neighbour is made by removing a pair $y y$ at an arbitrary position or inserting a pair $y y$ after an even number of letters.

4. Induction of a single quasi-uniformity

We are now ready for the first main result of this paper:
Theorem 4.1. Every quasi-uniformity \mathcal{V} admits a finest distance structure ($d_{\mathcal{V}}, \underline{M}_{\mathcal{V}}, P_{\mathcal{V}}$) for which $\mathcal{V}=\mathcal{U}_{1}$.

Proof. Let \mathcal{V} be some quasi-uniformity on X and $V_{0}:=\bigcap \mathcal{V}$. We will see that the essential information about \mathcal{V} is contained in the set of positives $P_{\mathcal{V}}$ which we must construct, while the generating quasi-order $R_{d_{v}}$ is fully determined by the very weak condition that $x y R_{d v} z z$ must hold for any triple $x, y, z \in X$ which fulfils $y V_{0} x$ (otherwise $d_{\mathcal{V}}(x, y) \nless \varepsilon$ for some $\varepsilon \in P_{\mathcal{V}}$, in contradiction to $\left.V_{0} \subseteq \mathcal{U}_{1}(\varepsilon)\right)$. Therefore, let R be the smallest quasi-order on F that is compatible with \circ and fulfils
$x^{\prime} y^{\prime} R 0 R x x$ and $x z R x y y z$ for all $x, y, z, x^{\prime}, y^{\prime} \in X$ with $y^{\prime} V_{0} x^{\prime} . \quad\left(\star^{\prime}\right)$
If we find a suitable s. o. p. P such that $\left(d_{R}, P\right)$ induces \mathcal{v} then R must obviously be the smallest relation (and thus d_{R} a finest distance function) with this property.

Now observe that each of the resulting entourages $U_{1}(\varepsilon)$ has to include some entourage $V_{1} \in \mathcal{V}$, hence every $\varepsilon \in P$ must include some set $\left\{x y \in F: y V_{1} x\right\}$ with $V_{1} \in \mathcal{V}$. Since $0_{R}=R\{x x\}$ is a neutral element, ε must even include the set

$$
\left\{x y \in F: y V_{0} V_{1} V_{0} x\right\} \subseteq 0_{R}+{ }_{R}\left\{x y \in F: y V_{1} x\right\}+{ }_{R} 0_{R}
$$

The same must be true for any $\delta \in P$ which fulfils $\delta+_{R} \delta \subseteq \varepsilon$, so that ε must also include a set $\left\{x y x^{\prime} y^{\prime} \in F: y V_{0} V_{2} V_{0} x, y^{\prime} V_{0} V_{2} V_{0} x^{\prime}\right\} \subseteq \delta+_{R} \delta$ for some $V_{2} \in \mathcal{V}$. This process of replacing some ε by some 2δ can be continued, and in
order to describe it formally, let us define W to be the smallest set of tuples of positive integers that contains the 1-tuple (1) and fulfils

$$
\left(n_{1}, \ldots, n_{i-1}, n_{i}+1, n_{i}+1, n_{i+1}, \ldots, n_{k}\right) \in W
$$

whenever $\left(n_{1}, \ldots, n_{k}\right) \in W$ and $1 \leqslant i \leqslant k$. One can think of the elements of W as coding exactly those terms of the form ' $\varepsilon_{n_{1}}+\cdots+\varepsilon_{n_{k}}$ ' that can be obtained when we start with the term ' ε_{1} ' and then successively replace an arbitrary summand ' ε_{n} ' by the term ' $\varepsilon_{n+1}+\varepsilon_{n+1}$ '. Accordingly, one shows by induction that for each element ε_{1} of a set of positives P there is a sequence $\varepsilon_{2}, \varepsilon_{3}, \ldots$ in P such that

$$
\left(n_{1}, \ldots, n_{k}\right) \in W \text { implies } \varepsilon_{n_{1}}+\cdots+\varepsilon_{n_{k}} \leqslant \varepsilon_{1}
$$

In our situation, this observation implies that for each $\varepsilon \in P$ there must be a sequence $\mathcal{S}=\left(V_{1}, V_{2}, \ldots\right)$ in \mathcal{V} with the property that ε includes the set $A_{\mathcal{S}}$ of all words $v_{1} w_{1} \cdots v_{k} w_{k} \in F$ for which there is some $\left(n_{1}, \ldots, n_{k}\right) \in W$ such that $w_{i} V_{0} V_{n_{i}} V_{0} v_{i}$ for $i=1, \ldots, k$. In particular, $\varepsilon_{\mathcal{S}}:=R A_{\mathcal{S}} \subseteq R \varepsilon=\varepsilon$. It turns out that this is the only restraint on the set of positives $P_{\mathcal{V}}$. More precisely, we will see that the system

$$
B:=\left\{\varepsilon_{\mathcal{S}}: \mathcal{S} \text { is a sequence in } \mathcal{V}\right\}
$$

of lower sets of (F, R) is a base for a set of positives of $\left(M_{R},+_{R}, 0_{R}, \subseteq\right)$, and that the distance structure $\left(d_{R}, P\right)$ induces the quasi-uniformity $\mathcal{\nu}$. It is then clear that P is the largest set of positives with this property, so that $\left(d_{\mathcal{V}}, P_{\mathcal{V}}\right):=$ $\left(d_{R}, P\right)$ is a finest distance structure inducing \mathcal{V}.

