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Topological groups with dense compactly
generated subgroups

Hiroshi Fujita and Dmitri Shakhmatov

Abstract. A topological group G is: (i) compactly generated if it
contains a compact subset algebraically generating G, (ii) σ-compact
if G is a union of countably many compact subsets, (iii) ℵ0-bounded if
arbitrary neighborhood U of the identity element of G has countably
many translates xU that cover G, and (iv) finitely generated modulo
open sets if for every non-empty open subset U of G there exists a finite
set F such that F ∪ U algebraically generates G. We prove that: (1)
a topological group containing a dense compactly generated subgroup
is both ℵ0-bounded and finitely generated modulo open sets, (2) an
almost metrizable topological group has a dense compactly generated
subgroup if and only if it is both ℵ0-bounded and finitely generated
modulo open sets, and (3) an almost metrizable topological group is
compactly generated if and only if it is σ-compact and finitely generated
modulo open sets.
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1. Preliminaries

All topological groups in this article are assumed to be T1 (and thus Ty-
chonoff). For subsets A and B of a group G let AB = {ab : a ∈ A and b ∈ B}
and A−1 = {a−1 : a ∈ A}. For a ∈ A and b ∈ B we write aB or Ab rather than
{a}B or A{b}. If A is a subset of a group G, then the smallest subgroup of G
that contains A is denoted by 〈A〉.

Recall that a topological group G is said to be:
(i) compactly generated if G = 〈K〉 for some compact subspace K of G,
(ii) sigma-compact provided that there exists a sequence {Kn : n ∈ ω} of

compact subsets of G such that G =
⋃
{Kn : n ∈ ω},
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(iii) ℵ0-bounded if for every neighborhood U of the unit element there exists
a countable set S ⊂ G such that US = G ([2]),

(iv) totally bounded if for every neighborhood U of the unit element there
exists a finite set S ⊂ G such that US = G,

(v) finitely generated modulo open sets if for every non-empty open set
U ⊆ G, there exists a finite set F ⊆ G such that 〈F ∪ U〉 = G ([1]).

Clearly, compactly generated groups are σ-compact. It is well-known that
σ-compact groups, separable groups and their dense subgroups are ℵ0-bounded
([2]).

2. The results

The main purpose of this note is to study the following question: When does
a topological group contain a dense compactly generated subgroup? Our first
result provides two necessary conditions:

Theorem 2.1. If a topological group G contains a dense compactly generated
subgroup, then G is both ℵ0-bounded and finitely generated modulo open sets.

Proof. Let G be a topological group and K be its compact subset such that
〈K〉 is dense in G. Then G is ℵ0-bounded ([2]), so it remains only to show
that G is finitely generated modulo open sets. Given a non-empty open set U ,
the group G is divided into pairwise disjoint left-congruence classes modulo its
subgroup 〈U〉. Let X be a complete set of representatives of these congruence
classes: G =

⋃
x∈X x〈U〉. Since each congruence class is an open set, finite

number of those classes must cover the compact set K. Therefore there is a
finite set F ⊂ X such that F 〈U〉 ⊇ K. Since 〈K〉 is dense in G, it follows that
G = U〈K〉 ⊆ U〈F 〈U〉〉 ⊆ 〈F ∪ U〉 ⊆ G. �

In our future arguments we will make use of the following easy lemma:

Lemma 2.2. Let X be a topological space. Let K ⊂ X be a compact set with a
neighborhood base {Un}n∈ω. Suppose that we have compact sets Cn ⊂

⋂
k≤n Uk

for all n ∈ ω. Then the set C = K ∪
⋃
n∈ω Cn is also compact.

A topological group G is almost metrizable if there exist a non-empty com-
pact set K ⊂ G and a sequence {Un}n∈ω of open subsets of G such that (1)
K ⊂ Un for all n ∈ ω and (2) if O is an open set containing K, then there
is an n ∈ ω such that K ⊂ Un ⊂ O. (Such a sequence {Un}n∈ω is called a
neighborhood base of K in G.) Both metric groups and locally compact groups
are almost metrizable ([3]).

Our next theorem demonstrates that the necessary conditions for a topolog-
ical group G to have a dense compactly generated subgroup found in Theorem
2.1 are also sufficient in case G is almost metrizable.

Theorem 2.3. An almost metrizable topological group G contains a dense com-
pactly generated subgroup if and only if it is ℵ0-bounded and finitely generated
modulo open sets.