Since \mathcal{V} is a filter and the map $\mathcal{S} \mapsto \varepsilon_{\mathcal{S}}$ is isotone in every component of \mathcal{S}, B is a filter-base. In order to show that P is a s.o.p., we first observe that $\left(n_{1}, \ldots, n_{k}\right),\left(m_{1}, \ldots, m_{l}\right) \in W$ implies

$$
\left(n_{1}+1, \ldots, n_{k}+1, m_{1}+1, \ldots, m_{l}+1\right) \in W
$$

Indeed, after increasing each index by one, the replacements that produce $\left(n_{1}, \ldots, n_{k}\right)$ and $\left(m_{1}, \ldots, m_{l}\right)$ from the tuple (1) can be combined to a sequence of replacements that produce $\left(n_{1}+1, \ldots, n_{k}+1, m_{1}+1, \ldots, m_{l}+1\right)$ from the tuple $(2,2)$.

Hence also $v_{1} w_{1} \cdots v_{k} w_{k}, v_{1}^{\prime} w_{1}^{\prime} \cdots v_{l}^{\prime} w_{l}^{\prime} \in \varepsilon_{\left(V_{2}, V_{3}, V_{4}, \ldots\right)}$ implies

$$
v_{1} w_{1} \cdots v_{k} w_{k} v_{1}^{\prime} w_{1}^{\prime} \cdots v_{l}^{\prime} w_{l}^{\prime} \in \varepsilon_{\left(V_{1}, V_{2}, V_{3}, \ldots\right)}
$$

for each sequence $\left(V_{1}, V_{2}, \ldots\right)$ in \mathcal{V}. Secondly, we must prove that $\bigcap B=0_{R}$, which is the harder part. Let $s=x_{1} z_{1} \cdots x_{m} z_{m} \in \bigcap B$ and $V_{1} \in \mathcal{V}$. I will show that $z_{j} V_{0} V_{1} V_{0} x_{j}$ holds for all $j=1, \ldots, m$. Choose a sequence $\mathcal{S}=$ $\left(V_{1}, V_{2}, \ldots\right)$ in \mathcal{V} such that $V_{i+1} V_{0} V_{i+1} \subseteq V_{i}$ for all $i \geqslant 1$ (such a sequence always exists in a quasi-uniformity). Note that $\left(n_{1}, \ldots, n_{k}\right) \in W$ then implies $V_{0} V_{n_{1}} V_{0} V_{n_{2}} V_{0} \cdots V_{0} V_{n_{k}} V_{0} \subseteq V_{0} V_{1} V_{0}$. Now $s \in R A_{s}$, that is, there exists a word $v_{1} w_{1} \cdots v_{k} w_{k}$ and a k-tuple $\left(n_{1}, \ldots, n_{k}\right) \in W$ such that $w_{i} V_{0} V_{n_{i}} V_{0} v_{i}$ for $i=1, \ldots, k$ and $s R v_{1} w_{1} \cdots v_{k} w_{k}$. The latter means that, starting with $v_{1} w_{1} \cdots v_{k} w_{k}$, one gets $x_{1} z_{1} \cdots x_{m} z_{m}$ in finitely many steps in each of which
some pair of letters is inserted or removed corresponding to the condition $\left(\star^{\prime}\right)$. Now take the k-tuple

$$
\psi:=\left(w_{1} V_{0} V_{n_{1}} V_{0} v_{1}, \ldots, w_{k} V_{0} V_{n_{k}} V_{0} v_{k}\right)
$$

of formulae (which express true propositions about the word $v_{1} w_{1} \cdots v_{k} w_{k}$) and modify it, analogously to those finitely many steps, in the following way: (i) if (because of $x z$ Rxyyz) a pair $y y$ is being removed after an odd number of letters, replace the two consecutive formulae $\ldots V_{0} y, y V_{0} \cdots$ in ψ by one formula $\ldots V_{0} \cdots$ (that is, erase the symbols ' $y, y V_{0}$ '); (ii) if (because of $0 R x x$) a pair $x x$ is being removed after an even number of letters, remove the corresponding formula $x \ldots x$ from ψ; (iii) if (because of $x^{\prime} y^{\prime} R 0$) a pair $x^{\prime} y^{\prime}$ is inserted, insert the formula $y^{\prime} V_{0} x^{\prime}$ at the respective position in ψ. By definition of R, all these modifications preserve the truth of all formulae in the tuple, and each formula in the resulting tuple $\left(\psi_{1}, \ldots, \psi_{k}\right)$ expresses a true proposition of the form

$$
\psi_{j}=z_{j} V_{0} V_{n_{a}} V_{0} V_{n_{a+1}} V_{0} \ldots V_{0} V_{n_{b}} V_{0} x_{j}
$$

with $1 \leqslant a, b \leqslant k$. Since all $V_{n_{i}}$ are reflexive, ψ_{j} thus implies

$$
z_{j} V_{0} V_{n_{1}} V_{0} V_{n_{2}} V_{0} \ldots V_{0} V_{n_{k}} V_{0} x_{j}
$$

hence $z_{j} V_{0} V_{1} V_{0} x_{j}$. Because V_{1} was chosen arbitrarily, we conclude that $z_{j} V_{0} x_{j}$ for all j, and therefore $x_{1} z_{1} \cdots x_{m} z_{m} R 0$.

Finally, we have to show that $\left(d_{R}, P\right)$ induces the quasi-uniformity \mathcal{V}. For $V \in \mathcal{V}$, choose $V_{1} \in \mathcal{V}$ such that $V_{0} V_{1} V_{0} \subseteq V$, then choose a sequence \mathcal{S} as in the preceding paragraph. There we have shown that, in particular,

$$
d_{R}(x, z) \subseteq R A_{\mathcal{S}} \text { implies }(z, x) \in V_{0} V_{1} V_{0} \subseteq V
$$

On the other hand, for each $\varepsilon \in P$ there is some sequence $\mathcal{S}=\left(V_{1}, \ldots\right)$ in \mathcal{V} such that $\varepsilon_{S} \subseteq \varepsilon$, and

$$
(z, x) \in V_{1} \subseteq V_{0} V_{1} V_{0} \text { implies } d_{R}(x, z) \subseteq \varepsilon_{\mathcal{S}} \subseteq \varepsilon
$$

A somewhat astonishing consequence of this construction is that one distance function is compatible to all T_{1} quasi-uniformities on X :

Corollary 4.2. The distance function d_{\perp} is the finest distance function d on X such that for each T_{1} quasi-uniformity \mathcal{V} on X there is a s.o.p. P such that $\left(d_{\perp}, P\right)$ induces \mathcal{V} (namely $\left.P=P_{\mathcal{V}}\right)$.

5. Induction of systems of quasi-uniformities

I will now extend this result to certain systems of quasi-uniformities and show that, in particular, every finite system and every descending sequence of T_{1} uniformities is part of some system $\left(\mathcal{U}_{n}\right)_{n \in \omega}$.

Some additional notation: Intervals of integers will be designated by $[a, b]$. A pair of letters $x y \in F$ is a syllable of a word $s \in F$ if and only if it occurs in s after an even number of letters. Let $\tilde{s} \in F$ be the word s after deletion of all syllables of the form $x x(x \in X)$. The length of \tilde{s} in letters is designated by
$\ell(s)$, and s_{a} is the a th letter of \tilde{s} for any position $a \in[1, \ell(s)]$. The subword of \tilde{s} from position a to b is $s_{a, b}$. Moreover, let $\lambda(x, s)$ and $\sigma(x y, s)$ denote the number of occurrences of the letter x resp. the syllable $x y$ in \tilde{s}. Finally, $(x y)^{r}=x y \cdots x y$ is a word consisting of r equal syllables.

The next constructions mainly rely on four lemmata. For the moment, let us fix some words $s, t \in F$ with $s R_{\perp} t$, where

$$
\tilde{t}=\left(v_{1} w_{1}\right)^{r_{1}} \cdots\left(v_{\varrho} w_{\varrho}\right)^{r_{\varrho}}, \quad v_{i} \neq w_{i}, \quad \text { and all } r_{i} \text { are even. }
$$

Then \tilde{s} can be derived from \tilde{t} by a finite number of successive deletions of pairs of identical letters which are neighbours at the time of deletion. A guiding example: for $s=y y x y z z x y u z u z R_{\perp} x y x y z z z u u z u z x x u z=t$, the deletion steps could be this: in $\tilde{t}=x y x y z u u z u z u z$, first delete $u u$, giving $x y x y z z u z u z$, then delete $z z$, giving $x y x y u z u z=\tilde{s}$.

We now also fix such a sequence of deletions and let $D \subseteq[1, \ell(t)]$ be the set of positions in \tilde{t} whose corresponding letters are deleted in one of these steps (in the example: $D=[5,8]$). For $a \in D$, let $\pi(a) \in[1, \ell(t)]$ be that position in \tilde{t} such that t_{a} and $t_{\pi(a)}$ build a deleted pair (in the example: $\pi(5)=8$ and $\pi(6)=7$). Finally, we write $a \curvearrowright b$ if and only if a and $b-1$ are even numbers in D such that $a<\pi(a)=b-1$ (in the example: $6 \curvearrowright 8$). Note that because t_{c} and $t_{\pi(c)}$ must first become neighbours before they can be deleted, $a \curvearrowright \cdots \curvearrowright b$ implies that (i) $[a, b-1] \subseteq D$, (ii) $\pi(c) \in[a, b-1]$ for all $c \in[a, b-1]$, and thus (iii) $\lambda\left(x, t_{a, b-1}\right)$ is even for all $x \in X$.