Dense compactly generated subgroups 87

Proof. The “only if” part of our theorem follows from Theorem 2.1, so it re-
mains only to prove the “if” part. Let K be a compact subset of G with a
neighborhood base {Un}n∈ω. Since G is ℵ0-bounded, for each n ∈ ω there is a
countable set Sn ⊂ G such that G = SnUn. The set S =

⋃
n∈ω Sn is countable,

so we can fix its enumeration S = {sn}n∈ω. Let g ∈ G. Let V be any neighbor-
hood of the unit element of G. Then KV −1 is an open set containing K, and so
there is an n ∈ ω such that Un ⊆ KV −1. Since SnUn = G, there is an s ∈ Sn
such that g ∈ sUn ⊆ sKV −1. Let g = skv−1 with k ∈ K and v ∈ V . Then
gv = sk ∈ gV ∩ SK 6= ∅. Since V and g are arbitrary, it follows that SK is
dense in G. Since G is finitely generated modulo open sets, there are finite sets
Fn such that G = 〈Fn∪Un〉 for each n ∈ ω. Set E0 = F0∪{s0}. It follows that
G = 〈E0∪U0〉. So there is a finite set E1 ⊆ U0 such that F1∪{s1} ⊂ 〈E0∪E1〉.
From this it follows that 〈E0∪E1∪U1〉 = G. So there is a finite set E2 ⊆ U1 such
that F2 ∪ {s2} ⊂ 〈E0 ∪ E1 ∪ E2〉. In this way we obtain finite sets En+1 ⊂ Un
(for n ∈ ω) such that Fn+1 ∪ {sn+1} ⊆ 〈E0 ∪ E1 ∪ · · · ∪ En+1〉. By Lemma
2.2, the set C = K ∪

⋃
n∈ω En is compact. The subgroup 〈C〉 is dense, since it

contains SK. Thus G contains a compactly generated dense subgroup. �

Since every metrizable group is almost metrizable ([3]), and ℵ0-boundedness
is equivalent to separability for metrizable groups, from Theorem 2.3 we obtain:

Corollary 2.4. A metrizable group contains a dense compactly generated sub-
group if and only if it is separable and finitely generated modulo open sets.

Our next result generalizes Theorem 4 from [1].

Lemma 2.5. If a σ-compact almost metrizable group G contains a dense com-
pactly generated subgroup, then G itself is compactly generated.

Proof. Suppose G =
⋃
n∈ω Ln, with Ln compact. Suppose also that H =

〈L0〉 is dense in G. Let K ⊆ G be a compact set with a neighborhood base
{Un}n∈ω. By regularity of the topology of G and compactness of K, we may
assume without loss of generality that each Un contains the closure of Un+1. By
compactness of Ln and denseness of H, there is a finite subset Fn of H such that
Ln ⊂ Un+1Fn. Let Cn = LnF

−1
n ∩ Un+1. Then Cn is compact, because it is a

closed subset of the union of finitely many copies of Ln. We also have Cn ⊂ Un
and Ln ⊂ CnFn ⊂ 〈Cn ∪ L0〉. Therefore, setting C = L0 ∪K ∪

⋃
n∈ω Cn, we

obtain 〈C〉 = G. It follows from Lemma 2.2 that C is compact. �

Combining Theorem 2.3 and Lemma 2.5, we obtain our next theorem which
extends the main result of [1]:

Theorem 2.6. An almost metrizable topological group is compactly generated
if and only if it is σ-compact and finitely generated modulo open sets.

Theorems 2.3 and 2.6 become especially simple for locally compact groups:

Theorem 2.7. For a locally compact group G the following conditions are
equivalent:
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(i) G has a dense compactly generated subgroup,
(ii) G is compactly generated,
(iii) G is finitely generated modulo open sets.

Proof. Let U be an open neighbourhood of the identity element having compact
closure U .

(i)→(ii). Let K be a compact subset of G such that 〈K〉 is dense in G. Then
U ∪K is also compact and 〈U ∪K〉 ⊇ U〈K〉 = G because 〈K〉 is dense in G
and U is an open neighbourhood of the identity.

(ii)→(iii) follows from Theorem 2.1.
(iii)→(i). Assume that G is finitely generated modulo open sets. Then there

exists a finite set F ⊆ G with 〈F ∪ U〉 = G. Now note that G = 〈F ∪ U〉 ⊆
〈F ∪ U〉 ⊆ G. Since 〈F ∪ U〉 is compact, G is compactly generated. �

Since for every non-empty open subset U of a topological group G the set
〈U〉 is an open subgroup of G, it follows that a topological group without proper
open subgroups is finitely generated modulo open sets ([1]). Therefore, from
Theorem 2.6 we obtain

Corollary 2.8. An almost metrizable, σ-compact group without proper open
subgroups is compactly generated.

Corollary 2.9. A metric σ-compact group without proper open subgroups is
compactly generated.

Totally bounded groups are finitely generated modulo open sets, and so we
get

Corollary 2.10. Every σ-compact totally bounded almost metrizable group is
compactly generated.
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