Lemma 5.1. Assume $a \curvearrowright \cdots \curvearrowright b \curvearrowright \cdots \curvearrowright c, t_{a}=t_{b-1}$, and $t_{b}=t_{c-1}$. Then
(a) $t_{a-1}=t_{b}$ or $t_{b-1}=t_{c}$.
(b) If $t_{a-1} \neq t_{b}$ then $\lambda\left(t_{a}, t_{c, \ell(t)}\right)$ is odd.
(c) If $t_{b-1} \neq t_{c}$ then $\lambda\left(t_{b}, t_{1, a-1}\right)$ is odd.

Proof. Let $e, f, e^{\prime}, f^{\prime}, e^{\prime \prime}, f^{\prime \prime} \in[1, \ell(t)]$ with $e<a \leqslant f<e^{\prime}<b \leqslant f^{\prime}<e^{\prime \prime}<c \leqslant$ $f^{\prime \prime}$ such that $t_{e, f}, t_{e^{\prime}, f^{\prime}}$, and $t_{e^{\prime \prime}, f^{\prime \prime}}$ are three of the defining subwords $\left(v_{i} w_{i}\right)^{r_{i}}$ of \tilde{t}. Moreover, let $x:=t_{a-1}, y:=t_{a}=t_{b-1}, z:=t_{b}=t_{c-1}$, and $w:=t_{c}$, and assume $x \neq z$. The situation and the parity arguments that will follow are sketched in Figure 1.

Because of $x \neq z$, we have $\lambda\left(x, t_{e^{\prime}, b-1}\right)=0$. Moreover, $\lambda\left(x, t_{f+1, e^{\prime}-1}\right)$ is even (since all r_{i} are even), and $\lambda\left(x, t_{a, b-1}\right)$ is even because of (iii), so that also $\lambda\left(x, t_{a, f}\right)$ is even and $\lambda\left(y, t_{a, f}\right)$ is odd (since $|[a, f]|$ is odd). As before, $\lambda\left(y, t_{f+1, e^{\prime}-1}\right)$ and $\lambda\left(y, t_{a, b-1}\right)$ are even, thus $\lambda\left(y, t_{e^{\prime}, b-1}\right)$ is odd. Because all r_{i} are even, $\lambda\left(y, t_{b, f^{\prime}}\right)$ is also odd. Again, $\lambda\left(y, t_{f^{\prime}+1, e^{\prime \prime}-1}\right)$ and $\lambda\left(y, t_{b, c-1}\right)$ are even, hence $\lambda\left(y, t_{e^{\prime \prime}, c-1}\right)$ is odd. In particular, $y \in\{z, w\}$, that is, $y=w$ (as $y z$ is a syllable of $\tilde{t})$, and $\lambda\left(y, t_{c, f^{\prime \prime}}\right)$ is also odd. Finally, $\lambda\left(y, t_{c, \ell(t)}\right)$ is odd because $\lambda\left(y, t_{f^{\prime \prime}, \ell(t)}\right)$ is even. This proves (a) and (b), whereas (c) is strictly analogous to (b).

Figure 1. Situation in Lemma 5.1

Lemma 5.2.

(a) Assume that $a_{0} \curvearrowright b_{0} \curvearrowright a_{1} \curvearrowright b_{1} \cdots a_{k} \curvearrowright b_{k} \curvearrowright c$ with $t_{a_{0}}=\cdots=t_{a_{k}}=y$, and $t_{b_{0}}=\cdots=t_{b_{k}}=z$. Then $t_{a_{0}-1}=z$ or $y=t_{c}$.
(b) Assume that $a \curvearrowright \cdots \curvearrowright b$ with $t_{a}=t_{b-1}$, and $t_{a-1} \neq t_{b}$. Then both $\lambda\left(t_{a}, t_{1, a-1}\right)$ and $\lambda\left(t_{a}, t_{b, \ell(t)}\right)$ are odd.
Proof. (a) Define $e^{\prime \prime}, f^{\prime \prime}$ as above. Similarly, for each $i \in[0, k]$, find positions $e_{i}, f_{i}, e_{i}^{\prime}, f_{i}^{\prime} \in[1, \ell(t)]$ with $e_{i}<a_{i} \leqslant f_{i}<e_{i}^{\prime}<b_{i} \leqslant f_{i}^{\prime}$ such that $t_{e_{i}, f_{i}}$ and $t_{e_{i}^{\prime}, f_{i}^{\prime}}$ are two of the defining subwords of \tilde{t}. Assuming $t_{a_{0}-1}=x \neq z$, one proves that $\lambda\left(y, t_{b_{0}, f_{0}^{\prime}}\right)$ is odd exactly as before. Since, for $i \in[1, k]$, all of $\lambda\left(y, t_{b_{i-1}, a_{i}-1}\right)$, $\lambda\left(y, t_{a_{i}, b_{i}-1}\right), \lambda\left(y, t_{f_{i-1}^{\prime}+1, e_{i}-1}\right), \lambda\left(y, t_{e_{i}, f_{i}}\right), \lambda\left(y, t_{f_{i}+1, e_{i}^{\prime}-1}\right)$, and $\lambda\left(y, t_{e_{i}^{\prime}, f_{i}^{\prime}}\right)$ are even, and since also $\lambda\left(y, t_{b_{k}, c-1}\right)$ and $\lambda\left(y, t_{f_{k}^{\prime}+1, e^{\prime \prime}-1}\right)$ are even, we conclude that $\lambda\left(y, t_{e^{\prime \prime}, c-1}\right)$ is odd, hence $y=t_{c}$.
(b) Again as in the previous lemma, one proves that, for $y:=t_{a}$, the number $\lambda\left(y, t_{b, f^{\prime}}\right)$ is odd, so that the first claim follows because $\lambda\left(y, t_{f^{\prime}, \ell(t)}\right)$ is even. The second claim is just the dual.
Lemma 5.3. Assume that $s_{e-1} s_{e}=x z$ is the syllable of \tilde{s} that remains after all the deletions in a subword $t_{a-1, b}$ of \tilde{t}, with $a<b, t_{a-1}=x$, and $t_{b}=z$. Then there is $y \in X$ such that $\lambda(y, s)>0, \sigma\left(x y, t_{a-1, b}\right)>0$, and $\sigma\left(y z, t_{a-1, b}\right)>0$.

Proof. Although t_{a} and t_{b-1} may be different, we find $k \geqslant 2, c_{1}, \ldots, c_{k} \in$ $[1, \ell(t)]$, and $y_{0}, y_{1}, \ldots, y_{k} \in X$ such that

$$
a=c_{1} \curvearrowright \cdots \curvearrowright c_{2} \curvearrowright \cdots \curvearrowright c_{3} \cdots c_{k-1} \curvearrowright \cdots \curvearrowright c_{k} \leqslant b
$$

$t_{c_{i}}=t_{c_{i+1}-1}=y_{i}$ for $i \in[1, k-1], y_{0}=x, y_{k}=z$, and $y_{i} \neq y_{j}$ for $i \neq j$ (Start with $a=: c_{1}^{\prime} \curvearrowright c_{2}^{\prime} \curvearrowright \cdots \curvearrowright c_{l}^{\prime}:=b$ and $y_{i}^{\prime}:=t_{c_{i}^{\prime}}$. As long as there are indices $j>i>1$ with $y_{i}^{\prime}=y_{j}^{\prime}$, remove all the indices $i+1, \ldots, j$, so that finally all remaining y_{i}^{\prime} are different. Since $y_{1}^{\prime}=t_{a} \neq z=y_{l}^{\prime}$, at least $k \geq 2$ of the original indices are not removed, including the index 1 , and the corresponding c_{i}^{\prime} build the required positions c_{1}, \ldots, c_{k}).

Then $k=2$ since otherwise Lemma 5.1 (a) would imply that either $y_{0}=y_{2}$ or $y_{1}=y_{3}$. With y_{1} for y and c_{2} for b, Lemma 5.2 (b) implies that $\lambda\left(y, t_{1, a-1}\right)$ is odd. Now, also $\lambda\left(y, s_{1, e-1}\right)$ is odd, because $c \in[1, a-1] \cap D$ implies $\pi(c) \in$ [1, $a-1$] (since the letter x at position $a-1$ is not deleted). In particular, $\lambda\left(y, s_{1, e-1}\right)>0$.

Lemma 5.4. Assume that $k \geqslant 2, c_{0} \curvearrowright c_{1} \cdots c_{k-1} \curvearrowright c_{k}, c_{k} \in D$, and $\pi\left(c_{k}\right)=$ $c_{0}-1$, representing a number of deletions of the form

Let $t^{\prime}:=t_{c_{0}-1} t_{c_{0}} t_{c_{1}-1} t_{c_{1}} \cdots t_{c_{k}-1} t_{c_{k}}$ be the word consisting only of the "boundary letters", and $i \in[0, k]$. Then $\sigma\left(t_{c_{i}-1} t_{c_{i}}, t^{\prime}\right)=\sigma\left(t_{c_{i}} t_{c_{i}-1}, t^{\prime}\right)$.

Proof. Put $c_{-1}:=c_{k}$. Obviously, $t_{c_{i-1}}=t_{c_{i}-1}$ for all $i \in[1, k]$, and $t_{c_{k}}=t_{c_{0}-1}$. If also $t_{c_{i-1}-1}=t_{c_{i}}$ for all $i \in[0, k]$ then k must be odd (since $t_{c_{k}} \neq t_{c_{0}}$), and $\sigma\left(t_{c_{i}-1} t_{c_{i}}, t^{\prime}\right)=\sigma\left(t_{c_{i}} t_{c_{i}-1}, t^{\prime}\right)=k / 2$. Otherwise, there are $r \geqslant 1$ positions $i(1)<\cdots<i(r)$ in $[0, k]$ with $t_{c_{i(j)-1}-1} \neq t_{c_{i(j)}}$. Then $i(j+1)-i(j)$ is even for all j (otherwise, put $a_{0}:=c_{i(j)-1}, b_{0}:=c_{i(j)}, \ldots, c:=c_{i(j+1)-1}$ and apply Lemma 5.2 (a)). In case that all $i(j)$ are even, we have

$$
t_{c_{k-1}} \neq t_{c_{k}}=t_{c_{0}-1}=t_{c_{1}}=t_{c_{i}}
$$

for all odd i, so that k must be odd. On the other hand, if all $i(j)$ are odd, we have

$$
t_{c_{k}}=t_{c_{0}}-1 \neq t_{c_{0}}=t_{c_{i}}
$$

for all even i, so that again k must be odd. This shows that t^{\prime} is of one of the following two forms:

$$
\begin{aligned}
t^{\prime} & =(y x x y)^{m_{0}}\left(y z_{1} z_{1} y\right)^{m_{1}} \cdots\left(y z_{r-1} z_{r-1} y\right)^{m_{r-1}}(y x x y)^{m_{r}} \\
\text { or } \quad t^{\prime} & =x y(y x x y)^{m_{0}}\left(y z_{1} z_{1} y\right)^{m_{1}} \cdots\left(y z_{r-1} z_{r-1} y\right)^{m_{r-1}}(y x x y)^{m_{r}} y x
\end{aligned}
$$

from which the claim follows immediately.
Now we are ready for the construction. Let p_{i} be the i th odd prime number, and $S(A):=\left\{a_{1}+\cdots+a_{k}: k \geqslant 1, a_{i} \in A\right\}$ for any set A of integers. In the next theorem, we need the following sets of even numbers: for any positive integer u, let $q_{u j}=\frac{2}{p_{j}} \prod_{i=1}^{u} p_{i}$ for all $j \in[1, u], Q_{u}:=\left\{q_{u 1}, \ldots, q_{u u}\right\}$, and $Q_{u j}:=Q_{u} \backslash\left\{q_{u j}\right\}$. It is easy to see that then, for each $j \in[1, u]$ and $k \in S\left(Q_{u j}\right), k-q_{u j} \notin S\left(Q_{u j}\right)$ (since p_{j} divides k but not $q_{u j}$).

Theorem 5.5.

(a) Let $\mathcal{V}_{1}, \ldots, \mathcal{V}_{u}$ be a finite system of T_{1} quasi-uniformities such that, for all $i, j \in[1, u], \mathcal{V}_{j} \subseteq \mathcal{V}_{j}^{-1} \vee \mathcal{V}_{i}$. Then there is a finest s. o. p. P such that, for $j \in[1, u], \mathcal{V}_{j}=\mathcal{U}_{q_{u j}}$.
(b) Let $\mathcal{V}_{1} \supseteq \mathcal{V}_{2} \ldots$ be a descending sequence of T_{1} quasi-uniformities such that, for all j and all $U \in \mathcal{V}_{j}$, there are $V_{1} \in \mathcal{V}_{1}, V_{2} \in \mathcal{V}_{2}, \ldots$ with $V_{j}^{-1} \cap \bigcup_{i \neq j} V_{i} \subseteq U$. Then there is a finest s. o. p. P such that $\mathcal{V}_{j}=\mathcal{U}_{2^{j}}$ for all j.

Proof. For part (a), let $I:=[1, u]$, while for part (b), let I be the set of natural numbers. In both cases, P is defined quite analogously to the proof of Theorem 4.1: its filter-base is now the system

$$
B:=\left\{\varepsilon_{\mathcal{S}}: \mathcal{S} \text { is a sequence in } \mathcal{V}\right\}
$$

of lower sets $\varepsilon_{\mathcal{S}}=R_{\perp} A_{\mathcal{S}}$ of R_{\perp}, where $\mathcal{V}:=\prod_{i} \mathcal{V}_{i}$, and the definition of $A_{\mathcal{S}}$ changes to this: for

$$
\mathcal{S}=\left(\left(V_{11}, V_{12}, \ldots\right),\left(V_{21}, V_{22}, \ldots\right), \ldots\right)
$$

$A_{\mathcal{S}}$ is now the set of all words $\left(v_{1} w_{1}\right)^{r_{1}}\left(v_{2} w_{2}\right)^{r_{2}} \cdots\left(v_{\varrho} w_{\varrho}\right)^{r_{\varrho}} \in F$ for which there is some $\left(n_{1}, \ldots, n_{\varrho}\right) \in W$ and some tuple of indices $\left(i_{1}, \ldots, i_{\varrho}\right)$ such that, for all $a \in[1, \rho], w_{a} V_{n_{a} i_{a}} v_{a}$ and either $r_{a}=q_{u i_{a}}$ (for the proof of (a)) or $r_{a}=2^{i_{a}}$ (for the proof of (b)).

As before, P turns out to be a s.o.p., where the only major change is the proof of $\bigcap B=0_{R}$: Let $s \in \bigcap B, \sigma(x z, s)>0$, and $V=\left(V_{11}, V_{12}, \ldots\right) \in \mathcal{V}$. Choose \mathcal{S} so that $V_{k+1, i} V_{k+1, i} \subseteq V_{k i}$ for all $i \in I$ and all k, and some $t \in A_{\mathcal{S}}$ with $s R_{\perp} t$. Assume that $\tilde{t}=\left(v_{1} w_{1}\right)^{r_{1}}\left(v_{2} w_{2}\right)^{r_{2}} \cdots\left(v_{\rho} w_{\rho}\right)^{r_{\rho}}$. If $\sigma(x z, t)>0$, put $y_{V}:=x$, otherwise choose some $y_{V} \in X$ with $\lambda\left(y_{V}, s\right)>0, \sigma\left(x y_{V}, t\right)>0$, and $\sigma\left(y_{V} z, t\right)>0$, according to Lemma 5.3. Since $\ell(s)$ is finite and \mathcal{V} is filtered, there is some y such that, for all $V \in \mathcal{V}$, there is $V^{\prime} \in \mathcal{V}$ with $V^{\prime} \leqslant V$ and $y_{V^{\prime}}=y$, where \leqslant denotes component-wise set inclusion. Consequently, $x U_{V} y U_{V} z$ for all $V \in \mathcal{V}$, where $U_{V}=\bigcup_{i} V_{1 i}$. This implies that $x, y \in \bigcap \mathcal{V}_{i}$ and $x, y \in \bigcap \mathcal{V}_{i^{\prime}}$ for some $i, i^{\prime} \in I$, hence $x=y=z$. Since this is a contradiction to $x \neq z$, we have shown that \tilde{s} is the empty word, that is, $s \in 0_{R}$.

Finally, let us show that $\mathcal{V}_{j}=\mathcal{U}_{q_{u j}}$ resp. $\mathcal{V}_{j}=\mathcal{U}_{2^{j}}$ for each $j \in I$. Fix some $j \in I$ and let $V_{0 j} \in \mathcal{V}_{j}$. Because of the premises, the following choices can now be made. For part (a), choose for all $i \in I \backslash\{j\}$ some $V_{0 i} \in \mathcal{V}_{j}$ and $V_{1 i} \in \mathcal{V}_{i}$ such that $\left(V_{0 i}\right)^{-1} \cap V_{1 i} \subseteq V_{0 j}$. Then choose $V_{1 j} \in \mathcal{V}_{j}$ such that $V_{1 j} \subseteq V_{0 i}$ for all of the finitely many $i \in I \backslash\{j\}$. For part (b), choose instead some $\left(V_{11}, V_{12}, \ldots\right) \in \mathcal{V}$ with $V_{1 h}=V_{1 j} \subseteq V_{0 j}$ for all $h \leqslant j$ and $\left(V_{1 j}\right)^{-1} \cap \bigcup_{i \neq j} V_{1 i} \subseteq V_{0 j}$.

After that, choose the remaining components of a sequence

$$
\mathcal{S}=\left(\left(V_{11}, V_{12}, \ldots\right),\left(V_{21}, V_{22}, \ldots\right), \ldots\right)
$$

in \mathcal{V} so that $V_{k+1, i} V_{k+1, i} \subseteq V_{k i}$ for all $i \in I$ and all k, and assume that $r d_{R_{\perp}}(x, y) \leqslant \varepsilon_{\mathcal{S}}$, that is, $s:=(x z)^{r} R_{\perp} t \in A_{S}$ with (a) $r=q_{u j}$ resp. (b) $r=2^{j}$. We have to show that $z V_{0 j} x$.

By definition of $A_{\mathcal{S}}$, we have $\tilde{t}=\left(v_{1} w_{1}\right)^{r_{1}}\left(v_{2} w_{2}\right)^{r_{2}} \cdots\left(v_{\rho} w_{\rho}\right)^{r_{\rho}}$, and there is some corresponding tuple $\left(i_{1}, \ldots, i_{\rho}\right)$. Since the only letters in \tilde{s} are x and z, there are exactly r occurrences of the syllable $x z$ in \tilde{t} which are not deleted (because otherwise Lemma 5.3 would imply the existence of a third letter y in $\tilde{s})$. All other occurrences of $x z$ in \tilde{t} are deleted as part of some set of deletions of the form represented in Lemma 5.4, that is, there are c_{0}, \ldots, c_{k} with properties as in Lemma 5.4 and with $t_{c_{i}-1} t_{c_{i}}=x z$ for some $i \in[0, k]$. Then the lemma implies that $\sigma(x z, t)=r+\sigma(z x, t)=: k$.

For (a): If $\left(v_{a} w_{a}\right)^{r_{a}}=(x z)^{q_{u j}}$ for some $a \in[1, \rho]$, then $i_{a}=j$ and

$$
(z, x) \in V_{n_{a}, i_{a}} \subseteq V_{1 j} \subseteq V_{0 j}
$$

Otherwise, we know that $k \in S\left(Q_{u j}\right)$, that is, $\sigma(z x, t)=k-q_{u j} \in S\left(Q_{u}\right) \backslash$ $S\left(Q_{u j}\right)$, so that $\left(v_{a} w_{a}\right)^{r_{a}}=(z x)^{q_{u j}}$ and $i_{a}=j$ for some $a \in[1, \rho]$. Also, $\left(v_{b} w_{b}\right)^{r_{b}}=(x z)^{q_{u i}}$ and $i_{b}=i$ for some $b \in[1, \rho]$ and some $i \in I \backslash\{j\}$, so that $(z, x) \in\left(V_{1 j}\right)^{-1} \cap V_{1 i} \subseteq V_{0 j}$.

For (b) instead: If $\left(v_{a} w_{a}\right)^{r_{a}}=(x z)^{2^{i}}$ for some $a \in[1, \rho]$ and $i \leqslant j$, then $i_{a}=i$ and $(z, x) \in V_{n_{a}, i_{a}} \subseteq V_{1 i} \subseteq V_{0 j}$. Otherwise, k is a multiple of 2^{j+1} so that $\sigma(z x, t)=k-2^{j}$ is not such a multiple. Therefore, $\left(v_{a} w_{a}\right)^{r_{a}}=(z x)^{2^{i a}}$ and $i_{a} \leqslant j$ for some $a \in[1, \rho]$. Also, $\left(v_{b} w_{b}\right)^{r_{b}}=(x z)^{2^{i} b}$ and $i_{b} \neq j$ for some $b \in[1, \rho]$, so that again $(z, x) \in\left(V_{1 i_{a}}\right)^{-1} \cap V_{1 i_{b}} \subseteq V_{0 j}$.

Unfortunately, this proof highly depends on the fact that $\underline{M}_{R_{\perp}}$ is not commutative, so that the conjecture that there is also a suitable distance structure with a commutative value monoid is yet unproved.

The most familiar example for a descending sequence of uniformities is perhaps the following. Let $X:=C_{b}[0,1]$ be the (infinite-dimensional) vector space of bounded, continuous, and real-valued functions on the unit interval $[0,1]$, and, for positive integers p, let \mathcal{V}_{p} be the uniformity on X induced by the usual p-norm.

For a second example, take u different primes p_{1}, \ldots, p_{u} and let \mathcal{V}_{i} be the p_{i}-adic uniformity on the rationals. As these are transitive uniformities with countable bases, we may use a slightly simpler construction. More precisely, a base for \mathcal{V}_{i} is the set of equivalence relations $U_{i, m}:=\left\{(x, y): p_{i}^{m}\right.$ divides $\nu(|x-y|)\}$, where m is a positive integer, and $\nu(z / n):=z$ whenever z, n have no common divisor (that is, $\nu(q)$ is the nominator of q). Therefore, it suffices to use only those $\varepsilon_{\mathcal{S}}$ where all tuples in \mathcal{S} are equal, that is, $V_{h+1, i}=V_{h i}$ for all i, h. In this case, the resulting s.o. p. P has a countable base $B=\left\{\varepsilon_{m}: m\right.$ a positive integer\}, where

$$
\varepsilon_{m}:=\bigcup_{n=0}^{\infty}\left(n \cdot \bigcup_{\substack{j \in[1, u],(x, y) \in U_{j, m}}} q_{u j} d_{\perp}(x, y)\right)
$$

As a concluding remark, I note that with similar methods, one can show that, for each pair of comparable T_{1} uniformities $\mathcal{V}_{2} \subseteq \mathcal{V}_{1}$, there is some symmetric distance structure (d, P) such that $\mathcal{U}_{i}=\mathcal{V}_{i}$, which gives a complete characterization of the symmetric T_{1} case.

References

[1] M. M. Bonsangue, F. van Breugel, and J. J. M. M. Rutten, Generalized metric spaces: completion, topology, and powerdomains via the Yoneda embedding, Theoret. Comput. Sci. 193 (1998), no. 1-2, 1-51.
[2] Maurice Fréchet, Sur les classes V normales, Trans. Amer. Math. Soc. 14 (1913), 320325.
[3] Jobst Heitzig, Partially ordered monoids and distance functions, Diploma thesis, Universität Hannover, Germany, July 1998.
[4] , Many familiar categories can be interpreted as categories of generalized metric spaces, Appl. Categ. Structures (to appear) (2002).
[5] Ralph Kopperman, All topologies come from generalized metrics, Amer. Math. Monthly 95 (1988), no. 2, 89-97.
[6] Djuro R. Kurepa, General ecart, Zb. Rad. (1992), no. 6, part 2, 373-379.
[7] Boyu Li, Wang Shangzi, and Maurice Pouzet, Topologies and ordered semigroups, Topology Proc. 12 (1987), 309-325.
[8] Karl Menger, Untersuchungen über allgemeine Metrik, Math. Annalen 100 (1928), 75163.
[9] J. Nagata, A survey of the theory of generalized metric spaces, (1972), 321-331.
[10] Maurice Pouzet and Ivo Rosenberg, General metrics and contracting operations, Discrete Math. 130 (1994), 103-169.
[11] Hans-Christian Reichel, Distance-functions and g-functions as a unifying concept in the theory of generalized metric spaces, Recent developments of general topology and its applications (Berlin, 1992), Akademie-Verlag, Berlin, 1992, p. 279-286.
[12] B. Schweizer and A. Sklar, Probabilistic metric spaces, North-Holland, New York, 1983.

Received September 2001
Revised January 2002

Jobst Heitzig
Institut für Mathematik
Universität Hannover
Welfengarten 1
D-30167 Hannover
Germany
E-mail address: heitzig@math.uni-hannover.de

